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Abstract

Summarizing biomedical discovery from ge-
nomics data using natural languages is an
essential step in biomedical research but is
mostly done manually. Here, we introduce
Textomics, a novel dataset of genomics data
description, which contains 22,273 pairs of ge-
nomics data matrix and its summary. Each
summary is written by the researchers who
generated the data and associated with a sci-
entific paper. Based on this dataset, we study
two novel tasks: generating textual summary
from genomics data matrix and vice versa. In-
spired by the successful applications of k near-
est neighbors in modeling genomics data, We
propose a kNN-Vec2Text model to address
these tasks and observe substantial improve-
ment on our dataset. We further illustrate how
Textomics can be used to advance other ap-
plications, including evaluating scientific pa-
per embeddings and generating masked tem-
plates for scientific paper understanding. Tex-
tomics serves as the first benchmark for gener-
ating textual summary for genomics data and
we envision it will be broadly applied to other
biomedical and natural language processing
applications.

1 Introduction

Modern genomics research has become increas-
ingly automated through being roughly divided into
three sequential steps: next-generation sequenc-
ing technology produces a massive amount of ge-
nomics data, which are in turn processed by bioin-
formatics tools to identify key variants and genes,
and, ultimately, analyzed by biologists to summa-
rize the discovery (Goodwin et al., 2016; Kanehisa
and Bork, 2003). In contrast to the first two steps
that have been automated by new technologies and
software, the last step of summarizing discovery
is still largely performed manually, substantially
slowing down the progress of scientific discovery

(Hwang et al., 2018). A plausible solution is to
automatically summarize the discovery from ge-
nomics data using neural text generation, which
has been successfully applied to radiology report
generation (Wang et al., 2021; Yuan et al., 2019)
and clinical notes generation (Melamud and Shiv-
ade, 2019; Lee, 2018; Miura et al., 2021).

In this paper, we study this novel task of gen-
erating sentences to summarize a genomics data
matrix. There are several existing approaches that
demonstrate encouraging results in generating short
phrases to describe functions of a set of genes
(Wang et al., 2018; Zhang et al., 2020; Kramer
et al., 2014). However, our task is fundamentally
different from these ones: the input of our task is a
matrix that contains tens of thousands genes, which
could be more noisy than a set of selected genes;
the output of our task is sentences instead of short
phrases or controlled vocabularies.

To study this task, we curate a novel dataset, Tex-
tomics, by integrating data from PMC, PubMed,
and Gene Expression Omnibus (GEO) (Edgar et al.,
2002) (Figure 1). GEO is the default database
repository for researchers to upload their genomics
data matrix, such as gene expression matrix and
mutation matrix. Each genomics data matrix in
GEO is a sample by feature matrix, where samples
are often humans or mice that are sequenced to-
gether to study a specific biological problem and
features are genes or variants. Each matrix is also
associated with a few sentences that are written by
researchers to summarize this data matrix. After
pre-processing, we obtain 22,273 matrix summary
pairs, spanning 9 sequencing technology platforms.
Each matrix has on average 2,475 samples and
22,796 features. Each summary has on average 46
words.

We further propose a novel approach to automat-
ically generate summary from a genomics data ma-
trix, which is highly noisy and high-dimensional. k
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Figure 1: Flow chart of Textomics. a. Genomics data matrices and summaries are collected from GEO. Scientific
papers are collected from PMC and PubMed. Each data matrix is associated with a unique summary and a unique
scientific paper in Textomics. b. Textomics is divided into 9 sequencing platforms, spanning over various species.
Data matrices in the same platforms share the same features and can therefore be used to train a machine learning
model. c. Textomics can be used as the benchmark for a variety of tasks, including Vec2Text, Text2Vec, measuring
paper similarity, and scientific paper understanding. d. kNN-Vec2Text is developed to address the task of Vec2Text,
by first constructing a reference summary using similar genomics data matrix and then unifying these summaries
to generate a new summary.

nearest neighbor (kNN) approaches have obtained
great success in genomics data by capturing the hid-
den modules within it (Levine et al., 2015; Baran
et al., 2019). The key idea of our method is to find k
nearest summaries according to the genomics data
similarity and then exploit attention mechanism to
convert these k nearest summaries to a new sum-
mary. Our method obtained substantial improve-
ment in comparison to baseline approaches. We
further illustrated how we can generate a genomics
data matrix from a given summary, offering the
possibility to simulate genomics data from textual
description. We then introduced how Textomics
can be used as a novel benchmark for measuring
scientific paper similarity and evaluating scientific
paper understanding. To the best of our knowledge,
Textomics and kNN-Vec2Text together build up
the first large-scale benchmark for genomics data
summary generation, and can be broadly applied
to a variety of natural language processing tasks.

2 Textomics Dataset

We collected genomics data matrices from Gene
Expression Omnibus (GEO) (Edgar et al., 2002).
The feature of each data matrix is a gene or a vari-
ant and the sample of each matrix is an experimen-
tal subject, such as an experimental animal or a
patient. Each data matrix is associated with an
expert-written summary, describing this data ma-
trix. We obtained in total 164,667 matrix-summary
pairs, spanning 12,219 sequencing platforms. We

truncated the summary that is longer than 64 words.

Data matrices belonging to the same sequencing
platform share the same set of features, and can
thus be used together to train the model. To this
end, we first selected 20,000 features that have the
largest standard deviation and lower missing rate
for each platform and excluded samples that have a
substantially higher missing rate. We then selected
9 platforms with the lowest rate of missing values
and the largest number of matrix-summary pairs.
We imputed the resulted data matrix using aver-
aging imputation and excluded outliers and non-
informative summary (e.g., “Please see our data
below”) through both manual inspection and an au-
tomated approach that excluded the summary that
is substantially different from all other summaries
based on pairwise BLEU scores. Finally, each of
the 9 platforms contains 471 matrix-summary pairs
on average, presenting a desirable number of train-
ing samples to develop data summary generation
models. We summarized the statistics of these 9
platforms in Supplementary Table S1.

Data matrices belonging to the same platform
have distinct samples (e.g., patient samples col-
lected from two hospitals). In order to make them
comparable and provide fixed-size features for ma-
chine learning models, we used a five-number sum-
mary to represent each data matrix. In particular,
we calculated the smallest, the first quartile, the
median, the third quartile, and the largest value
of each feature across samples in a specific data
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matrix. We then concatenated these values of all
features, resulting in a 100k-dimensional feature
vector for each data matrix. This vector will be
used as the input to the machine learning model.
We used the original summary written by the author
as the output of the machine learning model.

Each data matrix is associated with a scientific
paper, which describes how the authors generated
and used the data. Therefore, the data matrix and
the summary can be used to help embed these pa-
pers. We additionally retrieved these papers from
PubMed and PMC databases according to the paper
titles enclosed in GEO. We obtained the full text
for those 7,691 freely accessible ones. We will in-
troduce two applications that jointly use scientific
papers and matrix-summary pairs in Section 6.

3 Task Description

We aim to accelerate genomics discovery by gen-
erating a textual summary given the five-number
summary-based vector of a genomics data matrix.
We refer to the five-number summary-based vector
as gene feature vector for simplicity. Specifically,
consider textual summary domain D and gene fea-
ture vector domain V , let D = {DD,DV} =

{(di, vi)}Ni=1
dist∼ P(D,V) be a dataset contains

N summary-vector pairs sampled from the joint
distribution of these two domains, where di ,
〈d1i , d2i , ..., d

ndi
i 〉 denotes a token sequence and

vi ∈ Rlv denotes the gene feature vector. Here
dji ∈ C, C is the vocabulary. We now formally de-
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Figure 2: Density plot showing the Spearman cor-
relation between text-based similarity (y-axis) and
vector-based similarity (x-axis) on sequencing platform
GPL6246. Each dot is a pair of data samples.

fine two cross-domain generation tasks, Vec2Text
and Text2Vec, based on our dataset. Given a gene
feature vector vi, Vec2Text aims to generate a sum-
mary di that could best describe this vector vi;
given a textual summary di, Text2Vec aims to gen-
erate the gene feature vector vi that di describes.
Since we are studying a novel task on a novel
dataset, we first examined the feasibility of this
task. To this end, we obtained the dense representa-
tion of each textual summary using the pre-trained
SPECTER model (Cohan et al., 2020) and use these
representations to calculate a summary-based sim-
ilarity between each pair of summaries. We also
calculated a vector-based similarity based on the
gene feature vector using the cosine similarity. We
found that these two similarity measurements show
a substantial agreement (Figure 2, Supplemen-
tary Table S2). All 9 platforms achieved a Spear-
man correlation greater than 0.2, suggesting the
possibility to generate textual summary from the
gene feature vector and vice versa.

4 Methods

4.1 Vec2Text
We first introduce a base model that tries to encode
gene expression vectors into the semantic embed-
ding space and then decodes it to generate texts.
The base model contains a word embedding func-
tion Emb(.), a gene feature vector encoder Encv(.)
and a decoder Decv(.). Given a gene feature vector
vi, the encoder will first embed the data into a se-
mantic representation space s(0)i = Encv(vi), and
then the decoder will start from this representation
for the text generation. The generation process is
autoregressive. It generates j-th word d̂(j)i and its
embedding s(j)i as:

P (d̂
(j)
i |s

(<j)
i ) = Decv(s

(<j)
i ), j = 1, ..., ndi . (1)

Then we sample the next word and obtain its em-
bedding as:

s
(j)
i = Emb(d̂(j)i ), d̂

(j)
i

sample∼ P (d̂
(j)
i |s

(<j)
i ). (2)

This model is trained using the following loss func-
tion:

Lbase = −
1

|DV |

|DV |∑
i=1

ndi∑
j=1

logP (d̂(j)i |s
(<j)
i ). (3)

4.1.1 kNN-Vec2Text Model
The base model attempts to learn an encoder that
projects a gene feature vector to a semantic repre-
sentation. However, the substantial noise and the
high-dimensionality of the gene feature vector pose
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great challenges to effectively learn that projection.
k-nearest neighbors models have been extensively
used as the solution to overcome such issues in
genomics data analysis (Levine et al., 2015; Baran
et al., 2019). Therefore, one plausible solution
is to explicitly leverage summaries from similar
gene feature vectors to improve the generation.
Inspired by the encouraging performance in us-
ing k-nearest neighbors (kNN) in seq2seq models
(Khandelwal et al., 2019, 2021) and genomics data
analysis (Levine et al., 2015; Baran et al., 2019),
we propose to convert the Vec2Text problem to
a Text2Text problem according to the k-nearest
neighbor of each vector.

For a given gene feature vector g, we use ei
to denote its Euclidean distance to another gene
feature vectors vi in D. We then select the sum-
maries of k samples that have the minimum Eu-
clidean distances as the reference summary list
t̃ = [dj1 , ..., djk ], where jm ∈ {1, 2, ..., |D|} de-
notes the index of ordered summaries w.r.t the Eu-
clidean distance, i.e, ej1 ≤ ej2 ≤ ... ≤ ej|D| .

In addition to alleviating the noise in genomics
data using the reference summary list (Levine et al.,
2015; Baran et al., 2019), our method explicitly
converts the Vec2Text problem to a Text2Text prob-
lem, and can thus seamlessly incorporate many
advanced pre-trained language models into our
framework. The resulted problem we need to solve
is a k sources to one target generation problem.
One naive solution is to concatenate the k ref-
erence summaries together. However, this con-
catenation will make the source text much longer
than the target text and how to order each sum-
mary during concatenation also remains unclear.
Instead, we propose to transform this problem
into k one-to-one generation problem and then
use attention-based strategy to fuse them. Con-
cretely, let nj = max{nj1 , ..., njk} be the maxi-
mum length among all the reference summaries.
We first get the representation of summaries xjm =

Emb(djm) = 〈x(1)jm , ..., x
(nj)
jm
〉 for m = 1, ..., k.

We construct fixed-length reference summaries by
padding after the end of each summary with length
less than nj . We then utilize self-attention module
(SA) (Vaswani et al., 2017) to get the aggregated
embedding of each reference with their embed-
dings as well as the gene feature vector distance ei.
Let Qr,Kr, Vr be the query, key, value matrix of
embedding sequence r = 〈r(1), ..., r(lr)〉, we have:

SA(r) = Attention(Qr,Kr, Vr). (4)

We then calculate the attention score as following:
ajm = SA(〈x(1)jm , ..., x

(njk
)

jm
〉), (5)

scj = SA(〈ej1 · aj1 , ..., ejk · ajk〉), (6)
where scj = [scj1 , ..., scjk ] ∈ Rk. The final score
is then calculated based on the attention scores and
temperature τ as:

wjm =
exp(τ · scjm)∑k
l=1 exp(τ · scjl)

. (7)

Then, we aggregate embedding sequences by tak-
ing weighted averages:

x̃
(l)
j =

k∑
m=1

wjmx
(l)
jm
, l = 1, ...,nj . (8)

Let P<l,x(d) = PθLM
(d(l)|d(<l), x), 0 < l < nd

be the probability distribution of d(l) output by the
language model θLM conditioned on the sequences
of the embedding vectors x and the first l-1 se-
quence tokens. We feed the aggregated embedding
sequences into the language model to reconstruct
the summary d using an autoregressive-based loss
function:

LkNN-Vec2Text = −
1

|DD|
∑
d∈DD

nd∑
l=1

logP<l,x̃j (d).

(9)

4.2 Text2Vec
We model the reverse problem of generating the
gene feature vector v from a textual summary
d as a regression problem. Our model is com-
posed with a semantic encoder Encd(.) and a read-
out head MLP(.). Specifically, the encoder will
embed the textual summary into dense represen-
tation x = Encd(d), and the readout head will
map the representation to the gene feature vector
v̂ = MLP(x). Then we train this model by mini-
mizing the mean square errors:

Lv =

√√√√ 1

|DD|
∑
vi∈DV

1

ld

ld∑
j=1

(v̂i
(j) − v(j)i )2. (10)

5 Results

5.1 Vec2Text
To evaluate the performance of kNN-Vec2Text
on the task of Vec2Text, we compared it to the
base model based on Transformer (Vaswani et al.,
2017) and GPT-2 (Radford et al., 2019), as well
as Sent-VAE (Bowman et al., 2016). For kNN-
Vec2Text, we set k = 4 and τ = 0.1, and used T5
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Figure 3: Performance on Vex2Text and Text2Vec using Textomics as the benchmark. a. Bar plot comparing our
method kNN-Vec2Text with existing approaches on the ask of Vec2Text across 9 platforms in Textomics. b. Bar
plot comparing the performance of different scientific paper embedding methods across 9 platforms in Textomics.

Table 1: A case study of the generated text by kNN-Vec2Text. Summaries of the four nearest neighbors in the
input space are shown. The generated text is composed of short spans from four different neighbors (colored in
red).

Neighbor 1: Analysis of B16 tumor microenvironments at gene expression level. The hypothesis tested in the present
study was that Tregs orchastrated the immune reponse triggered in presence of tumors.

Neighbor 2: This study aims to look at gene expresion profiles between wildtype and Bapx1 knockout cellsof the gut
in a E12.5 mouse embryo.

Neighbor 3: The role of bone morphogenetic protein2 in regulating transformation of the uterine stroma during embryo
implantation in mice was investigated by the conditional ablation of Bmp2 in the uterus using the mouse.

Neighbor 4: Measurement of specific gene expression in clinical samples is a promising approach for monitoring the
recipient immune status to the graft in organ transplantation.

Generated: Analysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study
was that Tregs orchestrated the immune reponse triggered in presence of embryo.

Truth: Analysis of uterine microenvironment at gene expression level. The hypothesis tested in the present study
was that Tregs orchestrated the immune reponse triggered in presence of embryo.

(Raffel et al., 2020) as the language model. For
all 9 platforms, we reported the average perfor-
mance under 5-fold cross validation. The results
of BLEU-1 score are summarized in Figure 3a.
We found that kNN-Vec2Text substantially outper-
formed other methods by a large margin. Specif-
ically, kNN-Vec2Text obtained a 0.206 BLEU-1
score on average while none of the other three meth-
ods achieved an average BLEU-1 score greater than
0.150. The prominent performance of our method
demonstrates the effectiveness of using a k-nearest-
neighbor approach to convert the Vec2Text problem
to a Text2Text problem.

To further understand the superior performance
of the kNN-Vec2Text model, we presented a case
study in Table 1. In this case study, the generated
summary is highly accurate compared to the ground
truth summary. By examining the summaries of
the 4 nearest neighbors in the gene feature vec-
tor space, we found that the generated summary
is composed of short spans from each individual
neighbor, again indicating the advantage of using
a k-nearest neighbor for this task. Our method

leveraged an attention mechanism to unify these
four neighbors, thus offering an accurate genera-
tion. We also observed consistent improvement of
our method over comparison approaches on other
metrics and summarized the results in Supplemen-
tary Table S3.

5.2 Text2Vec
We next used the Text2Vec task to illustrate how
our dataset can be used to compare the performance
of different pre-trained language models. In par-
ticular, we compared a recently proposed scien-
tific paper embedding method SPECTER (Cohan
et al., 2020), which has demonstrated prominent
performance in a variety of scientific paper anal-
ysis tasks, with SciBERT (Beltagy et al., 2019),
BioBERT (Lee et al., 2020) and SentBERT (Wang
and Kuo, 2020) and the vanilla BERT (Devlin et al.,
2019). While the other language models directly
take the token sequence as the input, SPECTER
model needs to take both the abstract and the ti-
tle. To make a fair comparison, we concatenated
the title and the summary as the input for models
other than SPECTER. For all 9 platforms, we re-
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ported the average performance under 5-fold cross
validation. We further implemented a simple av-
eraging baseline approach that predicts the vector
for a test summary according to the average vec-
tors of training samples. This baseline does not
utilize any textual summary and can thus help us
assess the effect of using textual summary infor-
mation in this task. We used RMSE to evaluate
the performance of all methods. We reported the
RMSE improvement of each method over the aver-
aging baseline model in Figure 3b. We found that
all methods outperform the baseline approaches
by gaining at least 15% improvement, indicating
the importance of considering textual summary in
this task. SPECTER achieved the best overall per-
formance among all five methods, suggesting the
advantage to separately model the title and the ab-
stract when embedding scientific papers.

6 Applications

6.1 Evaluate paper embedding via Textomics

Embedding scientific papers is crucial to effectively
identify emerging research topics and new knowl-
edge from scientific literature. To this end, many
machine learning models have been proposed to
embed scientific papers into dense embeddings
and then applied these embeddings for a variety
of downstream applications (Cohan et al., 2020;
Lee et al., 2020; Wang and Kuo, 2020; Beltagy
et al., 2019; Devlin et al., 2019). However, there
is currently limited golden standard that can mea-
sure the similarity between two papers. As a result,
existing approaches use surrogate metrics such as
citation relationship, keywords, and user activities
to evaluate their paper embeddings (Cohan et al.,
2020; Chen et al., 2019; Wang et al., 2019).

Textomics can be used to measure these paper
embedding approaches by examining the consis-
tency between the embedding-based paper similar-
ity and the embedding-based summary similarity
since both the paper and the summary are written
by the same authors. In particular, for a pair of
summaries di, dj ∈ DD, let ti, tj be the text (e.g.,
abstracts) extracted from their corresponding scien-
tific papers. Let Encd be the encoder of the paper
embedding method we want to evaluate. We first
get their embeddings as:
sdi , sdj = Encd(di),Encd(dj) ∈ Rls , (11)

sti , stj = Encd(ti),Encd(tj) ∈ Rls . (12)
We then compute the pairwise Euclidean distance

between all pairs of summaries and all pairs of
paper text as:

sdi,j =

√√√√ ls∑
k=1

(s
(k)
di
− s(k)dj )

2 ∈ R, (13)

sti,j =

√√√√ ls∑
k=1

(s
(k)
ti
− s(k)tj )2 ∈ R. (14)

To evaluate the quality of the encoder Encd, we
can calculate the Spearman correlation between the
pairwise summary similarity and the pairwise text
similarity. A larger Spearman correlation indicates
this Encd is more accurate in embedding scientific
papers. As a proof-of-concept, we obtained the full
text of 7,691 papers in our dataset from the freely
accessible PubMed Central. We segmented each
paper into five sections of abstract, introduction,
method, result and conclusion. We first compared
different paper embedding methods using the ab-
stract of a paper. The five embedding methods we
considered are introduced in section 5.1. Since
SPECTER takes both the title and paragraph as the
input we used the first sentence of the summary as
a pseudo-title when encoding the summary. The
results are summarized in Figure 4a. We found
that SPECTER was substantially better than other
methods on 8 out of the 9 platforms. SPECTER is
specifically developed to embed scientific papers
by processing the title and the abstract separately,
whereas other pre-trained language models sim-
ply concatenated the title and the abstract. The
superior performance of SPECTER suggests the
importance of separately modeling paper title and
abstract when embedding scientific papers. Sent-
BERT obtained the best performance among four
pre-trained language models, partially due to its
prominent performance in sentence-level embed-
ding. We further noticed that the relative perfor-
mance among different methods is largely consis-
tent with the previous work evaluated on other met-
rics (Cohan et al., 2020), demonstrating the high-
quality of Textomics.

After observing the superior performance of
SPECTER, we next investigated which section of
the paper can be best used to assess paper similarity.
Although existing paper embedding approaches of-
ten leverage the abstract for embedding, other sec-
tions, such as introduction and results might also be
informative, especially for paper describing a spe-
cific dataset or method. We thus applied SPECTER
to embed five different sections of each scientific
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Figure 4: Performance on using Textomics as the benchmark to evaluate scientific paper embeddings. (A). Bar plot
showing the comparison on embedding scientific papers using Textomics as the benchmark. (B). Bar plot showing
the comparison on SPECTER embedding of different paper sections using Textomics as the benchmark.

paper and used Textomics to evaluate which section
can best reflect paper similarity. We observed a con-
sistent improvement of using the abstract section
in comparison to other paper sections (Figure 4B),
which is consistent with the intuition that the ab-
stract represents a good summary of the scientific
paper, again indicating the reliability of using Tex-
tomics to evaluate paper embedding methods.

6.2 Scientific paper understanding

Creating masked sentences and then filling in these
masks can examine whether the machine learning
model has properly understood a scientific paper.
However, one challenge in such research is how
to generate masked sentences that are relevant to
a given paper while also ensuring the answer is
enclosed in the paper. Our dataset could be used
to automatically generate such masked sentences
using the summary, which is highly relevant to the
paper but also not overlapped with the paper. In
particular, we can mask out keywords from the
summary and then use this masked summary as
the question and let a machine learing model to
find the answer from the non-overlapping scientific
paper. Let Cbio be a dictionary that contains bio-
logical keywords we want to mask out from the
summary, (di, ti) be a pair of textual summary and
paragraph text extracted from its corresponding sci-
entific paper. If the j-th word wi = d

(j)
i ∈ Cbio in

the summary belongs to Cbio, our proposed task is
to predict which word in Cbio is the missing word
in dmasked given ti. The masked summary dmasked
is the same as di except its j-th word is substi-
tuted with [PAD]. For simplicity, we only mask
at most one token in di. We therefore form our
task as a multi-class classification problem. Sim-
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Figure 5: Bar plot showing the accuracy of filling the
masked sentences of ten biomedical categories across
9 platforms using Textomics as the benchmark.

ilar to section 6.1, we used the paper abstract as
the paragraph text ti. To generate Cbio, we lever-
aged a recently developed biological terminology
dataset Graphine (Liu et al., 2021), which provides
the biological phrases spanning 227 categories. We
selected 10 categories that can produce the largest
number of masked sentences in Textomics. We
manually filtered ambiguous words and stop words.
On average, each category contains 317 keywords.
We used a fully connected neural network to per-
form the multi-class classification task. The input
feature is the concatenation of the masked summary
embedding and the paragraph embedding. We used
SPECTER to derive these embeddings as it has
obtained the best performance in our previous anal-
ysis. The results are summarized in Figure 5. We
observed high accuracy on all ten categories, which
are much better than the 0.4% accuracy by random
guessing, indicating the usefulness of our bench-
mark in scientific paper understanding. Finally, we
found that the performance of each category varied
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across different platforms, suggesting the possibil-
ity to further improve the performance by jointly
learning from all platforms.

7 Related work

Our task is related to existing works that take a
structured data as the input and then generate the
unstructured text. Different input data modalities
and related datasets have been considered in the
literature, including text triplets in RDF graphs
(Gardent et al., 2017; Ribeiro et al., 2020; Song
et al., 2021; Chen et al., 2020)), text-data tables
(Lebret et al., 2016; Rebuffel et al., 2021; Dusek
et al., 2019; Rebuffel et al., 2019; Puduppully and
Lapata, 2021; Chen et al., 2020), electronic medical
records (Lee, 2018; Guan et al., 2018), radiology
reports (Wang et al., 2021; Yuan et al., 2019; Miura
et al., 2021), and other continuous data modalities
without explicit textual structures such as image
(Lin et al., 2015; Cornia et al., 2020; Ke et al.,
2019; Radford et al., 2021), audio (Drossos et al.,
2019; Manco et al., 2021; Wu et al., 2021; Mei
et al., 2021), and video (Li et al., 2021; Ging et al.,
2020; Zhou et al., 2018; Li et al., 2020). Different
from these structures, our dataset takes a high di-
mensional genomics feature matrix as input, which
doesn’t exhibit structure and thus substantial differ-
ent from other modalities. Moreover, our dataset
is the first dataset that aims to convert genomics
feature vector to textual summary. The substantial
noise and high-dimensionality of genomics data
matrix further pose unique challenges in text gen-
eration.

Our kNN-Vec2Text model is inspired by the re-
cent success in applying kNN-based language mod-
els to machine translation (Khandelwal et al., 2021)
and language models (Khandelwal et al., 2019; He
et al., 2021; Ton et al., 2021). The main differ-
ence between our methods and their approaches is
that while we try to leverage kNN in the genomics
vector space to construct reference texts, they use
kNN in the text embedding space during the au-
toregressive generation process to help adjust the
sample distribution. There are some other methods
that can be used to generate text from vectors, such
as (Bowman et al., 2016; Song et al., 2019; Miao
and Blunsom, 2016; Montero et al., 2021; Zhang
et al., 2019). Their inputs are latent vectors that
need to be inferred from the data and do not have
specific meanings, which are different from our
gene feature vectors.

8 Conclusion and future work

In this paper, we have proposed a novel dataset
Textomics, containing 22,273 pairs of genomics
matrix and its corresponding textual summary. We
then introduce a novel task of Vec2Text based on
our dataset. This task aims to generate the tex-
tual summary based on the gene feature vector.
To address this task, we propose a novel method
kNN-Vec2Text, which constructs the reference text
using nearest neighbours in the gene feature vector
space and then generates a new summary accord-
ing to this reference text. We further introduce
two applications that can be advanced using our
dataset. One application aims at evaluating sci-
entific paper similarity according to the similarity
of its corresponding data summary, and the other
application leverages our dataset to automatically
generate masked sentences for scientific paper un-
derstanding.

Our method searches for the nearest neighbours
by calculating the Euclidean distance between five-
number summary vectors of the genomics feature
matrix. However, this might lose useful informa-
tion lied in the original matrix. It’s worth exploring
end-to-end approaches that can learn embeddings
from the genomics feature matrix instead of repre-
senting them as five-number summary vectors. On
the Text2Vec side, we are interested in extending
our work to directly generate the whole genomics
feature matrix instead of the five-number summary
vectors. Also, it would be interesting to jointly
learn the Text2Vec and the Vec2Text tasks, and
one potential solution is to further decode the gen-
erated vector to reconstruct the embedding of the
summaries in Text2Vec, and leverage the resulted
decoder to predict the embedding of text by using
kNN method in the text embedding space.

To the best of our knowledge, Textomics and
kNN-Vec2Text serves as the first large-scale ge-
nomics data description benchmark, and we en-
vision it will be broadly applied to other natural
language processing and biomedical tasks. On
the biomedical side, summaries in the Textomics
dataset could be used to impute experimentally
measured gene expression data matrix and serve as
additional features in classifying these genomics
feature data. On the NLP side, Textomics could
also be used to help scientific paper analysis tasks,
such as paper recommendation (Bai et al., 2020),
citation text generation (Luu et al., 2020), and cita-
tion prediction (Suzen et al., 2021).
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A Appendices

We provided more details here about our dataset
and related experimental results here. In Table S1,
we summarized the statistics information of 9 Tex-
tomics platforms. There are 3 different 3 species
across 9 platforms, including Homo sapiens, Ara-
bidopsis thailiana, and Mus musculus. #Sample
(All) represents the entire number of samples for 9
platforms, #Sample (Vec2Text) represents the num-
ber of samples in the subset after BLEU filtering,
and #Sample (PMC) represents the number of sam-
ples in the subset with full scientific articles.
We also represented the results of Spearman cor-
relations between text-based similarity and vector-
based simlarity across 9 platforms in Table S2. The
Spearman correlations are all higher than 0.2 in ev-
ery platform, which shows a substantial agreement
between text-based similarity and vector-based sim-
ilarity.
In Table S3, We represented the automatic eval-
uation metric scores for vec2text task, which in-
cluded BLEU-1, BLEU-2, ROUGE-1, ROUGE-L,
METEOR and NIST, which indicated consistent
improvement of our method over comparison ap-
proaches on different automatic metrics.
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Platform Species
#Sample #Sample # Sample

#Feature M. R.
(All) (PMC) (Vec2Text)

GPL96 H. S. 1,371 353 240 100K 0.19
GPL198 A. T. 1,081 194 250 100K 0.03
GPL570 H. S. 5,822 1,879 1,004 100K 0.12
GPL1261 M. M. 4,563 1,326 1,059 100K 0.09
GPL6244 H. S. 1,831 659 307 100K 0.10
GPL6246 H. S. 2,366 850 388 100K 0.08
GPL6887 M. M. 1,150 407 240 100K 0.09
GPL10558 H. S. 2,580 1,261 519 100K 0.11
GPL13534 H. S. 1,509 762 234 100K 0.26

Table S1: Statistics of the Textomics data. Each row is a sequencing platform in Textomics. H. S. denotes Homo
Sapiens. A. T. denotes Arabidopsis Thaliana. M. M. denotes Mus Musculus. M. R. denotes missing rate. All,
PMC, Vec2Text represent number of samples without filtering, with associated PMC full text article, and after
using automated filtering, respectively.

Textomics GPL GPL GPL GPL GPL GPL GPL GPL GPL
platform 96 198 570 1261 6244 6246 6887 10558 13534

Spearman correlation 0.36 0.20 0.24 0.34 0.44 0.45 0.22 0.38 0.30

Table S2: The result for spearman correlation

Platform BLEU-1 ROUGE-1 ROUGE-L METEOR NIST
GPL96 0.179 0.233 0.166 0.143 0.817
GPL198 0.198 0.257 0.192 0.168 0.889
GPL570 0.212 0.269 0.205 0.182 0.936
GPL1261 0.229 0.283 0.226 0.202 0.980
GPL6244 0.183 0.250 0.179 0.156 0.750
GPL6246 0.219 0.269 0.210 0.187 0.950
GPL6887 0.198 0.260 0.196 0.171 0.847
GPL10558 0.191 0.257 0.177 0.165 0.842
GPL13534 0.242 0.332 0.279 0.260 1.124

Table S3: The first result for evaluating paper embedding using textomics


