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ABSTRACT

Factorizing a large matrix into small matrices is a popular strategy for model com-
pression. Singular value decomposition (SVD) plays a vital role in this compres-
sion strategy, approximating a learned matrix with fewer parameters. However,
SVD minimizes the squared error toward reconstructing the original matrix with-
out gauging the importance of the parameters, potentially giving a larger recon-
struction error for those who affect the task accuracy more. In other words, the
optimization objective of SVD is not aligned with the trained model’s task accu-
racy. We analyze this previously unexplored problem, make observations, and ad-
dress it by introducing Fisher information to weigh the importance of parameters
affecting the model prediction. This idea leads to our method: Fisher-Weighted
SVD (FWSVD). Although the factorized matrices from our approach do not re-
sult in smaller reconstruction errors, we find that our resulting task accuracy is
much closer to the original model’s performance. We perform analysis with the
transformer-based language models, showing our weighted SVD largely allevi-
ates the mismatched optimization objectives and can maintain model performance
with a higher compression rate. Our method can directly compress a task-specific
model while achieving better performance than other compact model strategies
requiring expensive model pre-training. Moreover, the evaluation of compress-
ing an already compact model shows our method can further reduce 9% to 30%
parameters with an insignificant impact on task accuracy.

1 INTRODUCTION

Language models built with transformers (Devlin et al., 2018) have attained extensive success in
natural language tasks such as language modeling (Radford et al., 2018), text classification (Wang
et al., 2018), question answering (Rajpurkar et al., 2016), and summarization (Liu, 2019). The
success is achieved by fine-tuning a big transformer model pre-trained with a large corpus. The target
task for fine-tuning may only focus on a restricted scenario such as sentiment analysis (Socher et al.,
2013) and multiple-choice question inference (Zellers et al., 2018). Having a big transformer model
is often overkill for the target task and prohibits the model deployment to resource-constrained
hardware. Therefore, language model compression raises immense interest.

The popular strategy creates a compact model from scratch (Jiao et al., 2019) or a subset of the big
model’s layers (Sun et al., 2019; Sanh et al., 2019), then pre-trains with a large corpus and distills
knowledge from the big model. This process is called generic pre-training (Wang et al., 2020b; Sun
et al., 2019; Sanh et al., 2019) and is necessary for a compact model to achieve good performance
on the target tasks. However, the generic pre-training could still cost considerable computational
resources. For example, it takes 384 NVIDIA V100 GPU hours to get the pre-trained TinyBERT
(Jiao et al., 2019) on the Wiki corpus dataset. So it may not be affordable for everyone who wants
to create a compact model. In contrast, another line of strategy, specifically low-rank factorization
(Golub & Reinsch, 1971; Noach & Goldberg, 2020), can potentially reduce a big model’s parameters
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without the generic pre-training. Since the factorization aims to approximate the learned model
parameters, the method has the nature of directly inheriting the knowledge of the big trained model.

However, approximating the learned weights with standard factorization often loses most of the
task performance. This work investigates this issue with the most popular strategy, which uses
singular value decomposition (SVD) to compress the learned model weights. With SVD, the learned
matrix is factorized into three matrices (U , S, V ). The portion associated with small singular values
will be truncated to produce a smaller version of factorized matrices. The multiplication of these
smaller matrices will approximate the original one with fewer total parameters to achieve the model
compression. In other words, SVD minimizes the reconstruction error with fewer parameters as its
objective. However, this objective does not necessarily correlate to the ultimate goal of keeping task
performance. Specifically, the SVD algorithm is biased to reconstruct the parameters associated
with large singular values. As a result, the parameters mainly reconstructed by the ranks with small
singular values will become the victim in the compression process. Are these victimized parameters
less critical to achieving a good task performance? We argue that this is not true, and the optimization
objective of SVD is not properly aligned with the target task objective. This paper is the first work
to provide an empirical analysis of this issue, proposing a novel weighted SVD to mitigate it.

Our weighted SVD addresses the above issue by assigning importance scores to the parameters. This
score has to correlate to how much the task performance is affected by the parameter change. The
Fisher information nicely fits into this purpose (Pascanu & Bengio, 2014). Besides, the calculation
of Fisher information is usually simplified to accumulating a parameter’s squared gradient over the
training dataset based on its task objective (e.g.cross-entropy, regression error, etc.), conveniently
providing the importance of each parameter in a model. Then we modify the optimization objective
of factorization (i.e., reconstruction error) by multiplying it with Fisher information, providing a
new objective that jointly considers matrix reconstruction error and the target task objective.

In summary, this work makes the following contributions: (1) we analyze the issue of mismatched
objectives between factorization and the target task for model compression; (2) we propose a novel
compression strategy with the SVD weighted by the Fisher information; (3) we perform extensive
analysis on varied language tasks, showing our Fisher-weighted SVD can compress an already com-
pact model, and it can achieve comparable compression rate and performance with methods that
require an expensive generic model pre-training.

2 BACKGROUND

2.1 MODEL COMPRESSION WITH LOW-RANK APPROXIMATION

Given a matrix W ∈ RN×M , the low-rank approximation is achieved via singular value decompo-
sition (SVD):

W ≈ USV T , (1)
where U ∈ RN×r, V ∈ RM×r, and k is the rank of matrix W . S is a diagonal matrix of non-
zero singular values diag(σ1, , ..., σr), where σ1 ≥ σ2 ≥ · · ·σr ≥ · · ·σk > 0. The low-rank
approximation with targeted rank r is obtained by setting zeros to σr+1, ..., σk.

Given input data X ∈ R1×N , a linear layer in neural networks is represented below with the weight
matrix W ∈ RN×M and bias b ∈ R1×M :

Z = XW + b ≈ (XUS)V T + b. (2)

Factorizing W with Equation (1) leads to Equation (2), which can be implemented with two smaller
linear layers: 1) The first layer has Nr parameters without bias. Its weight matrix is US. 2) The
second layer has Mr parameters plus bias. Its weight matrix and bias are V and b, correspondingly.
The total number of parameters for approximating W is Nr + Mr. In the case of full rank matrix
and M = N , the model size is reduced when r < 0.5N . For example, if we set r to reserve
the largest 30% singular values, the method will reduce about 40% of the parameters from W . In
general, the reduced size will be NM − (Nr +Mr).

Low rank approximation in neural networks has been extensively studied (Jaderberg et al., 2014;
Zhang et al., 2015; Denton et al., 2014). In more recent works, SVD is often applied to compress
the word embedding layer (Chen et al., 2018a; Acharya et al., 2019). Noach & Goldberg (2020)
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applies SVD to the transformer layers, but it does not investigate why SVD gives a very poor result
without fine-tuning. Our work explores this issue and provides a weighted version to address it.

2.2 FISHER INFORMATION

The Fisher information measures the amount of information that an observable dataset D carries
about a model parameter w. The computation of its exact form is generally intractable since it
requires marginalizing over the space of D, which includes data and its labels. Therefore, most of
the previous works estimate its empirical Fisher information:

Iw = E

[(
∂

∂w
log p(D|w)

)2
]
≈ 1

|D|

|D|∑
i=1

(
∂

∂w
L(di;w)

)2

= Îw. (3)

The estimated information Îw accumulates the squared gradients over the training data di ∈ D,
where L is the target task objective (e.g., cross-entropy for a classification task, or mean squared
error for a regression task). This approximation provides a straight intuition: the parameters that
change the task objective with a large absolute gradient are important to the target task; therefore,
those parameters should be reconstructed better than others in the compression process.

The above estimation of Fisher information computes only the first-order derivatives and has been
shown to measure the importance of parameters effectively. Kirkpatrick et al. (2017) and Hua et al.
(2021) use it to avoid the model catastrophic forgetting in a continual learning scenario. Liu et al.
(2021) and Molchanov et al. (2019) use it or a similar variant to help the structured model pruning.
However, no previous work has explored its potential in assisting SVD for model compression.

3 MODEL COMPRESSION WITH SVD MAY LOSE PERFORMANCE QUICKLY

The singular values in S implicitly give an importance score for a group of parameters. Since the
small singular values will be truncated first, those parameters affected by the truncation are expected
to be not important for the task performance. We verify the above assumption with a brute force
attack: truncate one singular value at a time, then reconstruct the matrix, put it into a model, evaluate
and get its performance. Ideally, we hope to see less performance drop when we truncate the smaller
singular values. This process can be written as having the reconstructed model weights W̄i with the
i-th singular value be truncated:

W̄i = u1σ1v
T
1 + ...+ ui−1σi−1v

T
i−1 + ui+1σi+1v

T
i+1 + ...+ ukσkv

T
k , (4)

where ui and vi are the i-th column in U and V , correspondingly.

Applying this brute force attack to test a deep neural network is not straightforward since a model
can have hundreds of linear layers. Therefore, we truncate a group of singular values together instead
of only one. Specifically, we split the singular values of a layer into 10 groups sorted by their values.
The 1st group has the top 10% singular values, while the 10th group contains the smallest 10%
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Figure 1: The grouped truncation and its performance. The truncation of the 10th group, which has
the smallest singular values resulting from SVD, is expected to have a minor performance impact
(i.e., follow the ideal trend of red dashed line), but this may not be true in actual cases (blue bar).
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Figure 2: The dilemma of vanilla SVD. Some parameters (the overlap of meshed orange and green)
that significantly impact the task performance may not be reconstructed well by SVD because their
associated singular values are small and truncated.

W ≈ × ×U*

S* V*T

× W’=

Figure 3: The schematic effect of our Fisher-Weighted SVD (FWSVD). Î is a diagonal matrix
containing estimated Fisher information of parameters. By involving Fisher information to weigh
the importance, our method reduces the overlap between meshed orange and green, making less
performance drop after truncation.

values. When we truncate a specific group, e.g., 5th group, the 5th group of all the layers in a model
are truncated together. In other words, we observe the summed impact in a rank group. This results
in a smoothed trend for the observation.

Figure 1 plots the result of truncating the 10 groups separately in a standard 12-layer BERT model
(Devlin et al., 2018) trained for STS-B task (Cer et al., 2017). The red dashed line shows an ideal
trend which has a smaller performance drop with the tail groups. The blue bars show the actual
performance drop. The 10th group surprisingly caused a performance drop as large as the 2nd
group. This means the parameters associated with the 10th group are as important as the 2nd group.
However, the magnitude of singular value does not reflect this importance, causing a model to lose
its performance quickly even when truncating only a small portion.

4 FISHER-WEIGHTED LOW-RANK APPROXIMATION

The issue in Section 3 has an intuitive cause: the optimization objective of SVD does not consider
each parameter’s impact on the task performance. This issue is illustrated in Figure 2, and we address
it by introducing the Fisher information into SVD’s optimization objective, described as below.

In the generic low-rank approximation, its objective minimizes ||W − AB||2. SVD can solve this
problem efficiently by having A = US and B = V T . Since we can obtain the importance of each
element Wij in W , we weigh the individual reconstruction error by multiplying with the estimated
Fisher information ÎWij

:

min
A,B

∑
i,j

ÎWij
(Wij − (AB)ij)

2. (5)

In general, weighted SVD does not have a closed-form solution (Srebro & Jaakkola, 2003) when
each element has its weight. To make our method easy to deploy and analyze, we propose a simpli-
fication by making the same row of the W matrix to share the same importance. The importance for
the row i is defined to be the summation of the row, i.e., ÎWi

=
∑
j

ÎWij
.

Define the diagonal matrix Î = diag(

√
ÎW1

, ...,

√
ÎWN

), then the optimization problem of Equation
(5) can be written as:

min
A,B
||ÎW − ÎAB||2. (6)
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Equation 6 can be solved by the standard SVD on ÎW . We use the notation svd(ÎW ) =

(U∗, S∗, V ∗), then the solution of Equation (6) will be A = Î−1U∗S∗, and B = V ∗T . In other
words, the solution is the result of removing the information Î from the factorized matrices. Figure
3 illustrates this process and its schematic effect of reducing the overlap between important param-
eters and poorly reconstructed parameters. We will measure this overlap with the performance drop
analysis of Section 3. Lastly, to compress W , we will have A = Î−1U∗r S

∗
r , and B = V ∗Tr , where r

denotes the truncated U∗, S∗, and V ∗ with reserving only r ranks.

We call the above method FWSVD in this paper. One thing to highlight is that since we share the
same optimization process with the standard SVD, any advantage we observed will be the result of
a direct contribution from the Î in Equation (6).

5 EXPERIMENTS

5.1 THE PATHS TO A COMPRESSED LANGUAGE MODEL

This section describes how we obtain a compressed model under the popular pre-training schemes
of language models. Figure 4 illustrates three paths that we examined for creating compressed
language models. All the paths start from retraining a large transformer-based model pre-trained
with a large language corpus in a self-supervised way, called the generic pre-training (L→ Lg).

The path-1 (S → Sg → St) is a popular scheme that creates a small model first, then performs
the generic distillation for the small model to learn the knowledge of the large model. The resulting
small generic model Sg will be fine-tuned with the target task dataset to obtain the task-specific
model St. The representative works of path-1 include DistilBERT (Sanh et al., 2019), TinyBERT
(Jiao et al., 2019), MobileBERT (Sun et al., 2020), and MiniLM v1/v2 (Wang et al., 2020b;a). Some
previous methods may include task-specific distillation (Lt → St) and data augmentation (Jiao
et al., 2019), but we exclude those from the scheme (and all the experiments in this paper) to make a
fair and clean comparison across methods. The task-specific distillation and data augmentation are
orthogonal to all the methods and can be jointly applied with low-rank factorization to make further
improvements.

The path-2 (Lg → Lt → Ltf ) avoids the costly generic pre-training, directly compresses the task-
specific model with factorization and task-specific fine-tuning (optional). Our analysis for the mis-
matched objectives phenomenon is based on this path. We also compare the models from path-1 and
path-2, showing that path-2 can generate a model with a comparable performance under the same
compression rate. Although path-2 requires much less training than path-1 (no generic pre-training
for the compressed model).

The path-3 (St → Stf ) is a challenging setting that aims to compress an already compact model.
This setting examines whether FWSVD can further improve the compression rate on models ob-
tained by path-1. Our experiments show the answer is yes.

With the three compression paths, we make four examinations as follows. Section 5.3: the compar-
ison of path-1 versus path-2; Section 5.4: the compression of an already compact model (path-3);
Section 5.5: the detailed comparison between FWSVD and vanilla SVD; Section 5.5.1: the empiri-
cal evidence for the schematic effects illustrated in Figures 2 and 3.

5.2 EXPERIMENT SETUP

5.2.1 LANGUAGE TASKS AND DATASETS

We evaluate the methods of all three paths in Figure 4 on the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2019) and a token classification task. We include 2 single
sentence tasks: CoLA (Warstadt et al., 2018) measured in Matthew’s correlation, SST2 (Socher
et al., 2013) measured in classification accuracy; 3 sentence similarity tasks: MRPC (Dolan et al.,
2005) measured in F-1 score, STS-B (Cer et al., 2017) measured in Pearson-Spearman correlation,
QQP (Chen et al., 2018b) measured in F-1 score; and 3 natural language inference tasks: MNLI
(Williams et al., 2018) measured in classification accuracy with the average of the matched and mis-
matched subsets, QNLI (Rajpurkar et al., 2016) measured in accuracy. The token classification task
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Figure 4: The three paths to create compressed language models are examined in this paper. L/S
denote the initial models, Lg/Sg are models after generic pre-training, Lt/St correspond to task-
specific models, and Ltf/Stf are factorized task-specific models. Detailed elaborations are in Sec-
tions 5.1 nad 5.2.2

Table 1: Results of CoNLL and GLUE benchmark. G-Avg means the average of GLUE tasks,
A-Avg denotes the average of all tasks, including CoNLL. Our FWSVD+fine-tuning is the best
performer in terms of both average scores, without the expensive generic pre-training required by
path-1 models (e.g., DistillBERT costs 720 V100 GPU hours for training).

Model #Param CoNLL CoLA MNLI MRPC QNLI QQP SST-2 STS-B G-Avg A-Avg

Original BERTbase 109.5M 94.1 56.2 84.7 87.4 91.3 87.8 93.0 88.5 84.1 85.4

Path-1 DistilBERT 67.0M 93.2 49.8 82.2 88.7 89.3 86.7 90.4 86.1 81.9 83.3
MiniLMv2 67.0M 92.2 43.3 84.0 89.1 90.6 86.7 91.4 88.1 81.9 83.2

Path-2

BERT-PKD 67.0M − 45.5 81.3 85.7 88.4 88.4 91.3 86.2 81.0 −
BERT+SVD 66.5M 12.0 2.7 35.6 61.4 37.2 60.0 76.7 26.8 42.9 39.0

+fine-tuning 66.5M 92.4 40.5 82.8 84.1 89.6 87.3 90.9 85.7 80.1 81.6
BERT+FWSVD 66.5M 49.6 13.5 52.8 81.2 52.2 65.7 82.1 68.6 59.4 58.2

+fine-tuning 66.5M 93.2 49.4 83.0 88.0 89.5 87.6 91.2 87.0 82.2 83.6

we used is the named entity recognition (NER) on the CoNLL-2003 dataset (Sang & De Meulder,
2003). In summary, our evaluation includes 8 different natural language tasks.

5.2.2 IMPLEMENTATION DETAILS AND THE BASELINE MODELS

First of all, we use the same training configuration for all the experiments in this paper and avoid
any hyperparameter screening to ensure a fair comparison.

For the SOTA models on path-1 (MiniLMv2 and DistilBERT), we use the pre-trained generic com-
pact models (Sg) provided by the original authors as the starting point, then directly fine-tune them
with 3 epochs on the target task training data. The fine-tuning is optimized by Adam with learning
rate of 2× 10−5 and batch size of 32 on one GPU.

For the methods on path-2 (FWSVD and SVD), we start from the pre-trained generic large model
(Lg), which is the standard 12-layer BERT model (Devlin et al., 2018). Then we fine-tune it with
the training setting exactly the same as we used for the path-1 models to get the large task-specific
models (Lt). The last step is applying the low-rank factorization (SVD or FWSVD) followed by
another fine-tuning with the same training setting described above. The performance with and with-
out fine-tuning will be both reported. We also note that we compress only the linear layers in the
transformer blocks by reserving only 33% of the ranks in this work. The setup intentionally makes
a fair comparison to the path-1 methods. In other words, we do not compress the non-transformer
modules such as the token embedding. Previous works (Chen et al., 2018a) have shown significant
success in using low-rank factorization to compress the embedding layer, which occupies 23.4M
(21.3%) parameters in the standard BERT model. Therefore, the results we reported for the path-
2 methods still have room for improvement by applying our method to non-transformer modules.
Lastly, we add BERT-PKD (Sun et al., 2019) based on its reproduced results (Chen et al., 2018a) for
comparison. BERT-PKD uses knowledge distillation instead of factorization in the path-2 process.
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Table 2: Results of compressing an already compact model. The original task-specific models are
directly downloaded from Huggingface pretrained models. Our FWSVD successfully reduces more
parameters from all the compact models, while achieving the same level of accuracy. (ft: fine-tuning)

Original Compact Model (St) Path-3 Compression (St → Stf )

Model-Task #Param. Perf. #Param. SVD SVD+ft. FWSVD FWSVD+ft.

TinyBERT-STSB 14.4M (7.8x) 87.5 11.8M (-18%) 73.8 86.1 84.9 88.0
MiniLM-CoNLL 22.7M (4.8x) 88.5 18.4M (-19%) 12.5 88.0 70.1 88.6
MobileBERT-MNLI 24.6M (4.4x) 83.6 22.5M (-9%) 36.4 81.9 51.1 82.5
DistillBERT-MRPC 66.9M (1.6x) 88.7 46.7M (-30%) 0.0 83.4 67.9 89.0

Table 3: Results of compressing an already compact model. This table compresses ALBERT (Lan
et al., 2019), which uses the parameter-sharing strategy to create the compact model. FWSVD pre-
serves the performance significantly better than SVD in all 8 tasks, indicating its excellent compati-
bility in combining the parameter-sharing strategy. This experiment examines the path-3 process.

Model #Param CoNLL CoLA MNLI MRPC QNLI QQP SST-2 STS-B G-Avg A-Avg

BERTbase 109.5M 94.1 56.2 84.7 87.4 91.3 87.8 93.0 88.5 84.1 85.4

ALBERTlarge 17.7M 93.5 50.9 84.3 89.9 91.7 86.7 90.7 90.1 83.5 84.7

w SVD 15.2M (-14%) 0.3 0.0 41.1 0.0 54.2 5.4 70.2 9.6 25.8 22.6
w SVD+ft. 15.2M (-14%) 92.2 46.4 83.4 81.8 49.5 86.9 89.8 86.8 74.9 77.1
w FWSVD 15.2M (-14%) 22.8 0.0 65.2 50.0 78.2 72.6 81.4 76.4 60.5 55.8
w FWSVD+ft. 15.2M (-14%) 93.0 50.6 83.3 90.4 90.6 87.0 90.6 89.0 83.1 84.3

ALBERTbase 11.7M 92.1 43.0 82.3 88.6 90.6 86.6 89.7 89.1 81.4 82.7

w SVD 9.6M (-18%) 3.5 0.0 32.0 0.0 55.1 53.4 52.4 9.6 28.9 25.7
w SVD+ft. 9.6M (-18%) 89.8 28.8 81.3 81.2 88.3 85.5 88.2 75.0 75.5 77.3
w FWSVD 9.6M (-18%) 16.9 6.9 55.6 47.7 69.1 54.7 72.9 54.0 51.6 47.2
w FWSVD+ft. 9.6M (-18%) 91.2 42.2 81.8 86.9 88.9 86.2 88.7 87.0 80.2 81.6

For the path-3 experiments, we use the pre-trained task-specific compact models (St) as the start-
ing point. These pre-trained models have a much smaller size (TinyBERT-STSB, MiniLM-CoNLL,
MobileBERT-MNLI) or a better performance (DistilBERT-MRPC) than the models we used in the
path-1 and path-2, indicating they may contain denser knowledge in their compact models. There-
fore, compressing these models introduces a significant challenge. In order to have better coverage
for all tasks, we additionally use ALBERTlarge and ALBERTbase (Lan et al., 2019) as the already
compact models to generate all 8 task-specific models (Sg → St). Then follow path-3 to compress
the compact models. All the training involved here has the same setting as described in path-1.

Lastly, our implementation and experiments are built on top of the popular HuggingFace Transform-
ers library (Wolf et al., 2020). All other unspecified training settings use the default configuration
of the library. Since no hyperparameter tuning is involved in our experiments, we directly report the
results on the dev set of all the datasets, making the numbers convenient to compare and verify.

5.3 PATH-1 VERSUS PATH-2

Table 1 reports the results of the GLUE benchmark and a NER task. Our FWSVD with fine-tuning
achieves an average score of 83.6, beating all other path-1 and path-2 methods. This is a non-trivial
accomplishment since FWSVD with fine-tuning does not need the expensive generic pre-training.
Furthermore, FWSVD has consistent performance retention for all the tasks; it contrasts the path-1
methods, which may have a more considerable variance. For example, DistilBERT is good at CoLA
but poor at STS-B; oppositely, MiniLMv2 is a strong performer at STS-B but is weak with CoLA.
In contrast, FWSVD+fine-tuning does not show an obvious shortcoming.
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Figure 5: FWSVD versus SVD by varying the ratio of reserved ranks. The model with a rank ratio
1.0 indicates the full-rank reconstruction with the same accuracy as the original model (i.e., the Lt

in Figure 4). Note that all the models here do not have fine-tuning after factorization.

5.4 COMPRESSING AN ALREADY COMPACT MODEL

The setting of path-3 targets to further compress the lightweight models. This is challenging as
the compact models are already 1.6x ∼ 7.8x smaller than the original BERT. The results in Table
2 demonstrate the effectiveness of FWSVD on further reducing the number of parameters. The
original SVD is almost useless without fine-tuning, while our FWSVD can still retain a significant
part of the performance. For example, SVD ends with a zero accuracy when compressing Dis-
tillBERT, while our FWSVD keeps a score of 67.9 under the same setting. When combined with
fine-tuning, FWSVD can cut off 30% redundancy for DistillBERT. Even for the highly compact
model TinyBERT (only 14.4M parameters), FWSVD+fine-tuning still successfully reduces 18%
of the parameters without any performance loss. More interestingly, the TinyBERT, MiniLM, and
DistillBERT-MRPC compressed by FWSVD+fine-tuning exceed the original performance slightly.
The result suggests FWSVD+fine-tuning might introduce a small regularization effect to improve
the model’s generalizability.

Lastly, Table 3 examines the compatibility between SVD/FWSVD and the parameter-sharing strat-
egy of the ALBERT model. The average score of ALBERT-large is 84.7%. The performance of
FWSVD (84.3%) is far better than that of SVD (77.1%) when both reducing 14% parameters, sug-
gesting FWSVD is more robust than SVD in combining the parameter-sharing strategy.

5.5 FWSVD VERSUS SVD

In Table 1, FWSVD consistently produces much better results than SVD on all tasks. On average,
FWSVD without fine-tuning obtains an absolute improvement of 17.5% over SVD. To highlight,
FWSVD without fine-tuning can maintain a significant portion of performance in challenging tasks
such as CoNLL and STS-B, where SVD completely fails. With fine-tuning, FWSVD provides better
initialization for fine-tuning and consistently achieves a better or comparable performance.

Figure 5 plots the performance trend with respect to the change of targeted rank ratio, where the
full-rank reconstruction corresponds to the results at rank ratio 1.0. These results demonstrate the
apparent advantage of FWSVD over standard SVD. First, at each rank ratio, FWSVD shows signifi-
cant improvements over SVD. Second, the performance of FWSVD keeps growing with the increase
of rank ratio, while SVD shows fluctuations in its trend. Specifically, two tasks (COLA and STS-B)
in Figure 5 show that SVD has abrupt performance drops at some points. On the STS-B task, the
performance of SVD at rank ratio 0.3 is significantly lower than having a smaller rank ratio of 0.2.
In contrast, FWSVD shows a much stable trend of increasing performance along with the rank ratio.

5.5.1 REVISIT THE BRUTE FORCE ATTACK

This section applies the same analysis of Section 3, but adds FWSVD to see if it matches the task’s
objective better. In Figure 6a, the red bars are significantly lower than the blue bars, especially
for the tail groups, which will be truncated first. We specifically highlight group-10 in 6a, which
has the smallest 10% singular values. The height of the blue bar is equivalent to the size of the
overlapped (green and meshed orange) region in Figures 2. Similarly, its red bar (close to zero) is
equivalent to the overlapped region in Figure 3. In other words, the illustrations of Figures 2 and
3 are strongly supported by the results here. Although FWSVD shows a smaller performance drop
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Figure 6: Results of grouped rank truncation on STS-B task. In (a), FWSVD shows a consis-
tent trend of having less performance drop with the small singular value groups (group 10 has the
smallest singular values), mitigating the issue of Figure 1. In (b), FWSVD results in a larger recon-
struction error with almost all truncated groups, although FWSVD retains the model accuracy better
than SVD.

shown by Figure 6a, it has a more significant reconstruction error than SVD in many cases (see
Figure 6b), especially with the rank groups that will be truncated first (e.g., groups 5 to 10). In
other words, FWSVD’s objective (Equation 6) aligns with the task objective better by sacrificing the
reconstruction error.

6 LIMITATION AND FUTURE WORK

FWSVD has two limitations. First, FWSVD relies on a given task objective and a target task training
dataset to compute the importance matrix; thus, it is more proper to compress a task-specific model
(e.g., Lt or St) than the pre-trained generic model (e.g., Lg). In contrast, the vanilla SVD can apply
to any case. In other words, FWSVD trades the method’s applicability for the target task perfor-
mance. Second, FWSVD only uses a simplified importance matrix that gives the same importance
for the parameters on the same row of matrix W . Although this strategy is simple and effective,
it does not fully utilize the Fisher information. Therefore, a future improvement can be made by
directly seeking an element-wise factorization solution for Equation (5).

7 CONCLUSION

In this work, we investigate why using standard low-rank factorization (SVD) to compress the model
may quickly lose most of its performance, pointing out the issue of the mismatched optimization
objectives between the low-rank approximation and the target task. We provide empirical evidence
and observations for the issue, and propose a new strategy, FWSVD, to alleviate it. Our FWSVD
uses the estimated Fisher information to weigh the importance of parameters for the factorization
and achieve significant success in compressing an already compact model. Furthermore, FWSVD
reuses the existing SVD solver and can still implement its factorized matrices with linear layers;
therefore, it is simple to implement and deploy. We believe FWSVD could be one of the most
easy-to-use methods with good performance for language model compression.
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Figure 7: The grouped rank truncation experiment. The experiments are the same with Figure 6a,
but we use ALBERTbase (11.7M parameters) model for this figure.
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Figure 8: The grouped rank truncation experiment. The experiments are the same with Figure 6a,
but this figure includes all 8 language tasks with BERTbase (109.5M parameters) model. FWSVD
has a smaller performance drop with those groups truncated first (e.g., group 5 to 10) in all the cases.
SVD usually shows a significant drop with group 10, which has the smallest singular values and is
truncated first. FWSVD has no such issue in all cases.

13



Published as a conference paper at ICLR 2022

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

5.00%

10.00%

15.00%

20.00%

3 4 5 6 7 8 9 10

SVD FWSVD

CoLA (BERT base)

(a)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

5.00%

10.00%

15.00%

3 4 5 6 7 8 9 10

SVD FWSVD

MNLI (BERT base)

(b)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

5.00%

10.00%

15.00%

20.00%

3 4 5 6 7 8 9 10

SVD FWSVD

QNLI (BERT base)

(c)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

3 4 5 6 7 8 9 10

SVD WSVD

STS-B (BERT base)

(d)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

10.00%

20.00%

30.00%

40.00%

3 4 5 6 7 8 9 10

SVD FWSVD

MRPC (BERT base)

(e)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

2.00%

4.00%

6.00%

3 4 5 6 7 8 9 10

SVD FWSVD

NER-CoNLL2003 (BERT base)

(f)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

2.50%

5.00%

7.50%

10.00%

3 4 5 6 7 8 9 10

SVD FWSVD

QQP (BERT base)

(g)

Rank Group

P
er

fo
rm

an
ce

 D
ro

p

0.00%

1.00%

2.00%

3.00%

4.00%

3 4 5 6 7 8 9 10

SVD FWSVD

SST-2 (BERT base)

(h)

Figure 9: This figure shows only groups 3 to 10 of Figure 8 to better visualize the groups of a smaller
performance drop.
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Table 4: The raw values for Figure 6a. We additionally include the averaged singular values for
each truncated group. The singular values from FWSVD are multiplied with Fisher information;
thus their scales are different from SVD.

Truncated group 1 2 3 4 5 6 7 8 9 10

SVD performance drop 25.4% 6.7% 2.8% 2.2% 1.1% 0.9% 0.7% 0.4% 0.1% 4.9%
FWSVD performance drop 24.1% 6.1% 2.7% 1.5% 0.8% 0.6% 0.2% 0.3% 0.2% 0.2%

SVD average singular value 2.674 1.933 1.622 1.381 1.176 0.994 0.828 0.671 0.519 0.353
FWSVD average singular value 1093 631 510 424 355 298 247 201 157 110
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