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Abstract: We present a novel approach to improve the performance of deep rein-
forcement learning (DRL) based outdoor robot navigation systems. Most, existing
DRL methods are based on carefully designed dense reward functions that learn
the efficient behavior in an environment. We circumvent this issue by working
only with sparse rewards (which are easy to design), and propose a novel adaptive
Heavy-Tailed Reinforce algorithm for Outdoor Navigation called HTRON. The key
idea in this work is to utilize heavy-tailed policy parametrizations which implic-
itly induces exploration in sparse reward settings. We evaluate the performance
of HTRON against Reinforce, PPO and TRPO algorithms in three different outdoor
scenarios: goal-reaching, obstacle avoidance, and uneven terrain navigation. We
observe in average an increase of 34.41% in terms of success rate, 15.15% de-
crease in the average time steps taken to reach the goal, and 24.9% decrease in
the elevation cost compared to the navigation policies obtained by the other meth-
ods. Further, we demonstrate that our algorithm can be transferred directly into a
Clearpath Husky robot to perform real-world outdoor terrain navigation.
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1 Introduction

Autonomous robot navigation in complex outdoor environments has been an active area of research.
The resulting navigation systems are used for different applications, including delivery [1], search
and rescue [2], planetary explorations [3], etc. Such applications require robots to gather useful
information efficiently from the environment to make intelligent navigation decisions [4]. To this
end, Deep Reinforcement Learning (DRL) techniques have been widely employed in recent robotic
systems due to their inherent exploration and exploitation capabilities to gather necessary informa-
tion from the learning environments [5, 6, 7, 8, 9, 10]. Nevertheless, a major challenge for DRL
based algorithms is dealing with sparse rewards in continuous state and actions spaces. In particular,
the rewards are sparse in navigation settings because it’s only available on reaching a goal (positive
reward) or hitting an obstacle (negative rewards) [11]. Hence, training DRL policies under sparse
reward settings oftentimes lead to instabilities and convergence issues that can significantly degrade
consistent performance, especially in navigation applications [12, 13].

To improve the training efficiency and deal with sparse rewards, two popular methods in the literature
are reward shaping [14] and demonstration-guided learning [15, 16]. The primary objective of
rewards shaping-based methods is to induce an exploration strategy using curiosity-driven methods
which provide an additional pseudo reward for exploration in the environment [17]. However, such
methods require carefully designed intrinsic rewards which can introduce expert-specific bias to the
learning systems hindering the overall performance. Similarly, demonstration-guided methods have
a high dependence on expert supervision which could be difficult to obtain in practice for many
outdoor navigation tasks [18]. Instead of modifying the rewards, a more pragmatic approach is to
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try to work directly with the sparse rewards [19] and make the DRL based policies to train for the
outdoor navigation task at hand. But the major challenge is how to induce inherent exploration into
the training without reshaping the rewards. Recent work in literature[20, 21] suggest that one way to
handle these is to use heavy-tailed policy (such as Cauchy) parametrization techniques. Motivated
by these factors, in this work, we try to find optimal behaviors for outdoor navigation tasks while
directly operating under sparse reward settings.

Main Contributions:

1. We present a heavy-tailed policy formulation with adaptive gradient tracking to address
three navigation challenges encountered in complex outdoor environments (goal-reaching,
obstacle avoidance, and navigating on uneven terrains). Our proposed algorithm HTRON
outperforms three state-of-the-art algorithms: Reinforce [22], PPO [23], and TRPO [24] in
terms of cumulative reward return with improved sample efficiency for faster convergence.

2. We propose a set of novel sparse reward functions that do not require careful reward de-
signs yet are capable of successfully navigating a differential drive robot using an improved
stochastic policy gradient method.

3. We evaluate the navigation performance of HTRON in both simulated and real-world com-
plex outdoor environments using a Clearpath Husky robot. HTRON results in an increase
of up to 34.41% in terms of navigation success rate, 15.15% decrease in the average time
steps taken to reach the goal, and 24.9% decrease in the elevation cost compared to the
navigation policies obtained by the other methods.

2 Related Work

Learning-based approaches, in particular DRL have pushed the boundaries of mobile robot navi-
gation for unstructured and dynamically changing environments [25, 26, 8]. Nevertheless, these
methods suffer from sample efficiency under sparse rewards settings because dense rewards play an
important role in learning for DRL methods. We summarize the related work next.

Outdoor Robot Navigation: Navigation, path planning and obstacle avoidance are extensively-
studied fundamental research problems in the field of robotics [27, 28]. Number of determinis-
tic [29, 30] and stochastic [31, 32] algorithms have been proposed in the past three decades. How-
ever, robot navigation in complex outdoor environments still remains a challenging problem given
the complexity and diversity of the setting. To perform robot-centric decision-making, deep rein-
forcement learning (DRL) strategies have been employed in recent studies for outdoor navigation
[33, 34]. For example, deterministic policies such as DDPG[26], A3C[35], and DQN[36] with dense
rewards have been incorporated for robot navigation on uneven terrains. An adaptive model that
directly learns control and environmental dynamics is presented in [8]. Moreover, segmentation[37]
and self supervised [25] methods for identifying navigable regions have also been utilized with a
combination of DRL based navigation methods to ensure stable and efficient navigation.

Sparse Reward Settings: In sparse reward settings, an environment rarely produces a useful reward
which significantly affects the reinforcement policy leaning [11]. To deal with this issue, several re-
ward shaping methods based on intrinsic curiosity and information gain-based shaping have been
proposed [38]. For example, reward shaping based methods such as [39, 17] encourage the agent
to explore unvisited states by modifying the actual reward output. However, such approaches re-
quire additional effort and expertise in reward function design. Imitation learning and learning from
demonstration methods are another approach for dealing with sparse rewards in practice [40]. How-
ever, obtaining reliable expert demonstrations for continuous control tasks is practically infeasible
and challenging [41, 15].

Heavy-tailed Policy Parametrization: The possibility of incorporating heavy-tailed distributions
to RL tasks is theoretically analyzed in recent literature [42, 21]. For example, in [43], beta distri-
bution is utilized with dense rewards for stochastic policy training to enhance the state exploration
capabilities. Further, a heavy-tailed policy gradient method is proposed in [42] to find convergence
to global maxima while minimizing the risk of local maxima convergence. Inspired by these ideas,
we propose a heavy-tailed adaptive reinforce algorithm to deal with sparse rewards in complex out-
door environments.

2



3 Problem Formulation and Our Approach

3.1 Outdoor Navigation via Reinforcement Learning

Mathematically, we formulate the outdoor navigation problem as a Markov Decision Process (MDP)
in continuous state and actions spaces:

M := {S, A, P, r, γ}, (1)

where S denotes the state space including distance from the goal, heading, roll and pitch angle; A
is the actions space (linear, angular velocity); P(s′|s, a) is the transition kernel; r(s, a) is the reward
and γ ∈ (0, 1) denotes the discount factor. The objective of the robot is to learn a navigation
policy πθ(a|s) parameterized by θ (which controls the probability of taking a particular action a
in given state s) to perform efficient outdoor navigation. This is achieved by solving the following
optimization problem

max
θ
J(θ) := V πθ (s0), (2)

where V πθ (s0) = E
[∑∞

t=0 γ
tr(st, at) | s0 = s, at ∼ πθ(·|st)

]
is the average cumulative reward (or

value function), and s0 denotes the initial state along a trajectory {st, at, r(st, at)}∞u=0.We note that
since the goal of the outdoor navigating robot is to reach a goal and to make sure that the problem (2)
is actually achieving that, we need to design the reward function r(s, a) such that upon maximizing
its cumulative value, our goal is achieved. This is one of the major challenges in applying RL ideas to
outdoor navigation. The majority of the RL results revolve around learning in standard environments
and platforms like Gym, Mujoco [44] or other simulated environments where the rewards structures
are already defined. However, in practical outdoor navigation scenarios, it is extremely hard to
generate dense rewards due to the possibility of huge unknown trajectories a robot can take while
navigating in the environment [34, 8]. The problem is exacerbated in continuous state-action spaces
where one needs to define rewards even for infinite possibilities, which could be impractical.

3.2 Our Approach

To deal with this issue and empower the application of RL to outdoor navigation, we take a different
route and advocate the use of sparse rewards. The advantage of sparse rewards is the simplicity of
their design as they need to be defined only at specific goals/sub-goals to the robot. However, the
sparse reward makes the learning problem hard due to the non-trivial estimation of value functions
over the continuous state space, which can be mitigated through the use of heavy-tailed policy
gradient algorithms[42, 21]. In this work, we start with a construction of an experimental sparse
reward design methodology for outdoor navigation scenarios and proceed with the description of
our algorithm.

3.2.1 Outdoor Navigation using Sparse Rewards

We categorize the level of complexity in the reward structure using three navigation scenarios in
outdoor environments. In all scenarios, our agent is modeled as a differential drive robot with a
two-dimensional continuous action space a = (v, ω) (i.e. linear and angular velocities), whereas the
state space dimension varies for each scenario. The state inputs are obtained in real-time from the
robot’s odometry, and LiDAR sensors. The list of state inputs used throughout the three scenarios is
as follows:

• dgoal ∈ R+ - current distance between the robot and its goal;
• αgoal ∈ [0, π] - current angle between the robot’s heading direction and the goal;
• (vt−1, ωt−1) ∈ [−1, 1] - actions from the previous time step (i.e. linear and angular velocities);
• (θroll, θpitch) ∈ [0, π] - roll and pitch angle of the robot respectively;
• Dobs ∈ [0, 10] - laser scan vector that includes distance to the obstacles around the robot (i.e. 360◦

laser scan data as a vector with ∼ 720 elements) at a given time.

Scenario 1 (Goal Reaching Baseline): In this scenario, the robot is placed in an obstacle-free
outdoor terrain with an objective to reach a given goal location. We incorporate distance to the
goal, heading angle to the goal and previous actions to define a four-dimensional state space s =
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Figure 1: Sparse reward surface visualization: Reward distribution with (a) dgoal, αgoal and (b) dgoal,
Dobs. We observe that the sparse reward settings lead to chaotic and unstructured reward surfaces. These
plots show that our reward formulations in the navigation scenarios are significantly sparse and do not include
uniquely identifiable maxima that can be reached smoothly.

[dgoal, αgoal, vt−1, ωt−1]. We utilize a set of sparse rewards that are easy to implement for policy
training. For the goal reaching task, we define rheading and rdist rewards to maintain the robot’s
heading direction towards the goal and to encourage reaching the goal respectively. Hence,

rheading = 1{|αgoal|≤π/4}, and rdist =
βg
2
N (

dgoal
2

, σ2
g) + βgN (0, σ2

g), (3)

where βg is a constant used to adjust the reward amplitude for goal reaching, σg ∈ [0, 0.1] is the
variance of the normal distribution N (., σ2

g) which we maintain at a very low range. This ensures,
the robot receives a reward rdist only when it reaches either dgoal

2 or the defined goal. Otherwise,
rdist is zero. These reward formulations intuitively motivate the robot to reach the goal by rewarding
it when the halfway or the complete distance to the goal is traveled. The total reward is obtained
as, rtot = rheading + rdist. The reward distribution w.r.t the state parametric space is visualized in
Figure 1(a) to highlight the reward sparseness.

Scenario 2 (Obstacle Avoidance): In this scenario, the robot is placed in an outdoor area with static
obstacles such as trees, walls, and sharp hills. The objective is to reach the goal while avoiding
collisions with these obstacles. Additionally laser scan vector is taken into account in the state space
s = [dgoal, αgoal, vt−1, ωt−1, Dobs]. In addition to the two rewards defined in the previous scenario
(i.e. rheading and rdist), we introduce an additional sparse reward robs as,

robs =

{
−100 if min(Dobs) ≤ dcollision,
0 otherwise,

(4)

to penalize collisions. Here, dcollision is the minimum safety clearance that the robot should main-
tain with obstacles. The modified total reward is obtained as, rtot = rheading + rdist + robs.

Scenario 3 (Navigating on Uneven Terrains): In this scenario, the robot is placed in a highly
elevated outdoor terrain where it might flip over or experience instability in some regions. The
objective is to navigate to a goal location while avoiding steep elevations in the environment. The
corresponding state space is s = [dgoal, αgoal, vt−1, ωt−1, θroll, θpitch]. To minimize navigating on
steep elevations, we incorporate another sparse reward term (rstable) with the goal reaching reward
pair. We consider the states where the robots roll (θroll) or pitch angle (θpitch) exceeds ±π4 as steep
elevations (i.e. unstable robot orientations). Hence, the stability sparse reward is defined as,

rstable = 1{|θroll|≥π/4} ∪ 1{|θpitch|≥π/4}. (5)

Hence, the total reward function for this scenario is obtained as, rtot = rheading + rdist + rstable.

3.2.2 Heavy-Tailed Reinforce Algorithm for Outdoor Navigation (HTRON)

Just operating with sparse rewards is not sufficient to solve the outdoor navigation problem because
the learning procedure won’t be able to explore the environment in a required manner. For instance,
continuous control robotics research primarily relies on Gaussian policy parametrization given by
πθ(a|s) = N (a|ϕ(s)>θ, σ2) where θ controls the mean of the Gaussian, ϕ(s) denotes the states
feature representation ϕ : S → Rd with d � q, and σ2 is variance. However, the performance of
Gaussian policy parametrization under sparse rewards is shown to suffer badly in the latest research
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Algorithm 1 Heavy-Tailed Reinforce for Outdoor Navigation (HTRON)
1: Initialize : Initial policy network parameter θ = θ0, discount factor γ, step-size η, Adaptive momentum

parameters β1, β2, ε, δ, and φ
Repeat for k = 1, . . .

2: Collect the trajectory ξk(θk) by utilizing policy πθk with robotic action driven constraints i.e the actions
are first sampled as a ∼ πθk (a|s) and then we evaluate projections P∞(a) such that ‖a‖∞ ≤ δ

3: Estimate∇J(θk, ξk(θk)) (cf. (7)) and then perform clipping such that ‖∇J(θk, ξk(θk))‖∞ ≤ φ
4: Estimate gk and θk+1 with adaptive moment estimation method using (8)
5: k ← k + 1

Until Convergence
6: Return: θk

[42, 21]. The primary reason for failure is due to the light-tailed nature of Gaussian distribution
which restricts the policy to take action closer to its mean value and thereby restricts exploration.
Typical methods to deal with exploration includes adding intrinsic curiosity [45] or entropy based
exploration [17] which either requires learning the global dynamics model or estimation of the oc-
cupancy density function which is extremely expensive for continuous control robotics problem.

In this work, we leverage an alternate approach motivated by the latest research by [42, 21] and
focus on developing a heavy-tailed parametrization based policy for outdoor navigation problems
with additional robotics-driven constraints as detailed in Algorithm 1. We parameterize the policy
by a heavy-tailed Cauchy distribution given by

πθ(a|s) =
1

σπ(1 + ((a− ϕ(s)>θ)/σ)2)
, (6)

where σ is the fixed variance. Now, finally we write the stochastic policy gradient [20] as

∇J(θk,ξk(θk)) =
Tk∑
t=0

γt/2r(st, at) ·
( t∑
τ=0

∇ log πθk(aτ |sτ )
)
, (7)

where ∇J(θk, ξk(θk)) denotes the unbiased estimator of gradient ∇J(θk) at θk, and Tk ∼
Geom(1 − γ1/2). Although heavy-tailed parametrization induces exploration which has proven
to be extremely beneficial in sparse reward settings [42, 21], it also induces instability in behaviour
due to the high probability of taking extreme action even near optimal regions. Hence, [42] pro-
posed gradient tracking to mitigate the above issue. However, instead of momentum tracking with
mirror ascent type update as proposed in [42], we use an adaptive moment estimation based method
as an optimizer with gradient clipping to stabilize the instability induced owing to the heavy-tailed
parametrization which improves the time taken by gradient tracking based methods.

mk = β1mk−1 + (1− β1)gk, (8)

vk = β2vk−1 + (1− β2)g2k, (9)

θk+1 = θk +
η

√
vk + ε

mk, (10)

where mk, vk are the first and second moments respectively and β1, β2, ε are hyperparamters
for the optimizer and gk = ∇J(θk, ξk(θk)) with the added constraint of clipping given as
‖∇J(θk, ξk(θk))‖∞ ≤ φ. Another important challenge is to incorporate practical constraints into
the learning system which is specific to robotics based problems where the action is bounded. To
solve the same, we use a simple projection P∞(·) based technique where we project the output from
the policy πθ(a|s) into an infinite norm ball which constraints the action space within the bound and
can be shown as a ∼ πθ(a|s) such that ‖a‖∞ ≤ δ.

4 Experiments

We conduct a detailed analysis and performance comparison of our proposed method against three
state-of-the-art stochastic policy gradient algorithms: TRPO [24], PPO [23], and Reinforce [22]. We
used identical policy distribution parameters (e.g. distribution standard deviation σ) and neural net-
work architectures with all four algorithms during training and evaluation.The heavy-tailed policies
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Figure 2: Performance comparison of HTRON with Reinforce [22], PPO [23], TRPO [24], PPO (with Cauchy)
and TRPO (with Cauchy) in three scenarios: (a) Goal-reaching Baseline, (b) Obstacle avoidance, and (c)
Navigating on uneven terrains. Each episode contains 300 times steps (i.e. ∼ 30k-42k overall time steps).
All the policies are trained with a fixed standard deviation σ = 0.25. We note that HTRON achieves the highest
average reward returns. The plots are averaged over 6 random seeds and shows mean and confidence intervals.

Figure 3: Performance comparison of HTRON with Reinforce [22], PPO [23], and TRPO [24] policies with
large standard deviations (σ = 0.5) in three scenarios: (a) Goal-reaching Baseline, (b) Obstacle avoidance,
and (c) Navigating on uneven terrains. We observe that the Gaussian policies cannot achieve faster policy con-
vergence by simply increasing the standard deviation of the policy distribution. Instead, the Gaussian policies
demonstrate higher instability during training.

are implemented and trained with Pytorch using a Unity based realistic outdoor simulator, Clearpath
Husky robot model, and ROS Melodic platform. The Unity simulator includes diverse terrains and
elevations for training and testing. Further, we deploy HTRON on a real Clearpath Husky robot on
outdoor terrains.

4.1 Policy Learning Performance

We evaluate the performance of all algorithms through the policy convergence rate (see Figure 2).
In the goal-reaching baseline scenario, we observed that standard Gaussian policy-based algorithms
cannot achieve the highest reward return when we incorporate the sparse rewards. In contrast, our
heavy-tailed policy is able to obtain maximum rewards in a sample-efficient manner as shown in
Figure 2(a). This is primarily due to the improved exploratory behavior achieved by the heavy-
tailed policy in comparison to the standard Gaussian policies.

In Scenario 2 with static obstacles, our experiments showed that the random and sparse obstacle
penalties significantly affect policy convergence and stability. In particular, PPO converges to the
halfway point towards the goal with multiple collisions. However, our method successfully learns
policies to reach the goal within ∼ 40 episodes (see Figure 2(b)). This demonstrates the accelerated
learning capabilities provided by the heavy-tailed formulation compared to the traditional stochastic
policy gradient methods. In Scenario 3, we include rstable to penalize the actions that could navigate
the robot towards steep elevations. We observe that Reinforce and TRPO based policies struggle to
even reach the goal under this setting while PPO manages to reach the goal in only a few episodes
without proper convergence.

Further, we performed additional experiments on PPO, TRPO, and Reinforce algorithms by increas-
ing the standard deviation (σ = 0.5) of their Gaussian policy distribution(see Fig. 3). We observe
that even with increasing variance, our algorithm (HTRON) outperforms all the baselines including
PPO, TRPO, Reinforce, etc which demonstrates the superiority of our algorithm. Additionally, We
observe that the Gaussian policies cannot achieve faster or better policy convergence by simply in-
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Figure 4: Trajectories when navigating on different simulated outdoor terrains using HTRON, PPO[23],
TRPO[24], Reinforce[22], DWA[30] and Ego-graph[46, 47]: (a) Goal-reaching baseline, (b) Obstacle avoid-
ance environment with multiple trees, walls, and unreachable steep elevations. (c) Uneven terrain environment
with different levels of elevations and flat terrains. HTRON takes the shortest time steps to successfully reach the
goal while maintaining the lowest elevation cost on uneven terrains.

Figure 5: Navigating in real world using HTRON: (a) Goal-reaching scenario, (b) Obstacle avoidance. (c)
Uneven terrain navigation. We deploy our algorithm on Clearpath Husky robot demonstrating the ease of
transferring HTRON on real systems without significant performance degradation. The robot is equipped with a
VLP16 LiDAR, and a laptop with an Intel i9 CPU and an Nvidia RTX 2080 GPU.

creasing the standard deviation of the policy distribution. Instead, the Gaussian policies demonstrate
higher instability during training. Hence, we restricted to σ = 0.25 as presented in Fig. 2 during our
experiments.

4.2 Navigation Performance

We compare our method’s navigation performance qualitatively in Figure 4 and quantitatively in Ta-
ble 1. The quantitative evaluations of the navigation trajectories are based on the following metrics:

• Success Rate: The percentage of successful goal reaching attempts without any collisions or
flip-overs out of the total experiments.

• Avg. Trajectory Length: The average number of time steps taken by the robot to reach the goal.
• Elevation Cost: Norm of the elevation gradient experienced by the robot throughout a trajectory

(i.e. ||∇zr||, where zr is the vector that includes vertical motions of the robot’s along a trajectory).

We would like to note that in this work rather than proposing a competitive navigation algorithm,
the primary objective is to highlight the importance of heavy-tailed distributions for faster policy
convergence under practical sparse reward settings. However, in addition to comparing against the
DRL-based methods, we evaluate the navigation performance of two classical algorithms: Dynamic
Window Approach(DWA)[30] and Ego-graph[47]) under the same test conditions. We observe that
DWA and Ego-graph outperform all the DRL based methods in terms of success rate during goal
reaching and obstacle avoidance. However, HTRON demonstrates comparable or better perfor-
mance during uneven terrain navigation in terms of all the evaluation metrics.

We further notice that our method maintains the highest success rate in all three scenarios while
other DRL policies demonstrate a significantly low performance in successful goal-reaching. This
is primarily due to the poor convergence in Gaussian policies under sparse reward settings. Further,
HTRON reaches the goal faster using fewer time steps than the other three methods. This indicates
that our policy has optimized to collect more goal completion rewards by reaching the goal location
quickly. Policy convergence plots presented in Figure 2 further validates this argument.

Navigation scenarios 1 and 2 are common in both indoor and outdoor environments. Hence, we
further investigate the importance of our algorithm to handle uneven terrains encountered in complex
outdoor environments. We observe that our method is capable of avoiding steep elevations from the
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Scenario Algorithm Success Rate Avg. Trajectory Length Elevation Cost
(%)↑ (# time steps)↓ (m)↓

Goal Reaching Baseline TRPO[24] 32.28 236 0.764
PPO[23] 45.76 198 0.648

Reinforce[22] 36.91 207 0.655
DWA[30] 100 172 0.645

Ego-graph[47] 88.86 186 0.637
HTRON(Ours) 72.46 168 0.641

Obstacle Avoidance TRPO[24] 18.74 243 0.637
PPO[23] 37.56 224 0.652

Reinforce[22] 8.93 286 0.624
DWA[30] 100 218 0.645

Ego-graph[47] 58.79 238 0.642
HTRON(Ours) 62.21 209 0.639

Navigating on Uneven Terrains TRPO[24] 25.87 273 1.842
PPO[23] 37.46 264 1.674

Reinforce[22] 18.33 270 1.336
DWA[30] 27.38 268 1.943

Ego-graph[47] 65.89 198 1.316
HTRON(Ours) 71.87 244 1.257

Table 1: Navigation Comparisons: HTRON outperforms the other DRL methods in terms of success rate
and the average time to reach the goal. It also maintains the lowest elevation cost when navigating on uneven
terrains. Reinforce and TRPO obtain slightly lower elevation costs during goal-reaching and obstacle avoidance
scenarios by rotating around flat regions without reaching the actual goal.

changing roll and pitch angles before leading to robot flip-overs (see Figure 2(c) and 4(c) ). Hence,
trajectories generated by our algorithm significantly minimize the elevation cost experienced by the
robot while other methods navigate along steep terrains with higher elevation costs.

Finally, we integrate our algorithm into a real Clearpath Husky robot to demonstrate navigation
capabilities in real outdoor settings. We observe that our method can successfully perform the
navigation tasks we trained in the simulator. Sample navigation trajectories from three real outdoor
scenarios are presented in Figure 5.

5 Limitations and Analysis

We discuss the limitations of our method that we expect to address in the future. The robot cannot
identify the uneven terrains without experiencing the uneven region due to the orientation based
elevation sensing. A 3D LiDAR pointcloud based elevation map could be utilized in state space
to identify the elevation changes in the robot’s vicinity without explicitly experiencing elevation
changes from the orientation data. Moreover, the heavy-tailedness of the policy distribution could
lead to convergence instabilities. Especially, we observe considerable instability and non-converging
behavior when we try to use PPO and TRPO with heavy-tailed distributions. Hence, further inves-
tigations need to be conducted to develop robust and stable heavy-tailed policy models for higher
dimensional state spaces and more complex sparse reward settings.

6 Conclusion

In this work, we presented a novel approach for adapting heavy-tailed policy based control strategy
for efficient outdoor mobile robot navigation – HTRON. The proposed method is able to overcome
the major issue of sparse rewards inherent to DRL based approaches. We show that without hand-
crafted reward shaping methods we are able to accelerate learning capabilities and produce a reliable
navigation policy. We have assessed the performance of navigation policies in three different sce-
narios based on their complexity and corresponding objectives. All policies have been trained in
a ROS-based high-fidelity Unity simulator. We report a performance comparison of our method
against REINFORCE, PPO, and TRPO algorithms in terms of learning rate and navigation quality.
We also deployed HTRON on real Clearpath Husky in outdoor terrains. And finally, we report the
limitations, possible improvements, and future work that this approach can lead to robust outdoor
navigation.
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