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Abstract

The ubiquity of missing values in real-world datasets poses a challenge for statistical infer-
ence and can prevent similar datasets from being analyzed in the same study, precluding
many existing datasets from being used for new analyses. While an extensive collection
of packages and algorithms have been developed for data imputation, the overwhelming
majority perform poorly if there are many missing values and low sample sizes, which are
unfortunately common characteristics in empirical data. Such low-accuracy estimations
adversely affect the performance of downstream statistical models. We develop a statisti-
cal inference framework for predicting the target variable in the presence of missing data
without imputation. Our framework, RIFLE (Robust InFerence via Low-order moment
Estimations), estimates low-order moments of the underlying data distribution with corre-
sponding confidence intervals to learn a distributionally robust model. We specialize our
framework to linear regression and normal discriminant analysis, and we provide convergence
and performance guarantees. This framework can also be adapted to impute missing data.
We compare RIFLE with state-of-the-art approaches (including MICE, Amelia, MissFor-
est, KNN-imputer, MIDA, and Mean Imputer) in numerical experiments. Our experiments
demonstrate that RIFLE outperforms other benchmark algorithms when the percentage of
missing values is high and/or when the number of data points is relatively small. RIFLE is
publicly availabldﬂ

1 Introduction

Machine learning algorithms have shown promise when applied to various problems, including healthcare,
finance, social data analysis, image processing, and speech recognition. However, this success mainly relied
on the availability of large-scale, high-quality datasets, which may be scarce in many practical problems,
especially in medical and health applications (Pedersen et al., 2017; |Sterne et al.| [2009; |Beaulieu-Jones et al.|
2018). Moreover, many experiments and datasets suffer from the small sample size in such applications.
Despite the availability of a small number of data points in each study, an increasingly large number of
datasets are publicly available. To fully and effectively utilize information on related research questions from
diverse datasets, information across various datasets (e.g., different questionnaires from multiple hospitals
with overlapping questions) must be combined in a reliable fashion. After appending these datasets together,
the obtained dataset can contain large blocks of missing values, as they may not share the same features

(Figure [1]).

There are three general approaches for handling missing values in classification and regression tasks. A Naive
method is to remove the rows containing missing entries. However, such an approach is not an option when
the percentage of missingness in a dataset is high. For instance, as demonstrated in Figure [1} the entire
dataset will be discarded if we eliminate the rows with at least one missing entry.

The most common approach for handling missing values in a learning task is to impute them in a pre-
processing stage. The general idea behind data imputation approaches is that the missing values can be
predicted using the other available data points and correlated features. Imputation algorithms cover a
wide range of methods, including imputing missing entries with the columns means |Little & Rubin/ (2019,
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Figure 1: Consider the problem of predicting the trait y from feature vector (xi,...,X100). Suppose that
we have access to three data sets: The first dataset includes the measurements of (x1,Xa,...,X40,y) for
ny individuals. The second dataset collects data from another ns individuals by measuring (xsp, .. .,Xs0)
with no measurements of the target variable y in it; and the third dataset contains the measurements
from the variables (x7o,...,X100,y) for nz number of individuals. How one should learn the predictor
9 = h(x1,...,X100) from these three datasets?

Chapter 3) (or median), least-square and linear regression-based methods (Raghunathan et al., [2001} Kim)|
let al. |2005} |Zhang et al., 2008; (Cai et al. [2006; Buuren & Groothuis-Oudshoorn, 2010), matrix completion
and expectation maximization approaches Dempster et al| (1977)); Ghahramani & Jordan| (1994)); [Honaker
et al. (2011)), KNN based (Troyanskaya et al.,[2001), Tree based methods (Stekhoven & Biithlmann| 2012} |Xia
et al., 2017), and methods using different neural network structures. Appendix presents a comprehensive
review of these methods.

The imputation of data allows practitioners to run standard statistical algorithms requiring complete data.
However, the prediction model’s performance can be highly reliant on the accuracy of the imputer. High
error rates in the prediction of missing values by the imputer can lead to the catastrophic performance of
the downstream statistical methods executed on the imputed data.

Another class of methods for inference in the presence of missing values relies on robust optimization over the
uncertainty sets on missing entries. [Shivaswamy et al.| (2006) and |Xu et al.| (2009) adopt robust optimization
to learn the parameters of a support vector machine model. They consider uncertainty sets for the missing
entries in the dataset and solve a min-max problem over those sets. The obtained classifiers are robust
to the uncertainty of missing entries within the uncertainty regions. In contrast to the imputation-based
approaches, the robust classification formulation does not carry the imputation error to the classification
phase. However, finding appropriate intervals for each missing entry is challenging, and it is unclear how to
determine the uncertainty range in many real datasets. Moreover, their proposed algorithms are limited to
the SVM classifier.

In this paper, we propose RIFLE (Robust InFerence via Low-order moment Estimations) for the direct
inference of a target variable based on a set of features containing missing values. The proposed framework
does not require the data to be imputed in a pre-processing stage. However, it can also be used as a
pre-processing tool for imputing data. The main idea of the proposed framework is to estimate the first
and second-order moments of the data and their confidence intervals by bootstrapping on the available
data matrix entries. Then, RIFLE finds the optimal parameters of the statistical model for the worst-case
distribution with the low-order moments (mean and variance) within the estimated confidence intervals (See
Figure[2). Compared to [Shivaswamy et al. (2006); Xu et al] (2009), we estimate uncertainty regions for the
low-order marginals using the Bootstrap technique. Furthermore, our framework is not restricted to any

particular machine learning model, such as support vector machines (Xu et al., 2009).

Contributions: Our main contributions are as follows:
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Figure 2: Prediction of the target variable without imputation. RIFLE estimates confidence intervals for
low-order (first and second-order) marginals from the input data containing missing values. Then, it solves
a distributionally robust problem over the set of all distributions whose low-order marginals are within the
estimated confidence intervals.

1. We present a distributionally robust optimization framework over the low-order marginals of the
training data distribution for inference in the presence of missing values. The proposed framework
does not require data imputation as a pre-processing stage. In Section [3]and Section [d] we specialize
the framework to ridge regression and classification models as two case studies respectively. The
proposed framework provides a novel strategy for inference in the presence of missing data, especially
for datasets with large proportions of missing values.

2. We provide theoretical convergence guarantees and the iteration complexity analysis of the presented
algorithms for robust formulations of ridge linear regression and normal discriminant analysis. More-
over, we show the consistency of the prediction under mild assumptions and analyze the asymptotic
statistical properties of the solutions found by the algorithms.

3. While the robust inference framework is primarily designed for direct statistical inference in the
presence of missing values without performing data imputation, it can also be adopted as an impu-
tation tool. To demonstrate the quality of the proposed imputer, we compare its performance with
several widely-used imputation packages such as MICE (Buuren & Groothuis-Oudshoorn) 2010]),
Amelia (Honaker et al., 2011)), MissForest (Stekhoven & Biihlmann| 2012), KNN-Imputer (Troyan-
skaya et al.,2001), MIDA (Gondara & Wang, 2018), GAIN (Yoon et al. 2018) on real and synthetic
datasets. Generally speaking, our method outperforms all of the mentioned packages when the
number of missing entries is large.

2 Robust Inference via Estimating Low-order Moments

RIFLE is based on a distributionally robust optimization (DRO) framework over low-order marginals. As-
sume that (x,7) € R? x R follows a joint probability distribution P*. A standard approach for predicting
the target variable y given the input vector x is to find the parameter € that minimizes the population risk
with respect to a given loss function /:

mein Ex,y)~P* [E(x,y;@)] (1)

Since the underlying distribution of data is rarely available in practice, the above problem cannot be directly
solved. The most common approach for approximating is to minimize the empirical risk with respect to
n given i.i.d samples (Xx1,41),. .., (Xn,Yn) drawn from the joint distribution P*:

RN
min ﬁ;axi,yi,a).

The above empirical risk formulation assumes that all entries of x; and y; are available. Thus, to utilize
the empirical risk minimization (ERM) framework in the presence of missing values, one can either remove
or impute the missing data points in a pre-processing stage. Training via robust optimization is a natural
alternative in the presence of missing data. [Shivaswamy et al.| (2006)); | Xu et al.| (2009)) suggest the following
optimization problem that minimizes the loss function for the worst-case scenario over the defined uncertainty
sets per data points:

1 n
min ma; — L(x; — 8;,9:;0), 2
0 {51‘6./\/'@')](’?:1 n ; ( 4 ) ( )
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where N represents the uncertainty region of data point 7. [Shivaswamy et al. (2006]) obtains the uncertainty
sets by assuming a known distribution on the missing entries of datasets. The main issue in their approach is
that the constraints defined on data points are totally uncorrelated. Xu et al.| (2009)) on the other hand defines
N; as a “box” constraint around the data point 7 such that they can be linearly correlated. For this specific
case, they show that solving the corresponding robust optimization problem is equivalent to minimizing
a regularized reformulation of the original loss function. Such an approach has several limitations: First,
it can only handle a few special cases (SVM loss with linearly correlated perturbations on data points).
Furthermore, Xu et al.| (2009) is primarily designed for handling outliers and contaminated data. Thus, they
do not offer any mechanism for the initial estimation of x; when several vector entries are missing. In this
work, we instead take a distributionally robust approach by considering uncertainty on the data distribution
instead of defining an uncertainty set for each data point. In particular, we aim to fit the best parameters
of a statistical learning model for the worst distribution in a given uncertainty set by solving the following;:

i E ~pll(x,y;0)], 3

min  max By~ p[l(x,y;0)] (3)
where P is an uncertainty set over the underlying distribution of data. A key observation is that defining the
uncertainty set P in (3)) is easier and computationally more efficient than defining the uncertainty sets {N;}_;
in . In particular, the uncertainty set P can be obtained naturally by estimating low-order moments of data
distribution using only available entries. To explain this idea and to simplify the notations, let z = (x,y),

p? 2 E[z], and C* £ E[zz”]. While z% and C? are typically not known exactly, one can estimate them
(within certain confidence intervals) from the available data by simply ignoring missing entries (assuming
the missing value pattern is completely at random, e.g., MCAR). Moreover, we can estimate the confidence
intervals via bootstrapping. Particularly, we can estimate p2;,, % 5, C2in, and CZ% . from data such that
pri < p? < p?, and C%, < C% < C?__ with high probability (where the inequalities for matrices and
vectors denote component-wise relations). In Appendix [B] we show how a bootstrapping strategy can be
used to obtain the confidence intervals described above. Given these estimated confidence intervals from

data, can be reformulated as

mein max Ep[t(z;0)]

s.t. “’Iznin S ]EP[Z] S “’Iznaxﬂ (4)
zlin < EP[ZZT] < Cfnax‘

Gao & Kleywegt| (2017) utilize the distributionally robust optimization as over the set of positive semi-
definite (PSD) cones for robust inference under uncertainty. While their formulation considers ¢5 balls for the
constraints on low order moments of the data, we use ¢, constraints that are computationally more natural
in the presence of missing entries when combined with bootstrapping. Furthermore, while it can be applied
to general convex losses, their method relies on the ellipsoid and the existence of oracles for performing
the steps of the ellipsoid method, which is not applicable in modern high-dimensional problems. Moreover,
they assume concavity in data (the existence of some oracle to return the worst-case data points) that is
practically unavailable even in convex loss functions (including linear regression and normal discriminant
analysis studied in our work).

In Section [3] we study the proposed distributionally robust framework described in for the ridge linear
regression. We design efficient first-order convergent algorithms to solve the problem and show how we
can use the algorithms for both inference and imputation in the presence of missing values. Further, in
Appendix [F] we study the proposed distributionally robust framework for the classification problems under
the normality assumption of features. In particular, we show how Framework can be specialized to the
robust normal discriminant analysis in the presence of missing values.

3 Robust Linear Regression in the Presence of Missing Values

Let us specialize our framework to the ridge linear regression model. In the absence of missing data, ridge
regression finds optimal regressor parameter @ by solving

min (X6~ y[3 + AI6]3,



Under review as submission to TMLR

or equivalently by solving:
min 0TXTX0 — 20" Xy + \|6]]3. (5)

Thus, having the second-order moments of the data C = X7X and b = X"y is sufficient for finding the
optimal solution. In other words, it suffices to compute the inner product of any two column vectors a;, a;
of X, and the inner product of any column a; of X with vector y. Since the matrix X and vector y are not
fully observed due to the existence of missing values, one can use the same approach as to compute the
point estimators Cy and bg. These point estimators can be highly inaccurate, especially when the number
of non-missing rows for two given columns is small. In addition, if the pattern of missing entries does not
follow the MCAR assumption, the point estimators are not unbiased estimators of C and b.

3.1 A Distributionally Robust Formulation of Linear Regression

As we mentioned above, to solve the linear regression problem, we only need to estimate the second-order
moments of the data (X”X and X”y). Thus, the distributionally robust formulation described in is
equivalent to the following optimization problem for the linear regression model:

min max 67CO—2bT0+ \|0)3

0 C.b
s.t. Cop—cA<SC<L<Cy+ecA, (6)
by —cd < b < by +cd,
C=0,

where the last constraint guarantees that the covariance matrix is positive and semi-definite. We dicuss the
procedure of estimating the confidence intervals (bg, Cg, d, and A) in Appendix

3.2 RIFLE for Ridge Linear Regression

Since the objective function in @ is convex in @ (ridge regression) and concave in b and C (linear), the min-
imization and maximization sub-problems are interchangeable (Sion et al., [1958]). Thus, we can equivalently
rewrite Problem @ as:

max 9(C,b)

s.t. Cop—cA<<C<L<Cy+ecA,
bo—c60 §b§b0+067
C >0,
where g(b, C) = ming 07 C6O — 2bT70 + )\||6]|?>. Function g can be computed in closed-form given any pair
of (C,b) by setting & = (C + AI)~'b. Thus, using Danskin’s Theorem (Danskin, 2012), we can apply
projected gradient ascent to function g to find an optimal solution of as described in Algorithm (1} At
each iteration of the algorithm, we first perform one step of projected gradient ascent on matrix C and

vector b; then we update 8 in closed-form for the obtained C and b. We initialize C and b using entriwise
point estimation on the available rows (see Equation in Appendix . The projection of b to the box

(7)

Algorithm 1 RIFLE for Ridge Linear Regression in the Presence of Missing Values
: Input: Cy,bg, A,8,T

: Initialize: C = Cy,b = by.

:fori=1,...,T do

Update C =1la+ [C + a00T]

Update b = IIs(b — 2a0)

Set 8 = (C+ AI)~'b

constraint bg — ¢d < b < bg + ¢d can be done entriwise and has the following closed-form
b; if  bg; —cd; < b; < by +cdy,
s(b;) = { bo; —¢d; if b; < by —cdy,
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Theorem 1. Let (§,C,b) be the optimal solution of (6) and D = ||Co — C||% + ||bo — b||3. Assume that
for any given b and C, within the uncertainty (constraint) sets described in (G), |6*(b,C)|| < 7. Then

Algom'thm computes an e-optimal solution of the objective function in in O(D(Tkitl)j iterations.
Proof. The proof is relegated to Appendix [H] O

In Appendix [C| we show how using the acceleration method of Nesterov can improve the convergence rate

of Algorithm (1] to (9(\/ W) A technical issue of Algorithm [1{ and its accelerated version presented in

Appendix[C]is that projection of C to the intersection of box constraints and the set of positive semidefinite
matrices (IIa [C]) is challenging and cannot be done in closed-form. In the implementation of Algorithm ]
we relax the problem by removing the PSD constraint on C to avoid this complexity and time-consuming
singular value decomposition at each iteration. This relaxation does not drastically change the algorithm’s
performance, as our experiments show in Section A more systematic approach is to write the dual
problem of the maximization problem and handle the resulting constrained minimization problem with the
Alternating Direction Method of Multipliers (ADMM). The detailed procedure of such an approach can be
found in Appendix@ All these algorithms are provably convergent to the optimal points of Problem @ In
addition to theoretical convergence, we have numerically evaluated the resulting algorithms in Appendix [K]
Further, the proposed algorithms are consistent, as discussed in Appendix [J|

3.3 Performance Guarantees for RIFLE

Thus far, we have discussed how to efficiently solve the robust linear regression problem in the presence of
missing values. A natural question in this context is the statistical performance of the obtained optimal
solution in the previous section on the unseen test data points. Theorem [2] answers this question from two
perspectives: Assuming that the missing values are distributed completely at random, our estimators are
consistent. Moreover, for the finite case, Theorem part (b) states that with the proper choice of confidence
intervals, with high probability, the test loss of the obtained solution is bounded by the training loss of the
estimator. Note that the results regarding the performance of the robust estimator generally hold for MCAR
missing pattern. However, we perform several experiments on datasets with MNAR, patterns to show how
RIFLE works in practice on such datasets in Section [5

Theorem 2. (a) Consistency of the Covariance Estimator: If the missing pattern of the data follows
MCAR, the estimator proposed in Algorithm[3 converges to its actual value. In other words, by increasing the

number of samples, the size of confidence intervals goes to zero. As a result, (Cy,by,), the optimal solution
of @ for n given data points converges to the ground truth second-order moments of the data:

nh_{rgo C, = Ep-[xxT] (8)
Jim b, = Ep-[xy], (9)

(b) Let X"*4 y be the training data matriz, and the corresponding assigned labels to each data point drawn
from the ground-truth distribution P*. Further, assume that each entry of X and'y is missing with probability
p. Moreover, let (8,C,b) be the solution of Problem @ Define:

Lirain(0) = 67CO — 2b0 + )||0]|2
Liest(6) = min 67C*0 — 2b*T0 + )||0||,

where C* = B y)p+[xxT] and b* = E(x o p-[xy] are the ground-truth second-order moments. Given
V = max, ; Var(X;X,) (mazimum variance of pairwise feature products), with the probability of at least

1 we have:

_ dVv
2c2A2n(1—p)”’ ~ .
Ltest(e) S Ltrain(a) (10)

Proof. The proof is relegated to Appendix [H] O



Under review as submission to TMLR

3.4 Imputation of Missing Values via Robust Linear Regression

To impute a given dataset containing missing values, we can consider any of the features containing missing
values as target y and the rest of the features as the input X in our framework. Then, we predict y given
X via Algorihm [I} Let the obtained optimal solutions be C*, b*, and 8*. For a given row, we restrict C*
and b* to available features on that row. Then, we find the corresponding optimal € in closed-form for the
restricted C* and b* (similar to what we explained for handling test data points containing missing values).
Thus, to impute each feature of the dataset, we only solve Problem @ once, and for each row, we find its
optimal @ by restricting C* and b* to available entries of that row. Note that if the dataset only contains
a few missing patterns for different rows (for instance, we have 3 different missing patterns in Figure [1)), we
can find the optimal @ only for the distinct patterns instead of solving the problem with respect to 8 for
each row separately. Since the imputation of each feature is completely independent of the others, features
can be distributed to multiple cores (or computers) without losing performance.

Beyond Linear Regression: While the developed methods are primarily designed for ridge linear re-
gression, one can apply non-linear transformations (kernels) to obtain models beyond linear regression. In
Appendix [E] we show how to extend the developed algorithms to quadratic models. The RIFLE framework
applied to the quadratically transformed data is called QRIFLE.

4 Robust Classification Framework

In this section, we study the proposed framework in for the classification tasks in the presence of missing
values. Since the target variable y € Y = {1,..., M} takes discrete values in classification tasks, we
consider the uncertainty sets over the data’s first- and second-order marginals given each target value (label)
separately. Therefore, the distributionally robust classification over low-order marginals can be described as:

min max Epll(x,y, w)]

s.t. Mmin,y < EP[X|y] < Mmax,y Vy € y (11)
z]rnin,y S ]EP[XXT‘:U] S z:n'lax,y VZ/ c y

where fmin, lmax, Zmin, and 2.y are the estimated confidence intervals for the first and second order of
the data distribution. Unlike the robust linear regression task in Section [3] the evaluation of the objective
function in might depend on higher-order marginals (beyond second-order) due to the nonlinearity of
the loss function. As a result, Problem is a non-convex non-concave intractable min-max optimization
problem in general. For the sake of computational traceability, we restrict the distribution in the inner
maximization problem to the set of normal distributions. In the following section, we specialize to
the quadratic discriminant analysis as a case study. The methodology can be extended to other popular
classification algorithms, such as support vector machines and multi-layer neural networks.

4.1 Robust Quadratic Discriminant Analysis

Learning a logistic regression model on datasets containing missing values has been studied extensively in
the literature (Fung & Wrobel, |1989; [Abonazel & Ibrahiml [2018). Besides the deletion of missing values
and imputation-based approaches, [Fung & Wrobel (1989) models the logistic regression task in the presence
of missing values as a linear discriminant analysis problem where the underlying assumption is that the
predictors follow normal distribution conditional on the labels. Mathematically speaking, they assume that
the data points assigned to a specific label follow a Gaussian distribution, i.e., x|y =7 ~ N(u;,3). They use
the available data to estimate the parameters of each Gaussian distribution. Therefore, the parameters of the
logistic regression model can be assigned based on the estimated parameters of the Gaussian distributions for
different classes. Similar to the linear regression case, the estimations of means and covariances are unbiased
only when the data satisfies the MCAR condition. Moreover, when the number of data points in the dataset
is small, the variance of the estimations can be very high. Thus, to train a logistic regression model which is
robust to the percentage and different types of missing values, we specialize the general robust classification
framework formulated in Equation to the logistic regression model. Instead of considering a common
covariance matrix for the conditional distributions of x given labels y (linear discriminant analysis), we
assume a more general case where each conditional distribution has its own covariance matrix (quadratic
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discriminant analysis). Assume that x|y ~ N(py, 3,) for y = 0,1. We aim to find the optimal solution to
the following problem:
T

it s Byt 2 108 (o (w75)) B/ = 1)+

Exy=0~N(10,50) { — log (1 — J(WTX)) P(y =0)
s.t. Mming < H0 < Mmax, (12)
Mmin, < U1 < Pmax,
Yming < o < Tmax,
Yiming < X1 < Bax,

Where o(x) =1/ (1 + exp(—x)) is the sigmoid function. In Appendix we develop convergent algorithms
for solving this problem in the presence of missing values.

5 Experiments

In this section, we evaluate the performance of RIFLE on a diverse set of inference tasks in the presence of
missing values. We compare RIFLE’s performance to several state-of-the-art approaches for data imputation
on synthetic and real-world datasets. The experiments are designed in a manner that the sensitivity of the
model to factors such as the number of samples, data dimension, types, and proportion of missing values
can be evaluated. The description of all datasets used in the experiments can be found in Appendix [[}

5.1 Generating MCAR and MNAR Missing Values

To evaluate RIFLE and other state-of-the-art imputation approaches, we need to have access to the ground-
truth values of the missing entries. Hence, we artificially mask a proportion of available data entries and
predict them with different imputation methods. A method performs better than others if the predicted
missing entries are closer to the ground-truth values. To measure the performance of RIFLE and the existing
approaches on a regression task for a given test dataset consisting of N data points, we use normalized root
mean squared error (NRMSE), defined as:

NE DA
NRMSE = Y Y ==1% ™
1 v\ —\2

\/ﬁ i1 (vi — )

where y;, 9;, and y represent the true value of the i-th data point, the predicted value of the i-th data point,
and the average of true values of data points, respectively. In all experiments, generated missing entries
follow either a missing completely at random (MCAR) or a missing not at random (MNAR) pattern. A
discussion on the procedure of generating these patterns can be found in Appendix [G]

5.2 Tuning Hyper-parameters of RIFLE

The hyper-parameter c in controls the robustness of the model by adjusting the size of con-
fidence intervals. This parameter is tuned by performing a cross-validation procedure over the set
{0.1,0.25,0.5,1,2,5,10,20, 50,100}, and the one with the lowest NMRSE is chosen. The default value
in the implementation is ¢ = 1 since it consistently performs well over different experiments. Furthermore,
A, the hyper-parameter for the ridge regression regularizer, is tuned by choosing 20% of the data as the
validation set from the set {0.01,0.1,0.5,1,2,5,10,20,50}. To tune K, the number of bootstrap samples
for estimating the confidence intervals, we tried 10,20, 50, and 100. No significant difference is observed in
terms of the test performance for the above values.

Furthermore, we tune the hyper-parameters of the competing packages as follows. For KNN-Imputer (Troy-
anskaya et al, 2001, we try {2, 10,20, 50} for the number of neighbors (K') and pick the one with the highest
performance. For MICE (Buuren & Groothuis-Oudshoorn, 2010)) and Amelia (Honaker et al.| [2011)), we gen-
erate 5 different imputed data and pick the one with the highest performance on the test data. MissForest
has multiple hyper-parameters. We keep the criterion as “MSE” since our performance evaluation measure
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is NRMSE. Moreover, we tune the number of iterations and number of estimations (number of trees) by
checking values from {5, 10,20} and {50, 100, 200}, respectively. We do not change the structure of the neural
networks for MIDA (Gondara & Wang, |2018) and GAIN (Yoon et all 2018]), and the default versions are
performed for imputing datasets.

5.3 RIFLE Consistency
In TheroemPart (a), we demonstrated that RIFLE is consistent. In Figure we investigate the consistency
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Figure 3: Comparing the consistency of RIFLE, MissForest, KNN Imputer, MICE, Amelia, and Expectation
Maximization methods on a synthetic dataset containing 40% of missing values.

of RIFLE on synthetic datasets with different proportions of missing values. The synthetic data has 50 input
features following a jointly normal distribution with the mean whose entries are randomly chosen from the
interval (—100, 100). Moreover, the covariance matrix equals ¥ = SS7 where S elements are randomly picked
from (—1,1). The dimension of S is 50 x 20. The target variable is a linear function of input features added
to a mean zero normal noise with a standard deviation of 0.01. As depicted in Figure [3] RIFLE requires
fewer samples to recover the ground-truth parameters of the model compared to MissForest, KNN Imputer,
Expectation Maximization (Dempster et all [1977), and MICE. Amelia’s performance is significantly good
since the predictors have a joint normal distribution and the linear underlying model. Note that by increasing
the number of samples, the NRMSE of our framework converges to 0.01, which is the standard deviation of
the zero-mean Gaussian noise added to each target value (the dashed line).

5.4 Data Imputation via RIFLE

As explained in Section [3] while the primary goal of RIFLE is to learn a robust regression model in the
presence of missing values, it can also be used as an imputation tool. We run RIFLE and several state-of-
the-art approaches on five datasets from the UCI repository (Dua & Graff] 2017)) (Spam, Housing, Clouds,
Breast Cancer, and Parkinson datasets) with different proportions of MCAR missing values (the description
of the datasets can be found in Appendix . Then, we compute the NMRSE of imputed entries. Table
shows the performance of RIFLE compared to other approaches for the datasets where the proportion of

missing values are relatively high <@ ~ (’)(1)). RIFLE outperforms these methods in almost all cases

and performs slightly better than MissForest, which uses a highly non-linear model (random forest) to impute
missing values.

5.5 Sensitivity of RIFLE to the Number of Samples and Proportion of Missing Values

In this section, we analyze the sensitivity of RIFLE and other state-of-the-art approaches to the number of
samples and the proportion of missing values. In the experiment in Figure [4] we create 5 datasets containing
40%, 50%, 60%, 70%, and 80% of MCAR missing values, respectively, for four real datasets (Spam, Parkinson,
Wave Energy Converter, and Breast Cancer) from UCI Repository (Dua & Graff] 2017)) (the description of
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Dataset Name RIFLE QRIFLE MICE Amelia GAIN MissForest MIDA EM
Spam (30%) 0.87 £0.009 | 0.82 £0.009 | 1.23 +0.012 | 1.26 £0.007 | 0.91 £0.005 | 0.90 £0.013 | 0.97 £0.008 | 0.94 & 0.004
Spam (50%) 0.90 +£0.013 | 0.86 +0.014 | 1.29 +0.018 | 1.33 £0.024 | 0.93 £0.015 | 0.92 £0.011 | 0.99 £0.011 | 0.97 & 0.008
Spam (70%) 0.92 £0.017 | 0.91 £0.019 | 1.32 +0.028 | 1.37 £0.032 | 0.97 £0.014 | 0.95 £0.016 | 0.99 £0.018 | 0.98 £ 0.017

Housing (30%) 0.86 £0.015 | 0.89 +0.018 | 1.03 £0.024 | 1.02 £0.016 | 0.82 +0.015 | 0.84 £0.018 | 0.93 0.025 | 0.95 4 0.011
Housing (50%) 0.88 £0.021 | 0.90 £0.024 | 1.14 4+0.029 | 1.09 £0.027 | 0.88 +0.019 | 0.88 £0.018 | 0.98 +0.029 | 0.96 & 0.016
Housing (70%) 0.92 +0.026 | 0.95 £0.028 | 1.22 £0.036 | 1.18 £0.038 | 0.95 +0.027 | 0.93 +0.024 | 1.02 £0.037 | 0.98 £0.017
Clouds (30%) 0.81 +0.018 | 0.79 £0.019 | 0.98 £0.024 | 1.04 £0.027 | 0.76 £0.021 | 0.71 +0.011 | 0.83 40.022 | 0.86 £ 0.013
Clouds (50%) 0.84 +0.026 | 0.84 £0.028 | 1.10 £0.041 | 1.13 £0.046 | 0.82 £0.027 | 0.75 +0.023 | 0.88 40.033 | 0.89 £0.018
Clouds (70%) 0.87 £0.029 | 0.90 +0.033 | 1.16 £0.044 | 1.19 £0.048 | 0.89 +0.035 | 0.81 £0.031 | 0.93 £0.044 | 0.92 &+ 0.023
Breast Cancer (30%) | 0.52 £0.023 | 0.54 +0.027 | 0.74 £0.031 | 0.81 £0.032 | 0.58 +£0.024 | 0.55 +£0.016 | 0.70 £0.026 | 0.67 £+ 0.014
Breast Cancer (50%) | 0.56 £0.026 | 0.59 £0.027 | 0.79 £0.029 | 0.85 £0.033 | 0.64 £0.025 | 0.59 +0.022 | 0.76 £0.035 | 0.69 £ 0.022
Breast Cancer (70%) | 0.59 +0.031 | 0.65 £0.034 | 0.86 £0.042 | 0.92 £0.044 | 0.70 £0.037 | 0.63 £0.028 | 0.82 £0.035 | 0.67 £ 0.014

Parkinson (30%) 0.57 £0.016 | 0.55 +0.016 | 0.71 £0.019 | 0.67 £0.021 | 0.53 +0.015 | 0.54 £0.010 | 0.62 40.017 | 0.64 4 0.011

Parkinson (50%) 0.62 0.022 | 0.64 £0.025 | 0.77 +0.029 | 0.74 £0.034 | 0.61 £0.022 | 0.65 £0.014 | 0.71 £0.027 | 0.69 £ 0.022

Parkinson (70%) 0.67 +0.027 | 0.74 £0.033 | 0.85 £0.038 | 0.82 £0.037 | 0.69 +0.031 | 0.73 £0.022 | 0.78 £0.038 | 0.75 £ 0.029

Table 1: Performance comparison of RIFLE, QRIFLE (Quadratic RIFLE), and state-of-the-art methods on
several UCI datasets. We applied to impute methods on three different missing-value proportions for each
dataset. The best imputer is highlighted with bold font, and the second-best imputer is underlined. Each
experiment is done 5 times, and the average and the standard deviation of performances are reported.

the datasets can be found in Appendixm). Given a feature in a dataset containing missing values, we say an
imputer wins that feature if the imputation error in terms of NRMSE for that imputer is less than the error
of the other imputers. Figure [4] reports the number of features won by each imputer on the created datasets
described above. As we observe, the number of wins for RIFLE increases as we increase the proportion of
missing values. This observation shows that the sensitivity of RIFLE as an imputer to the proportion of
missing values is less than MissForest and MICE in general.

Spam Dataset

Parkinson Dataset

50 25
= RIFLE mm RIFLE
B MissForest . MissForest
407 mmm MICE 37 20 . MICE
é 31 32 é
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30 15 14
5 27 26 s 5 1 13 L B
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Figure 4: Performance Comparison of RIFLE, MICE, and MissForest on four UCI datasets: Parkinson,
Spam, Wave Energy Converter, and Breast Cancer. For each dataset, we count the number of features that

each method outperforms the others.
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Figure 5: Sensitivity of RIFLE, MissForest, Amelia, KNN Imputer, MIDA, and Mean Imputer to the
percentage of missing values on the Drive dataset. Increasing the percentage of missing value entries degrades
the benchmarks’ performance compared to RIFLE. KNN-imputer implementation cannot be executed on
datasets containing 80% (or more) missing entries. Moreover, Amelia and MIDA do not converge to a
solution when the percentage of missing value entries is higher than 70%.

Figure [4 does not show how the NRMSE of one imputer is changed when the proportion of missing values
is increased. Next, we analyze the sensitivity of RIFLE and several imputers to change in missing value
proportions. Fixing the proportion of missing values, we generate 10 random datasets containing missing
values in random locations on the Drive dataset (the description of datasets is available in Appendix . We
impute the missing values for each dataset with RIFLE, MissForest, Mean Imputation, and MICE. Figure 5]
shows the average and the standard deviation of these 4 imputers’ performances for different proportions of
missing values (10% to 90%). Figure [5| depicts the sensitivity of MissForest and RIFLE to the proportion of
missing values in the Drive dataset. We select 400 data points for each experiment with different proportions
of missing values (from 10% to 90%) and report the average NRMSE of imputed entries. Finally, in Figure|6]
we have evaluated RIFLE and other methods on the BlogFeedback dataset (see Appendix containing 40%
missing values. The results show that RIFLE’s performance is less sensitive to decreasing the number of
samples.

5.6 Performance Comparison on Real Datasets

In this section, we compare the performance of RIFLE to several state-of-the-art approaches, including
MICE (Buuren & Groothuis-Oudshoorn) 2010), Amelia (Honaker et al. |2011)), MissForest (Stekhoven &
Bithlmann, 2012), KNN Imputer (Raghunathan et all 2001), and MIDA (Gondara & Wang, [2018]). There
are two primary ways to do this. One method to predict a continuous target variable in a dataset with
many missing values is first to impute the missing data with a state-of-the-art package, then run a linear
regression. An alternative approach is to directly learn the target variable, as we discussed in Section

Table [2] compares the performance of mean imputation, MICE, MIDA, MissForest, and KNN to that of
RIFLE on three datasets: NHANES, Blog Feedback, and superconductivity. Both Blog Feedback and
Superconductivity datasets contain 30% of MNAR missing values generated by Algorithm@, with 10000 and
20000 training samples, respectively. The description of the NHANES data and its distribution of missing
values can be found in Appendix [[}

Since MICE and MIDA cannot predict values during the test phase without data imputation, we use them
in a pre-processing stage to impute the data. Then we apply the linear regression to the imputed dataset.
On the other hand, RIFLE, KNN imputer, and MissForest can predict the target variable without imputing
the training dataset. Table 2| shows that RIFLE outperforms all other state-of-the-art approaches executed
on the three mentioned datasets. In particular, RIFLE outperforms MissForest, while the underlying model
used by RIFLE is simpler (linear) compared to the nonlinear random forest model utilized by Missforest.

11
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Figure 6: Sensitivity of RIFLE, MissForest, MICE, Amelia, Mean Imputer, KNN Imputer, and MIDA to the
number of samples for the imputations of Blog Feedback dataset containing 40% of MCAR missing values.
When the number of samples is limited, RIFLE outperforms other methods, and its performance is very
close to the non-linear imputer MissForest for larger samples.

Methods Datasets
Super Conductivity | Blog Feedback NHANES

Regression on Complete Data 0.4601 0.7432 0.6287
RIFLE 0.4873 + 0.0036 0.8326 £+ 0.0085 | 0.6304 + 0.0027
Mean Imputer + Regression 0.6114 £ 0.0006 0.9235 £ 0.0003 | 0.6329 4+ 0.0008
MICE + Regression 0.5078 £ 0.0124 0.8507 £ 0.0325 | 0.6612 4 0.0282
EM + Regression 0.5172 + 0.0162 0.8631 £ 0.0117 0.6392 + 0.0122
MIDA Imputer + Regression 0.5213 £ 0.0274 0.8394 £ 0.0342 | 0.6542 £+ 0.0164
MissForest 0.4925 £+ 0.0073 0.8191 +0.0083 | 0.6365 + 0.0094
KNN Imputer 0.5438 £ 0.0193 0.8828 £0.0124 | 0.6427 +0.0135

Table 2: Normalized RMSE of RIFLE and several state-of-the-art Methods on Superconductivity, blog
feedback, and NHANES datasets. The first two datasets contain 30% Missing Not At Random (MNAR)
missing values in the training phase generated by Algorithm [0] Each method applied 5 times to each

dataset, and the result is reported as the average performance + standard deviation of experiments in terms
of NRMSE.

We performed several additional experiments on real datasets to evaluate the robust classifier developed in
Section [d] The experiments are relegated to Appendix [}

Conclusion: In this paper, we proposed a distributionally robust optimization framework over the distri-
butions with the low-order marginals within the estimated confidence intervals for inference and imputation
of datasets in the presence of missing values. We developed algorithms for regression and classification with
convergence guarantees. The performance of the method is evaluated on synthetic and real datasets with
different numbers of samples, dimensions, missing value proportions, and types of missing values. In most
experiments, RIFLE consistently outperforms other existing methods.
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