
Under review as submission to TMLR

Zeroth-Order Adaptive Neuron Alignment Based Pruning
without Re-Training

Anonymous authors
Paper under double-blind review

Abstract

Network pruning focuses on algorithms that aim to reduce a given model’s computational
cost by removing a subset of its parameters while having minimal impact on performance.
Throughout the last decade, the most widely used pruning paradigm has been pruning and
re-training, which nowadays is inconvenient due to the vast amount of pre-trained models,
which are, in any case, too expensive to re-train. In this paper, we exploit functional infor-
mation from dense pre-trained models, i.e., their input activations, to obtain sparse models
that maximize the activations’ alignment with respect to their corresponding dense models.
Hence, we propose NeuronAl, a top-up algorithm that can be used on top of any given
pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity, exploiting
information from both the dense model and its sparse version to maximize the neuron align-
ment among activations. Different from existing methods, our approach adaptively selects
the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model
and the desired sparsity, and requires no re-training. We test our method over ∼300 test
cases with four LLM families, three sparsity ratios, and ten language tasks (three language
modeling and seven zero-shot datasets), showing how it consistently outperforms the latest
state-of-the-art methods in terms of performance-runtime trade-off.

1 Introduction
In recent times, Large Language Models (LLMs) have shown incredible performance over several language
tasks Wei et al. (2022); Min et al. (2023); Chang et al. (2024). However, their performance usually improves
with their sizes (i.e., the number of trainable parameters), which in turn is proportional to the computational
cost of training and inference. One way to reduce this cost is network pruning, which studies algorithms
that remove parameters while minimizing performance degradation. This approach, extensively studied on
Convolutional Neural Networks (CNNs) Frankle & Carbin (2019); Lee et al. (2019); Wang et al. (2020); Evci
et al. (2020), nowadays is mainly applied to pre-trained models Touvron et al. (2023a;b); Jiang et al. (2023).

This shift has required a change of paradigm in pruning techniques: in fact, while in CNNs the main
paradigm is iterative pruning (with re-training) Frankle & Carbin (2019), with pre-trained models (such as
LLMs) in most cases it is not possible to fully re-train such models, because (1) training data are often not
accessible, and (2) full re-training would be anyway too expensive. This calls for “exploiting” as much as
possible the information contained in a pre-trained model to obtain a performant sparse version of it, using
weight’s information Jaiswal et al. (2024), activations Sun et al. (2023; 2024), or reconstruction error Frantar
& Alistarh (2023), without the need for re-training. More recently, a new category of pruning algorithms,
which we may call top-up algorithms (i.e., methods that can be applied on top of a given pruning algorithm
for LLMs), has emerged, aiming at further improving pruning performance. Such approaches can be divided
into two categories: those that minimize the reconstruction error Guo et al. (2024); Xu et al. (2024); Zhang
et al. (2024), and those that impose non-uniform sparsity distribution, modifying the block-wise sparsity Yin
et al. (2024); Lu et al. (2024); Li et al. (2024). The latter category is extremely effective on CNNs Frankle
et al. (2020); Su et al. (2020), while its application to LLMs has only recently emerged.

Contributions In this paper, we first analyze the major limitations of current top-up algorithms. To do so,
we carefully analyze the state-of-the-art top-up methods, highlighting their limitations in terms of sensitivity

1

Under review as submission to TMLR

to hyperparameters, the required computational budget, and their block-importance metric. Leveraging this
knowledge, we introduce a new top-up method, called NeuronAl.

20 30 40 50 60 70
Perplexity

101

102

103

104

R
un

tim
e

DSnoT [ICLR 24]

OWL [ICML 24]

BESA [ICLR 24]

DSA [NEURIPS 24]

Alpha [NEURIPS 24]

NEUROAL (Ours)

Adaptive
Hyperparameter
Dependent
Reconstruction
Error
Gradient-Based

Figure 1: Perplexity vs. Runtime (seconds) trade-off
among different top-up algorithms and our proposed
NeuronAl based on LLama-7B V1 with a sparsity of
70%, evaluated on WikiText2.

The algorithm consists of a two-step approach that
re-distributes the block-wise sparsity, i.e., the spar-
sity among Transformer blocks, and the row-wise
sparsity, i.e., the sparsity for each row of a given
layer’s matrix, maximizing a metric which exploits
information from both the dense and sparse model,
namely the neuron alignment between dense and
sparse activations. NeuronAl does not require
the user to specify any hyperparameter-tuning, as
it automatically selects the most-performing values
from a suitable set, hence adapting to the underlying
model and the target sparsity. Another advantage
is that the neuron alignment only requires the com-
putation of the activations of the dense and sparse
models, which reduces the computation budget re-
quired, compared to other top-up approaches.

We test our approach on three Language Modeling
datasets and seven Zero-Shot tasks over four differ-
ent LLM families from 7B to 70B parameters, to
show its ability to outperform, in the majority of the cases, the most recent state-of-the-art techniques,
including OWL, DsNoT Zhang et al. (2024), and AlphaPruning Lu et al. (2024) over three different high
sparsity values (60%, 70%, and 80%) for a total of 276 test-cases. To assess the robustness of our approach,
we also conduct an in-depth sensitivity analysis.

2 Related Work
In this section, we provide a comprehensive discussion about network pruning applied to LLMs. We first
introduce structured and unstructured network pruning; then, we focus on the latter, introducing the latest
approaches proposed for improving sparse model performance.

2.1 Structured Network Pruning
Given a layer’s weight matrix W ∈ Rn×m to sparsify, structured pruning removes either entire rows (n)
or columns (m) (see the next section), aiming at speeding up both training and inference time. The first
approach that applies structured pruning to LLMs has been proposed in Ma et al. (2023), and focuses on
the dependency of Transformers, i.e., it removes components of the networks while maximizing their original
functionality. In Kurtić et al. (2024), a pruning mechanism has been devised to remove components with the
worst balance between loss and runtime. Other structured pruning approaches have been proposed based
on combinatorial optimization Meng et al. (2024), perturbative forward-pass only Dery et al. (2024), and
reduction of the embedding dimension through PCA Ashkboos et al. (2023). Finally, in Gromov et al. (2024)
it has been found that the last Transformer blocks are redundant, hence they can be completely removed with
minor performance drops. The reason behind this phenomenon lies in the similarity between the learnable
representation of consecutive blocks, which turns out to increase when the block depth increases. While all
these approaches can achieve valuable inference speed-ups, the performance of the resulting sparse models
w.r.t. their dense counterparts can be matched only at low sparsity values, such as 20% in Ma et al. (2023)
or 30% in Ashkboos et al. (2023). This somehow limits the applicability of these methods, since in the case
of models with billions of parameters, one may need more aggressive pruning strategies to meet stringent
hardware requirements.

2.2 Unstructured Network Pruning
Differently from structure pruning, unstructured pruning works by removing weights in a scattered (i.e., non-
structured) way. While in this scenario the inference speed-up is limited (although techniques for reordering
weights are available Li et al. (2019); Mishra et al. (2021); Zhou et al. (2021)), the performance w.r.t. the

2

Under review as submission to TMLR

dense model can be preserved also at high sparsity ratios (i.e., above 50%), with the performance at lower
sparsity being almost always completely preserved. The first approach of this kind has been proposed in
Frantar & Alistarh (2023), where weight pruning and reconstruction are combined based on the Hessian
matrix. Even a simple magnitude-based approach turned out to perform well Jaiswal et al. (2024), also
when integrated with information on the neuron activations Sun et al. (2023); Farina et al. (2024). These
approaches compute a score for each weight and then remove the ones with the lower scores for each layer,
with a uniform sparsity across layers.

2.3 Top-Up Algorithms
To improve the performance of unstructured pruning, several top-up algorithms have been devised. These
approaches can be categorized into two distinct groups: methods that minimize the reconstruction error,
keeping the sparsity uniform for each block, and methods that modify the block-wise sparsity of the model,
resulting in non-uniform sparsity distribution across blocks.

The first group firstly sparsifies the model using a pruning algorithm and then, either dynamically Zhang
et al. (2024) or by backpropagation Guo et al. (2024), updates the pruning mask. The second group (to which
our method belongs) modifies the block-wise sparsity (obtained by a given pruning algorithm) based either
on activations’ outliers Yin et al. (2024), Empirical Spectral Distance (ESD) Lu et al. (2024), or allocation
functions in a gradient-free manner Li et al. (2024), while in BESA Xu et al. (2024) gradient information is
used to set layer-wise sparsity using block-wise reconstruction error.

The idea of simply redistributing the layer-wise sparsity is known to be extremely well-performing on Multi-
Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The first approach of this kind,
based on the Erdős–Rényi (ER) model, has been proposed in Mocanu et al. (2018) for MLPs and then
adjusted for CNNs in Evci et al. (2020), while an empirical study about the effect of layer-wise pruning using
different sparsity ratios has been done in Liu et al. (2021). Regarding Transformers (both for vision and
text), the state-of-the-art algorithms Frantar & Alistarh (2023); Sun et al. (2023) have been devised to set
the block-wise sparsity across the Transformer blocks in a uniform way. Later on, OWL Yin et al. (2024),
AlphaPruning Lu et al. (2024), and DSA Li et al. (2024) have been proposed to build upon scoring-based
pruning algorithms, adjusting the block-wise sparsity in a non-uniform way. These approaches improve the
performance of several pruning algorithms, e.g. Frantar & Alistarh (2023); Sun et al. (2023), especially at
sparsity above 60%. On the same line, BESA Xu et al. (2024) allocates layer-wise sparsity across each block’s
layer using gradient information. Recently, modality-wise sparsity distribution has been investigated in the
case of multimodal tasks in Farina et al. (2024); He & Chen (2024).

3 Current limitations of top-up algorithms
We discuss below the three main limitations of the state-of-the-art approaches for redistribution of non-
uniform sparsity in LLMs, namely 1) their need for hyperparameter tuning, 2) their large runtime, and 3)
their block importance metric calculation (hence their block sparsity allocation).

3.1 Need for Hyperparameter Tuning
We analyze the sensitivity of the hyperparameters used by OWL, namely λ and M , and by AlphaPruning,
namely ϵ. Concerning OWL, the first hyperparameter is used to set how much the sparsity can vary across
blocks (i.e., [s − λ, s + λ]) while keeping the overall sparsity fixed as s. The second hyperparameter, M ,
defines the outliers’ threshold: namely, for each block, the number of outliers is computed as the number
of activations that are M times greater than the block’s activations’ mean. For AlphaPruning, instead, a
hyperparameter called ϵ is used and manually tuned to set two tunable hyperparameters (s1, s2) that control
the sparsity across blocks.

We test the sensitivity of OWL and AlphaPruning to their hyperparameters, using three different sparsity
ratios, two LLMs, and Wanda as the underlying pruning algorithm. Fig. 2 displays the perplexity on
WikiText2 of the different hyperparameter settings obtained with OWL (first two rows) and AlphaPruning
(last row); the gray square corresponds to the best a-posteriori hyperparameter selection. It can be seen
that no single hyperparameter value achieves the best performance in all settings, which entails that careful
tuning is required for these approaches to be effective.

3

Under review as submission to TMLR

3.2 Large Runtime

2 4 6 8 10 12
M

102

103

104

Pe
rp

le
xi

ty

Phi-2.7B

2 4 6 8 10 12
M

102

104
LLama-7B

Sparsity Ratio
0.6 0.7 0.8

0.025 0.050 0.075 0.100 0.125 0.150
λ

102

103

104

Pe
rp

le
xi

ty

0.025 0.050 0.075 0.100 0.125 0.150
λ

102

104

0.1 0.2 0.3 0.4 0.5

ε

103

105

Pe
rp

le
xi

ty

0.1 0.2 0.3 0.4 0.5

ε

101

102

103

Figure 2: Perplexity for various hyperparameter set-
tings of OWL (M ,λ) and AlphaPruning (ϵ) using Phi-
2 and LLama-7b for three sparsity ratios. The gray
square corresponds to the hyperparameter values that
lead to the best performance.

Another main limitation of some of the current ap-
proaches for non-uniform distribution is their com-
putational runtime. This holds mainly BESA Xu
et al. (2024) and DSA Li et al. (2024). On LLama-
7B, the first approach, which relies on gradient in-
formation, requires ∼5 hours to find the best non-
uniform distribution configuration. On the other
hand, DSA uses an evolutionary approach to find
the best combination of a set of allocation functions,
requiring ∼12 hours to find the best distribution1.
This high runtime is due to the evaluation of each
sparse model obtained by applying all the possible
combinations of sparsity allocation functions.

3.3 Block Importance Metric
Almost all the top-up algorithms select the block-
wise sparsity w.r.t. the block importance given
by scoring criteria computed either from the dense
model or from the evaluation of the sparse model.
In the first case, the block importance is computed
on the dense models on a block-wise view using ei-
ther outlier information, as in OWL, or the ESD, as
in AlphaPruning, without focusing on how the selected non-uniform sparsity, once applied, could change the
block importance of the successive layers.

Table 1: Properties of state-of-the-art top-up algorithms vs.
NeuronAl. The runtime is expressed as orders of mag-
nitude computed on LLama-7B. For the metrics, we indi-
cate whether they are computed over the dense (D) and/or
sparse (S) models.

Top-Up Hyper. Tuning Runtime (s) Metric
DSnoT Zhang et al. (2024) ✓ 100 Reconstruction Error (D,S)
BESA Xu et al. (2024) ✗ 104 Reconstruction Loss (D,S)
OWL Yin et al. (2024) ✓ 102 Outliers (D)
AlphaPruning Lu et al. (2024) ✓ 103 ESDs (D)
DSA Li et al. (2024) ✗ 104 Perplexity (S)
NeuronAl (Ours) ✗ 102 Neuron Alignment (D,S)

On the other hand, DSA only uses the per-
plexity of the sparse model as the evaluation
metric. The only exception is BESA, which,
similarly to NeuronAl, uses information from
both the dense and the sparse model. However,
it does so using gradient information, which
leads to a high computational runtime. Also,
DSnoT minimizes the reconstruction error us-
ing information from both the dense and sparse
models. However, it only updates each layer’s
binary mask without changing the sparsity dis-
tribution across blocks.

Table 1 summarizes the different properties of the current top-up algorithms and shows how our proposed
approach positions w.r.t. the previously proposed approaches.

4 Methodology
We now describe our proposed NeuronAl.

Preliminaries. Given a dense model D, a pruning algorithm P, and a target sparsity s, unstructured
pruning assigns a saliency score Ψ to each weight w ∈ D and retains the top k = (1 − s)|D| values. This
yields a binary maskM and the pruned model S = D⊙M. Since LLMs are composed of stacked Transformer
blocks (each one denoted as Bi), i.e., sets of linear layers (each one denoted as ℓj

i) that implement the self-
attention mechanism followed by an MLP, the binarization step is usually done uniformly per each layer ℓj

i

Frantar & Alistarh (2023) as:
Mℓj

i = top
k

ℓ
j
i
(Ψℓj

i , Wℓj
i). (1)

1The runtime has been taken from the original papers, where authors used A100 GPUs for BESA, and H800 GPUs for DSA.

4

Under review as submission to TMLR

Overview of NeuronAl. Our proposed NeuronAl is based on two principles: (1) neuron alignment,
which compares internal input activations rather than layer outputs as in Frantar & Alistarh (2023) (see
Appendix A), and (ii) adaptive sparsity reallocation, which removes the need to manually tune the algorithm
hyperparameters. NeuronAl relies on neuron alignment to reassign sparsity in two stages: firstly across
blocks (via vectors sB), then across rows (via vectors sr). Both steps aim to minimize the discrepancy
between the dense and sparse models’ internal input activations, as formalized in Section 4.1. Importantly,
the method requires no weight updates, gradients, or retraining. It simply reuses the scoring function Ψ
from the selected pruning method P and adjusts accordingly the sparsity ratios.

4.1 Neuron Alignment
The rationale behind NeuronAl is to adapt the sparsity distribution by comparing how well the sparse
model preserves the internal representations of the dense one, a concept that we refer to as neuron alignment.
Rather than measuring the discrepancy in layer outputs (as in Frantar & Alistarh (2023)), our method
compares the input activations to each projection matrix in a Transformer block.

Here, we formalize the proposed neuron alignment metric, which relies on the block and row-wise sparsity
allocation. Given D and its sparse version S = D⊙M, obtained via a pruning method P at sparsity ratio s,
we firstly perform forward passes over a calibration set Cλ and collect the activations AD and AS . Then, for
each Transformer block Bi, we extract the input activations to all linear projection layers (i.e., the vectors
aℓj

i such that the corresponding layer computes aℓj
i Wℓj

i during the forward pass). This includes projections
from the attention module (WQ, WK, WV, WO) and the MLP module (Wgate, Wup, Wdown)2.

To make the comparison consistent across layers, we normalize each input activation vector (as aℓj
i /

∑
aℓj

i).
For a given input x ∈ Cλ and projection layer ℓj

i , we define the alignment score as:

neuroal(ℓj
i , x) =

1

|A
ℓ

j
i

D (x)|

∥∥∥∥∥ A
ℓ

j
i

D (x)∑
A

ℓ
j
i

D (x)
−

A
ℓ

j
i

S (x)∑
A

ℓ
j
i

S (x)

∥∥∥∥∥
2

(2)

and define neuron alignment across the whole model as:

A(D,S) =
∑

x∈Cλ

∑
Bi

∑
ℓj

i
∈Bi

neuroal(ℓj
i , x). (3)

4.1.1 Block-wise Sparsity Ratio
First, we optimize sparsity at the granularity of transformer blocks. Given a set of candidate sparsity
window λset, we generate multiple vectors sB

set = {sB
λ1

, sB
λ2

, . . . , sB
λ|λset|

}, that define how the target sparsity
s is distributed across blocks using a linear schedule in [s− λk, s + λk].

For each vector sB
λk

, we apply pruning at the block level using the base pruning method P, and compute the
alignment score from Eq. 3. We then select the best configuration as:

sB
best = arg min

sλ∈{sB
λ

| λ∈λset}
A

(
D,D ⊙ topsλ

(Ψ,D)
)

(4)

This sparsity configuration is then applied to the dense model to obtain SB that has the best alignment
across blocks. This step captures large-scale variations in block importance without modifying individual
neurons.

4.1.2 Row-Wise Sparsity Ratio
We then redistribute the sparsity ratios across the rows of each projection matrix. For each layer ℓj

i with
weight matrix Wℓj

i ∈ Rr×m, we generate a set of row-wise sparsity vectors sr
λk

using a linear schedule in
[sBi
− λk, sBi

+ λk], with λk ∈ λset. Different from the block step, the initial sparsity of layer j is given from

2The input activations aℓ
j
i used for calculating the neuron alignment are either taken right after the LayerNorm (for WQ,

WK, WV, Wgate, and Wup), or from the intermediate values within each sub-block (for WO, and Wdown).

5

Under review as submission to TMLR

its parent block i from the sparsified model SB. Importantly, each sr
λk

defines a vector of row-wise sparsity
values that is inversely proportional to the neuron alignment of each corresponding row, i.e., the rows that
deviate more from the dense model are set as less sparse.

For each vector in set sr
set = {sr

λ1
, . . . , sr

λ|λset|
}, we prune rows using the original saliency scores and compute

the neuron alignment score from Eq. 3, applied over SB. We then select the configuration that minimizes
the neuron alignment metric:

sr
best = arg min

sr
λ

∈{sr
λ

|λ∈λset}
A

(
D,SB ⊙ topsr

λ
(Ψ,D)

)
(5)

The full procedure, composed of block-wise and row-wise sparsity reallocation, is shown in Algorithm 1.

Input: D,P, s, Cλ, λset

M← P(D, s);
S ← D ⊙M AD ← D(Cλ)
y
(
sB

set

)∗ ← GetBestNeuroAL(D,S, λset, Cλ, AD)
SB ← D ⊙ top(sB

set)∗(Ψ,D);
(sr

set)
∗ ← GetBestNeuroAL(D,SB, λset, Cλ, AD)

Sfinal ← D ⊙ top(sr
set)∗(Ψ,D);

Algorithm 1: NeuronAl procedure

Function GetBestNeuroAL(D,S, λset, Cλ, AD):
s∗ ← ∅;
neur∗

al ←∞;
foreach λ ∈ λset do

sλ ← GetDist(s, λ);
AS ← (D ⊙ topsλ

(Ψ,D))(Cλ);
neural ← NeuroAL(AD, AS , sλ);
if neural < neur∗

al then
s∗ ← sλ;
neur∗

al ← neural;
end

end
return s∗;

Figure 3: Left: overall NeuronAl top-up pruning procedure. Right: GetBestNeuroAL sub-routine used
in both block- and row-selection stages.

4.2 Non-Uniform Block-Wise Sparsity Distribution
The sparsity values for each block in sB

λk
have been set such as given the sparsity window [s−λ, s + λ], these

schedules work by redistributing the sparsity across blocks in a monotonically linear way (i.e., the sparsity
of block i is always larger than the sparsity of layer i− 1,∀i > 1).

Table 2: Performance improvement w.r.t. uniform distri-
bution averaged across three different datasets (WikiText2,
C4, and PTB) using Wanda as pruning algorithm.

Sparsity Model
Schedule

OWL Exp Log Linear

60%
Phi-2.7B +3.4% +2.4% +7.8% +7.7%

LLama-1 7B +16.5% +3.4% +15.7% +18.1%

70%
Phi-2.7B +45.8% +47.7% +44.9% +52.5%

LLama-1 7B +66.8% +28.2% +53.9% +63.5%

80%
Phi-2.7B +87.8% +89.3% +55.7% +82.8%

LLama-1 7B +81.5% +63.6% -4.4% +68.1%
Mean +50.3% +39.1% +28.9% +48.8%

We select this sparsity schedule for three main
reasons: (1) as shown below such a straight-
forward sparsity schedule is already able to
achieve similar results w.r.t. state-of-the art
approaches, (2) to align with the latest discov-
ering in the literature of structured pruning
where is consistently demonstrate how deeper
blocks are redundant and can be removed
with marginal performance degradation Gro-
mov et al. (2024); Men et al. (2024); Kim et al.
(2024), and (3) to avoid having another sub-
routine to select the best sparsity schedule,
that, if linked with the block-wise and row-
wise λ selection, would have lead to have a
combinatorial search space.

We motivated the choice of a linear schedule by testing three straightforward non-uniform sparsity schedules
(namely linear, exponential, and logarithmic), which do not require any block scoring for sparsity allocation.

Table 2 displays the improvement, w.r.t. uniform distribution (averaged across three different Language
Modeling datasets, namely WikiText2, C4, PTB), achieved by the three sparsity schedules using Wanda as

6

Under review as submission to TMLR

Table 3: Perplexity on the three Language Modeling datasets computed over five different LLMs for four
different top-up algorithms (Uniform, DSnoT, OWL, and NeuronAl) on three pruning algorithms (Mag-
nitude, multiflow, and Wanda) at 70% sparsity.

Algorithm Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral 7B OPT 6.7B

WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB
Dense 9.7 14.1 18.2 5.7 7.3 10.1 5.5 7.3 32.9 5.3 8.4 36.6 10.9 12.7 15.8

Magnitude

Uniform 764.6 384.4 983.9 2.53e4 2.25e4 3.26e4 1.42e5 1.02e4 2.02e6 221.9 232.9 748.7 1.00e4 5.39e3 6.54e3
DSnoT 539.0 258.0 656.2 1.02e7 2.77e6 4.99e7 1.31e8 2.90e7 2.25e8 192.7 189.9 566.2 6.16e3 3.93e3 4.36e3
OWL 419.6 242.7 358.5 1.20e4 6.58e3 5.39e4 3.39e5 1.24e4 3.28e6 111.7 124.2 545.5 1.57e4 8.48e3 9.67e3
AlphaPruning 2.52e4 1.60e4 2.34e4 424.9 391.5 5.08e4 3.37e3 3.60e3 1.73e5 91.3 106.5 717.1 1.22e4 7.22e3 7.51e3
NeuronAl 281.7 180.9 321.1 231.8 219.9 4.46e3 155.8 264.8 2.61e3 46.5 43.1 612.8 2.11e4 1.07e4 1.09e4

multiflow

Uniform 388.4 298.8 610.8 80.9 71.9 172.4 60.0 58.8 1.26e3 9.37e2 6.56e2 2.06e3 9.44e2 1.25e3 843.1
DSnoT 325.5 261.9 328.8 67.6 65.0 114.7 66.6 75.8 6.89e2 57.4 63.3 2.65e2 241.8 153.3 263.9
OWL 197.9 141.3 293.9 25.1 25.8 78.9 29.2 31.0 5.47e2 329.0 7.64e2 1.72e3 240.9 495.6 337.8
AlphaPruning 1.22e5 8.99e4 9.52e4 32.2 35.2 103.8 31.3 34.0 287.3 230.8 292.8 1.72e3 133.8 63.7 153.9
NeuronAl 105.4 87.1 179.5 20.7 21.2 46.2 22.1 23.9 265.5 202.5 334.7 1.41e3 209.7 83.7 202.1

Wanda

Uniform 227.6 182.7 346.2 85.1 86.2 157.0 78.0 81.0 599.3 60.7 73.6 298.3 157.5 260.1 209.2
DSnoT 221.9 172.6 257.6 72.9 76.0 121.0 76.1 85.7 491.8 81.3 79.9 304.8 191.4 173.3 182.6
OWL 132.7 116.2 183.7 24.6 27.3 61.2 30.5 36.6 333.7 41.0 51.8 253.5 54.4 69.7 100.7
AlphaPruning 4.22e4 3.05e4 2.23e4 26.9 31.1 77.4 32.0 37.7 273.8 39.4 49.8 286.8 93.8 53.7 120.9
NeuronAl 88.3 77.7 129.5 21.5 23.2 44.2 24.0 27.4 207.0 28.8 33.7 232.0 172.6 84.0 182.7

pruning algorithm with λ = 0.08. The results highlight how non-uniform sparsity schedules, without any
block-based scoring, lead to a performance improvement close to OWL’s. Overall, the linear schedule turns
out to be the most reliable one since it does not show oscillations in performance across the different sparsity
ratios (while this happens for the logarithmic and exponential schedules).

5 Experiments

We apply our proposed NeuronAl to different state-of-the-art pruning algorithms tailored for LLMs. Specif-
ically, we test how it compares in terms of performance over Language Modeling datasets and Zero-Shot
tasks w.r.t. the most recent top-up algorithms for pruning. We also perform scalability and sensitivity
analyses to show the effectiveness of our NeuronAl.

5.1 Experimental Setup

Language Modeling Datasets To measure the models’ perplexity on Language Modeling datasets, we use
the following three datasets: (1) WikiText2 Merity et al. (2017), (2) Colossal Clean Common Crawl (C4)
Raffel et al. (2020), and (3) Penn Treebank (PTB).

Zero-Shot Tasks To assess more thoroughly how the different pruning algorithms affect the models’ capa-
bilities, we employ the following 7 datasets: (1) Recognizing Textual Entailment (RTE) Dagan et al. (2006);
Bar Haim et al. (2006); Giampiccolo et al. (2007); Bentivogli et al. (2009) , (2) WinoGrande Sakaguchi et al.
(2021), (3) BoolQ Clark et al. (2019), (4) HellaSwag Zellers et al. (2019), (5) ARC-e Clark et al. (2018), (6)
ARC-c Clark et al. (2018), (7) OBQA Mihaylov et al. (2018)

Models and Sparsity Since one of the distinctive features of NeuronAl is its adaptability w.r.t. sparsity
and models, we test four different LLM families, namely LLama-7B (both V1 and V2) Touvron et al.
(2023a;b), Phi-2, Mistral-7B Jiang et al. (2023), and OPT-6.7B Zhang et al. (2022). To scale up the model
size, we also test LLama-13B (both V1 and V2) and LLama-70B (V2). In the paper, we mainly present results
at 70% sparsity, for fair comparisons with Yin et al. (2024); Lu et al. (2024). To assess the generalization to
different sparsity ratios, we also include 60% and 80% sparsity in our experiments, see Appendix D.

Baselines As pruning algorithms, we test Magnitude, multiflow Farina et al. (2024), and Wanda Sun
et al. (2023). All are tested with four different top-up algorithms (besides ours): (1) Uniform distribution,
(2) DsnoT Zhang et al. (2024) (dynamic training-free uniform distribution with mask update), (3) OWL
Yin et al. (2024) (block-wise training-free non-uniform distribution based on outliers scores) and (4) Al-
phaPruning Lu et al. (2024) (block-wise training-free non-uniform distribution based on ESD)3. Further
details on the setup are in Appendix C.

3BESA and DSA are not included in these experiments due their large runtime. Testing them on all combinations of sparsities
and pruning algorithms is unfeasible with our GPU resources.

7

Under review as submission to TMLR

Table 4: Accuracy on the seven Zero-Shot Tasks using Wanda as pruning algorithm.

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B
Dense 64.35 59.97 59.71 64.21 51.52

60%

Uniform 52.36 50.39 49.97 51.03 46.24
DSnoT 49.36 49.12 48.83 50.51 45.75
OWL 51.48 50.93 51.68 52.49 46.05
AlphaPruning 43.14 51.08 51.21 49.87 44.50
NeuronAl 52.04 51.41 51.99 52.09 46.10

70%

Uniform 39.89 36.90 34.37 36.85 36.31
DSnoT 38.76 36.26 34.09 36.53 36.35
OWL 41.20 43.31 40.57 38.77 38.77
AlphaPruning 35.02 44.08 42.03 39.05 39.53
NeuronAl 41.87 44.57 43.10 41.56 38.86

80%

Uniform 36.21 31.66 31.81 32.48 33.34
DSnoT 32.73 31.78 32.27 32.14 35.12
OWL 36.26 31.43 32.48 32.02 32.10
AlphaPruning 30.74 35.34 32.09 32.29 32.16
NeuronAl 37.36 36.31 32.74 33.08 33.05

5.2 Experimental Evaluation
In this section, we show the numerical results of our proposed NeuronAl w.r.t. the baselines for Language
Modeling and Zero-Shot tasks.

5.2.1 Language Modeling and Zero-shot Tasks
Concerning the Language Modeling datasets, the numerical results in terms of perplexity computed over the
three Language Modeling datasets at 70% sparsity are shown in Table 3. It can be seen how NeuronAl is
able in almost all cases to outperform all the other baselines by a large margin. In no case does NeuronAl
perform worse w.r.t. the uniform distribution. The only model for which NeuronAl is not the best top-
up algorithm for all pruning algorithms is OPT. In all other cases, NeuronAl outperforms OWL and
AlphaPruning for all models and pruning algorithms. The results at 60% and 80% sparsity shown in Tables
13-14 in the Appendix confirm this trend.

As for the Zero-Shot tasks, the numerical results are shown in Table 4-54. We display only the mean across
the seven Zero-Shot tasks, while the results for each task are available in 15-17 in the Appendix. Again,
NeuronAl turns out to outperform in the majority of cases all the baselines. In 20 cases out of 30 (w.r.t.
the mean accuracy across all tasks), NeuronAl is the one that reaches the best performance, and in 5 cases,
the second best.

Table 5: Accuracy on the seven Zero-Shot Tasks using multiflow as pruning algorithm.

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B
Dense 64.35 59.97 59.71 64.21 51.52

60%

Uniform 53.34 49.60 48.76 32.51 45.76
DSnoT 48.90 49.57 49.62 51.93 45.75
OWL 53.04 49.70 49.12 34.70 46.15
AlphaPruning 40.25 49.13 48.95 34.97 45.01
NeuronAl 53.77 50.57 51.08 34.07 45.51

70%

Uniform 38.40 38.51 36.98 32.76 33.91
DSnoT 38.76 37.51 36.25 37.83 36.33
OWL 42.46 43.23 40.60 32.63 35.69
AlphaPruning 31.81 44.07 41.50 31.95 37.83
NeuronAl 43.18 45.93 42.87 32.63 39.34

80%

Uniform 34.32 32.10 32.63 31.98 32.34
DSnoT 32.20 31.45 32.23 32.18 34.84
OWL 35.99 33.25 32.19 32.04 32.67
AlphaPruning 30.72 36.42 32.30 32.77 32.65
NeuronAl 34.86 37.61 32.99 32.32 36.63

4Magnitude is omitted from these tables, due to space constraints. Results are available in Table 18-20 in the Appendix.

8

Under review as submission to TMLR

5.3 Aggregate comparison of top-up strategies
Table 6: Summary of accuracy retention (% w.r.t. dense)
and perplexity degradation factor (× dense) at 60%, 70%,
and 80% sparsity.

Acc. retention (%) ↑ PPL factor (×)↓

Top-Up 60 % 70 % 80 % 60 % 70 % 80 %

Uniform 79.6 61.0 55.0 9.0 62.2 786.7
DSnoT 81.8 61.6 54.7 7.0 96.9 746.3
OWL 80.7 66.2 55.2 6.1 35.5 392.4
AlphaPruning 76.2 64.3 54.7 8.3 66.0 505.7
NeuroAL 81.1 69.0 58.0 4.1 14.6 201.8

While Tables 3-4-5 already show how Neu-
ronAl consistently outperforms the baselines,
one of the main strengths of our proposed
method lies in its ability to adapt to any
sparsity, model, pruning algorithm, and tested
dataset. For showing that, we design two
metrics that aggregate, for each tested top-
up algorithm, the results at sparsity ratios
s ∈ {60, 70, 80}% by calculating the geometric
mean of the results of different models (LLM),
pruning methods (P) and datasets (D) at each
sparsity. The two metrics are: (1) the accuracy
retention, defined as:

AccRet(s) =
(∏

m∈LLM

∏
p∈P

Accs,p(m)
Accdense(m)

)1/(|LLM| |P|)
(6)

and (2) the perplexity factor, defined as:

PPLFac(s) =
(∏

m∈LLM

∏
d∈D

∏
p∈P

PPLs,p(m, d)
PPLdense(m, d)

)1/(|LLM| |D| |P|)
. (7)

The data used to compute the values shown in Table 6 are as follows. For the accuracy retention, we used
the average performance across zero-shot tasks and took the data from tables (4 and 5); for the perplexity
factor we took the results of perplexities from tables (13, 3, and 14).

The results clearly show how, when aggregating all the performance across pruning methods, datasets, and
language models (in the order of 7B scale), NeuronAl always achieves better performance w.r.t. the top-up
baselines. These results, apart from providing additional evidence about the robustness of our approach,
also highlight its adaptability as one of the main strengths.

5.3.1 Scalability Study
Table 7: Summary of top-up perplexity
degradation factor (× dense) at 70% and
80% sparsity.

PPL factor ↓
Top-Up 70% 80%
Uniform 13.1 219.4
DSnoT 6.3 229.6
OWL 6.0 82.8
AlphaPruning 3.8 35.9
NeuroAL 3.6 47.0

Up to now, we only tested NeuronAl on at most 7B models;
to assess if the NeuronAl performance scales to bigger mod-
els, we apply it to LLama-13B (V1 and V2) and LLama-70B
(V2) on the Language Modeling datasets. The results are avail-
able in Table 8. In this experimental scenario, NeuronAl and
AlphaPruning both provide advantages. In fact, our proposed
approach provides better performance over the 13B models,
while AlphaPruning over the 70B case. However, it is worth
mentioning that, in contrast with AlphaPruning, which in the
70B case requires hours (∼10h over an A100 80GB) for prun-
ing, NeuronAl requires ≤1h. Moreover, also in this case we
provide, in Table 7, the aggregated results using the perplexity
factor defined in Sec. 5.3. The results clearly show that, on
average, the robustness of NeuronAl is in line with AlphaPruning, even when scaling up the LLM size.

5.4 Efficiency Analysis
In this section, we analyze the efficiency of NeuronAl in terms of pruning runtime and inference speed-up.

5.4.1 Runtime vs. Perplexity
NeuronAl provides a good trade-off between performance and runtime. In Table 9, we show for all baselines
(here we also include BESA and DSA), the runtime in seconds required to obtain the non-uniform sparsity
distribution for the given model (in this case LLama-7B V1) as well as the performance computed as the

9

Under review as submission to TMLR

Table 8: Perplexity of LLaMA models (v1 of 13B and v2 of both 13B and 70B) on the three language-modeling
datasets at 70% (top) and 80% sparsity (bottom).

Algorithm Top-Up
LLaMA-1 13B LLaMA-2 13B LLaMA-2 70B

WikiText-2 C4 PTB WikiText-2 C4 PTB WikiText-2 C4 PTB
Dense 5.09 6.80 28.11 4.88 6.73 48.82 3.32 5.71 20.76

multiflow

Uniform 49.4 45.3 277.8 144.3 112.4 623.2 11.59 15.09 216.34
DSnoT 46.2 48.9 240.4 45.8 54.2 611.5 9.49 13.22 86.17
OWL 16.6 17.7 132.2 54.0 56.2 426.6 9.32 12.13 85.16
AlphaPruning 13.8 16.1 132.6 26.9 32.6 337.9 7.98 10.91 47.20
NeuronAl 13.8 15.6 101.7 20.1 23.1 318.9 9.03 11.75 120.84

Wanda

Uniform 54.4 55.3 309.2 45.7 56.2 571.0 10.59 14.17 88.01
DSnoT 47.8 54.2 248.6 46.6 57.7 555.5 10.14 13.97 74.87
OWL 16.3 18.9 147.6 18.0 21.8 315.1 9.01 11.92 54.96
AlphaPruning 14.6 17.3 126.7 15.2 18.8 271.1 7.82 10.78 39.21
NeuronAl 14.3 16.6 97.9 16.5 19.3 237.6 8.46 11.18 46.66

multiflow

Uniform 3.71e3 1.70e3 3.59e3 4.48e3 2.41e3 5.21e3 266.20 175.07 956.49
DSnoT 5.37e3 2.86e3 6.29e3 1.94e3 1.67e3 5.28e3 189.76 132.22 698.30
OWL 813.8 375.7 2.14e3 1.80e3 1.01e3 4.39e3 84.52 74.02 727.40
AlphaPruning 210.7 147.8 1.19e3 458.1 279.7 1.93e3 33.69 37.23 241.23
NeuronAl 126.8 123.7 901.6 1.60e3 864.1 2.96e3 52.73 44.07 747.53

Wanda

Uniform 3.48e3 1.96e3 3.57e3 1.12e3 870.5 5.55e3 151.80 122.17 606.57
DSnoT 4.37e4 2.44e4 3.22e4 4.44e3 3.96e3 4.09e3 193.28 137.61 620.97
OWL 761.6 368.1 1.93e3 248.0 204.2 2.03e3 56.07 59.57 368.97
AlphaPruning 209.6 148.6 973.3 165.1 158.2 1.53e3 31.10 36.19 162.65
NeuronAl 156.4 132.4 1.47e3 185.7 143.1 1.25e3 47.72 40.28 212.02

perplexity over WikiText2. The results confirm how NeuronAl can achieve, in 3 out of 4 cases, the best
results in terms of perplexity while maintaining a low computational budget. In terms of runtime, the
only comparable methods are DSnoT and OWL, compared to which, however, NeuronAl achieves better
performance. On the other hand, DSA is the closest in terms of perplexity to NeuronAl, while requiring four
orders of magnitude more time to obtain the best sparsity distribution. Overall, the performance-runtime
trade-off of NeuronAl improves when increasing the sparsity ratio.

Table 9: Runtime (seconds) vs. perplexity trade-off comparison among different top-up algorithms over
LLama-7B pruned at different sparsity ratios using Wanda.

Metric
Top-up pruning algorithms

Uniform DsNoT OWL BESA DSA AlphaPruning NeuronAl
Runtime - 4.5s 73.3s ∼ 1.8 ×104 s ∼ 4.3 ×104 s 1479.4s 237.1s
Perplexity @ 65% 20.9 19.1 13.1 18.5 12.6 14.0 12.8
Perplexity @ 70% 85.1 72.9 24.6 42.6 22.6 26.9 20.7
Perplexity @ 75% 927.4 646.7 152.5 257.9 103.3 110.2 61.2
Perplexity @ 80% 5.22e3 3.71e3 986.5 2.21e3 736.81 768.4 302.8

5.4.2 Inference Speed-up
Table 10: End-to-end inference speed-up (throughput gain) for
Phi-2 and LLaMA2-7B (V1) at different sparsity ratios. Through-
put is measured in tokens/sec.

Model Metric Dense 20% 40% 60% 80%

Phi-2 Throughput ↑ (tokens/s) 0.1306 0.1307 0.1325 0.1488 0.1770
Speed-up ↑ 1.00× 1.00× 1.01× 1.14× 1.35×

LLaMA2-7B Throughput ↑ (tokens/s) 0.1498 0.1506 0.1554 0.1714 0.2309
Speed-up ↑ 1.00× 1.01× 1.04× 1.14× 1.54×

Here, we evaluate the speed-up accelera-
tion of the sparse models obtained with
NeuronAl computed using DeepSparse
NeuralMagic (2021). The evaluation con-
sists of the end-to-end token generation
and has been done over an Intel i9-
10980XE CPU using 18 cores. Table 10
shows the throughput, measured in terms
of tokens generated per second over Phi-
2, using a sequence length of 2024, and LLama-7B (V2), using a sequence length of 1024, with four different
sparsity ratios, along with the speed-up w.r.t. the generation time required by the dense model.

10

Under review as submission to TMLR

5.5 Ablation Studies
In this section, we provide a set of ablation studies that further show the robustness of our proposed method.

5.5.1 NeuronAl λ Selection
In this section, we report an analysis of the ability of NeuronAl to pick the best λ parameters (i.e., the
parameters for which the performance is the best one, hence the lowest value if computed over perplexity).
To do this, we evaluate NeuronAl for all the λ parameters (in the block-only scenario to simplify the
visualization of results) over the three Language Modeling datasets. Fig. 4 reports the perplexity at 70%
sparsity across different values of λ (black dots connected by solid lines), while the dots highlighted in
orange indicate the perplexity achieved with the λ value selected by NeuronAl. These results highlight
how NeuronAl, in the majority of the cases, can pick the best value of λ both with data knowledge, as in
the C4 dataset (from which the calibration data is sampled), as well as on unseen datasets such as WikiText2
and PTB. Fig.s 6-7 in the Appendix show the results at 60%-80% sparsity.

0.00 0.05 0.10 0.15 0.20 0.25
λ

100

150

200

250

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

90

120

150

180

Phi-2.7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

180

240

300

360

PTB

0.00 0.05 0.10 0.15 0.20 0.25
λ

20

40

60

80

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

20

40

60

80

LLama-1 7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

40

80

120

160
PTB

0.00 0.05 0.10 0.15 0.20 0.25
λ

30

40

50

60

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

45

60

75

Mistral-7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

210

240

270

300
PTB

NEUROAL Uniform Rec. Error

Figure 4: Perplexity over different values of λ at 70% sparsity. The orange dot indicates the value selected
by NeuronAl using neuron alignment. The green dot indicates the value selected by NeuronAl using the
reconstruction error rather than the neuron alignment (see Sec. 5.5.2).

5.5.2 NeuronAl vs. Reconstruction Error
Table 11: Perplexity of NeuronAl vs.
Rec-Error across three sparsity ratios and
four LLMs.

Model Top-Up 60% 70% 80%

LLaMA-1 7B Rec-Error 10.78 79.40 3.29e3
NeuroAL 9.59 21.53 302.82

LLaMA-2 7B Rec-Error 10.96 67.25 2.32e3
NeuroAL 9.38 24.05 557.17

Phi-2 Rec-Error 24.21 202.73 1.042e4
NeuroAL 25.26 88.32 2.49e3

Mistral 7B Rec-Error 10.95 56.07 290.73
NeuroAL 9.94 28.78 249.47

Our proposed approach is based on the activation alignment,
defined in Eq.s 2-3. In Appendix A, we provide a detailed com-
parison of the formal difference between the definition of neu-
ron alignment and that of Reconstruction Error (Rec-Error)
Frantar & Alistarh (2023). In this section, we demonstrate,
empirically, how such a difference translates into an improved
performance of neuron alignment w.r.t. Rec-Error. To do so,
we conduct an ablation study of NeuronAl where the best
λ for the block and row cases is selected based on the values
that minimize the Rec-Error rather than the neuron alignment.
Table 11 shows the results, in terms of perplexity over Wiki-
Text2, of NeuronAl for the standard case with neuron align-
ment and the setting based on Rec-Error. As clearly visible,
neuron alignment always leads to better performance. In addition, we highlight in Figure 4 the λ value
(for the block-only case) selected using Rec-Error. As displayed in the figure, while NeuronAl picks the λ
that minimizes the neuron alignment, which in this case correlates with the lower (hence better) perplexity
performance, Rec-Error does not provide the same ability.

5.5.3 Sensitivity to Calibration Data
Since NeuronAl works uses a calibration set, we test its sensitivity on the calibration settings in terms of
seed, data source, and size. The results in Table 12 show the mean and standard deviation of perplexity at
70% sparsity over the three Language Modeling datasets for different seeds and when using different datasets
to extract the calibration data. Furthermore, the results in Fig. 5 report the perplexity at 70% sparsity
over the three Language Modeling datasets when changing the number of calibration samples (using C4 as
calibration source and 0 as seed).

Overall, it can be seen that our method is fairly robust w.r.t. the calibration source, seeds, and number
of samples. The only exception is the OPT model, where the sensitivity to the calibration data turns out
to be higher. This sensitivity analysis reveals a possible explanation for the results presented in Sec. 5.2,

11

Under review as submission to TMLR

Table 12: Perplexity (avg. ± std. dev.) achieved when using NeuronAl with different calibration data
seeds (top), and when using different datasets as the source for the calibration data (bottom) on the three
Language Modeling datasets at 70% sparsity.

Calibration
source(s), seed(s) Dataset

Model
Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

C4,
{0, 16, 46}

WikiText2 86.7 ± 1.6 22.7 ± 2.3 23.7 ± 0.3 31.3 ± 4.1 105.5 ± 60.7
C4 75.8 ± 1.7 24.3 ± 1.6 27.3 ± 0.3 35.3 ± 2.4 64.9 ± 16.6
PTB 136.5 ± 11.8 46.8 ± 4.6 201.0 ± 5.3 239.5 ± 6.5 122.4 ± 53.7

{WikiText2, C4, PTB},
0

WikiText2 91.8 ± 4.7 20.7 ± 0.9 25.5 ± 4.1 30.1 ± 5.3 126.5 ± 70.3
C4 80.1 ± 2.9 23.7 ± 0.4 30.2 ± 4.2 36.3 ± 3.1 133.9 ± 120.0
PTB 139.5 ± 10.6 41.7 ± 3.8 215.5 ± 19.3 239.5 ± 6.9 165.2 ± 93.7

where our proposed approach consistently outperformed the baselines over all models and tasks, except for
the OPT family.

1 2 4 8 16
Number of Samples (|Cλ|)

50

100

150

200

250

Pe
rp

le
xi

ty

WikiText2

1 2 4 8 16
Number of Samples (|Cλ|)

0

100

200

300

400

500
C4

1 2 4 8 16
Number of Samples (|Cλ|)

100

200

300

PTB

Phi-2.7B Mistral-7B Llama-1 7B Llama-2 7B OPT-6.7B

Figure 5: Perplexity over different values of |Cλ| (size of the calibration data) when using NeuronAl on
the three Language Modeling datasets at 70% sparsity.

6 Conclusion and Limitations
In this paper, we proposed NeuronAl, a new approach to prune LLMs based on the neuron alignment
between sparse and dense activations. The main novelty of our approach is that it exploits information
from both the dense and the sparse models while also being adaptive since it is designed to automatically
select the best hyperparameters for a given model, pruning algorithm, and target sparsity. Throughout
extensive experiments, we showed how our approach outperforms, in most cases, the latest state-of-the-art
methods both on Language Modeling datasets and Zero-Shot tasks, with different LLM families and sparsity
ratios, while requiring minimal time overhead w.r.t. the base pruning algorithm applied. We also included
an extensive sensitivity analysis to show the robustness of our approach to the calibration data, and its
capability to select λ, as well as a runtime comparison with the most recent competitors.

The present version of NeuronAl has two main limitations. The first one derives from the algorithm setup.
In fact, NeuronAl requires selecting the size of λset and Cλ, both affecting the computational cost of the
forward step. In order to alleviate this limitation and provide a fair comparison w.r.t. the base pruning
methods and the top-up baselines, we set |Cλ| = 8 (the closest power of 2 to |C|/|λset|), so that NeuronAl
incurs only two extra forward passes compared to the base methods, and one more pass than OWL Yin et al.
(2024) and AlphaPruning Lu et al. (2024). In Appendix B, we analyze the NeuronAl complexity w.r.t.
λset and Cλ. The second limitation (which should be noted, however, to be common to all top-up pruning
algorithms), is the inability to make use of optimized semi-structured sparsity inference implementations
(e.g, the NVIDIA N:M sparsity Pool (2020)). In fact, for a given sparsity, NeuronAl, as well as OWL
Yin et al. (2024), AlphaPruning Lu et al. (2024), and DSA Li et al. (2024), produce customized sparsity
constraints for each layer in a block. Therefore, these semi-structured sparsity implementations cannot be
employed as they often require continuity in the sparsity (N:M) across all matrices in the model.

12

Under review as submission to TMLR

References
Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.

SliceGPT: Compress Large Language Models by Deleting Rows and Columns. In International Conference
on Learning Representations, 2023.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.
The second PASCAL recognising textual entailment challenge, 2006.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The fifth
PASCAL recognizing textual entailment challenge. In Text Analysis Conference, 2009.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge. arXiv
preprint arXiv:1803.05457v1, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment chal-
lenge. In Machine learning challenges. Evaluating predictive uncertainty, Visual object classification, and
Recognizing textual entailment, pp. 177–190. Springer, 2006.

Lucio Dery, Steven Kolawole, Jean-Francois Kagey, Virginia Smith, Graham Neubig, and Ameet Tal-
walkar. Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes. arXiv preprint
arXiv:2402.05406, 2024.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pp. 2943–2952. PMLR, 2020.

Matteo Farina, Massimiliano Mancini, Elia Cunegatti, Gaowen Liu, Giovanni Iacca, and Elisa Ricci. MUL-
TIFLOW: Shifting Towards Task-Agnostic Vision-Language Pruning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 16185–16195, 2024.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. In International Conference on Learning Representations, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning Neural Networks at
Initialization: Why Are We Missing the Mark? In International Conference on Learning Representations,
2020.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing textual
entailment challenge. In ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 1–9.
Association for Computational Linguistics, 2007.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The unrea-
sonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Song Guo, Fan Wu, Lei Zhang, Xiawu Zheng, Shengchuan Zhang, Fei Chao, Yiyu Shi, and Rongrong Ji.
EBFT: Effective and Block-Wise Fine-Tuning for Sparse LLMs. arXiv preprint arXiv:2402.12419, 2024.

13

Under review as submission to TMLR

Shwai He and Tianlong Chen. RESSA: Repair Sparse Vision-Language Models via Sparse Cross-Modality
Adaptation. arXiv preprint arXiv:2404.02424, 2024.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential sparsity in
large pre-trained models: The weights that matter. Advances in Neural Information Processing Systems,
36, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7B.
arXiv preprint arXiv:2310.06825, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. Shortened LLaMA: A Simple Depth Pruning for Large Language Models. ICLR Workshop on
Mathematical and Empirical Understanding of Foundation Models (ME-FoMo), 2024.

Eldar Kurtić, Elias Frantar, and Dan Alistarh. ZipLM: Inference-Aware Structured Pruning of Language
Models. Advances in Neural Information Processing Systems, 36, 2024.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-Shot Network Pruning based on
Connection Sensitivity. In International Conference on Learning Representations, 2019.

Jiajia Li, Bora Uçar, Ümit V Çatalyürek, Jimeng Sun, Kevin Barker, and Richard Vuduc. Efficient and
effective sparse tensor reordering. In ACM International Conference on Supercomputing, pp. 227–237,
2019.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu, Xiaowen
Chu, and Yike Guo. Discovering Sparsity Allocation for Layer-wise Pruning of Large Language Models.
In Advances in Neural Information Processing Systems, 2024.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, and
Mykola Pechenizkiy. The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive
Baseline for Sparse Training. In International Conference on Learning Representations, 2021.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W. Mahoney, and Yaoqing Yang. Al-
phaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large
Language Models. In Advances in Neural Information Processing Systems, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large language
models. Advances in Neural Information Processing Systems, 36, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. ShortGPT: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Xiang Meng, Shibal Ibrahim, Kayhan Behdin, Hussein Hazimeh, Natalia Ponomareva, and Rahul Mazumder.
OSSCAR: One-Shot Structured Pruning in Vision and Language Models with Combinatorial Optimization.
In International Conference on Machine Learning, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture Models. In
International Conference on Learning Representations, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a Suit of Armor Conduct Electricity?
A New Dataset for Open Book Question Answering. In Conference on Empirical Methods in Natural
Language Processing, pp. 2381–2391, 2018.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko
Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via large pre-trained
language models: A survey. ACM Computing Surveys, 56(2):1–40, 2023.

14

Under review as submission to TMLR

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378,
2021.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and An-
tonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by
network science. Nature Communications, 9(1):2383, 2018.

NeuralMagic. DeepSparse Inference Engine. https://github.com/neuralmagic/deepsparse, 2021.
GitHub repository.

Jeff Pool. Accelerating Sparsity in the NVIDIA Ampere Architecture, 2020. GTC 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, and Jason D Lee. Sanity-
checking pruning methods: Random tickets can win the jackpot. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. In International Conference on Learning Representations, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive Activations in Large Language Models.
In Conference on Language Modeling, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023b.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking Winning Tickets Before Training by Preserving
Gradient Flow. In International Conference on Learning Representations, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, and
Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient sparsity allocation.
In International Conference on Learning Representations, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR
JAISWAL, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Out-
lier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high sparsity. In
International Conference on Machine Learning. PMLR, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a Machine
Really Finish Your Sentence? In Annual Meeting of the Association for Computational Linguistics, pp.
4791–4800, 2019.

15

https://github.com/neuralmagic/deepsparse

Under review as submission to TMLR

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer Language Models. arXiv
preprint arXiv:2205.01068, 2022.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,
and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse LLMs. In International
Conference on Learning Representations, 2024.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch. In International Conference
on Learning Representations, 2021.

16

Under review as submission to TMLR

A Comparison with Reconstruction Error-Based Pruning
Here, we discuss in detail the main difference between our proposed neuron alignment metric and the well-
established reconstruction error Frantar & Alistarh (2023). Reconstruction error Frantar & Alistarh (2023);
Guo et al. (2024); Xu et al. (2024); Zhang et al. (2024) relies on minimizing the L2-norm difference between
the outputs of the dense and sparse models at the layer level, following the formula:

min
Mℓ

∥∥WℓXℓ − (Mℓ ⊙Wℓ)Xℓ
∥∥2

2 , (8)

where Wℓ ∈ Rdout×din is the weight matrix of layer ℓ, Xℓ ∈ Rdin×n is the input data to the layer ℓ, and
Mℓ ∈ {0, 1}dout×din is the binary pruning mask for the weights of layer ℓ.

However, in recent decoder-only Transformers Touvron et al. (2023a); Jiang et al. (2023), each block applies
residual connections and intermediate LayerNorms. Hence, preserving the output of a single projection may
not be sufficient since it could either be passed to a normalization layer or be summed with the residual
stream. Specifically, each module operates as follows:

x1 = LayerNorm(h0)
a1 = SelfAttention(x1)
h1 = h0 + a1

x2 = LayerNorm(h1)
a2 = MLP(x2)
h2 = h1 + a2

This means that the input activations to each projection (i.e., the inputs to WQ, WK, WV, WO, Wgate,
Wup, and Wdown) are the real “control points” of information flow. Modifying the weights without preserving
these activation patterns can distort the layer’s internal behavior.

To address this, NeuronAl directly compares the input activations to each projection in the dense and
sparse models. The resulting neuron alignment metric is computed as:

min
M

∑
x∈Cλ

∑
b∈B

∑
ℓ∈L

1
|Aℓ,b

D (x)|

∥∥∥∥∥ Aℓ,b
D (x)∑
Aℓ,b

D (x)
−

Aℓ,b
S (x)∑
Aℓ,b

S (x)

∥∥∥∥∥
2

, (9)

where Aℓ(x) represents the projection input to layer ℓ for input x and L includes all projection matrices in
the Transformer Block Bi.

To conclude, unlike reconstruction-error-based methods, which measure what a layer produces as output, our
method evaluates what each layer receives as input. This distinction leads to a more fine-grained, neuron-
level preservation of the behavior of the dense model. Another key difference is given by the fact that the
neuron alignment metric produces one numerical value for the activations alignment between the sparse and
the dense model, while the reconstruction error provides separate values of errors for each sparse layer. This
allows us to provide a metric that depicts the global alignment between the sparse and dense models, rather
than a local (layer-wise) perspective.

B NeuronAl Complexity Analysis
The space complexity of NeuronAl primarily depends on the size of the calibration set Cλ and |λset|, i.e.,
on the number of sparsity schedules to evaluate. For each input x ∈ Cλ and each candidate λ ∈ λset, we
perform one forward pass through the dense model and two forward passes through the sparse model (one
for the block step and one for the row step of NeuronAl).

Let B be the number of Transformer blocks, n the input sequence length, and d the hidden dimension. Then,
the complexity of one forward pass is O(Bn2d). As a result, the overall complexity of NeuronAl becomes:

O
(
(1 + 2|λset|) · |Cλ| ·Bn2d

)
, (10)

17

Under review as submission to TMLR

From a practical standpoint, we optimize memory usage by processing each block independently and in
parallel for the sparse and dense models. Specifically, we collect and compare the input activations to each
projection matrix. Once the alignment score is computed for a block, the corresponding activations are
discarded to save memory.

As a result, the actual memory complexity at runtime becomes:

O(|Cλ|n2d), (11)

since inference and neuron alignment are performed block-by-block, independently of |λset| and the number
of layers.

B.1 Complexity NeuronAl vs OWL
All base pruning methods require a single forward pass over the full calibration set C. On the other hand,
top-up algorithms, such as OWL Yin et al. (2024) and AlphaPruning Lu et al. (2024), require one additional
forward pass for computing block information for their non-uniform distribution metric. NeuronAl, instead,
performs one forward pass per each λ ∈ λset over a smaller subset Cλ. To ensure a comparable cost w.r.t. the
top-up baselines which use one additional forward over a calibration set of |C| samples, we set |Cλ| = |C|

|λset| ,
so that the overall number of tokens processed remains roughly the same. As a result, NeuronAl requires
2 · |Cλ| · |λset| = 2 · |C| forward passes–which is two times more than base pruning methods, and one time
more than OWL and AlphaPruning. The runtime comparisons can be found in Table 9 in the main text.

C Experimental Setup
Baselines. For OWL, we set the hyperparameters to the values that are used mostly in the original paper,
hence M = 5 and λ = 0.08; we do the same for AlphaPruning, setting ϵ = 0.3. All these baselines are tested
considering each row as a comparison group: in other words, for a given layer, the sparsity s is uniform
for each row of each matrix rather than uniform across matrices. This is done for two main reasons: 1)
as mentioned earlier, it is established that row-wise pruning on LLMs leads to better performance w.r.t.
layer-wise pruning Sun et al. (2023), and 2) since our approach relies on a row-wise step, for fairness we also
use each row (rather than layer) as a comparison group on all the other methods, to appreciate the benefit
of our approach. We also test our approach on SparseGPT Frantar & Alistarh (2023), using in this case only
the block step, since SparseGPT relies on a weight reconstruction mechanism that prunes columns first and
then adjust the rows of pruned cells using Hessian information, which makes it unfeasible to apply our row
step. The results can be found in Tables 22-24. For all the pruning algorithms that use calibration data (i.e.,
multiflow, Wanda, and SparseGPT), we use 128 samples from the C4 dataset, as in Frantar & Alistarh
(2023); Sun et al. (2023); Yin et al. (2024).

NeuronAl Setup. Our method takes as input an LLM model, a target sparsity, a scoring-based pruning
algorithm, and two sets of λ parameters (for the block and the row steps, respectively). In the experiments,
we set λset = [0.01, 0.02, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.15, 0.20,0.25] for the block step, while
for the row step, we also added 0.0 (in case of no performance improvement). Each value in λset has been
evaluated (as described in Algorithm 1) over a calibration data Cλ. Since all the base pruning algorithms
require a single forward over C (with C containing 128 sequences of 2048 tokens each), while OWL requires
a second forward always over C, to make the computational runtime similar we set Cλ = 8 (the closest power
of 2 w.r.t. |C|/|λset|). In essence, NeuronAl only requires two forward steps more than the base pruning
algorithms, and one forward step more than OWL5. All the experiments have been run on NVIDIA A100
GPUs, both with 40 and 80 GB.

5For both C and Cλ, we use the same seed (0) for the calibration set, i.e., Cλ contains the first 8 elements of C.

18

Under review as submission to TMLR

D Additional experiments
Here we include the results of the experiments that, due to space limits, we could not include in the main
text. Specifically, we report: the results of NeuronAl on the Language Modeling tasks at 60% and 80%
sparsity and the full results on the Zero-Shot tasks at 60%, 70%, and 80% sparsity; the results for the Zero-
Shot tasks with Magnitude pruning; the results over LLama-13B at 70% sparsity; the results of NeuronAl
(block-only) applied to SparseGPT Frantar & Alistarh (2023).

D.1 Language Modeling at 60% and 80% sparsity
In Table 13-14, we report the results of NeuronAl over the 3 Language Modeling datasets (WikiText2, C4,
and PTB) with the five different models considered in the main text, for 60% and 80% sparsity. In the first
case, our approach turns out to be the best one in 23 out of 45 cases, while for 80% sparsity in 20 out of
45, while is second best in 15 cases. It is interesting to notice how at medium sparsity (60%) all the top-up
algorithms, including ours, provide similar results, while the improvement provided by NeuronAl at 80%
(w.r.t. the top-up competitors) in some cases reaches a factor of 2-3x (e.g., with Llama-1 7B for multiflow
and Wanda).

Table 13: Perplexity on the three Language Modeling datasets computed over five different LLMs for four
different top-up algorithms (Uniform, DSnoT, OWL, and NeuronAl) on three pruning algorithms (Mag-
nitude, multiflow, and Wanda) at 60% sparsity.

Algorithm Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral 7B OPT 6.7B

WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB

Dense 9.7 14.1 18.2 5.7 7.3 10.1 5.5 7.3 32.9 5.3 8.4 36.6 10.9 12.7 15.8

Magnitude

Uniform 51.3 45.9 66.9 152.4 159.8 3.02e3 6.89e3 4.27e4 1.71e6 19.6 24.4 189.3 9.49e3 6.20e3 6.76e3
DSnoT 55.9 48.9 64.1 131.6 114.7 1.46e3 3.68e3 6.78e4 7.30e6 15.3 19.6 146.2 8.08e3 6.06e3 6.95e3
OWL 46.5 42.2 65.7 50.5 62.9 249.4 810.9 1.94e4 2.30e6 12.0 15.8 169.1 6.81e3 3.67e3 4.07e3
AlphaPruning 268.7 254.2 1.13e3 61.6 82.2 153.6 37.1 49.4 5.43e5 13.1 18.2 185.4 5.07e3 2.62e3 3.03e3
NeuronAl 48.5 44.8 65.1 55.8 63.6 153.1 52.4 79.3 2.48e4 12.5 17.0 139.0 1.20e3 547.6 932.6

multiflow

Uniform 25.4 28.3 54.7 11.6 13.9 26.0 11.0 13.7 166.9 167.7 341.0 884.3 16.3 19.7 26.8
DSnoT 37.2 42.1 50.2 10.1 12.7 18.2 10.5 13.4 137.6 10.9 14.8 86.0 15.9 19.2 25.3
OWL 23.8 26.7 49.8 10.6 12.9 19.6 10.1 12.7 106.0 84.1 123.0 644.6 16.1 18.5 25.5
AlphaPruning 434.1 401.2 1.82e3 11.6 14.1 19.9 10.9 13.8 83.4 89.1 116.4 454.6 30.9 25.4 45.3
NeuronAl 23.6 27.0 42.0 9.9 12.2 17.7 9.7 12.1 72.2 112.4 168.0 806.9 16.6 19.9 27.3

Wanda

Uniform 225.8 29.3 48.9 10.7 13.7 24.0 10.8 14.0 122.2 11.3 15.9 101.6 15.2 17.9 23.7
DSnoT 32.2 38.0 50.6 10.4 13.2 20.8 10.8 14.1 109.6 11.4 15.9 96.8 15.8 19.1 24.6
OWL 24.8 28.2 48.6 9.4 11.8 18.5 9.2 11.9 75.1 10.3 14.5 84.5 15.7 17.8 24.5
AlphaPruning 165.3 166.5 669.7 10.1 12.7 17.7 9.8 12.6 69.3 10.8 15.3 93.5 27.9 24.3 41.2
NeuronAl 25.3 27.1 41.8 9.6 12.0 17.4 9.4 12.0 64.3 9.9 13.8 81.9 16.3 19.1 25.2

Table 14: Perplexity on the three Language Modeling datasets computed over five different LLMs for four
different top-up algorithms (Uniform, DSnoT, OWL, and NeuronAl) on three pruning algorithms (Mag-
nitude, multiflow, and Wanda) at 80% sparsity.

Algorithm Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral 7B OPT 6.7B

WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB

Dense 9.7 14.1 18.2 5.7 7.3 10.1 5.5 7.3 32.9 5.3 8.4 36.6 10.9 12.7 15.8

Magnitude

Uniform 1.53e4 1.79e4 3.20e4 1.13e5 1.14e5 1.40e5 5.58e4 5.26e4 8.98e4 2.48e4 3.12e4 7.98e3 4.29e4 2.13e4 2.21e4
DSnoT 1.99e4 2.07e4 1.84e4 3.40e4 3.42e4 7.20e4 2.36e6 1.80e6 3.02e6 1.33e4 8.03e3 5.80e3 1.81e4 1.19e4 1.44e4
OWL 6.63e3 5.60e3 8.39e3 1.69e5 1.59e5 1.34e5 2.69e4 1.79e4 5.79e4 9.61e3 8.50e3 5.79e3 3.32e4 1.78e4 2.16e4
AlphaPruning 8.54e4 9.37e4 7.83e4 5.78e4 4.54e4 9.22e4 4.83e4 2.46e4 5.09e4 3.03e3 2.74e3 3.30e3 2.52e4 1.31e4 1.32e4
NeuronAl 9.34e3 8.36e3 1.14e4 8.23e4 8.57e4 1.08e5 3.64e4 3.15e4 2.99e4 1.42e3 7.53e2 4.45e3 3.42e4 2.27e4 1.84e4

multiflow

Uniform 2.53e4 1.28e4 2.59e4 4.83e3 2.31e3 9.81e3 2.04e3 1.46e3 3.88e3 4.29e3 2.98e3 3.81e3 4.42e3 2.38e3 3.28e3
DSnoT 8.50e3 3.92e3 1.23e4 3.70e3 2.65e3 8.26e3 1.72e3 1.54e3 3.44e3 327.0 270.0 752.5 1.16e4 9.72e3 1.18e4
OWL 255.2 2.80e3 1.36e4 926.5 563.1 1.78e3 544.2 414.3 2.82e3 3.35e3 2.21e3 3.56e3 1.35e4 1.11e4 1.51e4
AlphaPruning 2.12e4 1.27e4 2.04e4 934.0 841.6 1.55e3 899.1 670.9 2.60e3 3.46e3 3.69e3 6.05e3 4.21e3 2.92e3 3.48e3
NeuronAl 2.34e3 992.4 4.22e3 259.8 209.2 613.8 378.5 456.8 2.09e3 1.02e3 719.3 1.56e3 1.29e3 721.9 1.35e3

Wanda

Uniform 2.05e4 1.24e4 3.14e4 5.22e3 3.97e3 1.00e4 4.93e3 3.12e3 5.29e3 330.9 277.7 783.7 4.26e3 2.35e3 2.73e3
DSnoT 1.53e4 6.86e3 1.40e4 3.71e3 3.08e3 7.79e3 5.20e3 4.44e3 6.69e3 346.5 277.3 758.4 7.75e3 6.16e3 7.78e3
OWL 2.55e3 1.21e3 7.06e3 986.5 654.5 2.00e3 663.0 486.2 2.28e3 206.3 187.8 603.9 1.32e4 1.06e4 1.42e4
AlphaPruning 4.31e4 3.33e4 2.66e4 768.4 654.9 1.29e3 982.1 670.0 2.18e3 204.3 182.6 774.2 5.61e3 4.97e3 5.21e3
NeuronAl 2.50e3 1.59e3 4.03e3 302.8 272.2 783.8 557.2 660.2 2404.1 249.5 177.6 783.9 1.04e3 632.8 1.13e3

19

Under review as submission to TMLR

D.2 Zero-Shot at 60%, 70%, and 80% sparsity
In Tables 15-17, we report the results at 60%, 70%, and 80% sparsity of NeuronAl over Zero-Shot tasks
with the five different models tested in the main text. In particular, we report the detailed results for each
task, while in the main text, we only reported the average results across the seven tasks.

Table 15: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different
top-up pruning algorithms (DSnoT, OWL, and NeuronAl) on two pruning algorithms (multiflow and
Wanda) at 60% sparsity. “Average” indicates the mean accuracy across tasks. The rows corresponding to
the pruning algorithms refer to the uniform distribution.

Model Algorithm R
T

E

W
in

oG
ra

nd
e

B
oo

lQ

H
el

la
Sw

ag

A
R

C
-e

A
R

C
-c

O
B

Q
A

Average

Phi-2.7B

multiflow 62.09 67.64 63.15 42.04 71.76 39.51 27.2 53.34
w. DSnoT 63.18 66.77 43.49 40.84 66.62 35.41 26.0 48.90
w. OWL 64.62 67.17 60.15 41.78 70.96 37.8 28.8 53.04
AlphaPruning 62.45 52.96 50.83 29.03 48.27 22.18 16.0 40.25
w. NeuronAl 62.82 67.4 65.87 42.96 70.88 38.65 27.8 53.77
Wanda 63.54 64.8 69.08 40.16 68.64 34.9 25.4 52.36
w. DSnoT 62.45 64.33 59.17 39.25 64.18 33.53 22.6 49.36
w. OWL 64.62 64.33 64.83 39.80 67.63 34.98 24.2 51.48
AlphaPruning 64.26 55.33 62.39 31.07 47.9 23.81 17.2 43.14
w. NeuronAl 64.26 66.38 67.55 40.63 66.5 34.39 24.6 52.04

Llama1 7B

multiflow 57.04 62.51 67.19 45.31 59.55 30.97 24.6 49.60
w. DSnoT 49.46 63.06 68.32 44.75 63.80 31.23 26.4 49.57
w. OWL 54.15 63.46 66.54 46.53 60.65 31.14 25.4 49.70
AlphaPruning 50.9 65.43 67.65 46.11 58.08 31.57 24.2 49.13
w. NeuronAl 50.9 63.54 68.35 47.91 63.89 32.17 27.2 50.57
Wanda 59.57 62.67 68.81 43.64 62.84 30.38 24.8 50.39
w. DSnoT 51.62 61.64 67.37 43.39 63.89 30.55 25.4 49.12
w. OWL 55.60 64.17 70.61 46.63 62.96 31.74 24.8 50.93
AlphaPruning 59.57 65.27 68.81 46.09 60.4 32.85 24.6 51.08
w. NeuronAl 58.48 63.61 70.55 46.53 63.8 30.89 26.0 51.41

Llama2 -7B

multiflow 57.04 61.96 64.80 43.39 60.44 29.1 24.6 48.76
w. DSnoT 54.15 63.77 63.91 43.42 66.25 31.83 24.0 49.62
w. OWL 54.87 62.75 65.14 45.20 62.58 29.52 23.8 49.12
AlphaPruning 52.71 64.96 64.86 44.63 61.32 30.8 23.4 48.95
w. NeuronAl 53.07 65.27 69.27 46.85 66.62 31.31 25.2 51.08
Wanda 54.15 64.48 65.44 43.85 65.19 30.46 26.2 49.97
w. DSnoT 53.79 64.09 64.83 42.39 63.89 30.03 22.8 48.83
w. OWL 53.79 66.61 66.76 46.63 67.63 32.34 28.0 51.68
AlphaPruning 54.15 67.4 66.67 46.17 64.98 33.28 25.8 51.21
w. NeuronAl 52.71 66.77 71.99 46.85 66.33 32.08 27.2 51.99

Mistral-7B

multiflow 51.62 49.88 39.17 27.49 29.67 18.77 11.0 32.51
w. DSnoT 54.87 66.61 70.86 45.93 68.27 32.94 24.0 51.93
w. OWL 53.07 50.12 46.33 28.29 32.58 19.28 13.2 34.70
AlphaPruning 53.79 51.93 43.21 27.78 35.52 19.37 13.2 34.97
w. NeuronAl 52.35 51.93 43.33 28.08 32.28 18.52 12.0 34.07
Wanda 54.87 66.06 71.13 44.48 67.05 32.00 21.60 51.03
w. DSnoT 54.15 65.59 70.43 44.5 66.88 31.40 20.60 50.51
w. OWL 57.04 67.17 73.85 45.66 67.89 32.59 23.20 52.49
AlphaPruning 57.4 66.54 64.98 44.02 65.32 30.03 20.8 49.87
w. NeuronAl 557.04 66.06 70.34 46.37 68.6 33.02 23.2 52.09

OPT-6.7B

multiflow 52.71 58.25 62.69 42.24 56.52 25.68 22.20 45.76
w. DSnoT 53.07 58.48 62.57 42.13 57.79 23.98 22.20 45.75
w. OWL 53.07 57.46 63.21 42.98 56.44 25.68 24.20 46.15
AlphaPruning 58.12 58.64 62.29 40.83 51.68 24.49 19.0 45.01
w. NeuronAl 52.71 58.33 62.32 42.19 56.4 25.0 21.6 45.51
Wanda 52.71 59.67 62.29 42.80 58.00 25.60 22.6 46.24
w. DSnoT 52.71 58.17 62.11 41.99 57.41 25.43 22.4 45.75
w. OWL 52.71 58.72 62.69 42.14 58.33 25.17 22.6 46.05
AlphaPruning 55.23 58.09 62.17 39.71 51.85 24.83 19.6 44.50
w. NeuronAl 52.71 61.25 62.39 41.95 57.28 25.09 22.0 46.10

20

Under review as submission to TMLR

Table 16: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different
top-up pruning algorithms (DSnoT, OWL, and NeuronAl) on two pruning algorithms (multiflow and
Wanda) at 70% sparsity. “Average” indicates the mean accuracy across tasks. The rows corresponding to
the pruning algorithms refer to the uniform distribution.

Model Algorithm R
T

E

W
in

oG
ra

nd
e

B
oo

lQ

H
el

la
Sw

ag

A
R

C
-e

A
R

C
-c

O
B

Q
A

Average

Phi-2.7B

multiflow 53.79 50.43 53.49 28.43 46.59 20.48 15.6 38.40
w. DSnoT 52.71 54.06 54.92 28.38 44.15 21.5 15.6 38.76
w. OWL 52.35 55.33 61.99 30.31 54.59 24.23 18.4 42.46
w. AlphaPruning 47.29 51.3 37.71 25.85 26.64 20.9 13.0 31.81
w. NeuronAl 53.07 58.64 62.17 33.45 52.19 25.34 17.4 43.18
Wanda 52.35 53.2 62.14 28.31 44.87 20.99 17.4 39.89
w. DSnoT 52.35 51.54 60.98 28.33 41.62 21.08 15.4 38.76
w. OWL 52.71 53.59 62.05 30.09 48.61 22.53 18.8 41.20
w. AlphaPruning 47.29 49.88 60.86 25.52 25.55 22.01 14.0 35.02
w. NeuronAl 52.71 56.35 62.17 32.47 49.62 22.95 16.8 41.87

Llama1 7B

multiflow 55.96 52.57 61.96 29.77 34.64 19.45 15.2 38.51
w. DSnoT 54.15 50.43 59.33 29.33 36.45 19.28 13.6 37.51
w. OWL 52.35 58.64 62.63 36.74 47.43 26.62 18.2 43.23
w. AlphaPruning 55.6 63.54 64.4 36.37 43.22 26.79 18.6 44.07
w. NeuronAl 57.76 61.72 63.3 38.19 50.88 26.88 22.8 45.93
Wanda 55.23 52.8 57.46 28.84 32.2 18.0 13.8 36.9
w. DSnoT 54.15 51.22 54.56 28.97 33.08 18.26 13.6 36.26
w. OWL 58.48 58.56 62.60 34.74 47.35 24.06 17.4 43.31
w. AlphaPruning 56.68 63.14 63.85 35.78 44.82 26.71 17.6 44.08
w. NeuronAl 55.96 59.27 63.12 36.94 50.0 26.11 20.6 44.57

Llama2 7B

multiflow 52.71 50.99 62.05 28.52 33.04 17.92 13.6 36.98
w. DSnoT 52.71 50.99 59.72 27.92 32.58 16.81 13.0 36.25
w. OWL 52.71 56.12 62.05 32.40 42.42 19.88 18.6 40.6
w. AlphaPruning 52.71 58.64 62.2 35.17 41.33 22.87 17.6 41.5
w. NeuronAl 53.43 58.09 62.35 35.26 48.32 22.44 20.2 42.87
Wanda 52.71 48.46 49.94 28.09 30.39 19.2 11.8 34.37
w. DSnoT 52.71 50.36 47.77 27.67 30.6 17.32 12.2 34.09
w. OWL 52.71 55.96 62.11 31.86 43.73 20.65 17.0 40.57
w. AlphaPruning 52.71 61.33 62.2 34.82 43.43 22.1 17.6 42.03
w. NeuronAl 53.07 57.85 63.27 35.42 49.62 22.44 20.0 43.1

Mistral-7B

multiflow 49.82 50.75 41.19 26.45 26.64 21.84 12.6 32.76
w. DSnoT 52.71 52.57 62.42 29.51 36.66 18.94 12.0 37.83
w. OWL 53.79 49.17 38.90 26.77 27.78 19.20 12.8 32.63
w. AlphaPruning 52.35 48.07 37.95 27.01 28.28 18.17 11.8 31.95
w. NeuronAl 52.71 50.75 38.29 27.16 28.75 17.75 13.0 32.63
Wanda 52.71 51.62 59.79 28.86 34.18 18.17 12.6 36.85
w. DSnoT 52.71 50.28 58.62 28.51 33.54 18.86 13.2 36.53
w. OWL 52.71 53.91 62.20 30.95 39.39 18.60 13.6 38.77
w. AlphaPruning 52.71 56.27 62.2 31.47 38.55 18.52 13.6 39.05
w. NeuronAl 52.71 60.62 62.17 34.8 44.28 20.31 16.0 41.56

OPT-6.7B

multiflow 53.79 49.72 43.0 26.48 30.51 20.05 13.8 33.91
w. DSnoT 53.79 49.01 61.1 27.01 32.87 18.34 12.2 36.33
w. OWL 48.74 48.62 61.56 27.18 35.69 16.47 11.6 35.69
AlphaPruning 46.93 51.78 62.17 31.48 36.49 22.18 13.8 37.83
w. NeuronAl 50.54 50.99 62.17 31.3 40.74 22.27 17.4 39.34
Wanda 52.71 49.72 60.03 26.91 35.86 17.75 11.2 36.31
w. DSnoT 52.71 49.57 60.61 26.91 35.06 17.58 12.0 36.35
w. OWL 53.79 51.22 61.87 29.53 42.3 18.09 14.6 38.77
AlphaPruning 51.62 51.7 62.17 33.13 40.19 22.7 15.2 39.53
w. NeuronAl 50.90 51.07 62.17 30.54 40.78 21.16 15.4 38.86

21

Under review as submission to TMLR

Table 17: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different
top-up pruning algorithms (DSnoT, OWL, and NeuronAl) on two pruning algorithms (multiflow and
Wanda) at 80% sparsity. “Average” indicates the mean accuracy across tasks. The rows corresponding to
the pruning algorithms refer to the uniform distribution.

Model Algorithm R
T

E

W
in

oG
ra

nd
e

B
oo

lQ

H
el

la
Sw

ag

A
R

C
-e

A
R

C
-c

O
B

Q
A

Average

Phi-2.7B

multiflow 52.71 50.12 51.04 26.15 27.44 19.37 13.4 34.32
w. DSnoT 50.18 49.49 37.83 26.32 27.82 19.97 13.8 32.2
w. OWL 53.07 51.22 56.76 26.30 30.85 18.52 15.2 35.99
AlphaPruning 44.77 48.78 37.83 25.74 26.18 20.31 11.4 30.72
w. NeuronAl 52.71 50.59 43.0 26.66 33.88 21.16 16.0 34.86
Wanda 53.07 49.25 62.17 25.93 27.44 20.99 14.6 36.21
w. DSnoT 53.07 50.99 38.04 26.17 27.10 20.73 13.0 32.73
w. OWL 52.35 51.22 60.21 26.51 29.88 20.05 13.6 36.26
AlphaPruning 43.32 49.8 38.29 25.94 25.67 21.16 11.0 30.74
w. NeuronAl 52.71 50.2 62.17 26.96 32.32 20.56 16.6 37.36

Llama-7B

multiflow 47.29 50.91 40.03 26.17 26.77 21.16 12.4 32.1
w. DSnoT 46.57 50.43 37.83 26.02 27.06 20.05 12.2 31.45
w. OWL 50.18 50.04 45.47 26.74 27.65 20.48 12.2 33.25
AlphaPruning 56.68 49.96 62.17 26.44 27.23 21.25 11.2 36.42
w. NeuronAl 54.51 51.14 62.2 28.82 32.74 19.45 14.4 37.61
Wanda 47.29 49.88 37.83 26.34 26.47 20.99 12.8 31.66
w. DSnoT 46.93 50.36 37.83 26.03 26.56 21.33 13.4 31.78
w. OWL 47.29 49.88 37.83 26.67 27.19 19.54 11.6 31.43
AlphaPruning 52.35 49.17 61.19 26.58 26.77 20.73 10.6 35.34
w. NeuronAl 52.71 49.57 60.03 28.21 30.85 19.62 13.2 36.31

Llama2 -7B

multiflow 53.43 48.86 37.83 26.35 27.48 21.25 13.2 32.63
w. DSnoT 52.71 48.86 37.86 26.17 26.60 20.39 13.0 32.23
w. OWL 52.71 49.49 37.83 26.62 26.94 19.11 12.6 32.19
AlphaPruning 52.71 50.67 38.01 26.62 26.77 20.14 11.2 32.30
w. NeuronAl 52.71 49.17 38.17 28.1 29.46 18.34 15.0 32.99
Wanda 47.65 49.41 37.83 25.82 26.52 20.82 14.6 31.81
w. DSnoT 53.07 47.91 37.86 26.09 27.23 20.73 13.0 32.27
w. OWL 52.71 50.83 37.83 26.52 27.27 19.37 12.8 32.48
AlphaPruning 52.71 48.54 37.89 26.42 27.44 19.45 12.2 32.09
w. NeuronAl 52.71 50.04 37.77 27.3 28.45 18.94 14.0 32.74

Mistral-7B

multiflow 50.18 48.15 37.80 25.67 26.18 22.70 13.20 31.98
w. DSnoT 52.71 47.36 37.83 26.58 28.03 18.94 13.8 32.18
w. OWL 48.38 49.09 38.44 25.88 25.59 23.29 13.6 32.04
AlphaPruning 51.62 50.67 37.92 26.35 26.35 21.67 14.8 32.77
w. NeuronAl 52.71 48.46 37.83 26.07 27.57 19.03 14.6 32.32
Wanda 53.79 48.78 37.83 26.52 27.82 19.8 12.8 32.48
w. DSnoT 52.35 48.30 37.83 26.55 27.44 19.54 13.0 32.14
w. OWL 52.71 47.43 37.83 26.68 27.78 18.52 13.2 32.02
AlphaPruning 52.71 47.99 37.83 26.73 28.41 19.54 12.8 32.29
w. NeuronAl 52.71 51.14 38.04 27.28 28.66 20.31 13.4 33.08

OPT-6.7B

multiflow 52.71 50.91 37.80 25.87 27.40 19.28 12.40 32.34
w. DSnoT 52.71 50.83 57.31 26.00 25.00 20.22 11.80 34.84
w. OWL 52.71 51.07 37.83 25.74 25.29 20.05 16.00 32.67
AlphaPruning 52.71 49.01 37.83 26.14 27.31 20.73 14.8 32.65
w. NeuronAl 53.07 50.12 62.23 26.44 31.48 20.48 12.6 36.63
Wanda 54.15 52.09 41.53 26.47 28.45 18.86 11.80 33.34
w. DSnoT 52.71 51.38 55.32 26.17 27.06 19.37 13.80 35.12
w. OWL 52.71 49.33 37.83 25.84 25.67 20.31 13.00 32.10
AlphaPruning 52.71 48.86 37.98 26.09 26.73 20.14 12.6 32.16
w. NeuronAl 52.71 50.67 41.83 26.43 30.05 18.69 11.0 33.05

22

Under review as submission to TMLR

D.3 Zero-Shot at 60%, 70%, and 80% sparsity with Magnitude
In Tables 18-20, we report the results of NeuronAl over Zero-Shot tasks using Magnitude pruning.

The results provided by NeuronAl turn out to be the best in 10 out of 15 cases, while being the second
best in 3 cases. It is also worth noticing that the performance gap between the Magnitude pruning and
score-based pruning algorithms (such as Wanda or multiflow) is generally quite high. Hence, NeuronAl
can improve the performance of Magnitude (in the standard setting with uniform distribution) only to a
certain degree, since at high sparsity ratios (as the ones we test) the performance of Magnitude has been
shown to be poor Jaiswal et al. (2024).

Table 18: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different top-
up pruning algorithms (DSnoT, OWL, and NeuronAl) on Magnitude at 60% sparsity. “Average” indicates
the mean accuracy across tasks. The rows corresponding to the pruning algorithms refer to the uniform
distribution.

Model Algorithm R
T

E

W
in

oG
ra

nd
e

B
oo

lQ

H
el

la
Sw

ag

A
R

C
-e

A
R

C
-c

O
B

Q
A

Average

Phi-2.7B

Magnitude 57.04 62.83 51.38 42.56 66.33 35.41 28.2 49.11
w. DSnoT 54.51 64.09 42.32 41.09 66.25 34.98 26.6 47.12
w. OWL 55.23 62.59 48.81 42.53 67.38 38.48 28.4 49.06
w. AlphaPruning 57.76 56.2 47.34 35.16 58.46 33.28 23.2 44.49
w. NeuronAl 54.15 65.67 47.43 42.38 65.95 36.77 26.8 48.45

Llama-7B

Magnitude 51.62 52.64 45.05 39.23 51.05 26.88 20.4 40.98
w. DSnoT 52.35 52.80 46.88 38.3 50.59 26.37 20.6 41.13
w. OWL 52.35 58.41 51.8 42.02 56.31 29.78 23.8 44.92
w. AlphaPruning 53.79 57.14 56.36 40.83 56.82 32.25 24.4 45.94
w. NeuronAl 50.54 56.04 57.46 40.63 55.26 29.86 24.4 44.88

Llama2 -7B

Magnitude 51.26 55.8 41.19 36.97 50.17 26.96 16.2 39.79
w. DSnoT 53.79 56.04 42.87 38.3 53.28 27.9 19.8 41.71
w. OWL 51.99 57.3 46.15 42.56 56.65 30.46 19.4 43.50
w. AlphaPruning 52.35 61.88 58.1 46.13 58.59 31.83 24.8 47.67
w. NeuronAl 55.23 59.59 60.43 46.15 58.96 32.85 27.6 48.69

Mistral-7B

Magnitude 55.23 62.19 66.36 48.74 67.05 33.19 22.6 50.77
w. DSnoT 55.6 62.35 68.53 48.28 67.51 33.11 23.2 51.23
w. OWL 53.79 64.48 72.17 49.39 68.14 33.87 23.8 52.23
w. AlphaPruning 54.87 63.93 74.89 47.24 63.89 32.0 23.0 51.40
w. NeuronAl 54.15 64.96 71.62 49.82 65.45 35.92 24.6 52.36

OPT-6.7B

Magnitude 53.43 50.59 37.86 26.38 26.6 21.42 13.2 32.78
w. DSnoT 52.71 49.25 37.86 26.14 27.27 21.5 13.2 32.56
w. OWL 52.71 50.51 37.83 26.77 30.3 18.52 14.8 33.06
w. AlphaPruning 52.71 51.22 37.83 26.54 29.84 19.8 13.4 33.05
w. NeuronAl 52.71 53.91 39.11 33.23 37.71 24.06 16.8 36.79

23

Under review as submission to TMLR

Table 19: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different top-
up pruning algorithms (DSnoT, OWL, and NeuronAl) on Magnitude at 70% sparsity. “Average” indicates
the mean accuracy across tasks. The rows corresponding to the pruning algorithms refer to the uniform
distribution.

Model Algorithm R
T

E

W
in

oG
ra

nd
e

B
oo

lQ

H
el

la
Sw

ag

A
R

C
-e

A
R

C
-c

O
B

Q
A

Average

Phi-2.7B

Magnitude 46.93 53.59 47.22 30.45 47.85 24.57 19.2 38.54
w. DSnoT 46.57 50.91 39.6 30.12 45.54 24.06 16.8 36.23
w. OWL 45.13 52.88 49.2 32.26 51.64 27.56 21.4 40.01
w. AlphaPruning 47.65 52.41 38.01 26.06 25.25 22.53 13.2 32.16
w. NeuronAl 47.65 53.51 52.81 33.22 53.87 30.03 20.6 41.67

Llama-7B

Magnitude 53.43 49.96 37.92 27.59 31.73 22.44 16.6 34.24
w. DSnoT 52.71 51.7 37.83 27.71 30.26 22.7 15.4 34.04
w. OWL 53.07 51.38 38.38 33.14 39.31 24.15 16.8 36.6
w. AlphaPruning 52.71 53.04 39.48 36.18 43.56 24.83 21.2 38.71
w. NeuronAl 52.71 54.62 52.6 39.81 46.13 26.79 23.0 42.24

Llama2 -7B

Magnitude 51.26 49.96 37.86 25.9 28.45 23.12 13.4 32.85
w. DSnoT 53.79 49.88 37.86 25.42 28.83 20.56 16.6 33.28
w. OWL 53.07 50.28 37.89 26.38 30.77 22.7 15.0 33.73
w. AlphaPruning 52.71 50.83 43.91 35.01 41.67 25.34 19.8 38.47
w. NeuronAl 54.51 55.41 64.86 33.25 42.09 27.47 21.2 42.68

Mistral-7B

Magnitude 51.99 50.83 41.13 32.16 42.72 19.54 16.6 36.42
w. DSnoT 53.07 51.62 39.54 31.66 42.51 20.05 16.6 36.44
w. OWL 57.76 56.59 49.17 36.48 45.75 22.01 18.8 40.94
w. AlphaPruning 53.07 58.96 57.71 34.47 42.3 22.44 16.0 40.71
w. NeuronAl 53.79 58.56 62.6 38.6 44.23 26.28 21.0 43.58

OPT-6.7B

Magnitude 52.71 49.8 37.83 25.88 26.68 21.33 12.4 32.38
w. DSnoT 52.71 49.96 37.83 25.87 27.19 20.14 13.6 32.47
w. OWL 52.71 50.59 37.83 25.81 25.46 21.25 12.8 32.35
w. AlphaPruning 52.71 52.01 37.83 26.21 27.74 20.9 13.0 32.91
w. NeuronAl 52.71 50.43 37.83 26.25 26.89 20.39 13.0 32.50

Table 20: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different top-
up pruning algorithms (DSnoT, OWL, and NeuronAl) on Magnitude at 80% sparsity. “Average” indicates
the mean accuracy across tasks. The rows corresponding to the pruning algorithms refer to the uniform
distribution.

Model Algorithm R
T

E

W
in

oG
ra

nd
e

B
oo

lQ

H
el

la
Sw

ag

A
R

C
-e

A
R

C
-c

O
B

Q
A

Average

Phi-2.7B

Magnitude 45.13 50.36 41.19 25.83 29.08 20.9 13.6 32.30
w. DSnoT 46.93 52.33 39.63 25.9 28.32 21.25 13.4 32.54
w. OWL 49.46 50.91 42.35 26.71 35.27 21.67 13.4 34.25
w. AlphaPruning 49.82 49.25 47.28 25.85 25.38 21.84 16.6 33.72
w. NeuronAl 50.54 52.25 42.69 26.21 28.7 22.1 12.8 33.61

Llama-7B

Magnitude 46.21 49.96 53.98 25.69 24.83 21.84 13.8 33.76
w. DSnoT 52.35 51.85 38.47 25.52 26.39 21.42 16.0 33.14
w. OWL 48.38 48.93 44.74 25.76 26.35 21.08 15.8 33.01
w. AlphaPruning 51.26 50.2 39.54 26.25 28.28 20.99 15.8 33.19
w. NeuronAl 47.29 48.78 50.31 25.8 26.09 21.25 14.6 33.45

Llama2 -7B

Magnitude 52.35 49.57 46.18 25.94 26.14 23.12 16.0 34.19
w. DSnoT 52.71 51.54 37.89 25.46 27.10 22.44 15.4 33.22
w. OWL 53.07 48.70 42.02 25.72 26.60 21.42 14.4 33.13
w. AlphaPruning 55.23 49.33 40.37 25.84 26.56 22.01 16.2 33.65
w. NeuronAl 54.15 50.36 52.69 26.82 29.67 20.14 14.6 35.49

Mistral-7B

Magnitude 51.26 50.99 41.16 25.93 27.48 21.84 14.6 33.32
w. DSnoT 52.35 49.72 38.07 26.26 26.43 21.25 14.0 32.58
w. OWL 52.35 50.20 41.04 26.55 27.78 19.97 13.8 33.10
w. AlphaPruning 53.07 47.67 37.86 26.4 28.45 19.54 13.4 32.34
w. NeuronAl 53.43 50.04 61.04 28.56 32.2 22.53 16.2 37.71

OPT-6.7B

Magnitude 52.71 49.49 37.83 25.79 26.39 21.25 13.0 32.35
w. DSnoT 52.71 49.57 37.83 25.78 25.63 20.65 12.8 32.14
w. OWL 52.71 49.80 37.83 26.05 26.73 21.16 13.2 32.50
w. AlphaPruning 52.71 49.09 37.83 25.84 26.14 20.82 12.8 32.18
w. NeuronAl 52.71 50.91 37.83 25.78 26.73 20.9 12.4 32.47

24

Under review as submission to TMLR

D.4 NeuronAl on LLama-13B at 60% sparsity

In Table 21, we present the results on LLama-13B at 60% sparsity. The results are in line with the ones at
70% and 80% sparsity presented in the main text since NeuronAl can outperform the competitors in 9 out
of 15 cases while being second best in 4 cases.

Table 21: Perplexity of LLama-13B on the 3 Language Modeling datasets at 60% sparsity.

Algorithm Top-Up
Llama-1 13B LLama-2 13B

WikiText2 C4 PTB WikiText2 C4 PTB

Dense 5.09 6.80 28.11 4.88 6.73 48.82

Magnitude

Uniform 34.9 49.1 1413.7 10.1 13.3 457.5
DSnoT 33.6 41.3 604.8 10.1 13.3 376.7
OWL 28.5 36.6 255.0 8.9 11.6 217.2
AlphaPruning 29.7 37.2 207.6 8.2 11.0 172.8
NeuronAl 24.9 35.2 187.1 9.5 12.3 151.1

multiflow

Uniform 8.7 10.9 66.5 16.3 21.0 211.6
DSnoT 8.4 10.8 58.7 8.3 11.3 217.9
OWL 7.9 10.0 48.1 8.5 11.2 120.3
AlphaPruning 7.9 10.3 47.8 8.6 11.3 118.1
NeuronAl 7.9 10.2 44.6 8.4 10.9 110.7

Wanda

Uniform 8.8 11.2 72.1 8.4 11.5 146.0
DSnoT 8.5 11.0 66.4 8.3 11.4 131.3
OWL 7.6 9.8 47.6 7.5 10.2 98.0
AlphaPruning 7.7 10.1 45.4 7.6 10.3 99.7
NeuronAl 7.6 9.9 46.8 7.6 10.3 90.4

D.5 NeuronAl on SparseGPT at 60%, 70%, and 80% sparsity

In Tables 22-24, we present the results of NeuronAl on SparseGPT on the WikiText2, C4, and PTB
datasets, using the block-only setting. To note: Since SparseGPT prunes and updates the weights from
columns to rows, the row step of NeuronAl cannot be included: indeed, it would force each row to have a
different sparsity ratio, which is in contrast with the nature of SparseGPT.

Using SparseGPT, the superiority of NeuronAl is less evident than with other pruning algorithms. Never-
theless, NeuronAl turns out to be the best-performing top-up algorithm in 5 out of 15, 8 out of 15, and 7
out of 15 cases, respectively, for WikiText2, C4, and PTB. Interestingly, for lower sparsity, the gap between
uniform and non-uniform distribution (both NeuronAl and OWL) is less remarkable than at higher spar-
sity. We explain these results with the inherent functioning of SparseGPT, which, differently from the other
pruning algorithms, includes a weight reconstruction step. However, we can conclude that, also in this case,
our proposed approach turns out to be effective in many cases at increasing the task performance.

Table 22: Perplexity on WikiText2 using SparseGPT.

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

60%
Uniform 15.8 10.4 10.2 9.4 13.4
OWL 15.8 9.4 9.2 9.1 14.2
NeuronAl 15.7 9.9 9.3 9.1 13.7

70%
Uniform 28.9 27.3 27.3 22.0 20.5
OWL 27.7 19.2 20.5 18.6 21.6
NeuronAl 27.3 22.6 20.9 17.8 21.8

80%
Uniform 131.0 207.0 122.1 98.4 95.7
OWL 107.5 93.8 84.3 77.2 80.8
NeuronAl 113.5 144.7 88.7 70.8 84.0

25

Under review as submission to TMLR

Table 23: Perplexity on C4 using SparseGPT.

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

60%
Uniform 19.0 12.8 12.9 13.0 15.3
OWL 19.2 11.7 11.6 12.4 15.8
NeuronAl 19.1 12.4 11.7 12.3 15.5

70%
Uniform 28.6 28.3 31.5 27.8 22.4
OWL 28.2 21.1 22.8 23.7 22.4
NeuronAl 27.8 23.8 22.5 21.9 22.2

80%
Uniform 98.7 136.2 104.8 86.5 72.5
OWL 79.7 68.3 73.4 66.2 65.4
NeuronAl 86.4 104.2 72.4 61.8 65.0

Table 24: Perplexity on PTB using SparseGPT.

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

60%
Uniform 28.7 19.5 430.5 73.7 20.3
OWL 29.3 16.9 262.1 70.9 21.0
NeuronAl 28.2 18.2 249.2 67.2 20.6

70%
Uniform 50.3 52.6 3780.0 153.2 32.0
OWL 51.0 37.0 1643.4 135.0 32.9
NeuronAl 47.3 40.5 861.6 123.4 32.8

80%
Uniform 195.4 295.6 3201.7 316.2 102.3
OWL 141.4 162.3 5556.5 278.8 98.9
NeuronAl 156.7 260.2 3659.8 266.6 105.3

D.6 Broader Sparsity Range

While in the main text, we mainly tested high sparsity configurations (hence s ≥ 0.6), here we report the
results of NeuronAl as well as the baselines for several sparsity values between 10% and 80%. Tables 25,
for LLama-7B (V2), and 26, for Phi-2, show the results of perplexity across three datasets (Wikitext, C4,
and PTB) for different sparsity ratios. The algorithm’s setup has been kept the same as the experiments
in the main text, see C. The results provide a non-trivial pattern: for up to 50% sparsity, all the top-up
algorithms perform similarly (with very small deviation in terms of 10−2), with DSnoT providing almost in
all cases the best results. At such low sparsity values, even Uniform achieves effective results. However, the
pattern completely changes for sparsity above 60%, where, as already shown in the main text, NeuronAl
turns out to be the most reliable among all the tested top-up algorithms in achieving the best performance.

Table 25: Perplexity di LLaMA-2 7B at different sparsity levels (10%–90%) on the WikiText2, C4, and PTB
datasets.

Top-Up WikiText2
10% 20% 30% 40% 50% 60% 70% 80%

Uniform 5.49 5.59 5.74 6.06 6.92 10.77 78.01 4.93e3
OWL 5.49 5.59 5.76 6.10 6.86 9.17 24.9 663.0
DSnoT 5.48 5.52 5.65 5.96 6.85 10.79 76.11 5.20e3
AlphaPruning 5.49 5.59 5.77 6.14 7.06 9.82 31.97 982.08
NeuroAl 5.50 5.58 5.74 6.09 6.92 9.38 24.05 557.16

Top-Up C4
10% 20% 30% 40% 50% 60% 70% 80%

Uniform 7.28 7.41 7.63 8.10 9.24 13.99 81.01 3.12e3
OWL 7.29 7.43 7.66 8.17 9.22 11.85 30.49 662.95
DSnoT 7.27 7.33 7.50 7.96 9.12 14.11 85.65 4.44e3
AlphaPruning 7.29 7.42 7.68 8.27 9.50 12.62 37.73 670.03
NeuroAl 7.31 7.40 7.63 8.15 9.26 11.99 27.42 660.21

Top-Up PTB
10% 20% 30% 40% 50% 60% 70% 80%

Uniform 33.07 33.65 34.55 38.02 48.20 122.25 599.27 5.29e3
OWL 33.01 33.45 34.54 36.65 43.16 75.09 333.7 2.28e3
DSnoT 32.81 32.98 34.10 37.25 47.08 109.61 491.77 6.69e3
AlphaPruning 33.07 33.83 34.72 37.20 43.85 69.34 273.84 2.18e3
NeuroAl 33.15 33.74 34.60 36.60 43.33 64.34 206.97 2.40e3

26

Under review as submission to TMLR

Table 26: Perplexity of Phi-2 at different sparsity levels (10 %–80 %) on the WikiText2, C4, and PTB
datasets.

Top-Up WikiText2
10% 20% 30% 40% 50% 60% 70% 80%

Uniform 9.85 10.07 10.50 11.46 14.22 25.78 227.56 2.04e4
OWL 9.83 10.05 10.48 11.47 14.20 24.80 132.65 2.54e3
DSnoT 9.88 10.19 10.75 12.02 15.57 32.21 221.86 1.52e4
AlphaPruning 9.87 10.09 10.59 12.05 16.66 165.29 4.22e4 4.30e4
NeuroAL 9.86 10.08 10.51 11.59 14.52 25.26 88.32 2.49e3

Top-Up C4
10% 20% 30% 40% 50% 60% 70% 80%

Uniform 14.25 14.48 14.87 15.81 18.25 29.28 182.70 1.24e4
OWL 14.22 14.46 14.87 15.78 18.24 28.18 116.21 1.21e3
DSnoT 14.29 14.74 15.20 16.54 20.22 38.02 172.61 6.86e3
AlphaPruning 14.25 14.50 14.98 16.31 20.26 166.48 3.05e4 3.33e4
NeuroAL 14.26 14.49 14.89 15.89 18.54 27.10 77.69 1.59e3

Top-Up PTB
10% 20% 30% 40% 50% 60% 70% 80%

Uniform 18.37 18.70 19.47 21.13 25.67 48.89 346.16 3.14e4
OWL 18.34 18.70 19.48 21.02 25.68 48.63 183.67 7.06e3
DSnoT 18.45 18.85 19.75 21.67 27.26 50.58 257.60 1.40e4
AlphaPruning 18.35 18.74 19.65 21.89 28.69 669.69 2.24e4 2.66e4
NeuroAL 18.37 18.71 19.49 21.22 25.62 41.78 129.53 4.03e3

D.7 Sensitivity to calibration data
In Tables 27-28, we complement the results regarding the seed set of the calibration data at 60% and 80%
sparsity. The results are fully in line with the ones presented in the main text. As expected, the standard
deviation of the performance increases when increasing the sparsity ratio, and at higher sparsity (80%), it
turns out to be model-dependent.

Table 27: Perplexity achieved by NeuronAl with different calibration data seeds (0, 16, 46) at 60% sparsity.

Dataset
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

WikiText2 24.5 ± 0.6 9.5 ± 0.1 9.3 ± 0.0 10.1 ± 0.1 16.2 ± 0.1
C4 27.0 ± 0.2 11.9 ± 0.1 11.9 ± 0.0 13.8 ± 0.1 19.1 ± 0.1
PTB 42.3 ± 0.7 17.1 ± 0.3 65.3 ± 0.8 74.9 ± 0.2 25.1 ± 0.1

Table 28: Perplexity achieved by NeuronAl with different calibration data seeds (0, 16, 46) at 80% sparsity.

Dataset
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

WikiText2 3654.7 ± 255.1 382.4 ± 64.7 247.7 ± 29.4 216.5 ± 12.6 1284.9 ± 482.5
C4 72323.6 ± 121.7 250.5 ± 27.1 265.3 ± 34.1 171.7 ± 9.9 663.5 ± 316.3
PTB 6014.9 ± 788.3 624.4 ± 165.5 1101.9 ± 94.1 706.1 ± 6.9 1056.9 ± 124.5

27

Under review as submission to TMLR

E NeuronAl λ selection at 60% and 80% sparsity
In the main text, we presented an experiment regarding the ability of NeuronAl to pick the most performing
λ parameters (in the block-only case) at 70% sparsity. Here we include the same analysis at 60% and 80%
sparsity. In Fig. 6 and Fig. 7, it is clearly visible how NeuronAl still performs correctly over different
sparsity ratios. It is also worth noticing that the calibration data always come from the C4 dataset, and
then the results are transferred to the other unknown datasets.

0.00 0.05 0.10 0.15 0.20 0.25
λ

24

30

36

42

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

30

35

40

Phi-2.7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

48

56

64

PTB

0.00 0.05 0.10 0.15 0.20 0.25
λ

10

11

12

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

12

13

14

LLama-1 7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

18

21

24

PTB

0.00 0.05 0.10 0.15 0.20 0.25
λ

10

12

14

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

14

16

18

Mistral-7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

80

88

96

PTB

NEUROAL Uniform Rec. Error

Figure 6: Perplexity over different values of λ at 60% sparsity. The orange dot indicates the value selected
by NeuronAl.

0.00 0.05 0.10 0.15 0.20 0.25
λ

8000

16000

24000

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

4000

8000

12000

Phi-2.7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

0

15000

30000

45000

PTB

0.04 0.08 0.12 0.16 0.20
λ

2000

4000

6000

Pe
rp

le
xi

ty

WikiText2

0.04 0.08 0.12 0.16 0.20
λ

1500

3000

4500

LLama-1 7B
C4

0.04 0.08 0.12 0.16 0.20
λ

0

8000

16000

24000
PTB

0.00 0.05 0.10 0.15 0.20 0.25
λ

240

320

400

480

Pe
rp

le
xi

ty

WikiText2

0.00 0.05 0.10 0.15 0.20 0.25
λ

180

240

300

360

Mistral-7B
C4

0.00 0.05 0.10 0.15 0.20 0.25
λ

1000

1500

2000

PTB

NEUROAL Uniform Rec. Error

Figure 7: Perplexity over different values of λ at 80% sparsity. The orange dot indicates the value selected
by NeuronAl.

F Reproducibility: λ parameters selected by NeuronAl
Here we show the λ parameters selected by our proposed approach for each model, sparsity ratio, and pruning
algorithm tested in this work, aiming to facilitate the reproducibility of our results for the community. Please
note that such values are the ones used for each combination of sparsity-pruning algorithm-model that have
been extracted from Cλ from C4 (using 0 as seed and 8 as size), and then transferred to all the other
datasets/tasks. We report the final λ values for both the block and row steps in Table 29 for the first 5
models tested in the main text, and in Table 30 for the LLama-13B models.

Table 29: λ parameters selected by NeuronAl (block | row) for each combination of sparsity-pruning
algorithm-model. Note that, for SparseGPT, the row step is not possible (see the main text for details).

Sparsity Top-Up
Model

Phi-2.7B LLama1 7B LLama2 7B Mistral-7B OPT-6.7B

60%

Magnitude 0.01 | 0.25 0.10 | 0.20 0.20 | 0.04 0.15 | 0.25 0.25 | 0.25
Wanda 0.10 | 0.25 0.09 | 0.25 0.12 | 0.25 0.08 | 0.00 0.01 | 0.15
multiflow 0.08 | 0.25 0.12 | 0.25 0.12 | 0.25 0.06 | 0.00 0.01 | 0.06
SparseGPT 0.01 | 0.02 | 0.06 | 0.09 | 0.02 |

70%

Magnitude 0.06 | 0.25 0.20 | 0.20 0.25 | 0.00 0.20 | 0.25 0.15 | 0.20
Wanda 0.12 | 0.25 0.15 | 0.20 0.15 | 0.25 0.15 | 0.25 0.25 | 0.25
multiflow 0.15 | 0.25 0.15 | 0.25 0.12 | 0.25 0.15 | 0.01 0.25 | 0.25
SparseGPT 0.02 | 0.04 | 0.08 | 0.08 | 0.05 |

80%

Magnitude 0.01 | 0.25 0.03 | 0.10 0.20 | 0.05 0.20 | 0.20 0.20 | 0.08
Wanda 0.20 | 0.25 0.20 | 0.25 0.20 | 0.25 0.15 | 0.25 0.20 | 0.20
multiflow 0.12 | 0.20 0.20 | 0.25 0.20 | 0.20 0.15 | 0.20 0.20 | 0.09
SparseGPT 0.06 | 0.02 | 0.07 | 0.08 | 0.07 |

28

Under review as submission to TMLR

Table 30: λ values selected by NeuronAl on each combination of sparsity-pruning algorithm for Llama-13B
(V1 & V2) (block | row).

Sparsity Top-Up
Model

LLama1 13B LLama2 13B

60%
Magnitude 0.10 | 0.25 0.12 | 0.12
Wanda 0.10 | 0.20 0.09 | 0.25
multiflow 0.15 | 0.25 0.12 | 0.25

70%
Magnitude 0.12 | 0.25 0.25 | 0.25
Wanda 0.15 | 0.20 0.12 | 0.20
multiflow 0.15 | 0.20 0.15 | 0.25

80%
Magnitude 0.20 | 0.15 0.12 | 0.05
Wanda 0.15 | 0.20 0.15 | 0.25
multiflow 0.20 | 0.25 0.04 | 0.25

29

	Introduction
	Related Work
	Structured Network Pruning
	Unstructured Network Pruning
	Top-Up Algorithms

	Current limitations of top-up algorithms
	Need for Hyperparameter Tuning
	Large Runtime
	Block Importance Metric

	Methodology
	Neuron Alignment
	Block-wise Sparsity Ratio
	Row-Wise Sparsity Ratio

	Non-Uniform Block-Wise Sparsity Distribution

	Experiments
	Experimental Setup
	Experimental Evaluation
	Language Modeling and Zero-shot Tasks

	Aggregate comparison of top-up strategies
	Scalability Study

	Efficiency Analysis
	Runtime vs. Perplexity
	Inference Speed-up

	Ablation Studies
	NeuronAl Selection
	NeuronAl vs. Reconstruction Error
	Sensitivity to Calibration Data

	Conclusion and Limitations
	Comparison with Reconstruction Error-Based Pruning
	NeuronAl Complexity Analysis
	Complexity NeuronAl vs OWL

	Experimental Setup
	Additional experiments
	Language Modeling at 60% and 80% sparsity
	Zero-Shot at 60%, 70%, and 80% sparsity
	Zero-Shot at 60%, 70%, and 80% sparsity with Magnitude
	NeuronAl on LLama-13B at 60% sparsity
	NeuronAl on SparseGPT at 60%, 70%, and 80% sparsity
	Broader Sparsity Range
	Sensitivity to calibration data

	NeuronAl selection at 60% and 80% sparsity
	Reproducibility: parameters selected by NeuronAl

