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Abstract

We consider the problem of generating rankings that are fair towards both users and
item producers in recommender systems. We address both usual recommendation
(e.g., of music or movies) and reciprocal recommendation (e.g., dating). Following
concepts of distributive justice in welfare economics, our notion of fairness aims at
increasing the utility of the worse-off individuals, which we formalize using the
criterion of Lorenz efficiency. It guarantees that rankings are Pareto efficient, and
that they maximally redistribute utility from better-off to worse-off, at a given level
of overall utility. We propose to generate rankings by maximizing concave welfare
functions, and develop an efficient inference procedure based on the Frank-Wolfe
algorithm. We prove that unlike existing approaches based on fairness constraints,
our approach always produces fair rankings. Our experiments also show that it
increases the utility of the worse-off at lower costs in terms of overall utility.

1 Introduction

Recommender systems have a growing impact on the information we see and on our life opportunities,
as they help us browse news articles, find a new job, house, or people to connect with. While the
objective of recommender systems is usually defined as maximizing the quality of recommendations
from the user’s perspective, the recommendations also have an impact on the recommended “items”.
News outlets rely on exposure to generate revenue, finding a job depends on which recruiter gets to see
our resume, and the effectiveness of a dating application also depends on who we are recommended
to—and if we are being recommended, then someone else is not. Tivo-sided fairness in rankings is
the problem of generating personalized recommendations by fairly mediating between the interests of
users and items. It involves a complex multidimensional trade-off. Fairness towards item producers
requires boosting the exposure of small producers (e.g., to avoid winner-take-all effects and popularity
biases [1]]) at the expense of average user utility. Fairness towards users aims at increasing the utility
of the least served users (e.g., so that least served users do not support the cost of item-side fairness),
once again at the expense of average user utility. The goal of this paper is to provide an algorithmic
framework to generate rankings that achieve a variety of these trade-offs, leaving the choice of a
specific trade-off to the practitioner.

The leading approach to fairness in rankings is to maximize user utility under constraints of equal
item exposure (or equal quality-weighted exposure) [54![7]] or equal user satisfaction [6]. When these
constraints imply an unacceptable decrease in average user utility, so-called “trade-offs between utility
and fairness” [65} 41] are obtained by relaxing the fairness constraints, leading to the optimization of
a trade-off between average user utility and a measure of users’ or items’ inequality.

Thinking about fairness in terms of optimal utility/inequality trade-offs has, however, two fundamental
limitations. First, the optimization of a utility/inequality trade-off is not necessarily Pareto-efficient
from the point of view of users and items: it sometimes chooses solutions that decrease the utility
of some individuals without making anybody else better off. We argue that reducing inequalities
by decreasing the utility of the better-off is not desirable if it does not benefit anyone. The second
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limitation is that focusing on a single measure of inequality does not address the question of how
inequality is reduced, and in particular, which fraction of the population benefits or bears the cost of
reducing inequalities.

In this paper, we propose a new framework for two-sided fairness in rankings grounded in the analysis
of generalized Lorenz curves of user and item utilities. Widely used to study efficiency and equity in
cardinal welfare economics [53]], these curves plot the cumulative utility obtained by fractions of the
population ordered from the worst-off to the best-off. A curve that is always above another means that
all fractions of the populations are better off. We define fair rankings as those with non-dominated
generalized Lorenz curves for users and items. First, this definition guarantees that fair rankings
are Pareto efficient. Second, examining the entirety of the generalized Lorenz curves provides a
better understanding of which fractions of the population benefit from an intervention, and which
ones have to pay for it. We present our general framework based on Lorenz dominance in usual
recommendation settings (e.g., music or movie recommendation), and also show how extend it to
reciprocal recommendation tasks such as dating applications or friends recommendation, where users
are recommended to other users.

We present a new method for generating rankings based on the maximization of concave welfare
functions of users’ and items’ utilities. The parameters of the welfare function control the relative
weight of users and items, and how much focus is given to the worse-off fractions of users and items.
We show that rankings generated by maximizing our welfare functions are fair for every value of
the parameters. Our framework does not aim at defining what parameters are suitable in general —
rather, the choice of a specific trade-off depends on the application.

From an algorithmic perspective, two-sided fairness is challenging because items’ utilities depend on
the rankings of all users, requiring global inference. Previous work on item-side fairness addressed
this issue with heuristic methods without guarantees or control on the achievable trade-offs. We show
how the Frank-Wolfe algorithm can be leveraged to make inference tractable, addressing both our
welfare maximization approach and existing item-side fairness penalties.

We demonstrate that our welfare function approach enjoys stronger theoretical guarantees than
existing methods. While it always generates rankings with non-dominated generalized Lorenz curves,
many other approaches do not. We show that one of the main criteria of the literature, called equity
of attention by Biega et al. [7]], can lead to decrease user utility, while increasing inequalities of
exposure between items. Moreover, equal user satisfaction criteria in reciprocal recommendation
can lead to decrease the utility of every user, even the worse-off. Our notion of fairness prevents
these undesirable behaviors. We report experimental results on music and friend recommendation
tasks, where we analyze the trade-offs obtained by different methods by looking at different points of
their Lorenz curves. Our welfare approach generates a wide variety of trade-offs, and is, in particular,
more effective at improving the utility of worse-off users than the baselines.

We present our formal framework in Section [2. We discuss the theoretical properties of previous
approaches in Section [3} and present our ranking algorithm in Section . Our experiments are
described in Section[3] and the related work is discussed in Section [6]

2 Two-sided fairness via Lorenz dominance

2.1 Formal framework

Terminology and notation. We identify an item with its producer, so that “item utility” means
“item producer’s utility”. The main paper focuses on fairness towards individual users and items.
We describe in Appendixthe extension of our approach to sensitive groups of users or items. |X’|
denotes the cardinal of the set X'. Given n € N, we denote by [n] = {1,...,n}. The set of users
N is identified with {1, ..., ||} and the set of items Z is identified with {|\'| + 1,...,n} where
n = |[N|+|Z|. For (i, j) € N x Z, we denote by /1;; the value of item j to user i.

A (deterministic) ranking o : Z — [|Z|] is a one-to-one mapping from items j to their rank o ().
Following [54], we use stochastic rankings because they allow us to perform inference using convex
optimization (see Section[4). The recommender system produces one stochastic ranking per user,
represented by a 3-way ranking tensor P where P;;y, is the probability that j is recommended to 4 at
rank k. We denote by P the set of ranking tensors.
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Figure 1: Generalized Lorenz curves for usual (left) and reciprocal (right) recommendation.

Utilities of users and items are defined through a position-based model, as in previous work [54}[7,163].
Let v € RIZI, where vy, is the exposure weight at rank k. We assume that lower ranks receive
more exposure, so that Vk € [|Z| — 1], vx > vky1 > 0E| Given a user ¢ and a ranking o;, the
user-side utility of i is the sum of the y,;s weighted by the exposure weight of their rank o;(j):
u;(0y) = ZjeI Vg, (j)Mij- Given an item j, the item-side utility of j is the sum over users i of the
exposure of j to ¢. These definitions extend to stochastic rankings by taking the expectation over
rankings, written in matrix form

user-side utility: u;(P) = Z i Piv item-side utility (exposure): uj(P) = Z Pv
JET ieEN
We denote by u(P) = (u;(P))?, the utility profile for P, and by Y = {u(P) : P € P} the set of
feasible profiles. For w € U, upr = (u;)icn and uz = (u;);ez denote the utility profiles of users
and items respectively.

Two-sided fairness in rankings. In practice, values of y;; are not known to the recommender
system. Ranking algorithms use an estimate /i of x based on historical data. We address here the
problem of inference: the task is to compute the ranking tensor given /i, with the goal of making fair
trade-offs between (true) user and item utilities. Notice that the user-side utility depends only on
the ranking of the user, but for every item, the exposure depends on the rankings of all users. Thus,
accounting for both users’ and items’ utilities in the recommendations is a global inference problem.

More general item utilities We consider exposure as the item-side utility to follow prior work and
for simplicity. Our framework and algorithm readily applies in a more general case of two-sided
preferences, where items also have preferences over users (for instance, in hiring, job seekers have
preferences over which recruiters they are recommended to). Denoting 115, the value of user 7 to item
J, the item side-utility is then u;(P) = 3 p;i P;jv.

ieN

2.2 Lorenz efficiency and the welfare function approach

Our notion of fairness aims at improving the utility of the worse-off users and items. Since this
does not prescribe exactly which fraction of the worse-off users/items should be prioritized, the
assessment of trade-offs requires looking at all fractions of the population. This is captured by the
generalized Lorenz curve used in cardinal welfare economics [53]]. Formally, given a utility profile
u, let (u(i))?zl be the sorted values in w from smallest to largest, i.e., u(1) < ... < u(y), then the
generalized Lorenz curve plots (U;)i_; where U; = u() + ... + u(;). To assess the fairness of
trade-offs, we rely on the following dominance relations on utility profiles:

Pareto-dominance ~p. u >p v’ <= (Vi € [n],u; > u} and i € [n],u; > u}).

Lorenz-dominance >1,. Thenu >1, v’ < U >p U’.

We write >, for non-strict Lorenz dominance (i.e., Vi, U; > Ui’ ). Notice that Pareto-dominance
implies Lorenz-dominance. Our notion of fairness, which we call Lorenz efficiency, states that a
ranking is fair if the utility profiles for users and for items are not jointly Lorenz-dominated:

'We use a user-independent v for simplicity. Considering user-dependent weights is straightforward.
2We consider P;; as arow vector in the formula, so that P;;v = Z‘kﬂl Pijrvk.



Definition 1 (Lorenz efficiency). A utility profile w € U is Lorenz-efficient if there is no v’ € U
such that either (u’; =1, uz and u), =1, upr) or (W, =1, un and w7y »1, uz).

We consider that Lorenz-dominated profiles are undesirable (and unfair) because the utility of worse-
off fractions of the population could have been increased at no cost for total utility. Examples of
Lorenz-curves of users and items are given in Fig. |1} The blue solid, green dotted and orange dashed
curves are all non-dominated (the blue solid ranking has higher user utility but high item inequality,
the green dotted and orange dashed curves have similar item exposure profiles, but user curves that
intersect). On the other hand, the red dot/dashed curve is an unfair ranking: compared to the green
dotted and orange dashed curve, all fractions of the worse off users have lower utility, together with
less exposure for worse-off items.

A fundamental result from cardinal welfare economics is that concave welfare functions of utility
profiles order profiles according to Lorenz dominance [3}53]. The choice of the welfare function
specifies which (fair) trade-off is desirable in a specific context. This result holds when all utilities are
comparable. In our case where there are users and items, we propose the following welfare function
parameterized by 6 = (), oy, ag)

¢ ifa>0
Vu e R} : Wy(u) = (1- 1) Z Y(ui, 01) + AZ¢(uj,a2) with ¢(z,a) = < log(z) ifa=0.
iEN JET —x® ifa <0

Inference is carried out by maximizing Wy (an efficient algorithm is proposed in Section [4):

(ranking procedure) P* € argmax Wy(u(P)) (1)
pPeP

In Wy, A € [0, 1] controls the relative weight of users and items. The motivation for the specific
choice of ¢ is that it appears in scale invariant welfare functions [43], but other families can be used as
long as the functions are increasing and concave. Monotonicity implies that maxima of Wy are Pareto-
efficient. For oy < 1 and ap < 1, Wy is strictly concave. Then, Wy exhibits diminishing returns,
which is the key to Lorenz efficiency: an increment in utility for a worse-off user/item increases
welfare more than the same increment for a better-off user/item. The effect of the parameters is shown
in Fig. (1| (left): For item fairness we obtain more item equality by using a; < 1 (here, a; = 0.5) and
incrasing A (see blue solid vs orange dashed curve). The parameter as controls user fairness: smaller
values yield more user utility for the worse-off users at the expense of total utility, with similar item
exposure curve (green dotted vs orange dahsed curves). Let © = {(\, a1, ) €(0,1) x (—00,1)?}.
For every 6 € ©, W) is strictly concave, and users and items have non-zero weight. We then have
(the result is a straightforward consequence of diminishing returns, see Appendix [C):

Proposition 1. V¢ € ©,VP* € argmaxWy(u(P)), P* is Lorenz-efficient.
PeP

Relationship to inequality measures A well-known measure of inequality is the Gini index,
defined as 1 — 2 x AULC, where AULC is the area under the Lorenz curve. The difference between
Lorenz and generalized Lorenz curves is that the former is normalized by the cumulative utility.
This difference is fundamental: we can decrease inequalities while dragging everyone’s utility to
0. However, this would lead to dominated generalized Lorenz curves. Interestingly, for item-side
fairness, the cumulative exposure is a constant and thus trade-offs between user utility and item
exposure inequality are not really problematic. However, for user-side fairness, the total utility is
not constant and reducing inequalities might require dragging the utility of some users down for the
benefit of no one.

Additional theoretical results In App.|C.2| we show that as ay, ap — —o0, utility profiles tend
to leximin-optimal solutions [43]]. Leximin optimality corresponds to increasing the utility of the
worst-off users/items one a a time, similarly to a lexical order. In App. we present an excess risk
bound, which provides theoretical guarantees on the true welfare when computing rankings based on
estimated preferences, depending on the quality of the estimates.

We(u) = —oo if a < 0 and 34, u; = 0. In practice, we use 1 (z 4 7, o) for > 0 to avoid this case.



2.3 Extension to reciprocal recommendation

In reciprocal recommendation problems such as dating, the users are also items. The notion of
fairness simplifies to increasing the utility of the worse-off users, which can in practice be done by
boosting the exposure of worse-off users. Our framework above applies readily by taking ' = Z and
n = |N]. The critical step however is to redefine the utility of a user to account for the fact that (1)
the user utility comes from both the recommendation they receive and who they are recommended to,
and (2) users have preferences over who they are recommended to.

To define this two-sided utility, let us denote by 11;; the mutual preference value between ¢ and j,
and our examples follow the common assumption that y;; = p;; (see e.g., [45]]). For instance, when
recommending CVs to recruiters, ;; can be the probability of interview, while in dating, it can be
that of a “match”. The two-sided utility is then the sum of the user-side utility and item-sided utility
of the user:

user-side utility item-side utility
(3 recommended to 1) (i recommended to j) (two-sided) utility
= pijPijv 5(P) =Y i Pyv u;(P) =u;(P) +v;(P)
JeT JEN

With this definition of two-sided utility, our previous framework can be readily applied using N =1T.
A (two-sided) utility profile u € U is Lorenz-efficient if there is no w’ € U such that u’ =1, u. The
welfare function simplifies to Wy(u) = >_"_; ¥ (u;, ), and Proposition |: also holds true in this
setting: maximizing the welfare function always yields Lorenz-efficient rankings.

Fig.[T] (right) illustrates how decreasing « increases utilities for the worse-off users at the expense
of total utility. It also shows a Lorenz-dominated (unfair) profile, in which all fractions from the
worst-off to the better-off users have lower utility.

From now on, we refer to one-sided recommendation for non-reciprocal recommendation.

3 Comparison to utility/inequality trade-off approaches

As stated in the introduction, leading approaches to fairness in ranking are based on utility/inequality
trade-offs. We describe here the representative approaches we consider as baselines in our experiments.
We then present theoretical results illustrating the undesirable behavior of some of them.

3.1 Objective functions

One-sided recommendation In one-sided recommendation, the leading approach is to define
exposure-based criteria for item fairness [54, [7]. The first criterion, equality of exposure, aims at
equalizing exposure across items. The second one, quality-weighted exposur which is advocated
by many authors, defines the guality of an item as the sum of user values g; = > .\ it;; and aims
for item exposure proportional to quality. The motivation of quality-weighted exposure is to take user
utilities into account in the extreme case where the constraint is strictly enforced. Interestingly, as we
show later, this approach has bad properties in terms of trading off user and item utilities.

In our experiments, we use the standard deviation as a measure of inequality. Denoting by E =
IV ]|, the total exposure and by Q = >~ 7 g; the total quality:

ua. a 1 qE 2
qualggpgseljc;:e’”ed Fg =Y u;— By/Dwe(u) with D™ (u) = — - > (uj - Ji) :

i€EN JET Q
equalin ol Fy(u) = ;/ui—ﬁ\/D(u) with D(u) =Z HOS i %“J) :
1 g ’

Some authors use D' (w) =3 ; i 72 |ZT7 - %| instead of v/ Dd9ve [55142] [6]. D% and D’ have
qualitatively the same behavior. We propose Dq”“(u) as a computationally efficient alternative to D’,
since it involves only a linear number of terms and v/ D?“¢ is convex and differentiable except on 0.

“We use here the terminology of [63]]. This criterion has also been called “disparate treatment” [54],
“merit-based fairness” [S5] and “equity of attention” [7].



Reciprocal recommendation For reciprocal recommendation, we consider as competing approach
a trade-off between total (two-sided) utility and inequality of utilities, as measured by the standard
deviation:

. 1 1 ?
wstin o pyw= Y u-aVDE  wit D) =3 L(u - 4 S )

iEN JET Jj'eT
3.2 Inequity and inefficiency of some of the previous approaches

We point out here to two deficiencies of previous approaches.

First, for one-sided recommendation, we show that in some cases, compared to the welfare approach
with any choice of the parameter § € ©, quality-weighted exposure leads to the undesirable behavior
of decreasing user utility while increasing inequalities of exposure between items. This is formalized
by the proposition below, which uses the following notation: for § € ©, let u’ = argmaxWy(u),
and for 8 > 0, let Ug"* = argmax Fg"*(u). uel

u

uec
Proposition 2. The following claims hold irrespective of the choice of ud"* ¢ Uug™.

For every d € N, and every N € N,, there is a one-sided recommendation problem, with d + 1 items
and N (d + 1) users, such that V9 € ©, we have:

S
(38 >0, uly -1 uj‘\';a’ﬁ and uf 1, u%ua’ﬁ) and lim S2EN i 7
B—ro0 ZiEN U, d—o0

5

5
Second, in reciprocal recommendation, striving for pure equality can even lead to 0 utility for every
user, even that of the worst-off user. More precisely, we show that in some cases, compared to the
welfare approach with any choice of parameter § € ©, there exists 8 > 0 such that equality of utility
has lower utility for every user, eventually leading to 0 utility for everyone in the limit 5 — oo.

Proposition 3. For § > 0, let L{Eq = argmax,, o, F3(u). The claim below holds irrespective of the
choice of u®%* ¢ L[Zq. Let n > 5. There is a reciprocal recommendation task with n users such that:

Vo cO,u’ 3>0: Vie[n],uf > ufq”@ and lim u?q’ﬂ =0.

o TeN
Proofs and additional results All proofs are deferred to App.|D, where we provide several addi-
tional results regarding the use of quality-weighted exposure and equality of exposure in reciprocal
recommendation: We show in Prop. [§] that there are cases where both approaches lead to user utility
profiles with Lorenz-dominated curves, and significantly lower total user utility than the welfare

approach for any choice of the parameters.

4 Efficient inference of fair rankings with the Frank-Wolfe algorithm

We now present our inference algorithm for (I)). Appendix [E contains the proofs of this section and
describes a similar approach for the objective functions of the previous section. From an abstract
perspective, the goal is to find a maximum P* such that:

n n

P* € argmax W (P) with W(P) = Z Cbi(ZMz‘j (Pi; + Pji)v)

PeP = o

where for every i, ®; : R — R is concave increasing, 1;; > 0 and v is a vector of non-negative
non-increasing values. Since W is concave and P is defined by equality constraints, the problem

above is a convex optimization problem. However, this is a global optimization problem over the
rankings of all users, so a naive approach would require |A||Z|? parameters and 2|\||Z] linear
constraints. The same problem arises with the penalties of previous work. In the literature, authors
either considered applying the item-fairness constraints to each ranking individually [54} 6], which
leads to inefficiencies with our definition of utility (see Appendix [H), or resort to heuristics to compute
the rankings one by one without guarantees on the trade-offs that are achieved [42}[7].

Our approach is based on the Frank-Wolfe algorithm [[18]], which was previously used in machine
learning in e.g., structured output prediction or low-rank matrix completion [30], but to the best of
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Figure 2: Summary of results on Lastfm-2k, focusing on the user utility/item inequality trade-off.

our knowledge not for ranking. Denoting (X |Y) = >, X;;xYiji the dot product between tensors,
the algorithm creates iterates P(*) by first computing P = argmaxp.p (P | VW (P®)) and then
updating P(®) = (1 — 4 P=1) 4 41 P with v(*) = 725 [13]. Starting from an initial solutio
the algorithm always stays in the feasible region without any additional projection step. Our main
contribution of this section is to show that argmax pp (P | VIW(P®)) can be computed efficiently,

requiring only one sort operation per user after computing the utilities. In the result below, for a
ranking tensor P and a user i, we denote by &(F;) the support of P; in ranking space

Theorem 1. Let fi;; = ®] (u;(P®)) pij + ® (u;(P")) ji. Let P such that:

Vi e N,VG; € 6(P): 64(5) < 6i(j') = fiij > fiijr. Then P € argmax(P| VW (PY)).

PeP
Moreover, it produces a compact representation of the stochastic ranking as a weighted sum of
permutation matrices. The number of iterations of the algorithm allows to control the trade-off
between memory requirements and accuracy of the solution. Using previous convergence results for
the Frank-Wolfe algorithm [[13]], assuming each @/ is bounded, we have:

Proposition 4. Let B = mﬂaﬁ |®)|, and U = max ||u||§ Let K be the maximum index of a
ic[n ue

nonzero value in v (or |Z|). Then ¥t > 1, W (P®) > max W (P) — O(EY). Moreover, for each

user, an iteration costs O(|Z|1n K') operations and requires O(K) additional bytes of storage.

5 Experiments

5.1 One-sided recommendation

We first present experiments on movie recommendation task. We report here our experiments with
the Lastfm-2k dataset [9,47]], which contains the music listening histories of 1.9% users. We present
in App.[F.2]experiments on a larger portion of the Last.fm dataset, and in App. [F.3]results using the
MovieLens-20m dataset [24]. Our results are qualitatively similar across the three datasets.

We select the top 2500 items most listened to, and estimate preferences with a matrix factorization
algorithm using a random sample of 80% of the data. All experiments are carried out with three
repetitions for this subsample. The details of the experimental protocol are in App.[F1] Since the goal
is to analyze the behavior of the ranking algorithms rather than the quality of the preference estimates,
we consider the estimated preferences as ground truth when computing user utilities and comparing
methods, following previous work. We compare our welfare approach (welf) to three baselines. The
first one is the algorithm of [47] (referred to as Patro et al. in the figures), who consider envy-freeness
for user-side fairness and, for item-side fairness, a constraint that the minimum exposure of an
item is B% where [ is the trade-off parameter. The other baselines are quality-weighted exposure

(qua.-weighted) and equality of exposure (eq. exposure) as described in Sec.

3In our experiments, we initialize with the utilitarian ranking (Proposition @)
SFormally, &(P;) = {0 : T — [IZ]| o is one-to-one, and Vj € Z, Pyjo ;) > 0}.
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Figure 3: Summary of results on Lastfm-2k for two-sided fairness: effect of varying «; .

Item-side fairness We first study in isolation item-side fairness, defined as improving the exposure
of the worse-off item (producers). To summarize the trade-offs, we show the trade-offs by looking at
exposure inequalities as measured by the Gini index (see Sec.[2.2). The results are given in Fig. [2}

» Generating user utility/item inequality trade-offs is performed with our approach by keeping
a1 = ay = 0 and varying the relative weight of items \. Fig.[2a plots some trade-offs achieved by
our approach. As expected, the user utility curve degrades as we increase the weight of items, while
at the same time the curve of item exposure moves towards the straight line, which corresponds
to strict equality of exposure. Fig.[6 in the appendix provides analogous curves for all methods,
obtained by varying the weight [ of the inequality measure.

* qua.-weighted yields unfair trade-offs Fig.[2c/ shows a welf ranking that dominates a qua.-weighted
ranking on both user and item curves. This is in line with the discussion of Section[3] qua.-weighted
can lead to unfair rankings on utility/item inequality trade-offs.

* welf dominates the user utility/item inequality (Gini) trade-offs as seen on Fig. [2b: while all
methods have the same total user utility when accepting high item inequality, welf dominates Patro
et al., eq. exposure and qua.-weighted as soon as Gini < 0.5. Note, however, that the Gini index is
only one measure of inequality. When measuring item inequalities with the standard deviation, eq.
exposure becomes optimal since our implementation optimizes a trade-off with this measure (see
Fig.[8]in App.[FI). Overall, welf and eq. exposure yield different fair trade-offs.

Two-sided fairness Fig. shows the effect of the user curvature o; € {—2,0, 1}, keeping as = 0.
Fig.[8]in App. [FT]shows similar plots when the item inequality is measured by the standard deviation
rather than the Gini index.

» Smaller o reduce user inequalities at the expense of total user utility, at various levels of item
inequality. This is observed by comparing the results for a; € {—2,0, 1} in Fig.[3ajand Fig.

* welf oy = 0 is better than Patro et al., which can be seen by jointly looking at Fig. d and
Fig. @ which give the cumulative utility at different points of the Lorenz curve (10%, 25% and
100% of the users respectively). We observe that welf ai; = 0 is similar to Patro et al. at the 10%
and 25% levels, but has higher total utility. Example curves are given in Fig.|3e/and which plot
welf oy = 0 and Patro et al. at two levels of item inequality. welf o; = 0 obtains similar curves
to Patro et al., except that it performs better at the end of the curve. A similar comparison can be
made with welf oy = 1 and eq. exposure.

* More user inequalities is not necessarily unfair as seen in Fig. [3a]comparing welf o; = 0 and
Patro et al.. We observe that welf a; = 0 has slightly higher Gini index, but this is not unfair: as
seen in Fig. Be/and 3T, this is due to the higher utility at the end of the generalized Lorenz curve of
welf, but the worse-off users have similar utilities with welf and Patro et al..



5.2 Reciprocal recommendation

We now present results on a reciprocal recommendation task, where fairness refers to increasing
the utility of the worse-off users (this can be done by boosting their exposure at the expense of
total utility). Since there is no standard benchmark for reciprocal recommendation, we generate an
artificial task based on the Higgs Twitter dataset [15]], which contains follower links, and address the
task of finding mutual followers (i.e., “matches’). We keep users having at least 20 mutual links,
resulting in a subset of 13k users. We build estimated match probabilities using matrix factorization.
The experimental protocol is detailed in App. We also present in App. [F.5]additional experiments
using the Epinions dataset [49]. The results are qualitatively similar.

Our main baseline is equal utility (eq. utility) defined in Section [3. We also compare to quality-
weighted exposure, and equality of exposure as baselines that ignore the reciprocal nature of the task.
The results are summarized in Fig. 4}

o Example of trade-offs obtained by varying « are plotted in Fig. la. As « decreases, the utility
increases for the worse-off users at the expense of better-off users. We note that increasing the
utility of worse-off users has a massive cost on total user utility: looking at the exact numbers we
observe that & = —5 has more than doubled the cumulative utility of the 10% worse off users
compared to o = 1 (120 vs 280), but at the cost of more than 60% of the total utility (17k vs 6.4k).
Fig.[6]in Appendix [F4 contains plots of the trade-offs achieved by the other methods.

* qua.-weighted and eq. exposure are dominated by welf on a large range of hyperparameters. An
example is given in Fig. b, where welf o = 0.5 already dominates some of their models, even
though in this region of « there is little focus on worse-off users. More generally, all values of
B > 0.1 for qua.-weighted and eq. exposure lead to rankings with dominated curves. This is
expected since they ignore the reciprocal nature of the task.

* eq. utility is dominated by welf near strict equality as illustrated in Fig. jc: for large values of 3,
it is not possible to increase the utility of the worse off users, and eq. utility only drags utility of
better-off users down.

* welf is more effective at increasing utility of the worse-off users as can be seen in Fig. fg-g, which
plots the total utility as a function of the cumulative utility at different points of the Lorenz curve
(10%, 20%, 50% worse-off users respectively). For total utilities larger than 50% of the maximum
achievable, welf significantly dominates eq. utility in terms of utility of worse-off users (10% and
25%) at a given level of total utility. welf also dominates eq. utility on the 50% worse-off users
(Fig.[h) in the interesting region where the total utility is within 20% of the maximum.

* More inequality is not necessarily unfair As shown in Fig. [d[d, we see that for the same utility for
the 10% worse-off users, welf models have higher inequalities than eq. utiliry. As seen before, this
higher inequality is due to a higher total utility (and higher total utilities for the 25% worse-off
users. The analysis of these Lorenz curves allow us to conclude that these larger inequalities are
not due to unfairness. They arise because welf optimizes the utility of the worse-off users at lower
cost in terms of average utility than eq. utility.

6 Related work

The question of fairness in rankings originated from independent audits on recommender systems
or search engines, which showed that results could exhibit bias against relevant social groups
[57, 133} 21} 1404 135]] Our work follows the subsequent work on ranking algorithms that promote
fairness of exposure for individual or sensitive groups of items [[LO} |8, 7,154, 42} 65]]. The goal is often
to prevent winner-take-all effects, combat popularity bias [1]] or promote smaller producers [39,41].
Section [3]is devoted to the comparison with this type of approaches. Most of these works use a
notion of fairness oriented towards items only. Towards two-sided fairness, Wang and Joachims [[60]
promote user-side fairness using concave functions of user utilities, similarly to us. Other works use
equality constraints to define user-side fairness [6}163]. These three approaches rely on the definitions
of item-side fairness discussed in Section [3. Patro et al. [47] generate rankings that are envy-free
on the user side, and guarantees the fair min-share for items. This approach is not amenable to
controllable trade-offs between user and item utilities.

We are the first to address one-sided and reciprocal recommendation within the same framework.
There is less existing work studying the fairness of rankings in the reciprocal setting. Xia et al.
[64] aim at equalizing user utility between groups, which suffers from the problems discussed in
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Figure 4: Results on the twitter dataset.

Section[3] Jia et al. [31] generate rankings using a welfare function approach, but optimizing only the
utility of users being recommended. Paraschakis and Nilsson [46] postprocess rankings to correct
for inconsistencies between estimated and declared preferences of users. In contrast, we aim at fair
trade-offs between user and item utilities, under the assumption that biases in the preference estimates
have been addressed earlier in the recommendation pipeline. Fairness is also studied in the context of
ridesharing applications [62} 37, 44], but they address matching rather than ranking problems.

There is growing interest in making the relationship between fairness in machine learning and social
choice theory [25} 159 4] 20, 127, [12, |16} [17], and welfare economics in particular [56} 28 134} 136} 167].
In line with Hu and Chen [28]], who focused on classification and parity penalties, we argue that
Pareto-efficiency should be part of fairness assessments. We are the first to propose concave welfare
functions and Lorenz dominance to address two-sided fairness in recommendation.

7 Conclusion

We view fairness in rankings as optimizing the distribution of user and item utilities, giving priority
to the worse-off. Following this view, we defined fair rankings as having non-dominated generalized
Lorenz curves of user and item utilities, and develop a new conceptual and algorithmic framework for
fair ranking. The generality of the approach is showcased on several recommendation tasks, including
reciprocal recommendation.

The expected positive societal impact of this work is to provide more principled approaches to
mediating between several parties on a recommendation platform. Yet, we did not address several
questions that are critical for the deployment of our approach. In particular, true user preferences are
often not directly available, and we only observe proxies to them, such as clicks or likes. Second,
interpersonal comparisons of utilities are critical in this work. It is thus necessary to make sure that
the proxies we choose lead to meaningful comparisons of utilities between users. Third, estimating
preferences or their proxies is itself not trivial in recommendation because of partial observability.
The true fairness of our approach is bound to a careful analysis of (at least) these additional steps.
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