
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE IN-CONVERSATION TEAM BUILDING
FOR LANGUAGE MODEL AGENTS

Anonymous authors
Paper under double-blind review

Task Instruction Task-specific
Blueprint

Static Build

LLM Agent Team

Fixed Building process

Adaptive Build

Working LLM Agent Team

Team Memory

Selected Team

SubtaskReflector

Builder Agent

Instruct

Build or Call

Chat

Task Instruction User (Proxy)

Retrieval Selection GenerationRetrieval Selection GenerationRetrieval Selection Generation

Figure 1: Two team-building paradigms for LLM agents. The "Static Build" paradigm (Chen et al.,
2023; Suzgun & Kalai, 2024a; Chen et al., 2024) statically builds a team according to task instructions
and a building blueprint through a fixed process. Our "Adaptive Build" paradigm uses an adaptive
builder agent to form different teams during the task-solving procedure without extra instructions.

ABSTRACT

Leveraging multiple large language model (LLM) agents has shown to be a promis-
ing approach for tackling complex tasks, while the effective design of multiple
agents for a particular application remains an art. It is thus intriguing to answer
a critical question: Given a task, how can we build a team of LLM agents to
solve it effectively? Our new adaptive team-building paradigm offers a flexible
solution, realized through a novel agent design named Captain Agent. It dynami-
cally forms and manages teams for each step of a task-solving process, utilizing
nested group conversations and reflection to ensure diverse expertise and prevent
stereotypical outputs, allowing for a flexible yet structured approach to problem-
solving. A comprehensive evaluation across six real-world scenarios demonstrates
that Captain Agent significantly outperforms existing multi-agent methods with
21.94% improvement in average accuracy, providing outstanding performance
without requiring task-specific prompt engineering. Our exploration of different
backbone LLM and cost analysis further shows that Captain Agent can improve
the conversation quality of weak LLM and achieve competitive performance with
extremely low cost, which illuminates the application of multi-agent systems.

1 INTRODUCTION
The success of large language model (LLM) agents (Yao et al., 2022; Yang et al., 2023a; Furuta
et al., 2024; Yang et al., 2024a; Hong et al., 2024) with its outstanding in-context learning (Dong

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2022; Brown et al., 2020; Yang et al., 2023b; Dai et al., 2023; Li et al., 2023b), planning (Sun
et al., 2024; Xie et al., 2024; Liu et al., 2023a; Valmeekam et al., 2022; Wei et al., 2022a; Yuan
et al., 2023b; Zheng et al., 2024), tool-using (Qin et al., 2023a;b; Schick et al., 2024; Cai et al.,
2023; Yuan et al., 2023a; Paranjape et al., 2023; Zhang et al., 2024b; Huang et al., 2023; Ma et al.,
2024), and conversation (Fernandes et al., 2023; Wang et al., 2023c; Yang et al., 2024b) capabilities
allow us to relate human’s team building and collaboration abilities to the multiple language model
agents (multi-agent) system (Wang et al., 2023a; Xi et al., 2023; Wu et al., 2023; Suzgun & Kalai,
2024a; Hong et al., 2023; Zhang et al., 2024b; 2023a; Valmeekam et al., 2023; Wang et al., 2024;
Saha et al., 2023; Liang et al., 2023; Du et al., 2023; Chen et al., 2024). Humans have developed
abilities that enable us to form teams and effectively solve problems. These abilities are rooted
in communication, social cognition, problem-solving and decision-making, social learning and
imitation, and shared intentionality (Elimari & Lafargue, 2020; Confer et al., 2010). The interplay of
the above abilities allows people to organize different teams for problems to ensure that tasks are
completed successfully, which brings us to a critical question in a multi-agent system:

Given a task, how can we build a team of LLM agents to solve it effectively?

A straightforward paradigm would be to build a static agent team beforehand based on the task
instruction and let them solve the task collaboratively (Chen et al., 2023; Wu et al., 2023). However,
this static build method necessitates maintaining a team with all the required expertise for the whole
task cycle. As the complexity of the task increases, the total number of team members may grow
significantly. Always proceeding with such a large team makes it challenging to manage the team
members effectively and efficiently. Furthermore, static teams may lack the adaptability to respond
to dynamic changes in task requirements or unforeseen challenges. Imagine a prehistoric human
tribe: was everyone involved in every task? The answer is unlikely affirmative. Those responsible
for hunting may not participate in medical care and those responsible for cooking may not involve
themselves in management. The major task, survival, was ensured by each individual group sticking
to their roles and subtasks. In fact, when human organizations handle a complex task, we tend to
form multiple teams for each subtask at different stages of the task-solving procedure, which still
guarantees a diverse set of expertise is leveraged demanded by the task complexity (Mao et al., 2016).

Inspired by how humans assemble teams for a complex task, we introduce a new multi-agent
team-building paradigm: adaptive build. This paradigm facilitates the flexible assembly of agents
with specific skills and knowledge as demands evolve in the process of task-solving. To realize
this paradigm, we propose a new adaptive builder agent, Captain Agent, to build, manage, and
maintain agent teams for each problem-solving step in the conversation. Captain Agent has two core
components: (1) adaptive multi-agent team building and (2) nested group conversation and reflection.
Captain Agent will communicate with a User Proxy, who can provide the general task instructions at
the beginning. When assigned a task, Captain Agent begins by formulating a strategic plan. This plan
involves a cyclical process that continues until the task is successfully completed. In the first phase of
the cycle, Captain Agent identifies a specific subtask, outlines the necessary roles, and assembles a
team of agents equipped with the appropriate tools. In the subsequent phase, this team engages in
a dialogue with a versatile tool to address the subtask. Upon completion, a reflector LLM reviews
the process and provides Captain Agent with a detailed reflection report. Based on this feedback,
Captain Agent either adjusts the team composition or the subtask instructions and repeats the cycle
or concludes the task and presents the final outcomes.

We evaluate state-of-the-art multi-agent approaches for complex task solving and our adaptive build
approach with Captain Agent on six real-world scenarios, including many mathematics problem-
solving (Hendrycks et al., 2021b), data analysis (Hu et al., 2024b), programming (Le et al., 2020),
scientific problem-solving (Wang et al., 2023b) (Physics and Chemistry), and world-information
retrieval (Mialon et al., 2024). Our experimental results demonstrated the outstanding ability of
Captain Agent in various scenarios without heavy prompt engineering for each scenario but only
the basic instructions. Captain Agent achieves distinguishing results compared to other single and
multi-agent methods and frameworks when using the same prompt for each task, with an average of
21.94% improvement on average accuracy. Ablation studies on static and adaptive building paradigms
show that the adaptive team outperforms the static team in four of five scenarios (and matches in one
scenario), exhibiting the superiority of the adaptive build paradigm across different scenarios. We
also demonstrated that handcraft agents and handcraft tools contribute equally to the final results. We
further explore the influence of different backbone LLM for both Captain Agent and nested group

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Captain Agent

Chat

retrieved_agents

generated_agents

selected_agentsAgent & Tool

Retrieval

retrieved_agents:

role_1 : [agent_1_1, ...]

role_2: [agent_2_1,...]

role_3: [agent_3_1,...]

...

Agent
Selection

selected_agents:

role_1 : agent_1_3

role_2: agent_2_1

role_3:
...

None
 Agent 
Generation

Agents

agents:

agent_1_3

agent_2_1

 generated_agent

...

role_1 :
role_2:
role_3:

Your task

Conclusion and Reason

Need double-check?

Briefly summarize the conversation history. If you
found in the conversation,
point it out and mark the "Need double-check" as " ".

...

[or]

contradictions or issues
Yes

Yes

{chat_history}

No

Agent_1 Agent_2

Agent_3 Agent_4

Conversation Reflection

Adaptive Multi-agent Team Building

Nested Group Conversation & Reflection

Multi-agent Conversation

Please solve the following problem (if everything is
done, reply me with):
TERMINATE
On the BBC Earth Youtube video of the Top 5 Silliest
Animal Moments, what species of bird is featured?

User Proxy

Adaptive Auto-building

Multi-agent Systems

Multi-agent Conversation

& Reflection

Meta-agent output:

The species of bird
featured in the BBC
Earth YouTube video
of the Top 5 Silliest
Animal Moments is
the

.

Rockhopper

penguin

TERMINATE

 Agents,

Mission setup

Feedback

Memorize

Rebuild

Result Reflector

LLM

Figure 2: The overall workflow of Captain Agent is: given a user instruction, Captain Agent will plan
the task, build an agent team from retrieval and generation, and let the agents solve a decomposed,
planned task collaboratively in a group chat. A reflection LLM will review and report the conversation
history to Captain Agent. Captain Agent will then conclude or continue solving the problem with a
modified team and instructions.

chat members or only for nested group chat members. We observe that: (1) Captain Agent with a
strong backbone can improve the quality of nested group chat in which the members equipped with
weak backbone, and (2) a small model with distinguishable instruction following ability can achieve
outstanding performance with low cost.

2 ADAPTIVE IN-CONVERSATION TEAM BUILDING

The proposed Captain Agent contains two key components: (1) adaptive multi-agent team-building,
which involves agent and tool retrieval, selection, and generation, and (2) nested group conversation
with a reflection mechanism within the multi-agent system.

2.1 OVERVIEW

The overall workflow of Captain Agent is illustrated in Figure 2. Given a task, Captain Agent is
prompted to derive a plan before task execution. According to the plan, Captain Agent will repeat
the following two steps until it thinks the task is done and output the results: (Step 1) Captain Agent
will first identify a subtask instructed by our prompt, list several roles needed for this subtask, and
then create a team of agents accordingly by retrieval, selection, and generation. Each of these will
be equipped with predefined tools retrieved from the tool library (Section 2.2); (Step 2) this team
of agents will attempt to solve the subtask via conversation with the free-form tool using. Once it’s
done, a reflector LLM will provide Captain Agent with a reflection report for it to decide whether to
adjust the team or subtask instruction or to terminate and output the results (Section 2.3).

2.2 ADAPTIVE MULTI-AGENT TEAM BUILDING

After identifying a subtask in Step 1 following a corresponding prompt, Captain Agent will list
several roles for the subtask. These roles will then pass into a retrieval, selection, and generation
process guided by Retrieval-Augmented Generation (RAG) (Lewis et al., 2020; Gao et al., 2023;
Ram et al., 2023). Created agents will be equipped with a well-designed profile (system message1)
and high-quality tools. We illustrated the whole process in Figure 3.

Agent and tool retrieval. Captain Agent will prompt n required roles {ri|i ∈ 1, · · · , n} with detailed
descriptions, including required skills and a possible role name. We use "expert" in Captain Agent
prompt to make this process natural. We then retrieve top-k1 agents and top-k2 tools according to the
sentence embedding similarity between the role’s description and the agent/tool description recorded

1System message is used to define an agent’s persona and task-specific instructions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

==> Looking for suitable agents in the library...

top_k1
top_k2

retrieved_agents agents
retrieved_tools tools

= =
= =

+= . (text= ,)

+= library. (text= ,)

...

()

[]

[]

agents
tools

retrieved_agents

library query
query

remove_duplicate

[roles]
[roles]

" ": "An expert in …",

" ": ["gpt-4-0125-preview"],

" ": "QuantumMechanics_Expert",

" ": "## Role\n …"

description
model
name
system_message

 " ": ,

 " ": ,

 " ": " ",

 ...

role_1_description
role_2_description
role_3_description None

agent_1_3
agent_2_1

retrieved_agents

bind

Required roles
gen_agents

selected_agents

embedding

similarity

retrieved_agents:

role_1:[agent_1_1,...]

role_2:[agent_2_1,...]

role_3:[agent_3_1,...]

Agent & Tool

Retrieval

Roles

Retrieved

Agents

Agent
Selection

selected_agents:

role_1: agent_1_3

role_2: agent_2_1

role_3: None

Agent Selection

Retrieved

Agents

Selected

Agents

Sentence

Transformer

Required roles:

==> Role 1 desc.

==> Role 2 desc.

...

Captain
Agent

Agent 
Generation

Agents

agents:

agent_1_3

agent_2_1

 gen_agent

role_1:
role_2:
role_3:

Your task

Role set

Expert set

Answer format (JSON)

...

Match roles in the role set to each
expert in expert set. An expert can be
matched with multiple roles.

{roles}

{retrieved_agents}

Agent
Selector

Your task

Required role description

Task requirement

Suggest an expert with the name
according to the user required
role description.

- Expert's name should follow the
format: [skill]_Expert

- Only reply the name of the
expert. For example: Python_Expert

{role_description}

Generate Participant Agents
Your task

Required role description

Expert name

Answer template

- According to the user requirement and
expert name, write a high-quality
description for the expert by filling the
given template.

- Ensure that your description are clear
and unambiguous, and include all necessary
information.

Your role

...

Task and skill instructions

...

{role_description}

{name}

Generate Persona & Skills

Agent Generation

Agent and Tool Retrieval

generate
generated_agent

bind with tools

update

Group chat instruction

Your profile

You are now working in a group chat with

different expert and a group chat manager.

Your name is:
Members' name:

{profile}

{name}

{members}

Final System Message

General Task & Coding Instructions
Useful instructions for task-solving

Coding instructions

- Solve the task step by step if you need to
...

- Suggest python code or shell script (in a
python or sh coding block) for the
Computer_terminal to execute ...

Adaptive Multi-agent Team Building

Agent

Library

" ": "Can be used to …",

" ": "…",

" ": "…",

" ": "path/to/python/module"

description
function_name
arguments
path

Retrieved

Tools

Tool

Library

Figure 3: Workflow for adaptive multi-agent team building. We retrieve candidate agents and tools
according to the roles’ description prompted by Captain Agent. Candidate agents and tools will
further be linked to a role under the advice of the agent selector. If no agent is linked to a role, a
generate process will be performed to create a new agent. It will generate the agent’s name and
task-specific instructions, combined with general task and coding skills and group chat instructions
as the final system message.

in the library. We use Sentence Transformer to calculate the embedding for description between the
role and library agents/tools and use cosine similarity as the metric to evaluate the similarity between
two sentences, as follows:

top-k1 CosineSimilarity (f(ri), f(alib)) → RetrievedAgents, (1)
top-k2 CosineSimilarity (f(ri), f(tlib)) → RetrievedTools, (2)

where k1 and k2 are the numbers of retrieved agents and tools from agent library alib and tool library
tlib, respectively, for i-th role ri. f(·) ∈ Rm denotes the sentence embedding extracted from a
Sentence Transformer. After retrieval, each role will be assigned with k1 agent candidates and
k2 valuable tools. We bind agent candidates with the retrieved tools by injecting the tool-using
instruction into the corresponding agent’s system message.

Agent selection. We prompt an LLM-based agent selector to select the most suitable agent according
to the role’s description given by Captain Agent and the retrieved agents’ description. A JSON

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

template is designed and provided for the agent selector to ensure the format is correct. Specifically,
we designed an abstention mechanism for the agent selector, in which the agent selector can output
"None" if there is no suitable agent for a role from the top-k1 retrieved candidate list. This can prevent
irrelevant or redundant agents from being forced to be selected for the current task. The roles marked
with "None" will further go into the generation process described below.

Agent generation. We design an agent generation process for those roles with no linked agents at
the previous step. Specifically, we generate the agent’s name and required skills according to the
role description given by Captain Agent. These instructions will be combined with general task and
coding instructions and group chat instructions as the final system message. We manually design the
general task and coding instructions, motivated by Chain-of-thought (CoT) (Wei et al., 2022b) and
Reflexion (Shinn et al., 2024). The final system message will also be compressed to a single-sentence
description, which is consumed by the nested group conversation (introduced in the next subsection).
We then retrieve tools from the tool library according to the description and inject the tool-using
instruction into the generated system message.

Team Memory. Once the team has been built, Captain Agent will cache it into its local memory
with a team name and each agent’s detail, including name, system message, and the assigned tools.
Captain Agent can call the cached team anytime during the conversation with the user proxy. Calling
the cached team will not incur any API calls and thus will not introduce extra costs.

2.3 NESTED GROUP CONVERSATION AND REFLECTION

Agents selected and created in the adaptive multi-agent team-building process will join a nested
group chat room. They will be prompted to collect information from the user’s task and solve a
subtask from Captain Agent by nested conversation. We then prompt a reflector LLM to retrieve and
review the conversation history and fill in the conclusion, the reason for the conclusion, possible
contradictions, and issues, and flag if the result needs a double check in the pre-designed template.

Nested group conversation. We perform nested group conversations by leveraging the AutoGen (Wu
et al., 2023) framework with a newly designed tool-using paradigm. AutoGen will put all agents
in a chat room and select the speaker for each turn by a group chat manager LLM according to the
conversation history and each agent’s identity. A short description will be generated from the agent’s
profile for the group chat manager. Agents’ code and tool calling will be executed and fed back to the
conversation immediately. We inject the tool’s description, path-to-python-module, and response case
into the related agent’s system message. The agent can then write free-form code by following the
tools’ description and path, naturally incorporating the tools into larger programs. Programs written
by all agents will be executed by a user proxy agent with a shared code execution environment, and
the results will be fed back to the conversation in real time.

Conversation reflection. The agent’s output during the conversation can be inconsistent, including
factual errors, hallucinations, and stereotypes. Although other agents have a chance to adjust and
rectify this in conversation, they can also get stuck and cause problem-solving failure. Therefore,
we propose to detect such in-conversation contradictions and issues by prompting a reflector LLM
with a well-designed conversation summarizing prompt template. The reflector will flag the "need
double-check" as "Yes" when it detects such inconsistent content and provides a detailed reason. This
will trigger Captain Agent to start a verification process by constructing a new nested conversation to
double-check the previous results after receiving "Yes" on "need double-check."

2.4 BENEFITS OVER STATIC BUILD

A static team with a small number of team members may limit the team’s ability coverage. Although
building a large number of agents with comprehensive persona or skill sets can address the limitation
in ability coverage, it is challenging for LLMs to handle a long context that introduces all the
participant members. Unexpectedly long contexts will primarily reduce the quality of the conversation.
Meanwhile, agents with redundant functionality will also be involved in the task-solving process. In
contrast, Captain Agent can adaptively select and build more optimized agent teams for the current
task, reducing the prompting load for LLMs and redundant output from irrelevant agents without
sacrificing the diversity in the agent team.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 EVALUATION

3.1 EXPERIMENTAL SETUP

Table 1: Scenarios and the corresponding datasets we choose to perform our main experiments.
We perform the main comparison experiments on the whole dataset except MATH. For MATH, we
sampled a small subset according to the type distribution.

Scenario Dataset Size Sample

Mathematics problems MATH (Hendrycks et al., 2021a) 196 If 3x2−4x+1
x−1 = m, and x can be any real number except 1,

what real values can m NOT have?

Programming HumanEval (Chen et al., 2021) 164

def truncate_number(number: float) ->float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
[Omitted]
"""

Data Analysis DABench (Hu et al., 2024a) 257
Generate a new feature called "FamilySize" by summing the "SibSp"
and "Parch" columns. Then, calculate the Pearson correlation coefficient (r)
between the "FamilySize" and "Fare" columns.

World Information Retrieval GAIA (Mialon et al., 2023) 165 On the BBC Earth YouTube video of the Top 5 Silliest Animal Moments,
what species of bird is featured?

(Scientific) Chemistry SciBench (Wang et al., 2023b) 41 Calculate the pressure in kilopascals exerted by 1.25 g of nitrogen gas
in a flask of volume 250 cm3 at 20◦C.

(Scientific) Physics SciBench (Wang et al., 2023b) 34
If the coefficient of static friction between the block and plane in the
previous example is µs = 0.4, at what angle θ will the block starts sliding
if it is initially at rest?

Scenarios and datasets. For evaluation, we select various real-world scenarios, including math-
ematics problem-solving, programming, data analysis, world information retrieval, and science
problem-solving. Each scenario was chosen for its unique ability to demonstrate specific capabilities
and performance metrics of the agent systems. This ensures a holistic assessment of Captain Agent
against the baselines across various critical dimensions of computational and cognitive skills. We bind
each scenario with a challenging open-source dataset, as shown in Table 1. Due to cost limitations,
we sample a subset of MATH according to its original distribution of each question type.

Compared methods and implementation. For mathematics problems, programming, data analysis,
and scientific scenarios, we investigate the performance of Captain Agent and four different methods,
including Vanilla LLM (prompt an LLM once for an answer), AutoAgents (Chen et al., 2023),
Meta-prompting (Suzgun & Kalai, 2024a), AgentVerse (Chen et al., 2024), DyLAN (Liu et al.,
2023b), and a two-agent system (a system involving an Assistant agent with an Executor agent)
realized with AutoGen (Wu et al., 2023). Specifically, we implement AutoAgents with AutoGen
as the official implementation is unstable and unsuitable for large-scale experiments. For meta-
prompting, we improve the code execution ability of meta-prompting by reproducing it with the
AutoGen framework. All these methods are equipped with a gpt-4-0125-preview backbone
and use the same task-specific prompt (refer to Appendix E).

For world information retrieval scenarios, we compare Captain Agent with the top-5 base-
lines (with reference) reported to the GAIA validation leaderboard, which includes AutoGen:
GAIA_Orchestrator (a specific three-agent setting organized by an Orchestrator agent designed
for GAIA) (GAIA_Orchestrator, 2024), FRIDAY (Wu et al., 2024), Warm-up Act2, and HuggingFace
Agent (Huggingface, 2024). All these baselines have a gpt-4-1106-preview backbone, except
the HuggingFace Agent equipped with an LLaMA-3-70B as the backbone.

For Captain Agent, we adopt all-mpnet-base-v2 to calculate the sentence embedding for
agent and tool retrieval. A User Proxy Agent will communicate with Captain Agent by providing the
feedback of code execution, tool calling (adaptive build), nested conversation reflection results, and a
default reply: I’m a proxy, and I can only execute your code and tool or end the conversation. If you
think the problem is solved, please reply to me only with ’TERMINATE.’

Agent and tool library. We initialize our agent library based on a small subset of problem instances
from each dataset (~20 questions per dataset described in Section 3.4) in Table 1. Specifically,
we run Captain Agent on the subset and iteratively update the library by adding the generated
agents and keeping our agent library unchanged during the main experiment. Our agent library also
supports all hand-crafted agents (of the ConversableAgent class) archived in AutoGen (details
in Appendix G). All these agents follow the ConversableAgent interface to converse with each other.

2Warm-up Act has no official implementation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison results on different real-world scenarios. We record each scenario’s ac-
curacy for each baseline and Captain Agent, and mark the best results in bold. We adopt
gpt-4-0125-preview as the backbone LLM model for all baselines and Captain Agent.

Method Mathematics Programming Data Analysis (Sci) Chemistry (Sci) Physics Avg.
Vanilla LLM 51.53 84.76 6.61 39.02 31.25 40.98
Meta-prompting 68.88 19.51 39.69 41.46 43.75 43.47
AutoAgents 56.12 84.76 57.98 60.98 50.00 63.58
DyLAN 62.24 90.24 - 45.45 51.16 -
AgentVerse 69.38 42.68 - 42.42 37.21 -
AutoGen: Assistant + Executor 74.49 93.90 82.88 60.98 43.75 79.89
Captain Agent 77.55 96.95 88.32 65.85 53.12 84.25

Table 3: Comparison results on world-information retrieval scenario (GAIA validation). We report
the accuracy at each level and the average accuracy over three levels and mark the best results in bold.
Captain Agent achieves the best with minimal prompt engineering.

Method Level 1 Level 2 Level 3 Avg.
AutoGPT4 13.21 0.00 3.85 4.85
GPT4 Turbo 20.75 5.81 0.00 9.70
GPT4 + manually selected plugins 30.30 9.70 0.00 14.6
Captain Agent (Llama-3-70B-Instruct) 28.30 11.63 0.00 15.15
Huggingface-Agent (Llama-3-70B-Instruct) 30.19 11.63 7.69 16.97
Warm-up Act 35.19 15.12 0 17.58
Captain Agent (gpt-4o-mini) 32.08 16.27 3.85 19.39
FRIDAY 45.28 34.88 11.54 34.55
AutoGen: GAIA_Orchestrator 54.72 38.31 11.54 39.39
Captain Agent (gpt-4-0125-preview) 56.60 39.53 11.54 40.60

Our tool library consists of a suite of callable Python functions intended for freeform coding. The
agents can freely import functions from the tool library and write free-form code to integrate the
outputs to handle sophisticated tasks (see also Appendix F and H). The library contains three main
categories of tools: math, data analysis, and world information retrieval. For each category, we
summarize the patterns of the corresponding dataset and manually craft a set of functions that suit the
tasks.

3.2 EVALUATION PROTOCOL

For mathematics, data analysis, and science scenarios, we report the accuracy of each method by
comparing the final result from each method and ground truth. To ensure fairness in evaluation, we
transform different result formats into a uniform format, preventing the correct answer from being
judged incorrect due to format mismatches. For programming scenarios, we run the code provided
from each method and output a unique token if the code successfully passes all tests. We then count
the success token and calculate the accuracy for each method.

3.3 MAIN RESULTS

Table 2 and 3 report the comparison results between Captain Agent and eight different baselines on
six real-world scenarios. Baseline results on world information retrieval are extracted directly from
the GAIA leaderboard.

Findings 1: Diverse agents can help trigger accurate expertise output for problem-solving.
By comparing the results from Captain Agent, AutoAgents, and AutoGen Assistant + Executor, we
observe that Captain Agent and AutoAgents averagely outperform AutoGen Assistant + Executor
on (Sci) Chemistry and (Sci) Physics scenarios. These scenarios required expertise knowledge,
which the AutoGen Assistant with a fixed system message is hard to complete. Captain Agent and
AutoAgents can create diverse experts by assigning different domain-specific system messages to
agents, which helps better trigger the intrinsic knowledge inside an LLM to provide an accurate
answer. Captain Agent outperforms AutoAgents in all the scenarios because Captain Agent can
provide a high-level plan and solve each step with adaptive instructions and an agent team.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Ablation comparison between static and adaptive team-building on the selected subset. We
mark the best results in bold. Dynamic team-building during the conversation improves performance
in different scenarios.

Method Mathematics Programming Data Analysis (Sci) Chemistry (Sci) Physics
Static Team 64.71 88.00 85.00 47.37 68.42
Adaptive Team (Captain Agent) 82.35 96.00 95.00 52.63 68.42

Table 5: Ablation study of tool library and agent library on world-information retrieval scenario
(GAIA). We report the accuracy at each level and the average accuracy over three levels and mark the
best results in bold.

Captain Agent World-information Retrieval
Agent Library Tool Library Level 1 Level 2 Level 3 Avg.

- - 32.07 13.95 3.84 18.18
✓ - 37.73 30.23 7.69 29.09
- ✓ 39.62 19.78 7.69 24.24
✓ ✓ 56.60 39.53 11.54 40.60

Findings 2: Adaptive team-building boosts performance with no task preference. It is obvious
that Captain Agent achieves outstanding results over all scenarios, indicating that Captain Agent
is free from task preference. Incorporating different agents into the team at a proper time gives
Captain Agent the ability to solve difficult tasks like science and world-information retrieval problems
step-by-step. On the other hand, Meta-prompting fails in science scenarios due to the inability to
decompose science problems into the fine-grain subtasks that one agent can solve. Captain Agent
with the agent-team building paradigm neither requires a task that can be decomposed into a subtask
that can only be solved by an agent nor requires all agents to be involved in the conversation. We
further discuss the static and adaptive teams in Section 3.4.1.

3.4 ANALYSIS AND ABLATION STUDIES

In this section, we dive into the difference between static and adaptive team-building, the influence
of agent and tool libraries, and the possibility of working with open-weight models. We perform
ablation studies on a subset from Table 1. Specifically, we choose 17 problems from MATH and 25
problems from HumanEval according to the AutoGenBench (AutoGenBench, 2024), in which the
problems are randomly selected from GPT-4 failure set. For DABench, we randomly selected 25
problems, and for SciBench, we randomly selected 19 problems for chemistry and physics according
to the number of textbooks. The evaluation protocol is the same as in Section 3.3.

3.4.1 STATIC VS. ADAPTIVE TEAM-BUILDING

To further explore the power of adaptive team-building, we compare adaptive team-building with
static team-building. Specifically, we perform a task-specific team-building paradigm by building
a team of agents in the same way as Captain Agent at the beginning of each task and letting them
solve each problem. We summarized the results in Table 4, showing that the adaptive team-building
paradigm outperforms the static team-building paradigm comprehensively.

3.4.2 ABLATION ON TOOL LIBRARY AND AGENT LIBRARY

In this part, we conduct an ablation study on the utility of tool and agent libraries. We remove the tool
library, the agent library, and both libraries in turn and evaluate the performance on world-information
retrieval tasks, i.e., the GAIA dataset. As shown in Table 5, removing the agent library and tool
library can both significantly impair the system’s performance. While both the tool and agent libraries
can enhance performance independently, optimal results are achieved only when both libraries are
employed concurrently. Handling level 1 tasks requires a moderate amount of web browsing and
reasoning steps, which can be achieved by several single-turn tool calls or experts writing and
executing code iteratively. Introducing both an agent library and tool library makes the system more
stable and robust to unknown errors during web interaction, therefore improving the performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Comparison of performance on our reduced dataset for ablation study (see Section 3.4),
where Prog. refers to Programming, DA refers to Data Analysis, Phys. refers to Physics, and
Chem. refers to Chemistry. The best results are marked in red bold and the second best in
blue. Captain Agent achieves the best performance with gpt-4-0125-preview as the backbone.
Captain Agent with gpt-4o-mini can achieve competitive performance with other baselines that
use gpt-4-0125-preview, and have significantly lower cost.

Math Prog. DA (Sci) Phys. (Sci) Chem. Avg. RankBackbone
Performance (Accuracy, higher is better)

Vanilla LLM 52.94 72.00 - 26.32 31.58 6.8
Two-Agents 64.71 92.00 73.91 47.37 42.11 3.6

Meta-prompting 70.59 12.00 17.30 52.63 52.63 5.0
AutoAgent 64.71 88.00 52.17 47.37 68.42 3.2

DyLAN 58.82 92.00 - 47.37 45.00 -
AgentVerse 64.71 20.00 - 36.84 42.11 -

w/ gpt-4-0125-preview 82.35 96.00 82.60 57.89 68.42 1.2
w/ gpt-4o-mini 76.47 80.00 91.30 52.63 57.89 2.2
w/ Llama-3-70B-Instruct 47.06 80.00 56.52 43.75 36.84 4.6

Captain Agent

w/ Llama-3-8B-Instruct 5.89 48.00 34.78 5.26 5.26 7.4
Backbone Cost for Task Completion (US Dollars, lower is better)

Vanilla LLM 1.48 1.08 - 0.28 1.63 3.8
Two-Agents 3.10 2.82 5.32 1.34 2.33 5.2

Meta-prompting 2.92 9.88 8.64 4.18 4.96 5.8
AutoAgent 4.59 18.32 33.58 12.48 12.28 7

DyLAN 3.01 8.76 - 7.10 8.07 -
AgentVerse 7.63 13.59 - 26.34 23.56 -

w/ gpt-4-0125-preview 7.95 23.67 39.88 15.21 18.68 8
w/ gpt-4o-mini 0.09 0.03 0.29 0.48 0.89 2
w/ Llama-3-70B-Instruct 0.89 1.92 0.89 1.18 1.48 3.4

Captain Agent

w/ Llama-3-8B-Instruct 0.05 0.03 0.02 0.06 0.08 1

Table 7: Comparison of different weak LLM backbones for nested conversation participants on
our reduced dataset for ablation study (see Section 3.4). Captain Agent instructs the nested
conversation with gpt-4-0125-preview backbone. Best results are marked in red bold and the
second best results in blue.

Nested Chat Agent Backbone Mathematics Programming Data Analysis (Sci) Chemistry (Sci) Physics
Blackbox Models

w/ gpt-3.5-turbo 35.29 92.00 65.00 42.11 42.11
w/ claude-3-sonnet 35.29 80.00 60.00 15.79 26.32
w/ gemini-1.5-pro 70.58 80.00 80.00 57.89 42.11
w/ gpt-4-0125-preview (default) 82.35 96.00 95.00 52.63 68.42

Open-weight Models
w/ Meta-Llama-3-70B-Instruct 52.94 88.00 80.00 52.63 47.37
w/ Mixtral-8x22B-instruct-v0.1 29.41 76.00 55.00 47.37 21.05

Notably, without an agent library, Captain Agent performs much worse on Level 2 tasks. This is
because these tasks are more sophisticated and mostly involve a significant number of web navigation
and reasoning steps. Web browsing involves complex and dynamic interactions that are poorly suited
to static tool libraries. The tasks require agents to coordinate multiple tools to solve them, which is a
process prone to error in web scenarios filled with uncertainty.

3.4.3 ABLATION ON LLM BACKBONE AND COST ANALYSIS

In this section, we explore the influence of the choice of backbone LLM on the performance of
Captain Agent. We conduct two experiment settings: weak LLM for Captain Agent and team
members, strong backbone for Captain Agent, and weak LLM for nested chat members.

We first equip Captain Agent and its nested experts with four different backbones, namely
gpt-4-0125-preview, gpt-4o-mini, LLaMA-3-70B-Instruct, and LLaMA-3-8B-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Instruct, and compare it with all the baselines equipped with gpt-4-0125-preview. As
shown in Table 6, Captain Agent with gpt-4o-mini outperforms all other baselines.

We then fix the backbone of Captain Agent to gpt-4-0125-preview and employ different
backbone LLM for the experts in nested chat, including gpt-3.5-turbo, claude-3-sonnet,
gemini-1.5-pro, and open-weight models like LLaMA-3-70B and Mixtral-8x22B. We
record the results in Table 7. Chat members with gemini-1.5-pro performs second best in most
scenarios. When comparing the results of the two settings, we observe that by utilizing a stronger
LLM backbone in Captain Agent to guide the nested conversation, the system’s performance is
significantly enhanced.

Cost Analysis The high token cost associated with LLMs has always been a significant barrier
in the practical deployment of agents, rendering them economically unfeasible. We calculate the
whole cost of Captain Agent workflow, including generating Captain Agent output, performing agent
and tool selection, expert generation, and nested chat conversation. The cost is reported in Table 6.
By leveraging smaller, more cost-efficient gpt-4o-mini, our approach significantly reduces costs
while maintaining strong performance, achieving an average cost as low as $0.33 per task.

4 RELATED WORK

Large language models (LLMs) represent a significant advancement in artificial intelligence, showcas-
ing remarkable capabilities in various aspects, including reasoning (Wei et al., 2022b; Yao et al., 2024;
Morishita et al., 2023; Zhang et al., 2023b; Li et al., 2023a; Ho et al., 2022), planning (BabyAGI,
2023; Song et al., 2023; Valmeekam et al., 2023; Liu et al., 2023b), and adaptability to novel real-
world observations (Shi et al., 2024; Hong et al., 2023; Yang et al., 2023a; Dan et al., 2023; Zhou
et al., 2023a; Bharadhwaj et al., 2023). Leveraging the inherent versatility of LLMs as generalized
models adaptable to diverse scenarios, numerous efforts have been dedicated to the development of
intelligent agents (Wu et al., 2023; Xi et al., 2023; Zhang et al., 2024b; Sumers et al., 2023; Zhou
et al., 2023b) where LLMs serve as foundational components. For instance, one typical algorithm,
React (Yao et al., 2022), employs one single LLM to iteratively generate both reasoning trajectories
and task-specific actions. This interleaved process enables the agent to engage in dynamic reasoning.
In addition, LLM agents can also harness external tools (Qin et al., 2023a;b; Schick et al., 2024;
Cai et al., 2023; Yuan et al., 2023a; Paranjape et al., 2023; Zhang et al., 2024b; Huang et al., 2023;
Ma et al., 2024), leveraging both their internal capabilities and external resources, collaborating
effectively to solve more intricate problems.

The success of a single-agent system motivates the development of multiple-agent systems (Wang
et al., 2023a; Xi et al., 2023; Chen et al., 2023; Wu et al., 2023; Suzgun & Kalai, 2024a; Hong et al.,
2023; Zhang et al., 2024b; 2023a; Valmeekam et al., 2023; Wang et al., 2024; Saha et al., 2023;
Liang et al., 2023; Du et al., 2023). Methods focusing on static build require a protocol for agents
to communicate with each other in a group chat and a builder that can receive the user’s instruction
and output an agent list (Wu et al., 2023; Chen et al., 2023; Hong et al., 2023). The builder can be a
human (Wu et al., 2023; Hong et al., 2023) or a LLM agent (Chen et al., 2023). There are other works
breaking down complex tasks into smaller components, each of which is then handled by a single
specialized agent with detailed natural-language instructions (Suzgun & Kalai, 2024b; Zhuge et al.,
2023). This task decomposition reduces the prediction burden on each agent by avoiding irrelevant
context. For instance, meta-prompting (Suzgun & Kalai, 2024b) involves a meta-model decomposing
tasks and assigning subtasks to different LLMs for completion and aggregation.

5 CONCLUSION AND DISCUSSION

We introduce a new paradigm for multi-agent team-building, adaptive build. This new paradigm
helps ensure diversity, prevent limited knowledge extraction and reduce stereotypical outputs. The
new paradigm executed by our proposed agent, Captain Agent, manages agent teams for problem-
solving steps using adaptive multi-agent team building and nested group conversation and reflection.
Experimental results across six real-world scenarios demonstrate Captain Agent’s efficacy in various
tasks without prompt engineering, achieving superior results compared to existing methods. Ablation
studies confirm that each component contributes equally to overall performance, underscoring the
robustness of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AutoGenBench. Github | autogenbench. https://microsoft.github.io/autogen/
blog/2024/01/25/AutoGenBench, 2024.

BabyAGI. Github | babyagi. https://github.com/yoheinakajima/babyagi, 2023.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash Ku-
mar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmentations
and action chunking. arXiv preprint arXiv:2309.01918, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. arXiv preprint arXiv:2305.17126, 2023.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Jaime C Confer, Judith A Easton, Diana S Fleischman, Cari D Goetz, David MG Lewis, Carin
Perilloux, and David M Buss. Evolutionary psychology: Controversies, questions, prospects, and
limitations. American psychologist, 65(2):110, 2010.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 4005–4019, 2023.

Yuhao Dan, Zhikai Lei, Yiyang Gu, Yong Li, Jianghao Yin, Jiaju Lin, Linhao Ye, Zhiyan Tie,
Yougen Zhou, Yilei Wang, et al. Educhat: A large-scale language model-based chatbot system for
intelligent education. arXiv preprint arXiv:2308.02773, 2023.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023.

Nassim Elimari and Gilles Lafargue. Network neuroscience and the adapted mind: Rethinking the
role of network theories in evolutionary psychology. Frontiers in psychology, 11:545632, 2020.

11

https://microsoft.github.io/autogen/blog/2024/01/25/AutoGenBench
https://microsoft.github.io/autogen/blog/2024/01/25/AutoGenBench
https://github.com/yoheinakajima/babyagi
https://openreview.net/forum?id=EHg5GDnyq1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Fernandes, Aman Madaan, Emmy Liu, António Farinhas, Pedro Henrique Martins, Amanda
Bertsch, José GC de Souza, Shuyan Zhou, Tongshuang Wu, Graham Neubig, et al. Bridging the
gap: A survey on integrating (human) feedback for natural language generation. Transactions of
the Association for Computational Linguistics, 11:1643–1668, 2023.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=efFmBWioSc.

GAIA_Orchestrator. Github | autogen: Gaia orchestrator. https://github.com/
microsoft/autogen/tree/gaia_multiagent_v01_march_1st/samples/
tools/autogenbench/scenarios/GAIA/Templates/Orchestrator, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021b.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
arXiv preprint arXiv:2212.10071, 2022.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia Yang,
and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks, 2024a.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing Xu,
Ming Zhu, Yao Cheng, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv
preprint arXiv:2401.05507, 2024b.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128, 2023.

Huggingface. Huggingface agents. https://huggingface.co/docs/transformers/
en/transformers_agents, 2024.

Triet HM Le, Hao Chen, and Muhammad Ali Babar. Deep learning for source code modeling and
generation: Models, applications, and challenges. ACM Computing Surveys (CSUR), 53(3):1–38,
2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

12

https://openreview.net/forum?id=efFmBWioSc
https://openreview.net/forum?id=efFmBWioSc
https://github.com/microsoft/autogen/tree/gaia_multiagent_v01_march_1st/samples/tools/autogenbench/scenarios/GAIA/Templates/Orchestrator
https://github.com/microsoft/autogen/tree/gaia_multiagent_v01_march_1st/samples/tools/autogenbench/scenarios/GAIA/Templates/Orchestrator
https://github.com/microsoft/autogen/tree/gaia_multiagent_v01_march_1st/samples/tools/autogenbench/scenarios/GAIA/Templates/Orchestrator
https://huggingface.co/docs/transformers/en/transformers_agents
https://huggingface.co/docs/transformers/en/transformers_agents

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Sym-
bolic chain-of-thought distillation: Small models can also" think" step-by-step. arXiv preprint
arXiv:2306.14050, 2023a.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023b.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
and Shuming Shi. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

B. Liu, Yuqian Jiang, Xiaohan Zhang, Qian Liu, Shiqi Zhang, Joydeep Biswas, and Pe-
ter Stone. Llm+p: Empowering large language models with optimal planning proficiency.
ArXiv, abs/2304.11477, 2023a. URL https://api.semanticscholar.org/CorpusID:
258298051.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
llm-agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023b.

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. m&m’s: A benchmark
to evaluate tool-use for multi-step multi-modal tasks. In Synthetic Data for Computer Vision
Workshop@ CVPR 2024, 2024.

Andrew Mao, Winter Mason, Siddharth Suri, and Duncan J Watts. An experimental study of team
size and performance on a complex task. PloS one, 11(4):e0153048, 2016.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=fibxvahvs3.

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa. Learning deductive
reasoning from synthetic corpus based on formal logic. In International Conference on Machine
Learning, pp. 25254–25274. PMLR, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian,
Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang
Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng
Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2023a.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023b.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li.
Branch-solve-merge improves large language model evaluation and generation. arXiv preprint
arXiv:2310.15123, 2023.

13

https://api.semanticscholar.org/CorpusID:258298051
https://api.semanticscholar.org/CorpusID:258298051
https://openreview.net/forum?id=fibxvahvs3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl
Yang, and May D Wang. Ehragent: Code empowers large language models for complex tabular
reasoning on electronic health records. arXiv preprint arXiv:2401.07128, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009, 2023.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive architec-
tures for language agents. arXiv preprint arXiv:2309.02427, 2023.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in Neural Information Processing
Systems, 36, 2024.

Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024a.

Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024b.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Planbench: An
extensible benchmark for evaluating large language models on planning and reasoning about change.
In Neural Information Processing Systems, 2022. URL https://api.semanticscholar.
org/CorpusID:249889477.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Information
Processing Systems, 36:75993–76005, 2023.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023b.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023c.

Yaoxiang Wang, Zhiyong Wu, Junfeng Yao, and Jinsong Su. Tdag: A multi-agent framework based
on dynamic task decomposition and agent generation. arXiv preprint arXiv:2402.10178, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
ArXiv, abs/2201.11903, 2022a. URL https://api.semanticscholar.org/CorpusID:
246411621.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

14

https://api.semanticscholar.org/CorpusID:249889477
https://api.semanticscholar.org/CorpusID:249889477
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
language models. arXiv preprint arXiv:2404.18824, 2024.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023a.

Jiaxi Yang, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Iterative forward tuning
boosts in-context learning in language models. arXiv preprint arXiv:2305.13016, 2023b.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent computer interfaces enable software engineering language
models, 2024a.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. Advances in Neural Information
Processing Systems, 36, 2024b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung, Hao Peng, and Heng Ji. Craft: Customizing
llms by creating and retrieving from specialized toolsets. arXiv preprint arXiv:2309.17428, 2023a.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, Soham Shah, Charles R. Jankowski, Deqing
Yang, and Yanghua Xiao. Distilling script knowledge from large language models for constrained
language planning. In Annual Meeting of the Association for Computational Linguistics, 2023b.
URL https://api.semanticscholar.org/CorpusID:258564677.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao, Pranav
Raja, Dylan Slack, Qin Lyu, et al. A careful examination of large language model performance on
grade school arithmetic. arXiv preprint arXiv:2405.00332, 2024a.

Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. Ecoassistant: Using llm assistant
more affordably and accurately. arXiv preprint arXiv:2310.03046, 2023a.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. Ideal: Influence-driven selective annotations empower in-context learners in large language
models. arXiv preprint arXiv:2310.10873, 2023b.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Training language model agents without modifying language models. arXiv preprint
arXiv:2402.11359, 2024b.

15

https://api.semanticscholar.org/CorpusID:258564677

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. ArXiv, abs/2401.01614, 2024. URL https://api.semanticscholar.
org/CorpusID:266741821.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023b.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand Gopalakr-
ishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann, Kazuki Irie, et al.
Mindstorms in natural language-based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

16

https://api.semanticscholar.org/CorpusID:266741821
https://api.semanticscholar.org/CorpusID:266741821

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A LIMITATIONS

The first limitation of our work is cost. A conversation involving the GPT-4 model costs more than
a single-agent system. Although we have reduced the cost by decreasing the participant nested
group chat agents, it still has a large conversation and profile as context input. The trade-off between
performance and cost will become one of the possible future works for further exploration, like
window context, conversation pruning, or conversation compression. Another limitation of our work
is the lack of thinking about model diversity. In Table 7, we have demonstrated that the model
has task preference, which will influence the nested chat quality. However, before we go deep into
the discussion of model preference, we should also notice that the current evaluation of LLM is
not perfect. Data leaking is widespread in the pertaining process and will cause the misalignment
between the test and real-world performance (Zhang et al., 2024a; Xu et al., 2024). Therefore, a
comprehensive yet fair evaluation is important for us to further discuss the ability of model diversity.

B SOCIAL IMPACT

Our method dynamically ensembles LLM agents and equips them with versatile tools, allowing them
to efficiently and effectively solve complex tasks. However, the development of agent systems that
interact with the web environment raises safety concerns. The scope of our experiment in real-world
interaction is limited to solving GAIA tasks, where the agents are required to search the web and
browse websites. The agents are restricted from accessing publicly available information and are not
capable of publishing content on the web. This ensures that our experiments remain both non-invasive
and safe.

C DIFFERENCE BETWEEN OTHER TEAM-BUILDING FRAMEWORKS

In this section, we will discuss the difference between Captain Agent and other famous agent team-
building frameworks, including AutoAgent (Chen et al., 2023) AgentVerse (Chen et al., 2024), and
DyLAN (Liu et al., 2023b).

Difference between AgentVerse and Captain Agent Compared with Agentverse, Captain Agent
supports more flexible agent team building and collaboration. AgentVerse includes two types of
framework: dynamic team and handcrafted team. The dynamic team completes part of the tasks
with the recruitment process, in which some agents are recruited in a fixed process (recruit – chat
or comment – evaluate – reflect), and the handcrafted team completes other tasks without the
recruitment process. In contrast, we did not design fixed teams for any tasks. Moreover, unlike
the fixed sequential process, Captain Agent can also be involved in the nested group chat as it
can solve part of the problems by itself and pass the solution into the nested chat. Furthermore,
the Captain Agent can cache teams in its memory and call back at a proper time. Therefore, the
Captain Agent acts like a time leaper who can participate in different teams on different timelines to
help derive better solutions.

Difference between DyLAN and Captain Agent DyLAN is a static build process in which the
multi-agent debate starts with a fixed and manually predefined group of experts. On the other hand,
DyLAN handcrafts a pool of expert names, their corresponding prompts, and their capabilities. The
agent selection from pool to expert group member is manually performed. The framework requires
manual effort to function properly.

D INSTRUCTION OF CAPTAIN AGENT

We design a general profile message (system message) for Captain Agent to ensure it can exe-
cute our paradigm efficiently and effectively. Instructions are in markdown format, including a
planning instruction that can decompose the task into multiple steps, a building instruction (the
seek_experts_help), a post-seek_agent_help instruction, and some general instructions that help task
solving.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.1 SYSTEM MESSAGE

1 """
2 # Your role
3 You are a perfect manager of a group of advanced experts.
4

5 # How to solve the task
6 When a task is assigned to you:
7 1. Analysis of its constraints and conditions for completion.
8 2. Response with a specific plan of how to solve the task.
9

10 After that, you can solve the task in two ways:
11 - Delegate the resolution of tasks to other experts created by seeking a

group of experts to help and derive conclusive insights from their
conversation summarization.

12 - Analyze and solve the task using your coding and language skills.
13

14 # How to seek experts help
15 The tool "seek_experts_help" can build a group of experts according to

the building_task and let them chat with each other in a group chat
to solve the execution_task you provided.

16 - This tool will summarize the essence of the experts’ conversation and
the derived conclusions.

17 - You should not modify any task information from meta_user_proxy,
including code blocks, but you can provide extra information.

18 - Within a single response, you are limited to initiating one group of
experts.

19

20 ## building_task
21 This task helps a build manager to build a group of experts for your task

.
22 You should suggest less than {max_agent_number} roles (including a

checker for verification) with the following format.
23

24 ### Format
25 - [Detailed description for role 1]
26 - [Detailed description for role 2]
27 ...
28 - [Detailed description for verifier]
29

30 ## execution_task
31 This is the task that needs the experts to solve by conversation.
32 You should Provide the following information in markdown format.
33

34 ### Format
35 ## Task description
36 ...
37 ## Plan for solving the task
38 ...
39 ## Output format
40 ...
41 ## Constraints and conditions for completion
42 ...
43 ## [Optional] results (including code blocks) and reason from the last

response
44 ...
45

46 # After seek_experts_help
47 You will receive a comprehensive conclusion from the conversation,

including the task information, results, reason for the results,
conversation contradictions or issues, and additional information.

48 You **must** conduct a thorough verification for the result and reason’s
logical compliance by leveraging the step-by-step backward reasoning
with the same group of experts (with the same group name) when:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

49 - The conversation has contradictions or issues (need double-check marked
as yes) or

50 - The result is different from the previous results.
51

52 Note that the previous experts will forget everything after you obtain
the response from them. You should provide the results (including
code blocks) you collected from the previous experts’ responses and
put them in the new execution_task.

53

54 # Some useful instructions
55 - You only have one tool called "seek_experts_help."
56 - Provide a answer yourself after "seek_experts_help".
57 - You should suggest Python code in a Python coding block (‘‘‘python

...‘‘‘).
58 - You must indicate the script type in the code block when using code.
59 - Do not suggest incomplete code which requires users to modify.
60 - Be clear about which step uses code, which step uses your language

skill, and which step to build a group chat.
61 - If the code’s result indicates an error, fix the error and output the

code again.
62 - If the error can’t be fixed or if the task is not solved even after the

code is executed successfully, analyze the problem, revisit your
assumption, collect additional info you need, and think of a
different approach to try.

63 - When you find an answer, verify the answer carefully.
64 - Include verifiable evidence in your response if possible.
65 - After completing all tasks and verifications, you should conclude the

operation and reply "TERMINATE"
66 """

D.2 REFLECTOR LLM

1 """
2 # Your task
3 Briefly summarize the conversation history derived from an experts’ group

chat by following the answer format.
4 If you found non-trivial contradictions or issues in the conversation,

point it out with a detailed reason and mark the "Need double-check"
as "Yes."

5

6 # Conversation history:
7 {chat_history}
8

9 # Answer format
10 ## Task
11 ...
12

13 ## Results
14 ...
15

16 ## Reason for the results
17 ...
18

19 ## Contradictions or issues in the conversation
20 ...
21

22 ### Need to double-check?
23 [Yes or No]
24

25 ## Additional information (file path, code blocks, url, etc.)
26 ...
27 """

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.3 AGENT SELECTOR LLM

1 """
2 # Your goal
3 Match roles in the role set to each expert in the expert set.
4

5 # Skill set
6 {skills}
7

8 # Expert pool (formatting with name: description)
9 {expert_pool}

10

11 # Answer format
12 ‘‘‘json
13 {{
14 "skill_1 description": "expert_name: expert_description", // if there

exists an expert that suitable for skill_1
15 "skill_2 description": "None", // if there is no experts that

suitable for skill_2
16 ...
17 }}
18 ‘‘‘
19 """

E TASK INSTRUCTIONS

We design instructions manually for each scenario and ensure all baselines and Captain Agent receive
the same instructions for a fair comparison3. All instructions include the basic information of the
scenario and may suggest some possible Python libraries, including pandas, numpy, scipy, and
sympy.

E.1 INSTRUCTION FOR MATHEMATICS

1 """
2 Please solve the following math problem:
3 {problem}
4 For problems that may be difficult to calculate, try to approximate using

Python instead of exact solutions. The following Python packages are
pre-installed: sympy, numpy, and scipy. Do not plot any figure.

5 After verification, reply with the final answer in \\box{{}}.
6 """

E.2 INSTRUCTION FOR PROGRAMMING

1 """
2 The following python code imports the ‘run_tests(candidate)‘ function

from my_tests.py, and runs it on the function ‘__ENTRY_POINT__‘. This
will run a set of automated unit tests to verify the correct

implementation of ‘__ENTRY_POINT__‘. However, ‘__ENTRY_POINT__‘ is
only partially implemented in the code below. Complete the
implementation of ‘__ENTRY_POINT__‘ and output a new stand-alone code
block that contains everything needed to run the tests, including:

importing ‘my_tests‘, calling ‘run_tests(__ENTRY_POINT__)‘, as well
as __ENTRY_POINT__’s complete definition, such that this code block
can be run directly in Python.

3

4 ‘‘‘python
5 from my_tests import run_tests

3Except for the world information retrieval scenario (GAIA), in which we use the results directly from the
leaderboard.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

6

7 {problem}
8

9 # Run the unit tests. All unit tests are running online. DO NOT MODIFY
THE FOLLOWING LINE.

10 run_tests(__ENTRY_POINT__)
11 ‘‘‘
12 """

E.3 INSTRUCTION FOR DATA ANALYSIS

1 """
2 Let’s solve a data analysis problem. Given a CSV file path, you are

required to solve a problem following a constraint. Do not plot any
figure.

3

4 FILE PATH: {file_path}
5

6 PROBLEM: {problem}
7

8 CONSTRAINT: {constraint}
9

10 After verification, reply with the final answer in the format of
11 {formats}
12 """

E.4 INSTRUCTION FOR SCIENCE (CHEMISTRY AND PHYSICS)

1 """
2 Please solve the following chemistry/physics problem:
3 {problem}
4

5 Try to approximate using Python instead of using exact solutions for some
problems that may be difficult to calculate. The following python

packages are pre-installed: sympy numpy scipy. Do not plot any figure
.

6

7 The required unit of the answer is {unit}.
8 After verification, reply with the final answer in \\box{{}}.
9 """

E.5 INSTRUCTION FOR WORLD-INFORMATION RETREIVAL

1 """
2 # Task
3 You need to solve the question below given by a user. When you are

building tasks, explicitly consider where the task can benefit from
web navigation capability.

4

5 # Task
6 {task}
7 """

F CASE STUDIES

Figure 4 illustrates the free-form tool-using ability in the nested conversation when solving a
problem in GAIA. Four agents involved in the conversation: DigitalMdeia_Expert, Ornithol-
ogy_Expert, VideoContentAnalysis_Expert, and UserProxy, in which DigitalMdeia_Expert use
perform_web_search tools to request the result of "BBC Earth YouTube Top 5 Silliest Animal
Moments" from internet, and VideoContentAnalysis_Expert use get_youtube_subtitle tool

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

[Omitted planning process]

Let's proceed with the search:

```python


   




 = 

( )


```

from importfunctions perform_web_search

perform_web_search

Let's perform a web search for the video

query

query
"BBC Earth YouTube Top 5 Silliest Animal Moments"

DigitalMedia_Expert

Based on the web search results, we have identified the video URL for the
BBC Earth

, if it's possible to get screenshots or a text-
based description of the bird moments from the video, I could proceed with
the identification based on that information.

YouTube video titled 'Top 5 Silliest Animal Moments': [video link]

@VideoContentAnalysis_Expert

Ornithology_Expert

Based on the captions extracted from the video, it appears
that the bird species featured in the BBC Earth YouTube video
'Top 5 Silliest Animal Moments' is the Rockhopper penguin.

Ornithology_Expert

Understood. Let's retrieve the captions for the YouTube video
with ID '2Njmx-UuU3M':

```python


   




 = 

 = ( )


( )

```

from importfunctions get_youtube_subtitle

get_youtube_subtitle

Retrieving captions for the video

video_id
captions video_id

captions

"2Njmx-UuU3M"

print

VideoContentAnalysis_Expert

exitcode: 0 () 
Code output:

execution succeeded

 Top 5 Silliest Animal Moments! | BBC
Earth - Youtube [video link

 Top 5 Funniest Animal Outtakes | BBC
Earth - Youtube [video link

 Best Antarctic Animal Moments | Top 5 |
BBC Earth - Youtube [video link

 ...

UserProxy

exitcode: 0 () 
Code output:

execution succeeded

rockhoppers

...but before being reunited with her
family she still has a mountain to climb
it's a big ask for a bird that can't fly
standing less than half a meter tall but
it's now that live up to
their name...

UserProxy

Nested Group Conversation and Reflection

General Task 

Task and advises from captain 

Plan:  

Output format:

On the BBC Earth Youtube video of the Top 5 Silliest Animal Moments, what species of bird is featured? 

1. The Digital Media Analyst will search for the BBC Earth video titled 'Top 5 Silliest Animal Moments'.

2. The Zoologist will watch the video and identify the species of bird featured in it.

3. The Fact Checker will verify the accuracy of the Zoologist's identification. 

The output should be the name of the bird species featured in the video.

The task is to identify the species of bird featured in the BBC Earth Youtube video of the Top 5 Silliest Animal Moments.

Mission Setup

Task

Results

Reason for the results

Contradictions or issues

Need double-check?

Additional information

Identify the species of bird featured in
the BBC Earth YouTube video titled "Top 5
Silliest Animal Moments.”

The bird species featured in the video is
identified as the .

The DigitalMedia_Expert located the video
on the BBC Earth YouTube channel and
provided the URL. The Ornithology_Expert
could not watch the video but suggested
identifying the species through visual
cues or a text-based description. The
VideoContentAnalysis_Expert retrieved
video captions using the
`get_youtube_caption` function. The
captions mentioned Rockhopper penguins
explicitly, and this was used to identify
the species.

There were no explicit contradictions.

Video URL: https://www.youtube.com/watch?
v=2Njmx-UuU3M

Captions: "...it’s now that rockhoppers
live up to their name..."

Rockhopper penguin

No

Conversation Reflection

Figure 4: A case of multi-agent conversation with the free-form tool used when solving a problem in
GAIA. Three agents and a user proxy participated in the conversation, solving a problem given and
planned by Captain Agent collaboratively with perform_web_search and get_youtube_subtitle tools.

to seek for the subtitle from a specific video. After their collaboration, they successfully obtained a
correct answer, "Rockhopper penguin."

G AGENT LIBRARY

Our agent library recorded 541 agents, including 540 generated agents and one hand-crafted Con-
versableAgent archived in AutoGen (WebSurferAgent). Here is an example of the agent recorded in
the agent library:

1 {
2 "description": "PythonProgramming_Expert is a seasoned authority on

rocket physics and classical mechanics, adept in Python programming
and utilizing specialized libraries to solve complex aerospace
problems with high precision and accuracy.",

3

4 "tags": ["gpt-4", "0125", "1106", "claude3", "sonnet", "haiku",
5

6 "gemini-1.5", "llama3", "8b", "70b", "mixtral", "8x22b", "8x7b"],
7

8 "name": "PythonProgramming_Expert",
9

10 "system_message": "## Your role\nPythonProgramming_Expert is an
authoritative specialist in the realm of classical mechanics, with a
razor-sharp focus on the intriguing world of rocket physics. This
expert boasts a profound understanding of the underlying principles
that govern the motion and dynamics of rockets, from their ascent
through Earth’s atmosphere to their navigation across the vast
expanse of space.\n\n## Task and skill instructions\n- Aspiring to

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Mathematics (b) Data Analysis (c) Programming

(d) (Sci) Chemistry (e) (Sci) Physics (f) World Information Retrieval

Figure 5: Top-10 selected agents and the corresponding selected times. We can observe that the
selected agent is highly related to the scenario.

the pinnacle of precision and accuracy, PythonProgramming_Expert is
armed with an extensive array of numerical methods and approximation
techniques. They have mastered the art of formulating and solving
complex mathematical problems, using these tools to make precise
predictions and optimizations in rocket trajectories and propulsion
systems.\n- In addition to their expansive knowledge of physical laws
and equations, this expert is a virtuoso in Python programming,

wielding libraries like sympy for symbolic mathematics, numpy for
numerical computations, and scipy for additional scientific computing
capabilities. These tools are the chisels with which

PythonProgramming_Expert sculpts solutions to elaborate aerospace
quandaries.\n- PythonProgramming_Expert’s deft problem-solving
abilities are matched only by their meticulous approach to
mathematical calculations. Whether confronting a routine calculation
or an esoteric formula, they tackle each challenge with the same
level of dedication and expertise.\n- Finally, with an unrelenting
commitment to veracity, PythonProgramming_Expert rigorously verifies
physical and mathematical results. They understand that in the
delicate ballet of spaceflight, there is no room for error and that
the accurate validation of results is paramount for successful
missions. This dedication ensures that when PythonProgramming_Expert
presents a solution, it is not only theoretically sound but also
practically reliable."

11 },

We also summarized the agent-selected rate for each scenario in Figure 5. It is obvious that selected
agents are highly related to the current scenarios. The verification expert has a high selection rate
because we prompt Captain Agent in the system message to create a verification role to maintain
the conversation. We also notice that in some specific scenarios (mathematics, data analysis, and
programming), some agents with a general name and description will have a high selection rate (e.g.,
PythonMath_Expert, DataAnalysis_Expert, CodeReview_Expert, etc.). However, in the Science
scenarios, there are no highly preferred agents with general descriptions, and the selection distribution
become flatten.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H TOOL LIBRARY

This section provides the names and descriptions of our manually created tool library. The tools are
categorized into three classes: Information Retrieval, Data Analysis and Math Problem Solving. For
each category, we summarize the patterns of the corresponding dataset and manually craft a set of
functions suits the tasks and can potentially enhance the agents’ task resolution capability.

Table 8: Tools for Information Retrieval category.

Tools Description
scrape_wikipedia_tables Scrapes Wikipedia tables based on a given URL and header key-

word.
transcribe_audio_file Transcribes the audio file located at the given file path.
youtube_download Downloads a YouTube video and returns the download link.
academic_search Perform an academic search of papers, authors or an author’s

papers.
docx_to_md Converts a DOCX file to Markdown format.
pptx_to_md Convert a PowerPoint presentation (PPTX) to Markdown format.
spreadsheet_to_md Convert an Excel spreadsheet file to Markdown format.

extract_pdf_image
Extracts images from a PDF file and saves them to the specified
output directory.

extract_pdf_text Extracts text from a specified page or the entire PDF file.
get_youtube_caption Retrieves the captions for a YouTube video.
image_qa Answers your questions about a given image.
optical_character_recognition Perform optical character recognition (OCR) on the given image.

perform_web_question_answering

Perform web search according to keyword and answer your ques-
tion on each webpage search result, or directly on the webpage if
the keyword is a URL. For each search result, a response to the
question is provided.

scrape_wikipedia_tables Scrapes Wikipedia tables based on a given URL and header key-
word.

Table 9: Tools for Data Analysis category.
Tools Description
calculate_correlation Calculate the correlation between two columns in a CSV file.

calculate_skewness_and_kurtosis Calculate the skewness and kurtosis of a specified column in a
CSV file. The kurtosis is calculated using the Fisher definition.

detect_outlier_iqr Detect outliers in a specified column of a CSV file using the IQR
method.

detect_outlier_zscore
Detect outliers in a CSV file based on a specified column. The
outliers are determined by calculating the z-score of the data
points in the column.

explore_csv Reads a CSV file and prints the column names, shape, data types,
and the first few lines of data.

shapiro_wilk_test Perform the Shapiro-Wilk test on a specified column of a CSV
file.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: Tools for Math Problem solving category.
Tools Description
calculate_circle_area_from_diameter Calculate the area of a circle given its diameter.

calculate_day_of_the_week Calculates the day of the week after a given number of days
starting from a specified day.

calculate_fraction_sum Calculates the sum of two fractions and returns the result as a
mixed number.

calculate_matrix_power Calculate the power of a given matrix.
calculate_reflected_point Calculates the reflection point of a given point about the line y=x.
complex_numbers_product Calculates the product of a list of complex numbers.

compute_currency_conversion Compute the currency conversion of the given amount using the
provided exchange rate.

count_distinct_permutations Counts the number of distinct permutations of a sequence where
items may be indistinguishable.

evaluate_expression Evaluates a mathematical expression with support for floor func-
tion notation and power notation.

find_continuity_point Find the value that ensures the continuity of a piecewise function
at a given point.

fraction_to_mixed_numbers Simplifies a fraction to its lowest terms and returns it as a mixed
number.

modular_inverse_sum Calculates the sum of modular inverses of the given expressions
modulo the specified modulus.

simplify_mixed_numbers Simplifies the sum of two mixed numbers and returns the result
as a string in the format ’a b/c’.

sum_of_digit_factorials Calculates the sum of the factorial of each digit in a number.
sum_of_primes_below Calculates the sum of all prime numbers below a given threshold.

25

