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Abstract

Spatio-temporal forecasting provides potential for
discovering evolutionary patterns in geographi-
cal scientific data. However, geographical scien-
tific datasets are often manually collected across
studies, resulting in limited time spans and data
scales. This hinders existing methods that rely
on rich historical data for individual entities. In
this paper, we argue that heterogeneous datasets
from different studies can provide complemen-
tary insights into the same underlying system,
helping improve predictions for geographical en-
tities with limited historical data. To this end, we
propose a Segment Quadtree Geographical Em-
bedding Framework (SQGEF). SQGEF integrates
knowledge from datasets with varied target en-
tities, time spans, and observation variables to
learn unified representations for multi-granularity
entities—including those absent during training.
Specifically, we propose a novel data structure,
Segment Quadtree, that flexibly accommodates
entities of varying granularities. SQGEF not only
captures multi-level interactions from grid data
but also extracts nested relationships and human-
defined boundaries from diverse entities, enabling
a comprehensive understanding of complex geo-
graphical structures. Experiments on real-world
datasets demonstrate that SQGEF effectively rep-
resents unseen geographical entities and enhances
performance for various models.
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1. Introduction
Spatial-temporal data and its analysis are crucial across vari-
ous fields. For instance, analyzing trends in spatio-temporal
carbon emission data for geographic entities (Peters et al.,
2012) is essential for developing effective environmental
strategies. Additionally, examining changes in their global
spatial distribution aids in improving climate modeling.

In the past decade, extensive efforts have been made in
spatio-temporal forecasting. In time series forecasting, cur-
rent methods treat the observations of each target entity as
an time series, leveraging historical data to uncover tem-
poral patterns, such as frequencies (Zhou et al., 2022) and
trends (Wu et al., 2022), within individual entities for down-
stream forecasting. In contrast, spatio-temporal forecasting
goes beyond using each entity’s own history by further cap-
turing interactions between multiple target entities. For
example, ST-ResNet (Zhang et al., 2017) employs CNNs to
model relationships between geographically nearby entities,
while GNN-based methods (Wu et al., 2019b) extend this
to capture both local and long-distance dependencies across
entities. These approaches, grounded in target entities’ his-
tories, have proven effective in forecasting tasks such as
electricity demand and traffic flow prediction.

However, traditional spatio-temporal methods heavily rely
on abundant historical data, which is often limited in scien-
tific studies due to the high cost of data collection. Many sci-
entific datasets are gathered through expensive specialized
equipment, which leads to data being collected from only
a small number of targets. Additionally, time-consuming
survey methods restrict the time span of the datasets. As a
result, spatio-temporal methods struggle to capture entity
relationships from such sparse datasets.

In scientific research scenarios, although individual studies
have limited data, numerous related studies exist, and their
data are inherently connected. Different datasets collect dif-
ferent entities across various granularities, yet they share in-
herent geographical relationships. For example, provincial-
level carbon emission data provides a macro-level reflection
of the emissions patterns observed at the city level, offering
valuable prior information when city-level data is scarce.
Likewise, neighboring cities often experience similar en-
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vironmental conditions, making one city’s data useful for
inferring patterns in the other. Second, different metrics
within a unified industrial system are often correlated. For
instance, carbon emissions and energy consumption, though
sourced from different studies, all reflect energy usage dy-
namics and can compensate for missing observations. Con-
sequently, the information within these different datasets is
inherently complementary. Leveraging these cross-dataset
relationships enables the integration of entity interactions
across datasets while capturing their hierarchical structure
and geographical dependencies. Therefore, we argue that:
heterogeneous datasets from different studies can pro-
vide complementary insights into the same underlying
system, thereby improving predictions for geographical
entities with limited historical data.

However, integrating heterogeneous datasets to model un-
seen entities presents several challenges. First, the target
task dataset may contain entities that have not appear in
the avaliable datasets, obtaining relevant information for
unseen entities is challenging. Second, granularity of dif-
ferent datasets can largely differ, each granularity offering
unique interactions. For example, country-level interac-
tions in national datasets differ from city-level interactions
in city datasets. Finding a way to utilize these heteroge-
neous datasets to model unified complex interactions is a
significant challenge. Third, datasets can have different
data structures, such as entity-based and grid-based. Entity-
based datasets present interactions within human-defined
boundaries with administrative knowledge, while grid-based
datasets present interactions within naturally divided units
of a region with geographical information. Extracting and
fusing relationships from different data structures to create
an integrated model is another key challenge.

To address these challenges, we propose Segment Quadtree
Geographical Embedding Framework (SQGEF) that utilizes
heterogeneous datasets to achieve a unified representation
of different granularity entities within a region, even if they
are not present in the training dataset. This framework
is built on a novel data structure, the Segment Quadtree,
and two innovative learning methods tailored to train this
structure on entity and grid datasets, respectively. (1) The
Segment Quadtree provides a hierarchical representation of
the region, in contrast to single-layer grid-based partitioning
that treats all regions uniformly. It offers the flexibility to
represent entities and grids of any granularity while explic-
itly capturing nested relationships between nodes, enabling
multi-level information storage and aggregation. (2) Hierar-
chical Grid-Based Learning captures interactions at multiple
levels from grid datasets, incorporating global interactions
for child nodes within the Segment Quadtree. (3) Geographi-
cal Entity-Based Learning aggregates grids within entities to
extract nested relationships and human-defined boundaries
information across different granularity entities.
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Figure 1: (a) Grid Gi,j in the European region. (b) Geo-
graphical entity consisting of grids France at the country
granularity and Madrid at the province granularity.

We conduct experiments on country, province, and city-
granularity forecasting tasks across different regions. The
results demonstrate that our method effectively models geo-
graphical entities of varying granularities from different re-
gions, benefiting both timeseries and spatial-temporal mod-
els. Further experiments prove the robustness of our model,
and the embeddings we learn effectively reflect the relation-
ships of entities in the real world.

The key contributions of this work are as follows:
• To our knowledge, we are among the first to propose

a novel framework that can integrate different hetero-
geneous datasets to address the data scarcity issue in
scientific datasets.

• We propose a novel embedding method that can repre-
sent different granularity entities within a region, even
if they are not present in the training dataset.

• We conduct comprehensive experiments demonstrat-
ing that our method effectively represents unseen geo-
graphical entities across all granularities and regions,
benefiting a range of models and showcasing its versa-
tility and robustness.

2. Preliminaries
2.1. Problem Formulation
Definition 1: Grid: In this study, we partition the region
containing all geographical entities into an I × J grid map
based on longitude and latitude, where each grid cell Gi,j

represents a specific area within the current region, as illus-
trated in Figure 1(a).

Definition 2: Geographical Entity: A geographical entity
Ek is represented as a set of grid cells. Specifically, if a grid
cell Gi,j is part of the geographical entity Ek, then Gi,j ∈
Ek. Therefore, a geographical entity Ek can be defined as:
Ek = {Gi,j | (i, j) ∈ Ik ×Jk} where Ik ⊆ {1, . . . , I} and
Jk ⊆ {1, . . . ,J } denote the indices of the grid cells that
belong to the entity Ek, as shown in Figure 1(b).

In this paper, we aim to forecast the multivariate time se-
ries for a given set of geographical entities, denoted as
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Etest = {Etest
1 , Etest

2 , . . . , Etest
Ntest}. Let xt ∈ RN rep-

resent the values of N test geographical entities at time
step t, where xt[i] ∈ R denotes the value of the i-th
geographical entity at time step t. Given a sequence
of historical observations over LX time steps, X =
{xt1 ,xt2 , . . . ,xtLX

}, our objective is to predict the future
values Y = {xtLX+1

,xtLX+2
, . . . ,xtLX+LY

} of these geo-
graphical entities based on the previous LX time steps and
additional relevant information.

The additional information includes: 1. Grid Dataset: Let
Gt ∈ RI×J represent the values of the grid cells at time
step t, where Gt[i, j] denotes the value of the grid cell
Gi,j at time step t. Given a sequence of historical obser-
vations over LX time steps, G = {Gt1 ,Gt2 , . . . ,GtLX

}.
2. Geographical Entity Dataset: Let Etrain represent
the set of geographical entities in the training dataset,
where Etrain = Etrain

1 , Etrain
2 , . . . , Etrain

Ntrain , and N train

denotes the number of geographical entities in the training
dataset. Each entity Etrain

k has an associated time series
Xtrain

k = xtrain
k [t1], x

train
k [t2], . . . , x

train
k [tLX

] for histor-
ical observations.

It is important to note that different Geographical Entity
datasets have entirely different sets of geographical enti-
ties, i.e., Etrain ∩ Etest = ∅. The entities in the target
dataset Etest will not appear in training datasets Etrain,
emphasizing the challenge of transferring knowledge across
datasets to unseen entities. By integrating these heteroge-
neous datasets, our model effectively predict the multivariate
time series for the given set of geographical entities.
2.2. Framework Overview
Our framework contains a data structure and two learning
methods to train it, as shown in Figure 2. Before present-
ing the details, we first introduce the pipeline of how to
train the model and then elaborate on the motivations and
advancements behind their design.
Segment Quadtree Embedding. To represent entities at
different granularities, we use a hierarchical representation
of a region by dividing it into multiple levels, with each child
node representing a quarter division of its parent. This ap-
proach ensures that nodes represent all granularities within
the region. Each node in the Segment Quadtree corresponds
to a specific granularity level, capturing the interactions and
information relevant to that level.
An entity’s variation is influenced by higher-level variations,
so the Segment Quadtree is trained from the top down. This
process begins with a high-level representation and progres-
sively models more fine-grained representations at lower
levels. During this training, lower-level nodes are trained
simultaneously with higher-level information, allowing each
node to incorporate both the global context from its parent
node and the local information specific to itself.
Hierarchical Grid-Based Learning. To capture interac-
tions across multiple levels in grid datasets, instead of train-

ing the model solely on the original granularity, which fo-
cuses only on interactions at a specific level, our approach
re-divides datasets into different granularities for training.
By training child nodes together with their ancestor nodes
on these re-divided datasets, our method incorporates global
interactions, enabling each node to understand and capture
interactions at various levels.
Geographical Entity-Based Learning. Various entities of
different granularities from subregions within a region ex-
hibit distinct boundaries and nested relationships that define
meaningful groupings and interactions within the grids. Ig-
noring these aspects would result in a loss of administrative
knowledge regarding interactions within and between grids
of human-defined entities. Focusing solely on the relation-
ships between grids and their nearby grids overlooks the
inherent group information among grids within the same en-
tity. Our approach addresses this limitation by training grids
within the same entity together. This helps the model learn
both the nested relationships and the human-defined bound-
aries within different entities. Each entity can be represented
by nodes at different levels within the Segment Quadtree,
facilitating communication across levels and parent nodes.

3. Method
In this section, we present the details of SQGEF.
3.1. Segment Quadtree Embedding
To effectively model geographical regions, it is essential
to represent each grid within a defined area, as these grids
serve as the fundamental units for understanding spatial
interactions. By modeling each grid, we can capture lo-
calized phenomena and their time series data, providing
insights into how different geographical areas interact over
time. However, treating each grid in isolation presents sig-
nificant drawbacks. This approach neglects the hierarchical
relationships that exist between different granularity lev-
els of geographical entities, such as cities, provinces, and
countries, leading to a fragmented understanding of spatial
dynamics.

To address these limitations, we employ a segment quadtree
structure, which allows us to represent the region in a hi-
erarchical manner. Formally, let T denote the segment
quadtree. The root node T0,0 covers the entire I × J grid
region, and each node Ti,j at level i can be divided into four
child nodes Ti+1,4j+1, Ti+1,4j+2, Ti+1,4j+3, and Ti+1,4j+4

at level i + 1, corresponding to the northwest, northeast,
southwest, and southeast quadrants, respectively. Each node
Ti+1,4j+k (where k ∈ {1, 2, 3, 4}) contains the grid cells
Ga,b where a and b correspond to the appropriate size of the
region: [2i · I

2i , 2
i+1 · I

2i − 1] or [2i+1 · I
2i , 2

i+2 · I
2i − 1] for

a, and [2j · J
2j , 2

j+1 · J
2j − 1] or [2j+1 · J

2j , 2
j+2 · J

2j − 1]
for b, depending on the quadrant. This hierarchical struc-
ture ensures that different granularity representations are
learned, preserving the hierarchical nature of geographical
entities. Extracting features from the segment quadtree and
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Figure 2: Overview of SQGEF

obtaining the embeddings allows us to construct the rela-
tions of any subregions or entities, enhancing time series
forecasting methods. This approach captures interactions at
multiple levels and provides a comprehensive understanding
of spatial dynamics, benefiting forecasting on target datasets.

3.2. Hierarchical Grid-Based Learning
In time series methods, the forecast of multivariate time
series for a given set of geographical entities, denoted as
E = Etest

1 , Etest
2 , . . . , Etest

N , can be enhanced by leveraging
a graph structure G ∈ RN×N , which captures the contextual
relationships between variables. This graph-based approach
provides additional context, improving the model’s ability to
capture interactions between variables. Here, we introduce
the construction of G between each grid.

To effectively train each node and its children together, we
construct the graph for all nodes at the same level using the
embeddings of each node and its children to calculate the
adjacency matrix. For each node Ti,j at level i, we compute
the mean embedding mi,j , which represents the node Ti,j
and its children. Let C(Ti,j) be the set of children of node
Ti,j . The mean embedding mi,j is then given by:

mi,j =
1

|{Ti,j} ∪ C(Ti,j)|
∑

Tk,l∈{Ti,j}∪C(Ti,j)

ek,l, (1)

where {Ti,j}∪C(Ti,j) contains the node Ti,j and its children,
and |{Ti,j} ∪ C(Ti,j)| is the cardinality of this set.
Using the mean embeddings mi,j , the adjacency matrix
A for the graph G is constructed. The adjacency matrix

is calculated based on the cosine similarity between the
mean embeddings of different nodes. For instance, the entry
A(i,j),(i′,j′) represents the relationship between node Ti,j
and node Ti′,j′ and is computed as:

A(i,j),(i′,j′) =
mi,j ·mi′,j′

∥mi,j∥∥mi′,j′∥
, (2)

where mi,j ·mi′,j′ is the dot product of the mean embed-
dings and ∥mi,j∥ and ∥mi′,j′∥ are their magnitudes.

Several models m1,m2,m3, . . . are considered, each taking
as input the data X and the graph G with shared weights.
Let Li denote the loss for model mi.

To optimize the performance across all models, we train
each model in turn. For each model mi, the loss Li is
defined using the ℓ1 loss between the output and the target:

Li(X,G; Θi,W) =

T∑
t=1

|ŷi,t − yi,t| , (3)

where ŷi,t is predicted value and yi,t is the target value
for model mi at time step t and W represents the shared
weights to construct the graph G with adjacency matrix A.

The training process involves minimizing the loss for each
model sequentially. Each model mi has its specific param-
eters Θi, but they share the weights of the same graph G.
The combined optimization objective, taking into account
the shared weights of the graph, is:

G∗ = argmin
Gi

Li(X,G; Θi) for i = 1, 2, . . . , n, (4)

where {Θi} represents the parameters of all models.
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By iteratively training each model on multiple grid datasets,
the shared graph G is refined with its level nodes and their
child nodes from Segment Quadtree.
3.3. Geographical Entity-Based Learning
Geographical entities are defined by distinct administrative
boundaries that dictate meaningful groupings and nested
relations within the data. To effectively capture these bound-
aries and interactions of grids within their boundaries, we
train the Quadtree T on Geographical Entity Datasets.

For each geographical entity ED in the dataset Etrain, the
grid layout is represented by a binary matrix MED

∈
{0, 1}I×J , where 1 indicates grid presence and 0 indicates
absence. To extract the entity representation from the grid
representation using the quadtree traversal, we traverse from
the root node T0,0 downward. During traversal, if a node
Ti,j overlaps with any 1 in MED

, it is added to the set QED
,

and traversal of its child nodes is halted. This approach
ensures that nodes Ti,j ∈ QED

at various levels i capture
different aspects of ED’s spatial structure, effectively repre-
senting the spatial layout of ED at different granularities.

The embedding eED
for ED is obtained by aggregating the

embeddings of nodes Ti,j ∈ QED
, weighted by their level i.

Specifically, the embedding is computed as:

eED =
∑

Ti,j∈QED

ei,j

2i
, (5)

where ei,j is the embedding of node Ti,j . This hierarchical
aggregation ensures that eED

captures information from
different levels of T , allowing nodes from various levels to
effectively communicate their information. By leveraging
the embeddings eED

obtained for each geographical entity
ED, we construct a graph GED

that captures the contextual
relationships between these entities. Each node in GED

represents a geographical entity, and edges between nodes
encode relationships based on their embeddings.

Similar to Grid-Based Learning, we train sharing weights
of the same graph G on several models m1,m2,m3, . . . in
turn. Unlike Grid-Based Learning, which focuses on single-
level grid cells, geographical entity-based learning aggre-
gates information across hierarchical nodes of the Segment
Quadtree and captures longer-distance interactions between
nodes from different parent nodes. This approach enables
the model to capture dependencies and interactions that span
various geographical scales and political boundaries.

3.4. Model Training and Inference
Having defined two distinct learning approaches, we now
proceed with the overall training process for the segment
quadtree and inference on downstream datasets.
3.4.1. TRAINING PROCESS

The Grid Dataset serves as the initial training data for con-
structing the segment quadtree T . This dataset provides
spatial information organized into a grid structure, essential

for initializing and optimizing the hierarchical segmentation
within T . After training with the Grid Dataset, we proceed
to train using the Geographical Entity Dataset. Each dataset
contains entities at varying granularities, such as country,
province, and city datasets, allowing the segment quadtree to
extract hierarchical grouping information at different levels.
This dataset enables the refinement of the segment quadtree
T to capture specific hierarchical representations tailored to
geographical entities.

3.4.2. INFERENCE PROCESS

Once the segment quadtree T has been trained on both
types of datasets, we use it to enhance any models for infer-
ence on target datasets. Given the boundaries of the set of
geographical entities appearing in the downstream dataset
Etest = {Etest

1 , Etest
2 , . . . , Etest

N }, we query T to get repre-
sentations for all entities and build the interaction graph G.
We train the model on historical observations X over LX

time steps. The interaction graph G and the inference model
are jointly trained on this historical data to fit the down-
stream dataset with pretrained knowledge. After training,
we perform inference on the test set Y, where Y consists of
time steps following the historical data. The trained model
leverages the pretrained representations from T and task-
specific relations from the downstream dataset to predict
results for these future time steps.

4. Theoretical Analysis
In this section, we briefly analyze how the segment quadtree
representation regulates model complexity to better capture
entity relationships, the complete proof is provided in Ap-
pendix A.5. We prove that the SQGEF yields a tighter gener-
alization error bound compared to the traditional Grid-based
Partitioning Embedding using Rademacher complexity. We
compare two embedding methods for an entity with k grids
region: Grid-based Partitioning Embedding: Fuses k grid
embeddings using k embeddings. The hypothesis class is de-
noted Hgrid. Segment Quadtree Embedding: Constructs a
segment tree over the grids of region, fusing m = O(log k)
node embeddings to represent the entity. The hypothesis
class is denoted Hseg.

The Grid-based Partitioning Embedding method employs
an MLP to map k embeddings, each in Rd, into a single
d-dimensional embedding. The input is a concatenation of k
vectors (dimension kd), with L hidden layers and parameter
count p scaling with kd. The Rademacher complexity is
bounded as (Bartlett et al., 2017):

R̂S(Hgrid) ≤ C1 ·
∥W∥L+1√p

√
kd

√
n

, (6)

where C1 > 0 is a constant, ∥W∥ is the maximum spectral
norm of weight matrices, and p ∝ kd due to input layer
weights.
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Similarly, the Segment Quadtree Embedding fuses m =
O(log k) embeddings, each in Rd, into a single d-
dimensional embedding using an MLP. The input dimension
is md, with L hidden layers and parameter count p′ scaling
with md. The Rademacher complexity is bounded as:

R̂S(Hseg) ≤ C2 ·
∥W∥L+1

√
p′
√
md√

n
, (7)

where C2 > 0 is a constant, and p′ ∝ md.

Assume L and |W | > 1 are the same for both methods,
and the constants C1 ≈ C2 are approximately equal, with
p ∝ kd and p′ ∝ md. The Rademacher complexities are
R̂S(Hgrid) ∝ ∥W∥L+1

√
kd

√
p for Grid-based Partition-

ing Embedding and R̂S(Hseg) ∝ ∥W∥L+1
√
md

√
p′ for

Segment Quadtree Embedding. Since m = O(log k) <
k, and p′ < p, we have

√
md

√
p′ <

√
kd

√
p, thus

R̂S(Hseg) < R̂S(Hgrid), the generalization bound for the
Segment Quadtree Embedding is tighter.

5. Experiments
Table 1: Experimental Datasets for Training and Testing

Dataset Name Data Type Function

ODIAC 1km China Grid Train
ODIAC 1deg China Grid Train
MEICModel Region Entity Train
Carbonmonitor China Entity Test

ODIAC 1km EU Grid Train
ODIAC 1deg EU Grid Train
Carbonmonitor EU Entity Test

ODIAC 1km China Grid Train
ODIAC 1deg China Grid Train
Carbonmonitor China Entity Train
MEICModel City Entity Test

To validate that SQGEF can represent unseen different gran-
ularity geographical entities from various regions, we apply
it to CO2 emission forecasting tasks for entities at three dif-
ferent granularities: country, province, and city, across two
distinct regions—China and Europe. For each region, we
utilize multiple grid or geographical entity datasets to train
the model and subsequently test it on a geographical entity
dataset not included in the training phase. We then analyze
the experimental results, demonstrating improvements in
accuracy by comparing with various baselines. Additionally,
we design different experiments to address the following
questions: Q1: Can our method effectively model unseen
geographical entities of different granularities? How do
factors such as the granularity, region of entities, and ex-
treme data scarcity impact performance? Q2: Is Segment
Quadtree necessary for effective modeling, as opposed to
modeling each grid individually? Q3: Does Geographical

Entity-Based Learning contribute to improved model per-
formance? Q4: How do various hyperparameter settings
influence the performance of the model? Q5: Does the
model accurately learn relationships that reflect the actual
interactions between entities in real world? Q6: Can our
method generalize effectively across datasets from different
scientific domains?

5.1. Data Description
We set three downstream forecasting tasks with different
granularities from two regions for carbon emissions: China
Province, Europe Country, and China City. The China City
dataset suffers from extreme data scarcity, making it unsuit-
able for some baseline models. The datasets used for each
task are summarized in Table 1, with detailed descriptions
provided in the appendix.
5.2. Experimental Setup
5.2.1. METRICS

We used mean absolute error (MAE) and mean squared
error (MSE) to assess the performance of our model and
baselines. For both of these metrics, smaller values indicate
better performance.

5.2.2. BASELINES

We selected seven representative baseline methods, falling
into two categories: time series models and spatio-temporal
models. For the first category, we compare the three most
widely utilized time series models: Informer (Zhou et al.,
2021), FEDformer (Zhou et al., 2022), Autoformer (Wu
et al., 2021), as well as the recent state-of-the-art method
TimesNet (Wu et al., 2022). For the second category, we
compare the three most widely utilized spatial-temporal
models: AGCRN (Bai et al., 2020), MTGNN (Wu et al.,
2020), and GWNet (Wu et al., 2019a). Detailed descriptions
are provided in the appendix.

5.3. Overall Performance(Q1)
As shown in Table 2,w/ Seg denotes the enhancement of
baseline models by SQGEF. SQGEF achieves the best per-
formance across all datasets and generally improves the
performance of all baseline methods. This indicates that
SQGEF effectively represents entities of different granulari-
ties, from countries to cities in various regions, and benefits
various kinds of models.

On all datasets, SQGEF shows greater improvements for
time series methods compared to spatio-temporal meth-
ods. This is because SQGEF helps the time series methods
to learn spatial relations, which they were unable to cap-
ture before. Additionally, SQGEF can also enhance the
performance of spatio-temporal baselines. This indicates
that SQGEF learns better representations from the training
dataset compared to a completely data-driven approach.

However, the China City dataset is unique because all the
cities it contains are obscure and less representative in the
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Table 2: Overall performance comparison. The best results among all the models are highlighted in bold.
China Province Europe Country China City

Method MSE MAE Method MSE MAE Method MSE MAE
Informer 0.8890 ± 0.0023 0.7329 ± 0.0006 Informer 2.0979 ± 0.0027 1.0842 ± 0.0003 Informer 7.6327 ± 0.1954 1.7926 ± 0.0185
w/Seg 0.7638 ± 0.0011 0.6815 ± 0.0001 w/Seg 2.0373 ± 0.0004 1.0658 ± 0.0001 w/Seg 7.3984 ± 0.0239 1.7488 ± 0.0069
FEDformer 0.3588 ± 0.0000 0.4753 ± 0.0000 FEDformer 2.7053 ± 0.0000 1.2411 ± 0.0000 FEDformer 6.5412 ± 0.4708 1.3191 ± 0.0005
w/Seg 0.2941 ± 0.0000 0.3971 ± 0.0000 w/Seg 2.3831 ± 0.0002 1.1772 ± 0.0000 w/Seg 6.2043 ± 0.3618 1.1631 ± 0.0006
Autoformer 0.3242 ± 0.0003 0.4490 ± 0.0001 Autoformer 2.7713 ± 0.0002 1.2554 ± 0.0000 Autoformer 7.3596 ± 0.6210 1.3848 ± 0.0103
w/Seg 0.2934 ± 0.0000 0.4008 ± 0.0000 w/Seg 2.4013 ± 0.0001 1.1806 ± 0.0000 w/Seg 7.1760 ± 0.0390 1.2261 ± 0.0005
TimesNet 0.4503 ± 0.0006 0.5257 ± 0.0004 TimesNet 2.7500 ± 0.0004 1.2406 ± 0.0001 TimesNet

—w/Seg 0.2743 ± 0.0001 0.3900 ± 0.0001 w/Seg 2.3866 ± 0.0012 1.1767 ± 0.0002 w/Seg
AGCRN 0.9951 ± 0.0007 0.7359 ± 0.0002 AGCRN 2.2722 ± 0.0001 1.1458 ± 0.0000 AGCRN 7.6546 ± 0.0484 1.8930 ± 0.0034
w/Seg 0.7061 ± 0.0126 0.6383 ± 0.0028 w/Seg 2.0247 ± 0.0049 1.0763 ± 0.0007 w/Seg 7.4233 ± 0.0472 1.8644 ± 0.0034
MTGNN 0.5926 ± 0.0033 0.5539 ± 0.0008 MTGNN 2.1919 ± 0.0011 1.1175 ± 0.0001 MTGNN 7.1258 ± 0.1239 1.6903 ± 0.0063
w/Seg 0.4978 ± 0.0109 0.5465 ± 0.0047 w/Seg 2.1395 ± 0.0012 1.1048 ± 0.0001 w/Seg 7.2951 ± 0.0063 1.8278 ± 0.0005
GWNet 0.3953 ± 0.0000 0.4573 ± 0.0000 GWNet 2.2498 ± 0.0000 1.1328 ± 0.0000 GWNet 6.8174 ± 0.0616 1.5994 ± 0.0039
w/Seg 0.3732 ± 0.0039 0.4691 ± 0.0015 w/Seg 2.0856 ± 0.0133 1.0981 ± 0.0011 w/Seg 7.1551 ± 0.0161 1.7891 ± 0.0014
TimeXer 0.4027 ± 0.0000 0.4894 ± 0.0000 TimeXer 2.3852 ± 0.0066 1.1684 ± 0.0005 TimeXer 8.1542 ± 0.7333 1.3078 ± 0.0022
w/Seg 0.3569 ± 0.0002 0.4596 ± 0.0001 w/Seg 2.2058 ± 0.0022 1.1266 ± 0.0002 w/Seg 7.3635 ± 0.3326 1.2838 ± 0.0026
iTransformer0.4772 ± 0.0064 0.5004 ± 0.0043 iTransformer2.5433 ± 0.0000 1.1808 ± 0.0000 iTransformer8.5086 ± 0.4185 1.3474 ± 0.0018
w/Seg 0.4319 ± 0.0001 0.4790 ± 0.0001 w/Seg 2.2671 ± 0.0001 1.1454 ± 0.0000 w/Seg 7.8494 ± 0.0765 1.3240 ± 0.0015

Table 3: Ablation Study of each module on China Province dataset.
Method MSE MAE Method MSE MAE Method MSE MAE Method MSE MAE Method MSE MAE Method MSE MAE Method MSE MAE

Informer 0.8890 0.7329 FEDformer 0.3588 0.4753 Autoformer 0.3242 0.4490 TimesNet 0.4503 0.5257 AGCRN 0.9951 0.7359 MTGNN 0.5926 0.5539 GWNet 0.3953 0.4573
w/ Seg 0.7638 0.6815 w/ Seg 0.2941 0.3971 w/ Seg 0.2934 0.4008 w/ Seg 0.2743 0.3900 w/ Seg 0.7061 0.6383 w/ Seg 0.4978 0.5465 w/ Seg 0.3732 0.4691
w/o GE 0.7805 0.6879 w/o GE 0.3550 0.4574 w/o GE 0.3155 0.4398 w/o GE 0.3461 0.4485 w/o GE 0.7054 0.6210 w/o GE 0.5357 0.5585 w/o GE 0.3876 0.4822
w/o SE 0.9188 0.7391 w/o SE 0.5593 0.5526 w/o SE 0.3244 0.4343 w/o SE 0.4333 0.5188 w/o SE 1.0187 0.7452 w/o SE 0.5175 0.5318 w/o SE 0.6250 0.5876

training dataset. Despite our model achieving the best per-
formance on this dataset, it decreases the performance of
two spatio-temporal baselines. This is because the infor-
mation of these under-represented cities is overwhelmed by
nearby larger cities, causing SQGEF to learn representations
that include both the obscure city and its surrounding areas.
Addressing the noise when modeling obscure geographical
entities should be a focus for future work.

5.4. Ablation Study(Q2 and Q3)
To delve into the contributions of each module, we perform
an ablation study using the China Province dataset. In this
study, w/o SE denotes models that use only grid embedding
solely without hierarchical Segment Quadtree and w/o GE
denotes models trained exclusively on grid datasets without
the Geographical Entity-Based Learning component.

5.4.1. SEGMENT QUADTREE EMBEDDING (Q2)
As shown in Table 3, the results show that removing Seg-
ment Quadtree Embedding significantly reduces perfor-
mance. Without this embedding, the model can only capture
interactions at the grid level and fails to capture higher-level
interactions. This causes the model to perform poorly on
province-level data. Spatio-temporal methods AGCRN and
GWNet show a significant drop in performance without Seg-
ment Quadtree Embedding because they rely on relational
graphs. Unlike other spatio-temporal methods like MTGNN,
which focus on top-K relations for each entity, AGCRN and
GWNet are more affected by noise in the relationships.

5.4.2. GEOGRAPHICAL ENTITY-BASED LEARNING (Q3)
As shown in Table 3, removing Geographical Entity-Based
Learning decreases performance for all methods. This
demonstrates the importance of capturing boundaries in
the data. MTGNN shows the largest performance decrease
because it uses top-K relations for each entity. Without cap-
turing boundaries, the relationships become too smooth, and
the differences between values are smaller. Other methods
that include all relationships between entities are less af-
fected, but the top-K approach used by MTGNN can cause
the model to miss important relationships.

5.5. Parameter Sensitivity(Q4)
To assess the robustness of SQGEF, we evaluate how vary-
ing parameter choices influence the model’s performance.
All parameters are set to their default values except for the
one being tested. The embedding size denotes the number
of dimensions for each node in the segment quadtree, while
the temperature factor regulates the smoothness of the con-
structed graph in the softmax function. Our findings indicate
that the method is not sensitive to minor variations in these
parameters across all three experiments. It maintains high
performance with cost-effective parameter settings, demon-
strating both its effectiveness and robustness. Specifically,
an embedding size of 18 yields optimal performance for the
China Province and China City datasets, whereas a size of
20 is more suitable for the Europe Country dataset. This
suggests that the Europe Country dataset exhibits greater
variability and thus requires a larger embedding size to cap-
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ture it effectively. For the temperature factor, the best per-
formance is observed at 0.95 for the China Province dataset,
which differs from the optimal settings for the other two
datasets. This implies the China Province dataset contains
many similar provinces, necessitating a lower temperature
factor to accurately differentiate between them.
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Figure 3: Parameter sensitivity of Segment Quadtree with
Embedding Size in terms of MSE and MAE
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5.6. Case Study(Q5)
In this section, we compare the quality of embeddings gen-
erated by our method with those that adaptively construct
the relation graph from the downstream dataset, such as
MTGNN. The entities selected for comparison are based
on their similarity in economic or industrial indicators, en-
suring a meaningful evaluation of embedding quality. The
results highlight our method’s superior ability to represent
geographical entities. First, we compare the embeddings of
Jiangsu and Hubei. Both provinces exhibit similar carbon
emission patterns due to their high concentration of energy-
intensive industries. Figure 5(a) shows that embeddings
learned from our method are much closer to each other com-
pared to those from MTGNN. Similarly, Figure 5(b) com-
pares the embeddings of France and Italy. Both countries
are notable for their positive efforts in expanding renewable
energy and improving energy efficiency, setting them apart
from other EU countries. Our method yields embeddings
that are closer to each other than those produced by MT-
GNN. Finally, we compare the embeddings of Yichuan and
Xining, two inland, semi-arid cities in China that rely heav-
ily on fossil fuels. Our method provides embeddings that
are closer to each other than those from MTGNN. These
experiments demonstrate that our method achieves better
representations of geographical entities compared to the em-
beddings adaptively learned from the downstream dataset.
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Figure 5: Embeddings learned from Segment Quadtree com-
pared to MTGNN on all datasets

5.7. Cross-Domain Generalization Performance(Q6)

To further demonstrate our framework’s adaptability across
domains, we conducted additional experiments using air
pollution datasets. The results confirm the model’s versatil-
ity and effectiveness across different domains, with detailed
results and settings provided in the appendix.

6. Related Work
Our related work can be summarized into two categories:
Spatio-temporal forecasting and Scientific computing .

6.1. Spatio-Temporal Forecasting

Spatio-temporal forecasting has applications across various
granularity geographical granularities. At the country level,
Jiao et al. leverage spatial dependence and heterogeneity to
predict tourist arrivals across 37 European countries (Jiao
et al., 2020). At the provincial or state level, earlier stud-
ies have examined the demand for inbound tourism within
different provinces of a single country (Yang & Zhang,
2019). At the city level, previous studies examined the
composition and spatio-temporal variations of municipal
solid waste (Mushtaq et al., 2020) and job mobility (Zhang
et al., 2021). At the street level, RDAT (Liu et al., 2023a) fo-
cuses on making Intelligent Transportation Systems resilient
to adversarial attacks, while MM-DAG (Lan et al., 2023)
introduces a multi-task learning algorithm for managing
multi-modal traffic at intersections. It is common to utilize
graphs to model the relationships between entities, thereby
enhancing forecasting. The graph extracts relevant informa-
tion from similar nodes, improving the accuracy (Liu et al.,
2022b) and robustness (Li et al., 2022; Liu et al., 2023d; Li
et al., 2024) of predictions. However, these methods primar-
ily focus on utilizing historical data of forecasting targets,
overlooking the potential of other heterogeneous datasets.
To address this, we propose Segment Quadtree Embedding
to extract information from heterogeneous datasets with
different granularities and data structures, providing a com-
prehensive representation of entities within a region.

6.2. Scientific Computing

Scientific computing leverages advanced computational ca-
pabilities to analyze complex natural problems. In the cli-
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mate field, understanding the correlation between different
geographical entities is crucial for effective environmen-
tal strategies, such as forecasting carbon emissions (Peters
et al., 2012) and earthquake (Zhu et al., 2020). Astsatryan
et al. utilize deep learning models to predict city tempera-
tures for weather forecasting (Astsatryan et al., 2021). In
geology, Pao et al. employ finite element methods (FEM) to
simulate the complex interactions across regions to forecast
earthquakes (Paolucci et al., 2018), while Taborda et al. use
numerical methods to predict earthquake effects in urban
areas to aid urban planning (Taborda & Roten, 2015). In
social science, AI techniques are used to detect financial
fraud (Liu et al., 2021; Huang et al., 2022; Gong & Sun,
2024) and model recruitment variations (Sun et al., 2021;
2024; Qin et al., 2025b). In biology, AI is used to identify
protein and gene functions (Bao & Yang, 2024; Wang et al.,
2024). Furthermore, AI is increasingly applied to solve
scientific problems (Qin et al., 2025a), including mathemat-
ical problem-solving (Liu et al., 2023c;b; 2022a; Lin et al.,
2021) and causal attribution analysis (Ji et al., 2025). How-
ever, scientific computing often faces data scarcity. The
high cost of collecting comprehensive data limits analy-
ses to task-specific datasets, resulting in scientific datasets
with few observation points and short time spans, making
it difficult to provide sufficient historical information for
model training. To address this, we propose SQGEF to unify
knowledge from diverse datasets, enhancing forecasting on
target datasets.

6.3. Quadtree Applications in Spatial Data Management

In the domain of spatial data management, Kothuri et al. in
their study (Kothuri et al., 2002) investigate the application
of quadtree and R-tree indexes within Oracle Spatial, com-
paring their performance in query efficiency and storage us-
ing geographic information system (GIS) data. Conversely,
Yin et al. in their work (Yin et al., 2011) focus on the role
of quadtrees in the representation and compression of spa-
tial data, proposing a method to optimize data storage and
processing efficiency using quadtree structures.

7. Conclusion
In this paper, we introduce the Segment Quadtree Geograph-
ical Embedding Framework (SQGEF), a novel approach
designed to integrate diverse heterogeneous datasets and
address data scarcity in scientific research. SQGEF em-
ploys a novel data structure, the Segment Quadtree, which
hierarchically represents entities of varying granularities
and accommodates previously unseen entities. Additionally,
we design learning methods for both grid and geographical
entity datasets, capturing multi-level interactions and geo-
graphical entity knowledge, such as nested relationships and
human-defined boundaries from diverse entities, enabling
a comprehensive understanding of complex geographical

structures. Analyses and experiments with datasets from var-
ious regions and granularities demonstrate that our method
effectively represents different unseen geographical enti-
ties and improves the performance of various models. By
integrating heterogeneous datasets and providing relation-
ships for unseen entities, SQGEF offers valuable support
for emerging scientific tasks facing data scarcity.
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A. Technical Appendix
A.1. Data Description

ODIAC

The ODIAC (oda, 2011) provides high-resolution global data on fossil fuel CO2 emissions. It combines country-level
estimates from the Carbon Dioxide Information Analysis Center (CDIAC) with spatial proxies such as point source locations
and satellite nightlight data, covering the years 2000-2021. We employ two different resolutions: 1km × 1km and 1deg ×
1deg grid subsets at China and Europe locations.

MEIC

The MEIC (Tong et al., 2020; Cheng et al., 2021; 2023) is a platform to model atmospheric emissions from human activities.
It generates detailed emission inventories for China, supporting scientific research and policy evaluation from 1997 to 2017.
The region subset is regional-scale, split by industrial zones and cities, including some obscure cities.

CARBON MONITOR

Carbon Monitor (Liu et al., 2020) offers daily, up-to-date estimates of CO2 emissions from fossil fuels and cement production.
This international initiative tracks crucial data for climate change studies from 2019 to 2023. We choose the China and
Europe regions for our experiments.

A.2. Baselines

Informer (Zhou et al., 2021) proposes the ProbSparse self-attention mechanism to replace inner product self-attention,
thereby reducing time and space complexity.

FEDformer (Zhou et al., 2022) designs two attention modules that utilize the Fourier transform and wavelet transform to
perform the attention operation in the frequency domain.

Autoformer (Wu et al., 2021) is a transformer-style model that introduces the Auto-Correlation Mechanism to replace
the dot-product attention mechanism. It also presents the Decomposition Architecture, which extracts more predictable
components from complex temporal patterns.

TimesNet (Wu et al., 2022) models two types of temporal changes: within a modeling period (Intraperiod) and between
periods (Interperiod). It expands one-dimensional temporal data into a two-dimensional space for analysis.

AGCRN (Bai et al., 2020) combines graph convolutional networks with recurrent neural networks to capture both spatial
and temporal dependencies in time series data.

MTGNN (Wu et al., 2020) extracts relationships among variables using graph learning module. It integrates external
knowledge and captures spatial and temporal dependencies from the data.

GWNet (Wu et al., 2019a) integrates graph convolutional networks with WaveNet architecture to effectively model
spatial-temporal correlations in sequential data.

A.3. Implementation Details

We implemented our model using PyTorch 2.1.0, based on Python 3.8.18, and utilized a Tesla A6000 GPU for training.
The dimensions of node embeddings are set to 20. We used the Adam optimizer (Kingma & Ba, 2015) for parameter
optimization. The learning rate was set to 0.0001 and the dropout rate to 0.1. We employ Gaussian initialization for the
node embeddings to provide a robust starting point for training. The graph is constructed by calculating the interaction
strengths between nodes through the product of their embeddings. Specifically, we compute the pairwise dot product of
node embeddings to form the adjacency matrix. This is followed by softmax normalization with a temperature parameter
applied to each row of the adjacency matrix to control the sharpness of the distribution, resulting in the final interaction
probabilities. For each experiment, we trained the model in the order listed in Table 1.
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A.4. Cross-Domain Generalization Performance

To better demonstrate our framework’s adaptability across various domains, we have included additional experiments using
air pollution datasets. We trained our model with PM2.5 and PM10 grid datasets and tested it using O3 data at the provincial
level. The results affirm the model’s versatility and effectiveness across different domains.

Method MSE MAE
Informer 2.0194 1.1581
w/Seg 1.9953 1.1510
FEDformer 2.0272 1.1584
w/Seg 1.7034 1.0619
Autoformer 2.1276 1.1355
w/Seg 2.0754 1.1215
AGCRN 2.7700 1.3346
w/Seg 2.2893 1.2133
MTGNN 2.5206 1.2658
w/Seg 2.3239 1.2139
GWNet 2.5746 1.2803
w/Seg 2.5782 1.2796

Table 4: Performance on air pollution datasets.

A.5. Detailed Proof of Generalization Bound for SQGEF

We prove that the SQGEF yields a tighter generalization error bound compared to the traditional Grid-based Partitioning
Embedding using Rademacher complexity.

A.5.1. PROBLEM SETUP AND NOTATION

Let S = {(x1, y1), . . . , (xn, yn)} be a training set of n samples drawn i.i.d. from an unknown distribution D over
X × Y . For a hypothesis h ∈ H, define the true error as L(h) = E(x,y)∼D[ℓ(h(x), y)] and the empirical error as
L̂S(h) =

1
n

∑n
i=1 ℓ(h(xi), yi), where ℓ : Y × Y → [0, 1] is a bounded loss function.

We compare two embedding methods for an entity with k grids region: Grid-based Partitioning Embedding: Fuses k grid
embeddings using k embeddings. The hypothesis class is denoted Hgrid. Segment Quadtree Embedding: Constructs a
segment tree over the grids of region, fusing m = O(log k) node embeddings to represent the entity. The hypothesis class is
denoted Hseg.

A.5.2. GENERALIZATION BOUND WITH RADEMACHER COMPLEXITY

We rely on a standard result from statistical learning theory:
Theorem A.1 (Rademacher Complexity Bound (Bartlett & Mendelson, 2002)). For any hypothesis class H, with probability
at least 1− δ over the draw of S, for all h ∈ H,

L(h) ≤ L̂S(h) + 2R̂S(H) + 3

√
ln(2/δ)

2n
,

where R̂S(H) = 1
nEσ [suph∈H

∑n
i=1 σiℓ(h(xi), yi)] is the empirical Rademacher complexity, and σi ∼ Unif({+1,−1})

are Rademacher variables.

The generalization gap L(h) − L̂S(h) is controlled by R̂S(H), which measures the complexity of H. We now bound
R̂S(Hgrid) and R̂S(Hseg).

A.5.3. COMPLEXITY ANALYSIS

For clarity, we consider an MLP to fuse k embeddings without loss of generality. The Grid-based Partitioning Embedding
method employs an MLP to map k embeddings, each in Rd, into a single d-dimensional embedding. The input is a
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concatenation of k vectors (dimension kd), with L hidden layers and parameter count p scaling with kd. The Rademacher
complexity is bounded as (Bartlett et al., 2017):

R̂S(Hgrid) ≤ C1 ·
∥W∥L+1√p

√
kd

√
n

,

where C1 > 0 is a constant, ∥W∥ is the maximum spectral norm of weight matrices, and p ∝ kd due to input layer weights.

Similarly, the Segment Quadtree Embedding fuses m = O(log k) embeddings, each in Rd, into a single d-dimensional
embedding using an MLP. The input dimension is md, with L hidden layers and parameter count p′ scaling with md. The
Rademacher complexity is bounded as:

R̂S(Hseg) ≤ C2 ·
∥W∥L+1

√
p′
√
md√

n
,

where C2 > 0 is a constant, and p′ ∝ md.

A.5.4. COMPARISON OF BOUNDS

Assume L and |W | > 1 are the same for both methods, and the constants C1 ≈ C2 are approximately equal, with p ∝ kd
and p′ ∝ md. The Rademacher complexities are R̂S(Hgrid) ∝ ∥W∥L+1

√
kd

√
p for Grid-based Partitioning Embedding

and R̂S(Hseg) ∝ ∥W∥L+1
√
md

√
p′ for Segment Quadtree Embedding. Since m = O(log k) < k, and p′ < p, we have√

md
√
p′ <

√
kd

√
p, thus R̂S(Hseg) < R̂S(Hgrid).

Applying Theorem A.1, for hgrid ∈ Hgrid,

L(hgrid) ≤ L̂S(hgrid) + 2R̂S(Hgrid) + 3

√
ln(2/δ)

2n
.

For hseg ∈ Hseg,

L(hseg) ≤ L̂S(hseg) + 2R̂S(Hseg) + 3

√
ln(2/δ)

2n
.

Given that R̂S(Hseg) < R̂S(Hgrid), the generalization bound for the Segment Quadtree Embedding is tighter.

A.6. Data Scarcity

Data scarcity primarily refers to the fact that all forecasting targets in the test set are unseen during pretraining, meaning their
historical data is entirely absent from the pretraining stage. Consequently, the data available to directly model relationships
between these targets is extremely limited. To address this, SQGEF leverages a large volume of heterogeneous datasets from
related regions or entities, even though these datasets do not contain the historical records of test targets. For example, in the
China Province experiment, we aim to forecast future carbon emissions for several Chinese provinces. During pretraining,
we utilize two distinct grid-based datasets and historical records of various regions, but none of these include the historical
data of the target provinces themselves. This approach allows us to infer patterns indirectly.

To quantify this scarcity, we compare the data volume between the pretraining and test stages across three metrics: total
data points, number of temporal points, and temporal duration. The table below summarizes these statistics for our three
experimental settings:

From this table, it is evident that the test set contains significantly fewer data points than the pretraining set across all
experiments. For China Province and Europe Country, the test set’s temporal duration is notably short (2 years). In the China
City, test set has an extremely limited number of temporal records (37 points), indicating sparse sampling. Collectively,
these statistics highlight the severe data scarcity in the test set, both in terms of quantity and coverage.

A.7. Complexity Analysis

Space Complexity: Both SQGEF and the naive grid embedding method have a space complexity of O(N) (where N is
the number of grid cells). SQGEF introduces only a constant-level overhead to store multi-level interaction information.
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Table 5: Data scarcity comparison between pretraining and test sets

Experiment
Pretrain Set
Data Points

Test Set
Data Points

Pretrain Set
Time Points (Span)

Test Set
Time Points (Span)

China Province 8,651,704 37,062 581 (22 years) 1,278 (2 years)
Europe Country 8,650,752 39,618 528 (22 years) 1,278 (2 years)
China City 8,687,814 962 1,806 (22 years) 37 (37 years)

In our Segment Quadtree, the total number of nodes is N (root level) + (1/4)N (next level) + . . . + (1/4)hN , where
h = ⌈log4 N⌉ is the tree height. This geometric series sums to O((4/3)N), which remains linear in N . Thus, our approach
scales efficiently even with higher-resolution grids, incurring minimal additional storage costs.

Training Stage Time Complexity: While both SQGEF and the naive grid embedding method have a computational
complexity of O(N2) (where N is the number of grid cells), SQGEF adds only a constant overhead to process multi-
granularity data. While SQGEF models interactions across all granularity levels, the additional computational cost is minor
relative to the substantial performance gains it delivers. The complexity comprises two parts: (1) constructing a graph
to capture spatial relations between grids, and (2) computing temporal relations across timestamps. For the graph, the
naive method’s complexity is O(N2). In SQGEF, this becomes O(N2 + (1/16)N2 + · · ·+ (1/16)hN2) across tree levels,
summing to O((16/15)N2), a slight increase over O(N2). Temporal relations are treated as a constant T , as no additional
temporal computation is required beyond the input sequence. This modest overhead enables rich multi-level interactions,
significantly enhancing forecasting accuracy, as evidenced by our experimental results.

Inference Stage Time Complexity: During inference, SQGEF outperforms the naive grid embedding method in efficiency.
Using the segment tree query method [1] for a region [qX1, qX2] × [qY1, qY2], we recursively check overlaps with the
current node’s region [X1, X2]× [Y1, Y2]. With a tree height of O(log4 N), and up to 4 nodes visited per level (if the query
spans quadrants), the total nodes visited is bounded by 4 · O(log4 N) = O(logN) (since log4 N = (1/2) log2 N ). This
contrasts with the naive grid method’s O(N) complexity, making our approach far more efficient.

Summary: During training, SQGEF maintains O(N) space complexity and O(N2) computational complexity, identical to
the naive method, enabling the capture of multi-granularity relationships that yield significant performance improvements.
In inference, our method achieves O(logN) complexity, versus O(N) for the naive approach, ensuring superior scalability
and efficiency. These trade-offs make SQGEF highly practical and advantageous, especially for numerous downstream
spatio-temporal forecasting tasks, where its fast inference speed delivers substantial benefits across a wide range of
applications.
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