Published in Transactions on Machine Learning Research (10/2025)

Zeroth-Order Adaptive Neuron Alignment Based Pruning
without Re-Training

Elia Cunegatti elia.cunegattiQunitn. it
University of Trento, Italy

Leonardo Lucio Custode leonardo. custode @gmail.com
Independent Researcher

Giovanni Iacca giovanni.iacca@unitn.com
University of Trento, Italy

Reviewed on OpenReview: https: //openreview. net/ forum? id=uPyNaNgFK2

Abstract

Network pruning focuses on algorithms that aim to reduce a given model’s computational
cost by removing a subset of its parameters while having minimal impact on performance.
Throughout the last decade, the most widely used pruning paradigm has been pruning and
re-training, which nowadays is inconvenient due to the vast amount of pre-trained models,
which are, in any case, too expensive to re-train. In this paper, we exploit functional infor-
mation from dense pre-trained models, i.e., their input activations, to obtain sparse models
that maximize the activations’ alignment with respect to their corresponding dense models.
Hence, we propose NEURONAL, a top-up algorithm that can be used on top of any given
pruning algorithm for LL.Ms, which modifies the block-wise and row-wise sparsity, exploiting
information from both the dense model and its sparse version to maximize the neuron align-
ment among activations. Different from existing methods, our approach adaptively selects
the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model
and the desired sparsity, and requires no re-training. We test our method over ~300 test
cases with four LLM families, three sparsity ratios, and ten language tasks (three language
modeling and seven zero-shot datasets), showing how it consistently outperforms the latest
state-of-the-art methods in terms of performance-runtime trade-off. The code is available
at https://github.com/eliacunegatti/NeuroAL.

1 Introduction

In recent times, Large Language Models (LLMs) have shown incredible performance over several language
tasks (Wei et al., [2022; [Min et al.| 2023} |(Chang et al.| 2024]). However, their performance usually improves
with their sizes (i.e., the number of trainable parameters), which in turn is proportional to the computational
cost of training and inference. One way to reduce this cost is network pruning, which studies algorithms
that remove parameters while minimizing performance degradation. This approach, extensively studied on
Convolutional Neural Networks (CNNs) (Frankle & Carbin| 2019; Lee et al., |2019; Wang et al., [2020} [Evci
et al., [2020), nowadays is mainly applied to pre-trained models (Touvron et al.l |2023ajb; |Jiang et al., |2023)).

This shift has required a change of paradigm in pruning techniques: in fact, while in CNNs the main paradigm
is iterative pruning (with re-training) (Frankle & Carbin| [2019)), with pre-trained models (such as LLMs), it
is not possible in most cases to perform a full re-training, because (1) training data are often not accessible,
and (2) full re-training would be anyway too expensive. This calls for “exploiting” as much as possible the
information contained in a pre-trained model to obtain a performant sparse version of it, using weights’
information (Jaiswal et al., [2024]), activations (Sun et all |2023; [2024), or reconstruction error (Frantar &
Alistarh, |2023)), without the need for re-training. More recently, a new category of pruning algorithms, which
we may call top-up algorithms (i.e., methods that can be applied on top of a given pruning algorithm for

https://openreview.net/forum?id=uPyNaNqFK2
https://github.com/eliacunegatti/NeuroAL

Published in Transactions on Machine Learning Research (10/2025)

LLMs), has emerged, aiming at further improving pruning performance. Such approaches can be divided
into two categories: those that minimize the reconstruction error (Guo et al., |2024; Xu et al.l |2024; [Zhang
et al.|2024)), and those that impose non-uniform sparsity distribution, modifying the block-wise sparsity (Yin
et al., 2024} [Lu et al.l 2024; [Li et al., |2024)). The latter category is extremely effective on CNNs (Frankle
et al., 2020; |Su et al., [2020)), while its application to LLMs has only recently emerged.

Contributions In this paper, we first analyze the major limitations of current top-up algorithms. To do so,
we carefully analyze the state-of-the-art top-up methods, highlighting their limitations in terms of sensitivity
to hyperparameters, the required computational budget, and their block-importance metric. Leveraging this
knowledge, we introduce NEURONAL, a novel top-up pruning algorithm that outperforms, in most cases,
the previous state-of-the-art approaches over both Language Modeling datasets and Zero-Shot tasks, while
providing hyperparameter adaptation and reduced runtime to obtain the non-uniform sparsity allocation.

The algorithm consists of a two-step approach that DSA [NEURIPS 24]

re-distributes the block-wise sparsity, i.e., the spar- BESA [ICLR 24]

sity among Transformer blocks, and the row-wise 10

sparsity, i.e., the sparsity for each row of a given

layer’s matrix, maximizing a metric which exploits pl‘—'_Ei‘E (NEURIPS 24] Adapiive

information from both the dense and sparse model, 2 10° Hyperparameter
. = ependen

namely the neuron alignment between dense and 5 NEUROAL (Ours) Reconstruction

sparse activations. NEURONAL does not require o | OWL [icML 24] Error)

10 D Gradient-Based

the user to specify any hyperparameter-tuning, as
it automatically selects the most-performing values
from a suitable set, hence adapting to the underlying 10° UbnOﬁbLR 24]
model and the target sparsity. Another advantage

is that the neuron alignment only requires the com-
putation of the activations of the dense and sparse
models, which reduces the computation budget re-
quired, compared to other top-up approaches.

20 30 40 50 60 70
Perplexity

Figure 1: Perplexity vs. Runtime (seconds) trade-off
among different top-up algorithms and our proposed

We test our approach on three Language Modeling NEURONAL based on LLama-1 7B with a sparsity of
datasets and seven Zero-Shot tasks over four differ- 70, evaluated on WikiText2.

ent LLM families from 7B to 70B parameters, to

show its ability to outperform, in the majority of the cases, the most recent state-of-the-art techniques, in-
cluding OWL (Yin et al.; 2024), DsNoT (Zhang et al.,|2024)), and AlphaPruning (Lu et al., |2024)) over three
different high sparsity values (60%, 70%, and 80%) for a total of 276 test-cases. The performance results
clearly show that our proposed NEURONAL stands out as the most performing top-up pruning algorithm,
outperforming in most cases all baselines, and on average by a large margin, over both Language Modeling
and, especially, Zero-Shot cases. Furthermore, the runtime analysis indicates that our proposed approach
outperforms the state-of-the-art baselines while also being more time efficient, being up to ~20x faster
than the closest competitor over 70B models. To assess the robustness of our approach, we also conduct an
in-depth sensitivity analysis.

2 Related Work

In this section, we provide a comprehensive discussion about network pruning applied to LLMs. We first
introduce structured and unstructured network pruning; then, we focus on the latter, introducing the latest
approaches proposed for improving sparse model performance.

2.1 Structured Network Pruning

Given a layer’s weight matrix W € R™*™ to sparsify, structured pruning removes either entire rows (n)
or columns (m) (see the next section), aiming at speeding up both training and inference time. The first
approach that applies structured pruning to LLMs has been proposed by [Ma et al.| (2023)), and focuses on
the dependency of Transformers, i.e., it removes components of the networks while maximizing their original
functionality. In (Kurti¢ et all [2024), a pruning mechanism has been devised to remove components with
the worst balance between loss and runtime. Other structured pruning approaches have been proposed based

Published in Transactions on Machine Learning Research (10/2025)

on combinatorial optimization (Meng et al, [2024), perturbative forward-pass only (Dery et al., |2024)), and
reduction of the embedding dimension through PCA (Ashkboos et al.,|2023). Finally, in (Gromov et al.,|2024)
it has been found that the last Transformer blocks are redundant, hence they can be completely removed with
minor performance drops. The reason behind this phenomenon lies in the similarity between the learnable
representation of consecutive blocks, which turns out to increase when the block depth increases. While all
these approaches can achieve valuable inference speed-ups, the performance of the resulting sparse models
w.r.t. their dense counterparts can be matched only at low sparsity values, such as 20% in (Ma et al.l [2023)
or 30% in (Ashkboos et al.| [2023). This somehow limits the applicability of these methods, since in the case
of models with billions of parameters, one may need more aggressive pruning strategies to meet stringent
hardware requirements.

2.2 Unstructured Network Pruning

Differently from structure pruning, unstructured pruning works by removing weights in a scattered (i.e., non-
structured) way. While in this setting the inference speed-up is limited (although techniques for reordering
weights are available (Li et al., |2019; Mishra et al., 2021; |Zhou et al., 2021))), the performance w.r.t. the
dense model can be preserved also at high sparsity ratios (i.e., above 50%), with the performance at lower
sparsity being almost always completely preserved. The first approach of this kind has been proposed in
(Frantar & Alistarhl 2023), where weight pruning and reconstruction are combined based on the Hessian
matrix. Even a simple magnitude-based approach turned out to perform well (Jaiswal et al.| |2024)), also
when integrated with information on the neuron activations (Sun et al. 2023} Farina et al., [2024). These
approaches compute a score for each weight and then remove the ones with the lower scores for each layer,
with a uniform sparsity across layers.

2.3 Top-Up Algorithms

To improve the performance of unstructured pruning, several top-up algorithms have been devised. These
approaches can be categorized into two distinct groups: methods that minimize the reconstruction error,
keeping the sparsity uniform for each block, and methods that modify the block-wise sparsity of the model,
resulting in non-uniform sparsity distribution across blocks.

The first group firstly sparsifies the model using a pruning algorithm and then, either dynamically (Zhang
et all [2024) or by backpropagation (Guo et al., 2024)), updates the pruning mask. The second group (to
which our method belongs) modifies the block-wise sparsity (obtained by a given pruning algorithm) based
either on activations’ outliers (Yin et all |2024), Empirical Spectral Distance (ESD) (Lu et al., 2024)), or
allocation functions in a gradient-free manner (Li et al., |2024), while in BESA (Xu et all [2024) gradient
information is used to set layer-wise sparsity using block-wise reconstruction error.

The idea of simply redistributing the layer-wise sparsity is known to be extremely well-performing on Multi-
Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The first approach of this kind,
based on the Erdés-Rényi (ER) model, has been proposed by Mocanu et al.| (2018) for MLPs and then
adjusted for CNNs in (Evci et al., 2020), while an empirical study about the effect of layer-wise pruning
using different sparsity ratios has been done in (Liu et all 2021). Regarding Transformers (both for vision
and text), the state-of-the-art algorithms (Frantar & Alistarh 2023} |Sun et al., [2023)) have been devised to
set the block-wise sparsity across the Transformer blocks in a uniform way. Later on, OWL (Yin et al. [2024)),
AlphaPruning (Lu et al 2024), and DSA (Li et al,|2024) have been proposed to build upon scoring-based
pruning algorithms, adjusting the block-wise sparsity in a non-uniform way. These approaches improve the
performance of several pruning algorithms, e.g. (Frantar & Alistarhl [2023; |Sun et all [2023), especially at
sparsity above 60%. On the same line, BESA (Xu et al., 2024)) allocates layer-wise sparsity across each
block’s layer using gradient information. Recently, modality-wise sparsity distribution has been investigated
in the case of multimodal tasks in (Farina et al.l 2024} He & Chen) [2024)).

3 Current limitations of top-up algorithms

We discuss below the three main limitations of the state-of-the-art approaches for redistribution of non-
uniform sparsity in LLMs, namely 1) their need for hyperparameter tuning, 2) their large runtime, and 3)
their block importance metric calculation (hence their block sparsity allocation).

Published in Transactions on Machine Learning Research (10/2025)

3.1 Need for Hyperparameter Tuning

We analyze the sensitivity of the hyperparameters used by OWL, namely A and M, and by AlphaPruning,
namely €. Concerning OWL, the first hyperparameter is used to set how much the sparsity can vary across
blocks (i.e., [s — A, s + A]) while keeping the overall sparsity fixed as s. The second hyperparameter, M,
defines the outliers’ threshold: namely, for each block, the number of outliers is computed as the number
of activations that are M times greater than the block’s activations’ mean. For AlphaPruning, instead, a
hyperparameter called € is used and manually tuned to set two tunable hyperparameters (s, s2) that control
the sparsity across blocks. We test the sensitivity of OWL and AlphaPruning to their hyperparameters,
using three different sparsity ratios, two LLMs, and Wanda as the underlying pruning algorithm. Fig. [2]
displays the perplexity on WikiText2 of the different hyperparameter settings obtained with OWL (first two
rows) and AlphaPruning (last row); the gray square corresponds to the best a-posteriori hyperparameter
selection. It can be seen that no single hyperparameter value achieves the best performance in all settings,
which entails that careful tuning is required for these approaches to be effective.

3.2 Large Runtime

Sparsity Ratio
—— 0.6 - 0.7 0.8

Another main limitation of some of the current ap-
proaches for non-uniform distribution is their com-
putational runtime. This holds mainly for BESA

(Xu et all [2024) and DSA (Li et al, [2024). On S A N N - i
LLama-1 7B, the first approach, which relies on e ~—
gradient information, requires ~5 hours to find the Y . Y .
best non-uniform distribution configuration. On the I T T e
other hand, DSA uses an evolutionary approach to
find the best combination of a set of allocation func-
tions, requiring ~12 hours to find the best distribu- !

thIﬂ Thls h]gh I‘unt]me IS due tO the eValua,thn Of 0.025 0.050 07).? 0.100 0.125 0.15(0.025 0.050 0.C7; 0.100 0.125 0.15
each sparse model obtained by applying all the pos- 3 3 3 ERPT:
sible combinations of sparsity allocation functions. N O e ety L

Phi-2.7B LLama-7B

— 10¢

2

Perplexity
3
-

<

100 : 5] : B

Perplexity

X - 10?
XX X 3 = Xm X K e K b X~ e

102

Xe e

X K 3o i e e o [= =

Perplexity
\

3.3 Block Importance Metric

Almost all the top-up algorithms select the block- ¢ ' ' ' R
wise sparsity w.r.t. the block importance given
by scoring criteria computed either from the dense
model or from the evaluation of the sparse model.
In the first case, the block importance is computed
on the dense models on a block-wise view using ei-
ther outlier information, as in OWL, or the ESD, as
in AlphaPruning, without focusing on how the selected non-uniform sparsity, once applied, could change the
block importance of the successive layers.

Figure 2: Perplexity for various hyperparameter set-
tings of OWL (M ,\) and AlphaPruning (¢) using Phi-2
and LLama-1 7B for three sparsity ratios. The gray
square corresponds to the hyperparameter values that
lead to the best performance.

On the other hand, DSA only uses the per- Table 1: Properties of state-of-the-art top-up algorithms vs.
plexity of the sparse model as the evaluation NEURONAL. The runtime is expressed as orders of magni-
metric. The only exception is BESA, which, tude computed on LLama-1 7B. For the metrics, we indi-
similarly to NEURONAL, uses information from cate whether they are computed over the dense (D) and/or
both the dense and the sparse model. However, sparse (S) models.

it does so using gradient information, which

Top-Up Hyper. Tuning Runtime (s) Metric
1ea‘ds to a hlgh ComPUtational runtime. AISO7 DSnoT (Zhang et al.|[2024) v 10° Reconstruction Error (D, S)
DSHOT minimizes the reCOnStruCtiOn error us- BESA (Xu et al.||2024) X 104 Reconstruction Loss (D, S)
ing information from both the dense and sparse ~_OWL (Yin ct al.| 2024} v 10? Outliers (D)
models. However, it only updates each layer’s _AlPhaPruning (Luct al2024) Y 10° ESDs (D)
. DSA (Li et al.||2024) X 10* Perplexity (S)
blnary mask without Changlng the SparSIty dis- NEURONAL (Ours) X 10% Neuron Alignment (D, S)

tribution across blocks.

IThe runtime has been taken from the original papers, where authors used A100 GPUs for BESA, and H800 GPUs for DSA.

Published in Transactions on Machine Learning Research (10/2025)

Table [I] summarizes the different properties of the current top-up algorithms and shows how our proposed
approach positions w.r.t. the previously proposed approaches.

4 Methodology
We now describe our proposed NEURONAL.

Preliminaries. Given a dense model D, a pruning algorithm P, and a target sparsity s € [0, 1], unstructured
pruning assigns a saliency score ¥ to each weight w € D and use a top,(-) function to retain the (1 — s)|D|
weights with the highest values. This function returns a binary mask M, such that the pruned model can
be obtained as § = D ® M (where ® represents the Hadamard product). In the case of LLMs, since these
models are composed of stacked Transformer blocks (each one denoted as B;), i.e., sets of linear layers (each
one defined by a weight matrix Wq) that implement the self-attention mechanism followed by an MLP, the
mask is usually computed with a uniform sparsity level across each layer ¢/ (Frantar & Alistarh, 2023)), as:

M =top ; (¥, W), (1)

Overview of NeuronAl. Our proposed NEURONAL is based on two principles: (1) neuron alignment,
which compares internal input activations rather than layer outputs as in (Frantar & Alistarhl [2023) (see
Appendix, and (ii) adaptive sparsity reallocation, which removes the need to manually tune the algorithm
hyperparameters. NEURONAL relies on neuron alignment to reassign sparsity in two stages: firstly across
blocks (via vectors s?), and then across rows (via vectors s”). Both steps aim to minimize the discrepancy
between the dense and sparse models’ internal input activations, as formalized in Section Importantly,
the method requires no weight updates, gradients, or retraining. It simply reuses the scoring function W
from the selected pruning method P and adjusts accordingly the sparsity ratios.

4.1 Neuron Alignment

The rationale behind NEURONAL is to adapt the sparsity distribution by comparing how well the sparse
model preserves the internal representations of the dense one, a concept that we refer to as neuron alignment.
Rather than measuring the discrepancy in layer outputs, as in (Frantar & Alistarh, |2023)), our method
compares the input activations to each projection matrix in a Transformer block.

Here, we formalize the proposed neuron alignment metric, which relies on the block and row-wise sparsity
allocation. Given D and its sparse version § = D ® M, obtained via a pruning method P at sparsity ratio s,
we firstly perform forward passes over a calibration set C) and collect the activations Ap and As. Then, for

each Transformer block B;, we extract the input activations to all linear projection layers (i.e., the vectors

a’% such that the corresponding layer computes at Wt during the forward pass). This includes projections

from the attention module (Wq, Wk, Wy, Wg) and the MLP module (Wgate, Wap, Wdown)ﬂ

. . . . L i i
To make the comparison consistent across layers, we normalize each input activation vector as a% /> a’.
For a given projection layer ¢/, given an input = € C), we define its neuron alignment score as:

i Iz
1 Ap () As (2)

AS@) S ab@) sS4k,

(2)

2N
neuron, (Ag, Ad,x) =

and then the neuron alignment across the whole model as:

NeuronAL(D,S,Cy) = Z Z Z neuronal(Ag,Ag,x). (3)
zeCy B; éieBi

J
2The input activations a’i used for calculating the neuron alignment are either taken right after the LayerNorm (for Wq,
Wk, Wy, Wgate, and Wyp), or from the intermediate values within each sub-block (for W, and Wgown).

Published in Transactions on Machine Learning Research (10/2025)

4.1.1 Block-wise Sparsity Ratio

First, we optimize sparsity at the granularity of transformer blocks Given a set of candidate sparsity

window *¢*, we generate multiple vectors s5,, = {Sf1 , si, o }, that define how the target sparsity s

?)\ set

[aset |
is distributed across blocks using a linear schedule in [s — A, s + Ax]. Formally, each s% X, is a vector of length
|B| where each element sfk (7) is the block-wise sparsity for the i-th block. Each vector sfk is computed using
the following function:

V — Upj
sfk = GetDist(s, \g;v) =1— |2y ——— — G + (1 —5) (4)
Umax — Umin
where v = [v1,...,vp] is a vector of block indices (with vpiy = 1 and vmax = |B]), and § = mean(Q/\;€ .
ﬁ) For the block-wise case, since we employed a linear schedule, we set v; to increase linearly with

the block index i (i.e., v; = i Vi € [1, |B]]), which yields sf\;k (i) =5 — Ae + 2\

For each vector sf\sk, we apply pruning at the block level using the base pruning method P, and compute the
alignment score from Eq. 3] We then select the best configuration as:

sB..= argmin NeuronAL(D,S,Cy) (5)
sx€{sB | Aexset}

where S = DO EB'B‘ @lé i topg, (\IIW Wt), with @ indicating a mask concatenation operation. This
sparsity configuration is then applied to the dense model to obtain Sg that has the best alignment across
blocks. This step captures variations in block importance without modifying individual neurons.

4.1.2 Row-Wise Sparsity Ratio

We then redistribute the sparsity ratios across the rows of each projection matrix. For each layer fg with
weight matrix W4 € R™™ we generate a set of row-wise sparsity vectors s} using a linear schedule in
[sB, — Ak, S, + Ak, with A\ € A*°*. Different from the block step, the initial sparsity of layer j is given
from its parent block ¢ from the sparsified model Sg. Importantly, each s defines a vector of row-wise
sparsity values that is inversely proportional to the neuron alignment of each correspondlng row, i.e., the rows
that deviate more from the dense model are set as less sparse. Hence, the row-wise sparsity dlstrlbutlon is
computed using the same function introduced in Eq. {4} s, = GetDist(sg,, A\k; v'°®") where v'°¥ is the vector

. . . J .
of neuron alignment values associated with the rows of W* . For each vector in set s, = {5 s sgwct‘ 1,

we prune rows using the original saliency scores and compute the neuron alignment score from Eq. [3] applied
over Sp. We then select the configuration that minimizes the neuron alignment metric:

Shest = argmin NeuronAL (D, S’,C,) (6)
she{sy [erset}

where &' = Sg © @?:1 @j‘zl topsg(\lﬂg, Wej) The full procedure, composed of block-wise and row-wise

sparsity reallocation, is shown in Fig. |3| where align = True for NeuroAl(-) returns, for each layer 63 €B
the row-wise alignment vector v*°" between D and Sg.

4.2 Non-Uniform Block-Wise Sparsity Distribution

Given the sparsity values for each block in sfk and a selected sparsity window [s — A, s + A], the non-uniform
block-wise sparsity schedule redistributes the sparsity across blocks in a monotonically linear way (i.e., the
sparsity of block i is always larger than the sparsity of layer i — 1,Vi > 1) via Eq. |5 We select this sparsity
schedule for three main reasons: (1) as shown below such a straightforward sparsity schedule is already able
to achieve similar results w.r.t. state-of-the art approaches, (2) to align with the latest discoveries in the
literature of structured pruning where is consistently demonstrate how deeper blocks are redundant and
can be removed with marginal performance degradation (Gromov et al.l 2024} Men et al., 2024} Kim et al.,
2024)), and (3) to avoid having another sub-routine to select the best sparsity schedule, that, if linked with
the block-wise and row-wise A selection, would have lead to have a combinatorial search space.

Published in Transactions on Machine Learning Research (10/2025)

Input: D, P, s, Cy, A Function
// Block step GetBestNeuronAL (D, s, *¢, Oy, P, Vv):
vPIk (1, B]; s* <« 0;
(sfet)* < GetBestNeuronAL(D, s, A%, Oy, P, vPk); EGUT%(;)OQ
B ¢ 0. = ;
S5 DODiny top(sit)*(‘ll » Wh); foreach)\ € *¢ do

// Row step (D, 52,0 al True) S\ + GetDist(s, A\, v); // Eq.

v'o% < NeuronAL(D, Sg,Cy; align=True); B I 0 /i

(s.,)" < GetBestNeuronAL(D, s, *¢, Oy, P, voW); S« (PO 69121 topSA(Qf HW))
neur, < NeuronAL(D,S,C,) ; // Eq.

set

, B Li & Wt
Stnal DO DL, D)o toP(s;t)*(\Ij L W) if neury < neur}; then

s* ¢+ sy;
neury; < Neurg;

end
end
return s*;

Figure 3: Left: Overall NEURONAL top-up pruning procedure. Right: GETBESTNEURONAL sub-routine
used in both block- and row-selection stages.

We motivated the choice of a linear schedule Table 2: Performance improvement w.r.t. uniform distri-
by testing three straightforward non-uniform bution averaged across three different datasets (WikiText2,
sparsity schedules (namely linear, exponential, C4, and PTB) using Wanda as pruning algorithm.

and logarithmic), which do not require any
block scoring for sparsity allocation. Table Sparsity Model
displays the improvement, w.r.t. uniform
distribution (averaged across three different 60%
Language Modeling datasets, namely Wiki-
TextQ, C4, PTB)., achieved by the th.ree spar- 70% LLamal 7B 166.8% 1282% +53.9% +63.5%
sity SChe.dUIes using Wanda as pruning a.lgo— Phi-2.7B +87.8% +89.3% +55.7% +82.8%
rithm with A = 0.08. The results highlight 80% LLamal 7B +81.5% +63.6% -4.4% +68.1%
how non-uniform sparsity schedules, without
any block-based scoring, lead to a performance
improvement close to OWL’s. Overall, the linear schedule turns out to be the most reliable one since it
does not show oscillations in performance across the different sparsity ratios (while this happens for the
logarithmic and exponential schedules).

Schedule
OWL Exp Log Linear

Phi-2.7B +3.4% +24% +7.8% +7.7%
LLama-1 7B +16.5% +34% +15.7% +18.1%

Phi-2.7B +45.8% +47.7% +44.9% +52.5%

Mean +50.3% +39.1% +28.9% +48.8%

5 Experiments

We apply our proposed NEURONAL to different state-of-the-art pruning algorithms tailored for LLMs. Specif-
ically, we test how it compares in terms of performance over Language Modeling datasets and Zero-Shot
tasks w.r.t. the most recent top-up algorithms for pruning. We also perform scalability and sensitivity
analyses to show the effectiveness of our NEURONAL.

5.1 Experimental Setup

Language Modeling Datasets To measure the models’ perplexity on Language Modeling datasets, we use
the following three datasets: (1) WikiText2 (Merity et al., [2017)), (2) Colossal Clean Common Crawl (C4)
(Raffel et al., [2020), and (3) Penn Treebank (PTB).

Zero-Shot Tasks To assess more thoroughly how the different pruning algorithms affect the models’ capa-
bilities, we employ the following 7 datasets: (1) Recognizing Textual Entailment (RTE) (Dagan et al., 20006;
Bar Haim et al.| 2006} |Giampiccolo et al., 2007; Bentivogli et al., |2009) , (2) WinoGrande (Sakaguchi et al.,
2021)), (3) Bool@ (Clark et al.| 2019)), (4) HellaSwag (Zellers et al., 2019), (5) ARC-e (Clark et al., [2018),
(6) ARC-c (Clark et all [2018)), (7) OBQA (Mihaylov et al., |2018)

Models and Sparsity Since one of the distinctive features of NEURONAL is its adaptability w.r.t. sparsity
and models, we test four different LLM families, namely LLama 7B (both vl and v2) (Touvron et al.l

Published in Transactions on Machine Learning Research (10/2025)

Table 3: Perplexity on the three Language Modeling datasets computed over five different LLMs for four
different top-up algorithms (Uniform, DSnoT, OWL, and NEURONAL) on three pruning algorithms (Mag-
nitude, MULTIFLOW, and Wanda) at 70% sparsity.

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B
Algorithm Top-Up
‘WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB
Dense 8.1 14.1 18.2 5.7 7.3 10.1 5.5 7.3 32.9 5.3 8.4 36.6 10.9 12.7 15.8
Uniform 764.6 384.4 983.9 2.53e4 2.25e4 3.26e4 1.42e5 1.02e4 2.02e6 221.9 232.9 748.7 1.00e4 5.39e3 6.54e3
DSnoT 539.0 258.0 656.2 1.02e7 2.77e6 4.99e7 1.31e8 2.90e7 2.25e8 192.7 189.9 566.2 6.16e3 3.93e3 4.36e3
Magnitude OWL 419.6 2427 358.5 1.20e4 6.58¢3 5.39¢4 3.39e5 1.24e4 3.28¢6 111.7 124.2 545.5 1.57e4 8.48e3 9.67e3
AlphaPruning 2.52e4 1.60ed4 2.34ed 424.9 391.5 5.08e4 3.37e3 3.60e3 1.73e5 91.3 106.5 717.1 1.22e4 7.22e3 7.51e3
NEURONAL 281.7 180.9 321.1 231.8 219.9 4.46e3 155.8 264.8 2.61e3 46.5 43.1 612.8 2.11e4 1.07e4 1.09e4
Uniform 388.4 298.8 610.8 80.9 71.9 1724 60.0 58.8 1.26e3 9.37e2 6.56e2 2.06e3 9.44e2 1.25e3 843.1
DSnoT 325.5 261.9 3288 67.6 65.0 114.7 66.6 75.8 6.89¢2 57.4 63.3 2.65e2 241.8 153.3 263.9
murtirLow OWL 197.9 141.3 293.9 25.1 25.8 78.9 29.2 31.0 5.47e2 329.0 7.64e2 1.72e3 240.9 495.6 337.8
AlphaPruning 1.22e5 8.99e4 9.52e4 32.2 35.2 103.8 313 34.0 287.3 230.8 292.8 1.72e3 133.8 63.7 153.9
NEURONAL 105.4 87.1 179.5 20.7 212 46.2 22.1 23.9 265.5 202.5 3347 Ldle3 209.7 837 2021
Uniform 227.6 182.7 346.2 85.1 86.2 157.0 78.0 81.0 599.3 60.7 73.6 298.3 157.5 260.1 209.2
DSnoT 221.9 1726 257.6 72.9 76.0 121.0 76.1 85.7 491.8 81.3 79.9 304.8 191.4 173.3 182.6
Wanda OWL 132.7 116.2 183.7 24.6 27.3 61.2 30.5 36.6 333.7 41.0 51.8 253.5 54.4 69.7 100.7
AlphaPruning 4.22e4 3.05e4 2.23c¢4 26.9 31.1 774 32.0 37.7 273.8 39.4 49.8 286.8 93.8 53.7 120.9
NEURONAL 88.3 777 129.5 21.5 23.2 44.2 24.0 27.4 207.0 28.8 33.7 232.0 172.6 84.0 182.7

2023a3b|), Phi-2, Mistral-7B (Jiang et all [2023)), and OPT-6.7B (Zhang et al., 2022). To scale up the model
size, we also test LLama 13B (both v1 and v2) and LLama 70B (v2). In the paper, we mainly present results
at 60%, 70%, and 80% sparsity, for fair comparisons with (Yin et al., [2024; [Lu et al., [2024]). To assess the
generalization to different sparsity ratios, we present the results on broader sparsity ratios (from 10% to

80%) in Appendix [D.7}

Baselines As pruning algorithms, we test Magnitude, MULTIFLOW (Farina et all [2024), and Wanda (Sun
et al., 2023). All are tested with four different top-up algorithms (besides ours): (1) Uniform distribution,
(2) DsnoT (Zhang et al., [2024) (dynamic training-free uniform distribution with mask update), (3) OWL
(Yin et al., [2024)) (block-wise training-free non-uniform distribution based on outliers scores) and (4) Al-
phaPruning (Lu et al. 2024)) (block-wise training-free non-uniform distribution based on ESD)H Further
details on the setup are in Appendix [C}

Table 4: Average accuracy on the seven Zero-Shot tasks using Wanda as pruning algorithm.

Model
Sparsity Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B
Dense 64.35 59.97 59.71 64.21 51.52
Uniform 52.36 50.39 49.97 51.03 46.24
DSnoT 49.36 49.12 48.83 50.51 45.75
60% OWL 51.48 50.93 51.68 52.49 46.05
AlphaPruning 43.14 51.08 51.21 49.87 44.50
NEURONAL 52.04 51.41 51.99 52.09 46.10
Uniform 39.89 36.90 34.37 36.85 36.31
DSnoT 38.76 36.26 34.09 36.53 36.35
70% OWL 41.20 43.31 40.57 38.77 38.77
AlphaPruning 35.02 44.08 42.03 39.05 39.53
NEURONAL 41.87 44.57 43.10 41.56 38.86
Uniform 36.21 31.66 31.81 32.48 33.34
DSnoT 32.73 31.78 32.27 32.14 35.12
80% OWL 36.26 31.43 32.48 32.02 32.10
AlphaPruning 30.74 35.34 32.09 32.29 32.16
NEURONAL 37.36 36.31 32.74 33.08 33.05

5.2 Experimental Evaluation

In this section, we show the numerical results of our proposed NEURONAL w.r.t. the baselines for Language
Modeling and Zero-Shot tasks.

5.2.1 Language Modeling and Zero-shot Tasks

Concerning the Language Modeling datasets, the numerical results in terms of perplexity computed over the
three Language Modeling datasets at 70% sparsity are shown in Table [3| It can be seen how NEURONAL is

SBESA and DSA are not included in these experiments due their large runtime. Testing them on all combinations of sparsities
and pruning algorithms is unfeasible with our GPU resources.

Published in Transactions on Machine Learning Research (10/2025)

able in almost all cases to outperform all the other baselines by a large margin. In no case does NEURONAL
perform worse w.r.t. the uniform distribution. The only model for which NEURONAL is not the best top-
up algorithm for all pruning algorithms is OPT. In all other cases, NEURONAL outperforms OWL and
AlphaPruning for all models and pruning algorithms. The results at 60% and 80% sparsity shown in Tables
[I7HI8 in the Appendix confirm this trend.

As for the Zero-Shot tasks, the numerical results are shown in Tables We display only the mean across
the seven Zero-Shot tasks, while the results for each task are available in Tables [[9}2] in the Appendix.
Again, NEURONAL turns out to outperform in the majority of cases all the baselines. In 20 cases out of 30
(w.r.t. the mean accuracy across all tasks), NEURONAL is the one that reaches the best performance, and
in 5 cases, the second best.

Table 5: Average accuracy on the seven Zero-Shot tasks using MULTIFLOW as pruning algorithm.

Model
Sparsity Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B
Dense 64.35 59.97 59.71 64.21 51.52
Uniform 53.34 49.60 48.76 32.51 45.76
DSnoT 48.90 49.57 49.62 51.93 45.75
60% OWL 53.04 49.70 49.12 34.70 46.15
AlphaPruning 40.25 49.13 48.95 34.97 45.01
NEURONAL 53.77 50.57 51.08 34.07 45.51
Uniform 38.40 38.51 36.98 32.76 33.91
DSnoT 38.76 37.51 36.25 37.83 36.33
70% OWL 42.46 43.23 40.60 32.63 35.69
AlphaPruning 31.81 44.07 41.50 31.95 37.83
NEURONAL 43.18 45.93 42.87 32.63 39.34
Uniform 34.32 32.10 32.63 31.98 32.34
DSnoT 32.20 31.45 32.23 32.18 34.84
80% OWL 35.99 33.25 32.19 32.04 32.67
AlphaPruning 30.72 36.42 32.30 32.77 32.65
NEURONAL 34.86 37.61 32.99 32.32 36.63

5.3 Aggregate Comparison of Top-up Strategies

While Tables already show that NEU- Table 6: Summary of accuracy retention (% w.r.t. dense)
RONAL consistently outperforms the baselines, and perplezity degradation factor (x dense) at 60%, 70%,
one of the main strengths of our proposed and 80% sparsity for up to 7B models.

method lies in its ability to adapt to any
sparsity, model, pruning algorithm, and tested

Acc. retention (%) 1 PPL factor (x)|

dataset. For showing that, we design two Top-Up 60% 70% 80 % 60% T0% 80%
metrics that aggregate, for each tested top- ypiform 79.6 61.0 55.0 90 622 786.7
up algorithm, the results at sparsity ratios pSnoT 81.8 61.6 54.7 70 969 746.3
s € {60,70,80}% by calculating the geometric ~ OWL 80.7 66.2 55.2 6.1 35.5 3924

mean of the results of different models (LLM), AlphaPruning 76.2 64.3 54.7 83 66.0 505.7
pruning methods (P) and datasets (D) at each ~ NeuronAL 81.1 69.0 58.0 4.1 14.6 201.8
sparsity. The two metrics are: (1) the accuracy
retention, defined as:

Accy p(m) \M/(£EMI|P])
AccRet(s (H H AcCaname (1)) (7)
meLLM peP
and (2) the perplexity factor, defined as:
PPL, ,(m,d) \Y/(LLMIIDIIP])
PPLFac(s (II I+ PPL d)) . (8)

meLLM deD peP

4Magnitude is omitted from these tables, due to space constraints. Results are available in Tables in the Appendix.

Published in Transactions on Machine Learning Research (10/2025)

The data used to compute the values shown in Table [f] are as follows. For the accuracy retention, we used
the average performance across zero-shot tasks and took the data from Tables for the perplexity factor
we took the perplexity results from Table [3| and Tables reported in the Appendix.

The results clearly show that, when aggregating all the performance across pruning methods, datasets, and
language models (in the order of 7B scale), NEURONAL always achieves better performance w.r.t. the top-up
baselines. These results, apart from providing additional evidence about the robustness of our approach,
also highlight its adaptability as one of the main strengths.

5.3.1 Scalability Study

To assess if the NEURONAL performance scales Table 7: Summary of top-up accuracy retention (% w.r.t.
to bigger models, we apply it to LLama 13B dense) and perplezity degradation factor (x dense) at 70%
(vl and v2) and LLama 70B (v2) on both the and 80% sparsity for 13B and 70B models.

Language Modeling datasets and Zero-Shot
tasks. Also in this case, we provide, see Table

Acc. retention (%) t PPL factor |

[7l the aggregated results using the perplezity Top-Up 70% 80% 70% 80%
chtm’ and accuracy retention defined in Sec- Uniform 67.9 529 13.1 219 4

tion[5.3] These aggregated results clearly show
s . . DSnoT 67.5 51.5 6.3 229.6

that, on average, NEURONAL is in line with
AlphaPruning in terms of perplexity, but out OWL s 53.7 6.0 82.8
pf . “.t ne i ‘% > ghpte tpi Y, bu Oﬁl " AlphaPruning 78.8 60.4 3.8 35.9
performs it in the Zero-Shot tasks, even when o' =\ o 0.9 62.4 3.6 470

scaling up the LLM size, while requiring 20x
less time to obtain the non-uniform sparsity
schedule. Looking at the detailed results in Table it further becomes clearer that NEURONAL and
AlphaPruning both provide advantages in this experimental setting. When evaluating over Language Mod-
eling datasets, see Table [8] our proposed approach provides better performance over the 13B models, while
AlphaPruning over the 70B case. On the other hand, when evaluating over Zero-Shot tasks, the mean ac-
curacy across the seven tasks shows that NEURONAL outperforms AlphaPruning in 10 out of 12 cases, see
shown in Table |§| (for the individual tasks’ results see Appendix. However, it is worth mentioning that,
in contrast with AlphaPruning, which in the 70B case requires hours (~12 hours on an A100 80GB) for
computing the non-uniform sparsity schedule, NEURONAL requires ~35 minutes to obtain it, as shown in
Table

Table 8: Perplexity of LLama models (vl of 13B and v2 of both 13B and 70B) on the three Language
Modeling datasets at 70% (top) and 80% sparsity (bottom).

LLama-1 13B LLama-2 13B LLama-2 70B
Algorithm Top-Up
WikiText-2 C4 PTB WikiText-2 C4 PTB WikiText-2 C4 PTB
Dense 5.09 6.80 28.11 4.88 6.73 48.82 3.32 5.71 20.76
Uniform 49.4 45.3 277.8 144.3 112.4 623.2 11.59 15.09 216.34
DSnoT 46.2 48.9 240.4 45.8 54.2 611.5 9.49 13.22 86.17
murTiFLow OWL 16.6 17.7 132.2 54.0 56.2 426.6 9.32 12.13 85.16
AlphaPruning 13.8 16.1 132.6 26.9 32.6 337.9 7.98 10.91 47.20
NEURONAL 13.8 15.6 101.7 20.1 23.1 318.9 9.03 11.75 120.84
Uniform 54.4 55.3 309.2 45.7 56.2 571.0 10.59 14.17 88.01
DSnoT 47.8 54.2 248.6 46.6 57.7 555.5 10.14 13.97 74.87
Wanda OWL 16.3 18.9 147.6 18.0 21.8 315.1 9.01 11.92 54.96
AlphaPruning 14.6 17.3 126.7 15.2 18.8 271.1 7.82 10.78 39.21
NEURONAL 14.3 16.6 97.9 16.5 19.3 237.6 8.46 11.18 46.66
Uniform 3.71e3 1.70e3 3.59e3 4.48e3 2.41e3 5.21e3 266.20 175.07 956.49
DSnoT 5.37e3 2.86e3 6.29¢3 1.94e3 1.67e3 5.28e3 189.76 132.22 698.30
muLTiFLow OWL 813.8 375.7 2.14e3 1.80e3 1.01e3 4.39e3 84.52 74.02 727.40
AlphaPruning 210.7 147.8 1.19e3 458.1 279.7 1.93e3 33.69 37.23 241.23
NEURONAL 126.8 123.7 901.6 1.60e3 864.1 2.96e3 52.73 44.07 747.53
Uniform 3.48e3 1.96e3 3.57e3 1.12e3 870.5 5.55e3 151.80 122.17 606.57
DSnoT 4.37e4 2.44e4 3.22¢4 4.44e3 3.96e3 4.09e3 193.28 137.61 620.97
Wanda OWL 761.6 368.1 1.93e3 248.0 204.2 2.03e3 56.07 59.57 368.97
AlphaPruning 209.6 148.6 973.3 165.1 158.2 1.53e3 31.10 36.19 162.65
NEURONAL 156.4 132.4 1.47e3 185.7 143.1 1.25e3 47.72 40.28 212.02

10

Published in Transactions on Machine Learning Research (10/2025)

Table 9: Average accuracy on the seven Zero-Shot tasks using both Wanda and MULTIFLOW as pruning
algorithm on larger-scale LLama models (13B, both v1 and v2, and 70B v2) at 70% (top) and 80% (bottom)
sparsity.

LLama-1 13B LLama-2 13B LLama-2 70B

Sparsity Top-Up
Wanda MurrtirLow Wanda MurTiFLow Wanda MULTIFLOW

Dense 62.64 63.03 67.10
Uniform 38.95 40.43 37.54 32.73 56.73 55.02
DSnoT 38.88 39.93 37.34 36.96 56.09 57.36

70% OWL 46.52 47.31 46.33 38.05 57.91 56.60
AlphaPruning 47.41 48.22 47.46 44.95 57.62 56.83
NEURONAL 49.34 50.79 48.28 47.82 58.96 56.95
Uniform 32.76 32.78 32.82 32.4 34.98 35.18
DSnoT 32.41 32.43 32.14 32.59 34.65 34.82

0% OWL 32.25 32.26 32.49 32.36 39.21 38.18
AlphaPruning 38.07 38.56 36.59 32.28 42.00 41.63
NEURONAL 37.98 40.72 36.19 32.51 46.79 45.32

5.4 Efficiency Analysis

In this section, we analyze the efficiency of NEURONAL in terms of pruning runtime and inference speed-up.

5.4.1 Runtime vs. Perplexity

NEURONAL provides a good trade-off between performance and runtime. In Table we show for all
baselines (here we also include BESA and DSA), the runtime in seconds required to obtain the non-uniform
sparsity distribution for the given model (in this case, LLama-1 7B) as well as the performance computed
as the perplexity over WikiText2. The results confirm how NEURONAL can achieve, in 3 out of 4 cases, the
best results in terms of perplexity while maintaining a low computational budget. In terms of runtime, the
only comparable methods are DSnoT and OWL, compared to which, however, NEURONAL achieves better
performance. On the other hand, DSA is the closest in terms of perplexity to NEURONAL, while requiring four
orders of magnitude more time to obtain the best sparsity distribution. Overall, the performance-runtime
trade-off of NEURONAL improves when increasing the sparsity ratio.

Moreover, in Table [I0] we report the runtime of the

Table 10: Runtime (seconds) for obtaining the non-
baselines used as comparison in the paper over the

uniform sparsity allocation among different top-up

13B and 70B LLama models. As expected, the re- algorithms over LLama 13B and 70B at 70% sparsity
sults of the runtime scale up with the model’s size. using Wanda.

Overall, DsNoT and OWL display the lowest runtime,

while NEURONAL tends to be ~3.5x-4x slower, even pfetric Top-up pruning algorithms

when scaling the model size. On the other hand, NEU- DsNoT OWL AlphaPruning NeuronAL
RONAL is drastically faster than AlphaPruning, from LlLama-113B 129.61s 140.55s 5443.40s 525.81s
6x in the 7B case, up to ~20x in the 70B case. This LLama-2 13B 129.36s 140.46s 5379.42s 524.41s
runtime advantage indicates that NEURONAL not only =~ LLama-2 70B 417.92s 488.76s 41890.97s 2110.20s

provides better performance, which is especially evi-
dent on larger models (see Tables , but also achieves a better performance-runtime trade-off.

Table 11: Runtime (seconds) vs. perplexity trade-off comparison among different top-up algorithms over
LLama-1 7B pruned at different sparsity ratios using Wanda.

Top-up pruning algorithms
Metric

Uniform DsNoT OWL BESA DSA AlphaPruning NeuronAL
Runtime - 4.58 733s ~ 1.8 x10"s ~ 4.3 x10*s 1479.4s 237.1s
Perplexity @ 65% 20.9 19.1 13.1 18.5 12.6 14.0 12.8
Perplexity @ 70% 85.1 72.9 24.6 42.6 22.6 26.9 20.7
Perplexity @ 75% 9274 646.7 152.5 257.9 103.3 110.2 61.2
Perplexity @ 80% 5.22e3 3.71e3 986.5 2.21e3 736.81 768.4 302.8

11

Published in Transactions on Machine Learning Research (10/2025)

5.4.2 Inference Speed-up

Here, we evaluate the speed-up accel- Tuple 12: End-to-end inference speed-up (throughput gain) for

eration O.f both .dense and sparse m(-)d— Phi-2 and LLama-2 7B (v1) at different sparsity ratios. Through-
els obtained with NEURONAL, using put is measured in tokens/sec.

the same inference pipeline based on

DeepSparse (NeuralMagic, 2021) ON- Model Metric Dense 20% 40% 60% 80%
. . | S/ S B 5

NXRuntime backends. The evaluation Phi-2 g;f;’i%};p?” (tokens/s) 2})?&6 2’1)%0; %‘12; 2'11185 qg@

consists of the end-to-end token genera- LLama.g 7 Throughput T (tokens/s) 01498 0.1506 01554 01714 0.2309

tion and has been done over an Intel i9- Speed-up 1 1.00x 1.01x 1.04x 1ldx 1.54x

10980XE CPU using 18 cores. Table [[2]
shows the throughput, measured in terms of tokens generated per second over Phi-2, using a sequence length
of 2024, and LLama-2 7B, using a sequence length of 1024, with four different sparsity ratios, along with the
speed-up w.r.t. the generation time required by the dense model.

5.5 Ablation Studies

In this section, we provide a set of ablation studies that further show the robustness of our proposed method.

5.5.1 NeuronAL) Selection

In this section, we report an analysis of the ability of NEURONAL to pick the best A parameters (i.e., the
parameters for which the performance is the best one, hence the lowest value if computed over perplexity).
To do this, we evaluate NEURONAL for all the A parameters (in the block-only setting, to simplify the
visualization of results) over the three Language Modeling datasets. Fig. [4] reports the perplexity at 70%
sparsity across different values of A (black dots connected by solid lines), while the dots highlighted in
orange indicate the perplexity achieved with the A value selected by NEURONAL. These results highlight
how NEURONAL, in the majority of the cases, can pick the best value of A both with data knowledge, as in
the C4 dataset (from which the calibration data is sampled), as well as on unseen datasets such as WikiText2
and PTB. Fig.s in the Appendix show the results at 60%-80% sparsity.

—e— NEUROAL === Uniform e Rec. Eror

Phi-2.7B LLama-1 78 Mistral-78
4 C4 c4

WikiText2 PTB ikiText2 PTB _ WikiText2

Perploxity
—
.y
g —
=
.
Perplexity
e
"
-~
Perplexity
—
.y

.
\

. " .,
., *
e L " |

oy — v .
006005 0.10° 015 0200 005505510 015 0200 005505510 0.5 020 D 005505 810 0.5 0200, 0.06~505 0.1 0.1 020 0. 000 005 0.10 095 020 0 505310 0.15 020 b~ 505~0.0 015 0.2 0 0505~ 0.10 015 0200
) B > B A > B B

Figure 4: Perplexity over different values of A at 70% sparsity. The orange dot indicates the value selected
by NEURONAL using neuron alignment. The green dot indicates the value selected by NEURONAL using the
reconstruction error rather than the neuron alignment (see Section |5.5.2)).

5.5.2 NeuronAL vs. Reconstruction Error and Distance Metrics

Our proposed approach is based on the activation alignment, defined in Eq.s 2iff] In Appendix [A] we
provide a detailed comparison of the formal difference between the definition of neuron alignment and that
of Reconstruction Error (Rec-Error) (Frantar & Alistarh, |[2023). In this section, we demonstrate, empirically,
how such a difference translates into an improved performance of neuron alignment w.r.t. Rec-Error. To
do so, we conduct an ablation study of NEURONAL where the best A for the block and row cases is selected
based on the values that minimize the Rec-Error rather than the neuron alignment.

Table [I3] shows the results, in terms of perplexity over WikiText2, of NEURONAL for the standard case with
neuron alignment and the setting based on Rec-Error. As clearly visible, neuron alignment always leads to
better performance. In addition, we highlight in Fig. 4| the A value (for the block-only case) selected using
Rec-Error. As displayed in the figure, while NEURONAL picks the A\ that minimizes the neuron alignment,
which in this case correlates with the lower (hence better) perplexity performance, Rec-Error does not provide
the same ability.

12

Published in Transactions on Machine Learning Research (10/2025)

Moreover, we include in the same table an additional Table 13: Perplexity of NEURONAL vs. Rec-
ablation study about the neuron alignment formulation Error and different distance metrics (Cosine Sim-
(Eq. . Specifically, we tested two different variations ilarity and KL-Divergence) across three sparsity
over Eq. 2] where the L2-norm is replaced by Cosine- ratios and four LLMs.

Similarity (Cosine) and Kullback—Leibler (KL) diver- Model Top-Up 60% 70% 80%
gence, respectively. In both cases, the procedure for the A Rec-Error 1078 79.40 3.29¢3
selection remains the same as for NEURONAL. The results LLama.1 78 NEURONAL w. Cosine 9.6 25.01 536.53
in Table [[3] show that the original NEURONAL formula- NEURONAL w. KL 10.42 70.99 6.18¢3
tion with the L2-norm provides, in the majority of the DD OND 959 21.53 302.82

Rec-Error 1096 67.25 2.32e3

cases (10 out of 12), the best results in terms of perplex- .
ity over WikiText2. This further ablation confirms the LLama-27p NFURONALw. Cosine 9.56 — 27.03 448.76

NEURONAL w. KL 10.36 66.93 1.54e3
effectiveness of the proposed formulation. NECRONAT 938 24.05 55717

Rec-Error 24.21 202.73 1.042e4
5.5.3 Sensitivity to Calibration Data Phiz NEURONAL w. Cosine 24.57 10618 3.03e3
Since NEURONAL works uses a calibration set, we test NEURONAL w. KL 2499 23723 1324
its sensitivity on the calibration settings in terms of seed, NEURONA 25'(2? ?8.'32 2;496[3
data source, and size. The results in Table [[4] show the iec*Erm; i 10'30 00T 2073
mean and standard deviation of perplexity at 70% spar- ~ Mistral-7B NEEEZE AE :;V ﬁf“ }8:93 g;f}f 23};113;1
sity over the three Language Modeling datasets for dif- NEURONAL 0.94 28.78 249.47

ferent seeds and when using different datasets to extract
the calibration data. Furthermore, the results in Fig.
report the perplexity at 70% sparsity over the three Language Modeling datasets when changing the number
of calibration samples (using C4 as calibration source and 0 as seed).

Table 14: Perplexity (avg. + std. dev.) achieved when using NEURONAL with different calibration data
seeds (top), and when using different datasets as the source for the calibration data (bottom) on the three
Language Modeling datasets at 70% sparsity.

Calibration Dataset Model
source(s), seed(s) Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B
e WikiText2 867 £ 1.6 227 + 2.3 237403 313+£41 1055 £ 60.7
Calibration: {C4} e} 758+ 17 243+ 16 273403 353+24 649+ 166
Seeds: {0, 16, 46} PTB 1365 + 11.8 46.8 + 4.6 2010 + 53 2395+ 65 1224 + 53.7
R , WikiText2 918 £ 4.7 20.7 £ 0.9 255 +41 301453 1265 +70.3
Calibration: {WikiText2, C4, PTB} ¢y 801429 237404 302442 363+£31 1339 £ 120.0
Seeds: {0} PTB 13954+ 10.6 41.7+38 2155+ 193 2395+ 69 1652 + 93.7

Overall, it can be seen that our method is fairly robust w.r.t. the calibration source, seeds, and number of
samples. The only exception is the OPT model, where the sensitivity to the calibration data turns out to
be higher. This sensitivity analysis reveals a possible explanation for the results presented in Section [5.2
where our proposed approach consistently outperformed the baselines over all models and tasks, except for
the OPT family.

I Phi-2.7B Mistral-7B Il Llama-17B BN Llama-2 7B OPT-6.7B
WikiText2 C4 PTB
250 500
400
22000 300
8 150 300 o
[N 200
S 100 200 o.g—o.
50 5| 100fegem g 100
& . o-0—0 e i [°
4 8 16 052 8 16 4 16
Number of Samples (|C,|) Number of Samples (|C,|) Number of Samples (|C,|)

Figure 5: Perplexity over different values of |C\| (size of the calibration data) when using NEURONAL on
the three Language Modeling datasets at 70% sparsity.

13

Published in Transactions on Machine Learning Research (10/2025)

6 Conclusion and Limitations

In this paper, we have proposed NEURONAL, a new approach to pruning LLMs based on the neuron alignment
between sparse and dense activations. The main novelty of our approach is that it exploits information
from both the dense and the sparse models while also being adaptive since it is designed to automatically
select the best hyperparameters for a given model, pruning algorithm, and target sparsity. Throughout
extensive experiments, we showed how our approach outperforms, in most cases, the latest state-of-the-art
methods both on Language Modeling datasets and Zero-Shot tasks, with different LLM families and sparsity
ratios, while requiring minimal time overhead w.r.t. the base pruning algorithm applied. We also included
an extensive sensitivity analysis to show the robustness of our approach to the calibration data, and its
capability to select \, as well as a runtime comparison with the most recent competitors.

The present version of NEURONAL has two main limitations. The first one derives from the algorithm setup.
In fact, NEURONAL requires selecting the size of A and C,, both affecting the computational cost of the
forward step. In order to alleviate this limitation and provide a fair comparison w.r.t. the base pruning
methods and the top-up baselines, we set |C,| = 8 (the closest power of 2 to |C]/|**|), so that NEURONAL
incurs only two extra forward passes compared to the base methods, and one more pass than OWL (Yin et al.,
2024) and AlphaPruning (Lu et al., |2024). In Appendix [B] we analyze the NEURONAL complexity w.r.t.
A%% and Cy. The second limitation (which should be noted, however, to be common to all top-up pruning
algorithms), is the inability to make use of optimized semi-structured sparsity inference implementations
(e.g, the NVIDIA N:M sparsity (Pool, 2020)). In fact, for a given sparsity, NEURONAL, as well as OWL
(Yin et al., [2024), AlphaPruning (Lu et al., [2024), and DSA (Li et al 2024), produce customized sparsity
constraints for each layer in a block. Therefore, these semi-structured sparsity implementations cannot be
employed as they often require continuity in the sparsity (N:M) across all matrices in the model.

14

Published in Transactions on Machine Learning Research (10/2025)

References

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
SliceGPT: Compress Large Language Models by Deleting Rows and Columns. In International Conference
on Learning Representations, 2023.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.
The second PASCAL recognising textual entailment challenge, 2006.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The fifth
PASCAL recognizing textual entailment challenge. In Text Analysis Conference, 2009.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1-45, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. In Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 2924-2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge. arXiv
preprint arXiv:1803.05457v1, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment chal-
lenge. In Machine learning challenges. Fvaluating predictive uncertainty, Visual object classification, and
Recognizing textual entailment, pp. 177-190. Springer, 2006.

Lucio Dery, Steven Kolawole, Jean-Francois Kagey, Virginia Smith, Graham Neubig, and Ameet Tal-
walkar. Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes. arXiv preprint
arXiv:2402.05406, 2024.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pp. 2943-2952. PMLR, 2020.

Matteo Farina, Massimiliano Mancini, Elia Cunegatti, Gaowen Liu, Giovanni lacca, and Elisa Ricci. MUL-
TIFLOW: Shifting Towards Task-Agnostic Vision-Language Pruning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 16185-16195, 2024.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. In International Conference on Learning Representations, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning Neural Networks at
Initialization: Why Are We Missing the Mark? In International Conference on Learning Representations,
2020.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pp. 10323-10337. PMLR, 2023.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing textual
entailment challenge. In ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 1-9.
Association for Computational Linguistics, 2007.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The unrea-
sonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Song Guo, Fan Wu, Lei Zhang, Xiawu Zheng, Shengchuan Zhang, Fei Chao, Yiyu Shi, and Rongrong Ji.
EBFT: Effective and Block-Wise Fine-Tuning for Sparse LLMs. arXiv preprint arXiv:2402.12419, 2024.

15

Published in Transactions on Machine Learning Research (10/2025)

Shwai He and Tianlong Chen. RESSA: Repair Sparse Vision-Language Models via Sparse Cross-Modality
Adaptation. arXiv preprint arXiv:2404.02424, 2024.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential sparsity in
large pre-trained models: The weights that matter. Advances in Neural Information Processing Systems,
36, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7B.
arXiv preprint arXiv:2310.06825, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. Shortened LLaMA: A Simple Depth Pruning for Large Language Models. ICLR Workshop on
Mathematical and Empirical Understanding of Foundation Models (ME-FoMo), 2024.

Eldar Kurti¢, Elias Frantar, and Dan Alistarh. ZipLM: Inference-Aware Structured Pruning of Language
Models. Advances in Neural Information Processing Systems, 36, 2024.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-Shot Network Pruning based on
Connection Sensitivity. In International Conference on Learning Representations, 2019.

Jiajia Li, Bora Ucar, Umit V Catalyiirek, Jimeng Sun, Kevin Barker, and Richard Vuduc. Efficient and
effective sparse tensor reordering. In ACM International Conference on Supercomputing, pp. 227-237,
2019.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu, Xiaowen
Chu, and Yike Guo. Discovering Sparsity Allocation for Layer-wise Pruning of Large Language Models.
In Advances in Neural Information Processing Systems, 2024.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, and
Mykola Pechenizkiy. The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive
Baseline for Sparse Training. In International Conference on Learning Representations, 2021.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W. Mahoney, and Yaoqing Yang. Al-
phaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large
Language Models. In Advances in Neural Information Processing Systems, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large language
models. Advances in Neural Information Processing Systems, 36, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. ShortGPT: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Xiang Meng, Shibal Ibrahim, Kayhan Behdin, Hussein Hazimeh, Natalia Ponomareva, and Rahul Mazumder.
OSSCAR: One-Shot Structured Pruning in Vision and Language Models with Combinatorial Optimization.
In International Conference on Machine Learning, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture Models. In
International Conference on Learning Representations, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a Suit of Armor Conduct Electricity?
A New Dataset for Open Book Question Answering. In Conference on Empirical Methods in Natural
Language Processing, pp. 2381-2391, 2018.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko
Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via large pre-trained
language models: A survey. ACM Computing Surveys, 56(2):1-40, 2023.

16

Published in Transactions on Machine Learning Research (10/2025)

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378,
2021.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and An-
tonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by
network science. Nature Communications, 9(1):2383, 2018.

NeuralMagic. DeepSparse Inference Engine. https://github.com/neuralmagic/deepsparse, 2021.
GitHub repository.

Jeff Pool. Accelerating Sparsity in the NVIDIA Ampere Architecture, 2020. GTC 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yangi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1-67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, and Jason D Lee. Sanity-
checking pruning methods: Random tickets can win the jackpot. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. In International Conference on Learning Representations, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive Activations in Large Language Models.
In Conference on Language Modeling, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023b.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking Winning Tickets Before Training by Preserving
Gradient Flow. In International Conference on Learning Representations, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824-24837, 2022.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, and
Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient sparsity allocation.
In International Conference on Learning Representations, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsich, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR
JAISWAL, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Out-
lier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high sparsity. In
International Conference on Machine Learning. PMLR, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a Machine
Really Finish Your Sentence? In Annual Meeting of the Association for Computational Linguistics, pp.
4791-4800, 2019.

17

https://github.com/neuralmagic/deepsparse

Published in Transactions on Machine Learning Research (10/2025)

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer Language Models. arXiv
preprint arXiv:2205.01068, 2022.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,
and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse LLMs. In International
Conference on Learning Representations, 2024.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch. In International Conference
on Learning Representations, 2021.

18

Published in Transactions on Machine Learning Research (10/2025)

A Comparison with Reconstruction Error-Based Pruning

Here, we discuss in detail the main difference between our proposed neuron alignment metric and the well-
established reconstruction error (Frantar & Alistarh) |[2023|). Reconstruction error (Frantar & Alistarhl [2023;
Guo et al.l |2024; Xu et all [2024; [Zhang et all [2024) relies on minimizing the L2-norm difference between
the outputs of the dense and sparse models at the layer level, following the formula:

min |[W'X’ — (M © WX||;. 9)

where W* € RéutXdin is the weight matrix of layer ¢, X! € R%»*" is the input data to the layer ¢, and
M € {0,1}dout¥din is the binary pruning mask for the weights of layer £.

However, in recent decoder-only Transformers (Touvron et al., [2023a; |Jiang et al., [2023)), each block applies
residual connections and intermediate LayerNorms. Hence, preserving the output of a single projection may
not be sufficient since it could either be passed to a normalization layer or be summed with the residual
stream. Specifically, each module operates as follows:

x1 = LayerNorm(hg)
a; = SelfAttention(x;)

h, =hg+a;
x5 = LayerNorm(h;)
ay = MLP(x3)
hy =h; +ay

This means that the input activations to each projection (i.e., the inputs to Wq, Wk, Wy, Wo, W,
Wip, and W gown) are the real “control points” of information flow. Modifying the weights without preserving
these activation patterns can distort the layer’s internal behavior.

To address this, NEURONAL directly compares the input activations to each projection in the dense and
sparse models. The resulting neuron alignment metric is computed as:

. 1
W 2 S ARG |

z€Cy beB el

AP (z) AL (@)

VAR (@) LA (2)

; (10)

where A‘(z) represents the projection input to layer ¢ for input = and £ includes all projection matrices in
the Transformer Block B;.

To conclude, unlike reconstruction-error-based methods, which measure what a layer produces as output, our
method evaluates what each layer receives as input. This distinction leads to a more fine-grained, neuron-
level preservation of the behavior of the dense model. Another key difference is given by the fact that the
neuron alignment metric produces one numerical value for the activations’ alignment between the sparse
and the dense model, while the reconstruction error provides separate values of errors for each sparse layer.
This allows us to provide a metric that depicts the global alignment between the sparse and dense models,
rather than a local (layer-wise) perspective.

B NeuronAL Complexity Analysis

The space complexity of NEURONAL primarily depends on the size of the calibration set C and |[A\5¢Y|, i.e.,
on the number of sparsity schedules to evaluate. For each input x € Cy and each candidate A € A%, we
perform one forward pass through the dense model and two forward passes through the sparse model (one
for the block step and one for the row step of NEURONAL).

Let B be the number of Transformer blocks, n the input sequence length, and d the hidden dimension. Then,
the complexity of one forward pass is O(Bn2d). As a result, the overall complexity of NEURONAL becomes:

O ((1+2/x%t)) - [Cy| - Bn2d) (11)

19

Published in Transactions on Machine Learning Research (10/2025)

From a practical standpoint, we optimize memory usage by processing each block independently and in
parallel for the sparse and dense models. Specifically, we collect and compare the input activations to each
projection matrix. Once the alignment score is computed for a block, the corresponding activations are
discarded to save memory.

As a result, the actual memory complexity at runtime becomes:
O(|Cx|n*d), (12)

since inference and neuron alignment are performed block-by-block, independently of |A***| and the number
of layers.

B.1 Complexity NeuronAl vs. OWL

All base pruning methods require a single forward pass over the full calibration set C'. On the other hand,
top-up algorithms, such as OWL (Yin et al.,[2024) and AlphaPruning (Lu et al., [2024), require one additional
forward pass for computing block information for their non-uniform distribution metric. NEURONAL, instead,
performs one forward pass per each A € A*¢* over a smaller subset C. To ensure a comparable cost w.r.t. the
top-up baselines which use one additional forward over a calibration set of |C| samples, we set |Cy| = %,
so that the overall number of tokens processed remains roughly the same. As a result, NEURONAL requires
2-|Cy] - [X%¢t| = 2 - |C] forward passes—which is two times more than base pruning methods, and one time
more than OWL and AlphaPruning. The runtime comparisons can be found in Table [I1]in the main text.

C Experimental Setup

Baselines. For OWL, we set the hyperparameters to the values that are used mostly in the original paper,
hence M =5 and A = 0.08; we do the same for AlphaPruning, setting ¢ = 0.3. All these baselines are tested
considering each row as a comparison group: in other words, for a given layer, the sparsity s is uniform
for each row of each matrix rather than uniform across matrices. This is done for two main reasons: 1)
as mentioned earlier, it is established that row-wise pruning on LLMs leads to better performance w.r.t.
layer-wise pruning (Sun et all [2023), and 2) since our approach relies on a row-wise step, for fairness we
also use each row (rather than layer) as a comparison group on all the other methods, to appreciate the
benefit of our approach. We also test our approach on SparseGPT (Frantar & Alistarhl |2023), using in this
case only the block step, since SparseGPT relies on a weight reconstruction mechanism that prunes columns
first and then adjusts the rows of pruned cells using Hessian information, which makes it unfeasible to apply
our row step. The results can be found in Tables For all the pruning algorithms that use calibration
data (i.e., MULTIFLOW, Wanda, and SparseGPT), we use 128 samples from the C4 dataset, as in (Frantar &
Alistarh, [2023; [Sun et al., [2023; |Yin et al., 2024)).

NeuronAL Setup. Our method takes as input an LLM model, a target sparsity, a scoring-based pruning
algorithm, and two sets of A parameters (for the block and the row steps, respectively). In the experiments,
we set A% = [0.01, 0.02, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.15, 0.20,0.25] for the block step, while
for the row step, we also added 0.0 (in case of no performance improvement). Each value in A** has been
evaluated (as described in Algorithm |3) over a calibration data C. Since all the base pruning algorithms
require a single forward over C' (with C' containing 128 sequences of 2048 tokens each), while OWL requires
a second forward always over C, to make the computational runtime similar we set Cy = 8 (the closest power
of 2 w.r.t. |C|/|>3*°!). In essence, NEURONAL only requires two forward steps more than the base pruning
algorithms, and one forward step more than OWIE All the experiments have been run on NVIDIA A100
GPUs, both with 40 and 80 GB.

5For both C and Cy, we use the same seed (0) for the calibration set, i.e., C) contains the first 8 elements of C.

20

Published in Transactions on Machine Learning Research (10/2025)

D Additional experiments

Here we include the results of the experiments that, due to space limits, we could not include in the main
text. Specifically, we report: the results of NEURONAL over a more recent model, namely LLama-3 8B; the
results on the Language Modeling datasets at 60% and 80% sparsity and the full results on the Zero-Shot
tasks at 60%, 70%, and 80% sparsity; the results for the Zero-Shot tasks with Magnitude pruning; the full
results of Zero-Shot tasks over LLama 13B and 70B at 70% sparsity; the results of NEURONAL (block-only)
applied to SparseGPT (Frantar & Alistarh) 2023).

D.1 Results on LLama-3 8B

In this section, we include further experi- Table 15: Perplexity on the three Language Modeling datasets
ments over a more recent model: LLama- computed over LLama-3 8B) for four different top-up algorithms
3 8B. We stick to the same experimental (Uniform, DSnoT, OWL, and NEURONAL) on three pruning al-
setup of Appendix [C]and compare NEU- gorithms (Magnitude, MULTIFLOW, and Wanda) at 70% sparsity.

RONAL to the same baselines of the main pre e e

text. Specifically, we report the Lan- Algorithm Top-Up WikiText2 C4 PTB WikiText2 C4 PTB WikiTextz2 C4 PTB
. . Dense 6.1 9.4 1.2

guage Modeling results in Table and Uniform 35.4 119 513 151.3 1681 1561 13975 10585 21250
Zero-Shot results in Table m As we saw ~ DSnoT 23.8 329 401 119.6 152.0 148.8 1497.0 1066.1 1775.2
MULTIFLOW - OwT, 27.7 320 420 126.7 1380 1529 891.6 620.7 716.5
in the main text for the case of LLama-2 AlphaPruning 22.6 315 404 1510 1706 2180 13091 11253 1800.9
.) NEURONAL 2.7 302 387 1329 1204 1879 55335 3075.1 63959
70B, also in this case, our method offers Uniform 23.6 353 416 125.2 163.0 1476 10515 8241 1029.9
s . DSnoT 214 306 364 121.8 1580 1525 11499 7179 1013.6
competitive results (although it does not wanda owL 18.6 2064 317 92.1 1248 1323 723 6011 913.0
1 It in bei he b 1 ith AlphaPruning 19.2 284 331 115.7 1571 167.7 11101 1079.0 11448
always result in being the best algorithm NEURONAL 18.4 25.6 30.4 93.7 98.1 159.6 7772 6042 10126

in all cases) over the Language Modeling

datasets. However, it is by a large margin the most performing algorithm, on average, across the Zero-Shot
tasks, as clearly shown in Table [I6] Overall, the points of strength of NEURONAL stated in the main text
also apply to the most recent LLM models.

Table 16: Accuracy on the seven Zero-Shot Tasks, computed over LLama-3 8B for four different top-up
pruning algorithms (DSnoT, OWL, AlphaPruning, and NEURONAL) on two pruning algorithms (MULTIFLOW
and Wanda) at 70% and 80% sparsity. “Average” indicates the mean accuracy across tasks. The rows
corresponding to the pruning algorithms refer to the uniform distribution.

)
i b
ﬁ ;
Q @ ¢ ? <
s 2 £ 2 9 o 2
= IS d B =1 =1 s
Sparsity Algorithm o 2 M Jasi < < o Average
Dense 69.68 72.77 81.35 60.19 80.09 50.43 34.8 64.19
MULTIFLOW 52.71 48.86 51.90 2755 31.19 1826 12.20 34.67
w. DSnoT 52.71 4846 50.09 2731 3136 17.15 13.40 34.35
w. OWL 52.71 51.62 62.11 27.84 34.05 17.92 12.20 36.92

AlphaPruning 52.71 5099 61.19 27.82 32.03 1724 12.80 36.40
w. NEURONAL 52.71 53.12 62.17 29.21 37.12 17.83 15.20 38.19

70% Wanda 52.71 49.01 51.38 2727 3253 17.58 12.00 34.64
w. DSnoT 52.71 4838 51.50 27.19 31.06 17.58 13.60 34.57
w. OWL 52.71 48.86 61.59 2829 35.69 1741 12.80 36.76

AlphaPruning 52.71 50.561 53.58 27.69 34.64 17.15 13.20 35.64
w. NEURONAL 52.71 54.06 62.20 31.27 41.71 20.05 16.20 39.74

MULTIFLOW 52.71 50.28 37.86 26.46 2795 19.54 11.00 32.26
w. DSnoT 52.71 46.57 37.95 26.36 28.03 20.48 11.80 31.99
w. OWL 52.71 48.62 40.76 26.38 2824 20.22 13.00 32.85

AlphaPruning 52.71 4846 49.85 2642 27.19 19.20 14.20 34.00
w. NEURONAL 5235 49.01 62.14 26.54 28.41 1945 13.60 35.93

80% Wanda 52.71 4799 37.83 26.68 27.53 19.11 12.40 32.04
w. DSnoT 52.71 4751 3780 26.21 2824 21.25 12.60 32.33
w. OWL 52.71 4783 3820 26.63 28.58 19.54 13.60 32.44

AlphaPruning 53.07 49.41 48.04 26.39 27.15 19.88 13.60 33.93
w. NEURONAL 52.71 49.57 60.31 26.65 2841 18.69 13.40 35.68

21

Published in Transactions on Machine Learning Research (10/2025)

D.2 Language Modeling at 60% and 80% Sparsity

In Table we report the results of NEURONAL over the 3 Language Modeling datasets (WikiText2, C4,
and PTB) with the five different LLMs considered in the main text, for 60% and 80% sparsity. In the first
case, our approach turns out to be the best one in 23 out of 45 cases, while for 80% sparsity in 20 out of
45, while is second best in 15 cases. It is interesting to notice how at medium sparsity (60%) all the top-up
algorithms, including ours, provide similar results, while the improvement provided by NEURONAL at 80%
(w.r.t. the top-up competitors) in some cases reaches a factor of 2-3x (e.g., with LLama-1 7B for MULTIFLOW
and Wanda).

Table 17: Perplexity on the three Language Modeling datasets computed over five different LLMs for four
different top-up algorithms (Uniform, DSnoT, OWL, and NEURONAL) on three pruning algorithms (Mag-
nitude, MULTIFLOW, and Wanda) at 60% sparsity.

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT 6.7B
Algorithm Top-Up
WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4
Dense 9.7 14.1 18.2 5.7 7.3 10.1 5.5 7.3 32.9 5.3 8.4 36.6 10.9 12.7
Uniform 51.3 45.9 66.9 152.4 159.8 3.02e3 6.89e3 4.27e4 1.71e6 19.6 244 189.3 9.49e3 6.20e3
DSnoT 55.9 48.9 64.1 131.6 114.7 1.46e3 3.68e3 6.78¢4 7.30e6 15.3 19.6 146.2 8.08e3 6.06e3
Magnitude ~OWL 46.5 422 657 50.5 62.9 2494 810.9 1.94e4 2.30e6 12.0 15.8 169.1 6.81e3 3.67¢3
AlphaPruning 268.7 2542 1.13e3 61.6 82.2 153.6 37.1 49.4 43e5 13.1 18.2 1854 5.07e3 2.62e3
NEURONAL 48.5 448 65.1 55.8 63.6 153.1 52.4 793 2.48e4 125 17.0 139.0 1.20e3 547.6
Uniform 254 28.3 54.7 11.6 13.9 26.0 11.0 13.7 166.9 167.7 341.0 8843 16.3 19.7
DSnoT 37.2 42.1 50.2 10.1 12.7 18.2 10.5 13.4 137.6 10.9 14.8 86.0 15.9 19.2
muLTiFLow OWL 23.8 26.7 498 10.6 12.9 19.6 10.1 12.7 106.0 84.1 123.0 644.6 16.1 18.5
AlphaPruning 434.1 401.2 1.82e3 11.6 14.1 19.9 10.9 13.8 83.4 89.1 116.4 454.6 30.9 25.4
NEURONAL 23.6 27.0 42.0 9.9 12.2 17.7 9.7 12.1 72.2 112.4 168.0 806.9 16.6 19.9
Uniform 225.8 29.3 48.9 10.7 13.7 24.0 10.8 14.0 122.2 11.3 159 101.6 15.2 17.9
DSnoT 32.2 38.0 50.6 104 13.2 20.8 10.8 14.1 109.6 11.4 15.9 96.8 15.8 19.1
Wanda OWL 24.8 28.2 48.6 9.4 11.8 185 9.2 11.9 751 10.3 14.5 84.5 15.7 17.8
AlphaPruning 165.3 166.5 669.7 10.1 12.7 17.7 9.8 12.6 69.3 10.8 15.3 93.5 27.9 24.3
NEURONAL 25.3 27.1 41.8 9.6 12.0 174 9.4 12.0 64.3 9.9 13.8 81.9 16.3 19.1

Table 18: Perplexity on the three Language Modeling datasets computed over five different LLMs for four
different top-up algorithms (Uniform, DSnoT, OWL, and NEURONAL) on three pruning algorithms (Mag-
nitude, MULTIFLOW, and Wanda) at 80% sparsity.

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT 6.7B
Algorithm Top-Up
WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB WikiText2 C4 PTB
Dense 9.7 14.1 5.7 7.3 10.1 5.5 7.3 32.9 5.3 8.4 36.6 10.9 12.7 15.8
Uniform 1.53e4 1.79e4 1.13e5 1.14e5 1.40e5 5.58e4 5.26e4 8.98e4 2.48¢e4 3.12e4 7.98e3 4.29¢4 2.13e4 2.21e4
DSnoT 1.99e4 2.07ed 3.40e4 3.42e4 7.20e4 2.36e6 1.80e6 3.02¢6 1.33e4 8.03e3 5.80e3 1.81e4 1.19e4 1.44e4
Magnitude ~ OWL 6.63e3 5.60e3 1.69e5 1.34e5 2.69e4 1.79e4 5.79e4 9.61e3 8.50e3 5.793 3.32e4 1.78¢4 2.16e4
AlphaPruning 8.54ed 9.37ed 5.78e4 9.22e4 4.83e4 2.46e4 5.09e4 3.03e3 2.74e3 3.30e3 2.52e4 1.31e4 1.32e4
NEURONAL 9.34e3 8.36e3 8.23e4 1.08e5 3.64e4 3.15e4 2.99e4 1.42e3 7.53¢2 4.45¢3 3.42e4 2.27e4 1.84e4
Uniform 2.53e4 1.28e4 4.83e3 9.81e3 2.04e3 1.46e3 3.88e3 4.29e3 2.98¢3 3.81e3 4.42e3 2.38e3 3.28e3
DSnoT 8.50e3 3.92e3 3.70e3 8.26e3 1.72e3 1.54e3 3.44e3 327.0 270.0 752.5 1.16e4 9.72e3 1.18e¢4
murtiFLow OWL 255.2 2.80e3 1.36e4 926.5 1.78e3 544.2 414.3 2.82e3 3.35e3 2.21e3 3.56e: 1.35e4 1.1le4 1.51ed
AlphaPruning 2.12c4 1.27e4 2.04e4 934.0 1.55¢3 899.1 670.9 2.60e3 3.46e3 3.69¢3 6.05¢3 4.21e3 2.92e3 3.48¢3
NEURONAL 2.34e3 992.4 4.22e3 259.8 613.8 378.5 456.8 2.09e3 1.02e3 719.3 1.56e3 1.29e3 721.9 1.35e3
Uniform 2.05e4 1.24e4 3.14e4 5.22e3 3.97e3 1.00e4 4.93e3 3.12e3 5.29e3 330.9 2777 783.7 4.26e3 2.35e3 2.73e3
DSnoT 1.53e4 6.86e3 1.40e4 3.71e3 3.08e3 7.79e3 5.20e3 4.44e3 6.69e3 346.5 2773 758.4 7.75e3 6.16e3 7.78e3
Wanda OWL 2.55e3 1.21e3 7.06e3 986.5 654.5 2.00e3 663.0 486.2 2.28¢3 206.3 187.8 603.9 1.32¢4 1.06¢4 1.42¢4
AlphaPruning 4.31e4 3.33e4 2.66e4 768.4 654.9 1.29e3 982.1 670.0 2.18e3 204.3 182.6 7742 5.61e3 4.97e3 5.21e3
NEURONAL 2.50e3 1.59e3 4.03e3 302.8 272.2 783.8 557.2 660.2 2404.1 249.5 177.6 7839 1.04e3 632.8 1.13e3

22

Published in Transactions on Machine Learning Research (10/2025)

D.3 Zero-Shot at 60%, 70%, and 80% Sparsity

In Tables we report the results at 60%, 70%, and 80% sparsity of NEURONAL over Zero-Shot tasks
with the five different LLMs tested in the main text. In particular, we report the detailed results for each

task, while in the main text, we only report the average results across the seven tasks.

Table 19: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different
top-up pruning algorithms (DSnoT, OWL, and NEURONAL) on two pruning algorithms (MULTIFLOW and
Wanda) at 60% sparsity. “Average” indicates the mean accuracy across tasks. The rows corresponding to

the pruning algorithms refer to the uniform distribution.

Q
'g
: ¢
2 o ¢ ¢ <
s 2 5 2 ¢ v 2
<! = =] [Qﬁ Qﬁ M
Model Algorithm o 2 s3] st < < o Average
MULTIFLOW 62.09 67.64 63.15 4204 71.76 39.51 27.2 53.34
w. DSnoT 63.18 66.77 4349 40.84 66.62 3541 26.0 48.90
w. OWL 64.62 67.17 60.15 41.78 70.96 37.8 28.8 53.04
AlphaPruning 62.45 52.96 50.83 29.03 4827 2218 16.0 40.25
w. NEURONAL 62.82 674 6587 4296 70.88 38.65 27.8 53.77
Phi-2.7B Wanda 63.54 648 69.08 40.16 68.64 349 254 52.36
w. DSnoT 62.45 6433 59.17 3925 6418 33.53 226 49.36
w. OWL 64.62 64.33 64.83 39.80 67.63 34.98 24.2 51.48
AlphaPruning 64.26 55.33 62.39 31.07 47.9 2381 17.2 43.14
w. NEURONAL 6426 66.38 67.55 40.63 66.5 3439 24.6 52.04
MULTIFLOW 57.04 6251 67.19 4531 59.55 3097 24.6 49.60
w. DSnoT 49.46 63.06 68.32 44.75 63.80 31.23 264 49.57
w. OWL 54.15 63.46 66.54 46.53 60.65 31.14 254 49.70
AlphaPruning 50.9 6543 67.65 46.11 58.08 31.57 24.2 49.13
w. NEURONAL 509 6354 68.35 47.91 63.89 3217 27.2 50.57
LLama-1 7B Wanda 59.57 62.67 6881 43.64 62.84 30.38 24.8 50.39
w. DSnoT 51.62 61.64 67.37 43.39 63.89 30.55 254 49.12
w. OWL 55.60 64.17 70.61 46.63 62.96 31.74 24.8 50.93
AlphaPruning 59.57 65.27 68.81 46.09 60.4 32.85 24.6 51.08
w. NEURONAL 5848 63.61 70.55 46.53 63.8 30.89 26.0 51.41
MULTIFLOW 57.04 61.96 64.80 43.39 60.44 29.1 24.6 48.76
w. DSnoT 54.15 63.77 6391 4342 66.25 31.83 24.0 49.62
w. OWL 5487 6275 65.14 4520 62.58 29.52 238 49.12
AlphaPruning ~ 52.71 64.96 64.86 44.63 61.32 308 23.4 48.95
w. NEURONAL 53.07 6527 69.27 46.85 66.62 31.31 252 51.08
LLama-2 7B Wanda 54.15 6448 6544 43.85 6519 3046 26.2 49.97
w. DSnoT 53.79 64.09 64.83 4239 63.89 30.03 228 48.83
w. OWL 53.79 66.61 66.76 46.63 67.63 32.34 28.0 51.68
AlphaPruning ~ 54.15 674 66.67 46.17 64.98 33.28 25.8 51.21
w. NEURONAL 5271 66.77 71.99 46.85 66.33 32.08 27.2 51.99
MULTIFLOW 51.62 49.88 39.17 27.49 29.67 18.77 11.0 32.51
w. DSnoT 54.87 66.61 70.86 45.93 68.27 32.94 24.0 51.93
w. OWL 53.07 50.12 46.33 2829 3258 1928 132 34.70
AlphaPruning 53.79 51.93 43.21 27.78 35.52 19.37 13.2 34.97
w. NEURONAL 5235 51.93 43.33 28.08 3228 1852 120 34.07
Mistral-7B Wanda 54.87 66.06 71.13 4448 67.05 32.00 21.60 51.03
w. DSnoT 54.15 65.59 70.43 44.5 66.88 3140 20.60 50.51
w. OWL 57.04 67.17 73.85 4566 67.89 3259 2320 52.49
AlphaPruning 57.4 66.54 64.98 44.02 65.32 30.03 20.8 49.87
w. NEURONAL 557.04 66.06 70.34 46.37 68.6 33.02 232 52.09
MULTIFLOW 52.71 5825 62.69 4224 56.52 25.68 2220 45.76
w. DSnoT 53.07 5848 6257 4213 57.79 2398 2220 45.75
w. OWL 53.07 57.46 63.21 42.98 56.44 25.68 24.20 46.15
AlphaPruning 58.12 58.64 62.29 40.83 51.68 24.49 19.0 45.01
w. NEURONAL 52.71 58.33 62.32 4219 564 250 21.6 45.51
OPT-6.7B° Wanda 5271 59.67 6229 42.80 58.00 25.60 22.6 46.24
w. DSnoT 5271 5817 6211 41.99 5741 2543 224 45.75
w. OWL 5271 5872 62.69 4214 58.33 2517 226 46.05
AlphaPruning 55.23 58.09 6217 39.71 51.85 24.83 19.6 44.50
w. NEURONAL 5271 61.25 62.39 41.95 57.28 25.09 22.0 46.10

23

Published in Transactions on Machine Learning Research (10/2025)

Table 20: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different
top-up pruning algorithms (DSnoT, OWL, and NEURONAL) on two pruning algorithms (MULTIFLOW and
Wanda) at 70% sparsity. “Average” indicates the mean accuracy across tasks. The rows corresponding to
the pruning algorithms refer to the uniform distribution.

]
E &
2} { 7 <
a e 2 =2 ¢ ¢ o
= IS) [} [=1 M
Model Algorithm &~ 2 M Jast < < o Average
MULTIFLOW 53.79 50.43 5349 2843 46.59 20.48 15.6 38.40
w. DSnoT 52.71 54.06 54.92 28.38 44.15 21.5 15.6 38.76
w. OWL 52.35 55.33 6199 30.31 54.59 24.23 18.4 42.46

w. AlphaPruning 47.29 51.3 37.71 2585 26.64 209 13.0 31.81
w. NEURONAL 53.07 58.64 62.17 3345 5219 2534 174 43.18

Phi-2.7B Wanda 52.35 53.2 6214 28.31 44.87 2099 174 39.89
w. DSnoT 52.35 51.54 60.98 2833 41.62 21.08 154 38.76
w. OWL 52.71 5359 62.05 30.09 48.61 2253 18.8 41.20

w. AlphaPruning 47.29 49.88 60.86 25.52 25.55 22.01 14.0 35.02
w. NEURONAL 52.71 56.35 6217 3247 49.62 2295 16.8 41.87

MULTIFLOW 55.96 52.57 6196 29.77 34.64 19.45 15.2 38.51
w. DSnoT 54.15 5043 59.33 29.33 3645 19.28 13.6 37.51
w. OWL 52.35 58.64 62.63 36.74 4743 26.62 182 43.23

w. AlphaPruning 55.6 63.54 64.4 36.37 43.22 26.79 18.6 44.07
w. NEURONAL 57.76 61.72 63.3 38.19 50.88 26.88 22.8 45.93

LLama-1 7B Wanda 55.23 52.8 5746 28.84 322 180 138 36.9
w. DSnoT 5415 51.22 5456 2897 33.08 18.26 13.6 36.26
w. OWL 58.48 5856 62.60 34.74 47.35 24.06 174 43.31

w. AlphaPruning 56.68 63.14 63.85 35.78 44.82 26.71 17.6 44.08
w. NEURONAL 55.96 59.27 63.12 3694 50.0 26.11 20.6 44.57

MULTIFLOW 52.71 50.99 62.05 28.52 33.04 17.92 13.6 36.98
w. DSnoT 52.71 5099 59.72 2792 3258 16.81 13.0 36.25
w. OWL 52.71 56.12 62.05 3240 4242 19.88 186 40.6

w. AlphaPruning 52.71 58.64 62.2 3517 41.33 22.87 17.6 41.5
w. NEURONAL 53.43 58.09 62.35 3526 48.32 2244 20.2 42.87

LLama-2 7B Wanda 52.71 48.46 49.94 28.09 3039 192 118 34.37
w. DSnoT 52.71 50.36 47.77 27.67 30.6 17.32 122 34.09
w. OWL 52.71 55.96 62.11 31.86 43.73 20.65 17.0 40.57

w. AlphaPruning 52.71 61.33 62.2 34.82 4343 22.1 17.6 42.03
w. NEURONAL 53.07 57.85 63.27 3542 49.62 2244 20.0 43.1

MULTIFLOW 49.82 50.75 41.19 26.45 26.64 21.84 12.6 32.76
w. DSnoT 52.71 52,57 62.42 29.51 36.66 18.94 12.0 37.83
w. OWL 53.79 49.17 3890 26.77 27.78 19.20 128 32.63

w. AlphaPruning 52.35 48.07 37.95 27.01 2828 18.17 11.8 31.95
w. NEURONAL 52.71 50.75 38.29 27.16 28.75 17.75 13.0 32.63

Mistral-7B Wanda 5271 51.62 59.79 28.86 34.18 1817 126 36.85
w. DSnoT 5271 50.28 58.62 2851 3354 1886 13.2 36.53
w. OWL 52.71 5391 62.20 30.95 39.39 18.60 13.6 38.77

w. AlphaPruning 52.71 56.27 62.2 31.47 3855 1852 13.6 39.05
w. NEURONAL 52.71 60.62 62.17 348 44.28 20.31 16.0 41.56

MULTIFLOW 53.79 49.72 43.0 26.48 30.51 20.05 13.8 33.91
w. DSnoT 53.79 49.01 61.1 27.01 3287 18.34 12.2 36.33
w. OWL 48.74 48.62 61.56 27.18 35.69 16.47 11.6 35.69
AlphaPruning 46.93 51.78 62.17 3148 36.49 22.18 138 37.83
w. NEURONAL 50.564 50.99 62.17 31.3 40.74 22.27 174 39.34
OPT-6.7B Wanda 52.71 49.72 60.03 2691 3586 17.75 11.2 36.31
w. DSnoT 52.71 49.57 60.61 2691 35.06 17.58 12.0 36.35
w. OWL 53.79 51.22 61.87 29.53 42.3 18.09 14.6 38.77
AlphaPruning 51.62 51.7 6217 33.13 40.19 227 15.2 39.53

w. NEURONAL 50.90 51.07 6217 30.54 40.78 21.16 15.4 38.86

24

Published in Transactions on Machine Learning Research (10/2025)

Table 21: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different
top-up pruning algorithms (DSnoT, OWL, and NEURONAL) on two pruning algorithms (MULTIFLOW and
Wanda) at 80% sparsity. “Average” indicates the mean accuracy across tasks.
the pruning algorithms refer to the uniform distribution.

The rows corresponding to

o
'g
g 2
(3 4 [} [3) <
0 ¢ 7
- -
= iz <]) =1 [t aa)
Model Algorithm & 2 [aa} = < < =} Average
MULTIFLOW 52.71 50.12 51.04 26.15 27.44 19.37 134 34.32
w. DSnoT 50.18 49.49 37.83 26.32 27.82 19.97 138 32.2
w. OWL 53.07 51.22 56.76 2630 30.85 1852 15.2 35.99
AlphaPruning 44.77 48.78 37.83 2574 26.18 20.31 114 30.72
w. NEURONAL 52.71 50.59 43.0 26.66 33.88 21.16 16.0 34.86
Phi-2.7B Wanda 53.07 49.25 6217 2593 27.44 2099 14.6 36.21
w. DSnoT 53.07 50.99 38.04 2617 27.10 20.73 13.0 32.73
w. OWL 52.35 51.22 60.21 26.51 29.88 20.05 13.6 36.26
AlphaPruning ~ 43.32 49.8 3829 2594 2567 21.16 11.0 30.74
w. NEURONAL 52.71 502 6217 26.96 3232 20.56 16.6 37.36
MULTIFLOW 47.29 50.91 40.03 26.17 26.77 21.16 12.4 32.1
w. DSnoT 46.57 5043 37.83 26.02 27.06 20.05 122 31.45
w. OWL 50.18 50.04 45.47 26.74 27.65 2048 12.2 33.25
AlphaPruning 56.68 49.96 62.17 2644 27.23 21.25 11.2 36.42
w. NEURONAL 54.51 51.14 622 28.82 3274 1945 144 37.61
LLama-1 7B Wanda 4729 49.88 37.83 2634 2647 2099 128 31.66
w. DSnoT 46.93 50.36 37.83 26.03 2656 21.33 13.4 31.78
w. OWL 47.29 49.88 37.83 26.67 27.19 1954 116 31.43
AlphaPruning 5235 49.17 61.19 26.58 26.77 20.73 10.6 35.34
w. NEURONAL 52.71 4957 60.03 28.21 30.85 19.62 132 36.31
MULTIFLOW 53.43 48.86 37.83 26.35 27.48 21.25 13.2 32.63
w. DSnoT 52.71 48.86 37.86 26.17 26.60 20.39 13.0 32.23
w. OWL 52.71 49.49 37.83 26.62 2694 19.11 12.6 32.19
AlphaPruning 5271 50.67 3801 26.62 26.77 20.14 11.2 32.30
w. NEURONAL 52.71 4917 3817 281 2946 1834 15.0 32.99
LLama-2 7B Wanda 47.65 4941 37.83 2582 2652 20.82 146 31.81
w. DSnoT 53.07 47.91 37.86 26.09 2723 20.73 13.0 32.27
w. OWL 52.71 50.83 37.83 26.52 27.27 19.37 128 32.48
AlphaPruning 52.71 48.54 37.89 2642 27.44 1945 122 32.09
w. NEURONAL 5271 50.04 37.77 27.3 2845 1894 140 32.74
MULTIFLOW 50.18 4815 37.80 25.67 26.18 22.70 13.20 31.98
w. DSnoT 52.71 47.36 37.83 26.58 28.03 1894 13.8 32.18
w. OWL 48.38 49.09 38.44 2588 2559 23.29 136 32.04
AlphaPruning 51.62 50.67 3792 2635 2635 21.67 14.8 32.77
w. NEURONAL 52.71 4846 37.83 26.07 27.57 19.03 146 32.32
Mistral-7B Wanda 53.79 48.78 37.83 2652 27.82 198 128 32.48
w. DSnoT 52.35 48.30 37.83 26.55 27.44 1954 13.0 32.14
w. OWL 52.71 47.43 37.83 26.68 27.78 1852 13.2 32.02
AlphaPruning ~ 52.71 47.99 37.83 26.73 28.41 19.54 12.8 32.29
w. NEURONAL 52.71 51.14 38.04 27.28 2866 20.31 13.4 33.08
MULTIFLOW 52.71 50.91 37.80 2587 27.40 19.28 12.40 32.34
w. DSnoT 52.71 50.83 57.31 26.00 25.00 20.22 11.80 34.84
w. OWL 52.71 51.07 37.83 2574 2529 20.05 16.00 32.67
AlphaPruning ~ 52.71 49.01 37.83 26.14 27.31 20.73 14.8 32.65
w. NEURONAL 53.07 50.12 62.23 2644 3148 2048 126 36.63
OPT-6.7B Wanda 54.15 52.09 41.53 26.47 2845 1886 11.80 33.34
w. DSnoT 52.71 51.38 55.32 26.17 27.06 19.37 13.80 35.12
w. OWL 52.71 49.33 37.83 2584 25.67 20.31 13.00 32.10
AlphaPruning ~ 52.71 48.86 37.98 26.09 26.73 20.14 126 32.16
w. NEURONAL 5271 50.67 41.83 2643 30.05 1869 11.0 33.05

25

Published in Transactions on Machine Learning Research (10/2025)

D.4 Zero-Shot at 60%, 70%, and 80% Sparsity with Magnitude
In Tables 22}24] we report the results of NEURONAL over Zero-Shot tasks using Magnitude pruning.

The results provided by NEURONAL turn out to be the best in 10 out of 15 cases, while being the second
best in 3 cases. It is also worth noticing that the performance gap between the Magnitude pruning and
score-based pruning algorithms (such as Wanda or MULTIFLOW) is generally quite high. Hence, NEURONAL
can improve the performance of Magnitude (in the standard setting with uniform distribution) only to a
certain degree, since at high sparsity ratios (as the ones we test) the performance of Magnitude has been
shown to be poor (Jaiswal et al., [2024).

Table 22: Accuracy on the seven Zero-Shot Tasks, computed over five different LL.Ms for three different top-
up pruning algorithms (DSnoT, OWL, and NEURONAL) on Magnitude at 60% sparsity. “Average” indicates
the mean accuracy across tasks. The rows corresponding to the pruning algorithms refer to the uniform
distribution.

o
<
= B0
& : . L
wn
s 2 £ £ ¢ ¢ g
H i 1<) ol 1 [+ =]
Model Algorithm ~ z m = < < O Average
Magnitude 57.04 62.83 51.38 42.56 66.33 3541 282 49.11
) w. DSnoT 5451 64.09 4232 4109 66.25 3498 26.6 47.12
Phi-2.7B w. OWL 5523 6259 48.81 4253 G67.33 38.48 28.4 49.06
w. AlphaPruning 57.76 562 47.34 3516 58.46 3328 232 44.49
w. NEURONAL 5415 65.67 47.43 4238 6595 36.77 268 4845
Magnitude 51.62 5264 4505 39.23 51.05 2688 204 40.98
w. DSnoT 52.35 5280 46.88 383 5059 2637 206 41.13
LLama-1 7By owr, 52.35 58.41 518 42.02 56.31 29.78 238 44.92
w. AlphaPruning 53.79 57.14 56.36 40.83 56.82 32.25 244 45.94
w. NEURONAL 50.54 56.04 57.46 40.63 5526 2086 244 44.88
Magnitude 51.26 55.8 41.19 36.97 50.17 26.96 16.2 39.79
w. DSnoT 5379 56.04 4287 383 5328 279 198 4171
LLama-2 7B owr, 51.99 57.3 46.15 4256 56.65 3046 194 43.50
w. AlphaPruning 52.35 61.88 58.1 46.13 5859 31.83 248 47.67
w. NEURONAL 5523 59.59 60.43 4615 58.96 32.85 27.6 48.69
Magnitude 55.23 6219 66.36 4874 67.05 33.19 226 50.77
) w. DSnoT 556 6235 68.53 4828 G67.51 3311 232 51.23
Mistral-7B - owL 53.79 64.48 7217 4939 68.14 3387 238 52.23
w. AlphaPruning 54.87 63.93 74.80 47.24 63.89 320 230 5140
w. NEURONAL 5415 6496 71.62 49.82 6545 3592 246 52.36
Magnitude 53.43 5059 37.86 2638 26.6 2142 132 3278
w. DSnoT 5271 49.25 37.86 2614 27.27 215 132 3256
OPT-6.7B owL 5271 5051 37.83 2677 303 1852 148 33.06

w. AlphaPruning 52.71 51.22 37.83 26.54 29.84 19.8 13.4 33.05
. NEURONAL 52.71 5391 39.11 3323 37.71 24.06 16.8 36.79

2

26

Published in Transactions on Machine Learning Research (10/2025)

Table 23: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different top-
up pruning algorithms (DSnoT, OWL, and NEURONAL) on Magnitude at 70% sparsity. “Average” indicates
the mean accuracy across tasks. The rows corresponding to the pruning algorithms refer to the uniform
distribution.

[
z
z 2
G 4 o o <
wn T T
s ¢ £ 2 9 g 9
= S <} o) =1 =1]
Model Algorithm &~ 2 m Jast < < O Average
Magnitude 46.93 53.59 47.22 3045 47.85 2457 192 38.54
) w. DSnoT 4657 50.91 39.6 3012 4554 2406 168 36.23
Phi-2.7B w. OWL 45.13 5288 492 3226 51.64 2756 214 40.01

w. AlphaPruning 47.65 5241 38.01 26.06 2525 2253 132 32.16
w. NEURONAL 47.65 53.51 52.81 33.22 53.87 30.03 20.6 41.67

Magnitude 53.43 49.96 37.92 27.59 3173 2244 166 34.24
w. DSnoT 5271 517 37.83 2771 3026 227 154 34.04
LLama-1 7B owL 53.07 51.38 3838 33.14 39.31 2415 16.8 36.6

w. AlphaPruning 52.71 53.04 39.48 36.18 43.56 24.83 21.2 38.71
w. NEURONAL 52.71 54.62 52.6 39.81 46.13 26.79 23.0 42.24

Magnitude 5126 49.96 37.86 259 2845 2312 134 32.85
w. DSnoT 53.79 49.88 37.86 2542 2883 20.56 16.6 33.28
LLama-2 7B owL 53.07 5028 37.89 2638 3077 227 150 33.73

w. AlphaPruning 52.71 50.83 4391 35.01 41.67 25.34 19.8 38.47
w. NEURONAL 54.51 5541 64.86 33.25 42.09 2747 21.2 42.68

Magnitude 51.99 5083 41.13 32.16 4272 1954 16.6 36.42
. w. DSnoT 53.07 51.62 3954 31.66 42.51 2005 16.6 36.44
Mistral- 7B - owL 57.76 56.50 49.17 3648 45.75 2201 188 40.94

w. AlphaPruning 53.07 5896 57.71 3447 423 2244 16.0 40.71
w. NEURONAL 53.79 5856 62.6 38.6 44.23 26.28 21.0 43.58

Magnitude 5271 498 37.83 2588 2668 21.33 124 3238
w. DSnoT 5271 49.96 37.83 25.87 27.19 2014 13.6 3247
OPT-6.7B owL 5271 50.59 37.83 2581 2546 21.25 128 32.35

w. AlphaPruning 52.71 52.01 37.83 2621 27.74 20.9 13.0 32.91
w. NEURONAL 52.71 50.43 37.83 26.25 26.89 2039 13.0 32.50

Table 24: Accuracy on the seven Zero-Shot Tasks, computed over five different LLMs for three different top-
up pruning algorithms (DSnoT, OWL, and NEURONAL) on Magnitude at 80% sparsity. “Average” indicates
the mean accuracy across tasks. The rows corresponding to the pruning algorithms refer to the uniform
distribution.

)
E o
: :
3 @ % ¢ <
m 2 % = o} o} o
3] ~ <3 B ~ [~ o
Model Algorithm ~ z m = < < O Average
Magnitude 45.13 50.36 41.19 25.83 29.08 20.9 13.6 32.30
Phi-2.7B w. DSnoT 46.93 52.33 39.63 25.9 28.32 21.25 134 32.54
w. OWL 49.46 50.91 4235 26.71 35.27 21.67 134 34.25

w. AlphaPruning 49.82 49.25 47.28 25.85 2538 21.84 16.6 33.72
w. NEURONAL 50.54 5225 42,69 26.21 28.7 22.1 12.8 33.61

Magnitude 4621 49.96 53.98 2560 2483 21.84 138 33.76
w. DSnoT 52.35 51.85 3847 2552 2639 2142 160 33.14
LLama-1 7B owL 48.38 4893 4474 25.76 2635 21.08 15.8 33.01

w. AlphaPruning 51.26 50.2 39.54 2625 2828 2099 15.8 33.19
w. NEURONAL 47.29 48.78 50.31 25.8 26.09 21.25 14.6 33.45

Magnitude 52.35 49.57 46.18 25.94 26.14 23.12 16.0 34.19
w. DSnoT 5271 51.54 37.89 2546 27.10 2244 154 33.22
LLama-2 7By, OWL 53.07 4870 4202 25.72 26.60 2142 144 3313

w. AlphaPruning 55.23 49.33 40.37 25.84 26.56 22.01 16.2 33.65
w. NEURONAL 54.15 50.36 52.69 26.82 29.67 20.14 146 35.49

Magnitude 51.26 50.99 4116 25.93 27.48 21.84 14.6 33.32
) w. DSnoT 52.35 49.72 38.07 26.26 2643 2125 140 3258
Mistral-7B - owL 5235 50.20 41.04 2655 27.78 1997 138 33.10

w. AlphaPruning 53.07 47.67 37.86 26.4 28.45 19.54 134 32.34
w. NEURONAL 53.43 50.04 61.04 28.56 32.2 22.53 16.2 37.71

Magnitude 52.71 4949 37.83 2579 2639 21.25 130 3235
i w. DSnoT 52.71 4957 37.83 2578 25.63 2065 128 3214
OPT-6.7B OwWL 5271 49.80 37.83 26.05 26.73 21.16 13.2 32.50

w. AlphaPruning 52.71 49.09 37.83 25.84 26.14 20.82 128 32.18
w. NEURONAL 52.71 5091 37.83 25.78 26.73 20.9 12.4 32.47

27

Published in Transactions on Machine Learning Research (10/2025)

D.5 Zero-Shot at 70% and 80% Sparsity for LLama 13B (both v1 and v2) and 70B (v2)

In Tables[25[27] we report the single-task detailed results for the Zero-Shot tasks, for which only the averaged
results are reported in the main text in Table [0] These detailed results clearly show the gap between
NEURONAL and the baselines: as mentioned in the main text, NEURONAL turns out to be the top-up
algorithm that, in the majority of the cases, provides the strongest results across all tested models.

Table 25: Accuracy on the seven Zero-Shot Tasks, computed over LLama-1 13B for four different top-up
pruning algorithms (DSnoT, OWL, AlphaPruning, and NEURONAL) on two pruning algorithms (MULTIFLOW
and Wanda) at 70% and 80% sparsity. “Average” indicates the mean accuracy across tasks. The rows
corresponding to the pruning algorithms refer to the uniform distribution.

o
i
2 0 g ¢ <
g 2 § 2 g u 9
= = 3 o [~ ~ aa]
Sparsity Algorithm [2 as] = < < o] Average
Dense 71.48 7253 78.04 59.84 7731 46.25 33.0 62.64
MULTIFLOW 52.35 5430 6193 3222 4541 1997 16.80 40.43
w. DSnoT 52.71 53.04 62.17 31.38 43.01 1997 17.20 39.93
w. OWL 52.71 63.93 67.28 40.63 57.83 27.99 20.80 47.31

AlphaPruning 54.15 66.06 66.30 43.04 57.70 2892 21.40 48.22
w. NEURONAL 54.15 6590 69.72 45.10 62.54 30.89 27.20 50.79

70% Janda 52.71 53.43 6174 30.61 4087 16.72 16.60 38.95
w. DSnoT 52.71 53.12 6220 3041 3998 17.75 16.00 38.88
w. OWL 52.71 63.85 63.55 39.75 57.74 2722 20.80 46.52

AlphaPruning 5343 65.75 62.78 4223 5812 2833 21.20 47.41
w. NEURONAL 52.71 64.64 65.75 43.96 61.49 30.80 26.00 49.34

MULTIFLOW 53.79 49.01 37.83 26.89 2698 20.99 14.00 32.78

w. DSnoT 52.71 49.64 38.17 2699 2731 19.80 12.40 32.43
w. OWL 52.71 49.49 38,59 27.64 2845 18.17 10.80 32.26
AlphaPruning 52.71 53.04 62.17 3046 33.75 2218 15.60 38.56
w. NEURONAL 52.71 55.09 62.17 32.21 39.48 23.81 19.60 40.72

80% ‘Wanda 52,71 50.67 37.83 26.68 2723 19.97 14.20 32.76
w. DSnoT 52.71 50.04 37.83 26.83 2790 1894 12.60 32.41
w. OWL 52.71 48.62 37.89 2737 2845 1852 12.20 32.25

AlphaPruning 52.71 55.25 62.17 29.56 34.30 20.31 12.20 38.07
w. NEURONAL 52.71 51.14 62.11 2942 34.72 19.97 15.80 37.98

28

Published in Transactions on Machine Learning Research (10/2025)

Table 26: Accuracy on the seven Zero-Shot Tasks, computed over LLama-2 13B for four different top-up
pruning algorithms (DSnoT, OWL, AlphaPruning, and NEURONAL) on two pruning algorithms (MULTIFLOW
and Wanda) at 70% and 80% sparsity. “Average” indicates the mean accuracy across tasks. The rows
corresponding to the pruning algorithms refer to the uniform distribution.

)
E o0
: :
2 @ ? g <
s : £ 2 o© ¢ g
[= <)] /~ ~ [as]
Sparsity Algorithm /~ B M Jasi < < =} Average
Dense 65.34 72.14 80.61 60.06 79.38 48.46 35.2 63.03
MULTIFLOW 52.71 49.25 39.82 2734 29.21 1920 11.60 32.73
w. DSnoT 52.71 51.22 62.05 28.75 34.68 1749 11.80 36.96
w. OWL 52.71 51.85 60.55 28.60 39.44 19.20 14.00 38.05

AlphaPruning 52.71 63.85 6245 34.79 53.58 26.45 20.80 44.95
w. NEURONAL 52.71 62.51 70.06 38.66 57.70 28.07 25.00 47.82

70% Wanda 52.71 51.78 6223 29.09 36.70 17.66 12.60 37.54
w. DSnoT 52.71 50.67 62.11 28.78 36.62 17.66 12.80 37.34
w. OWL 52.71 61.25 65.14 3845 57.70 26.88 22.20 46.33

AlphaPruning 52.71 67.48 63.64 40.21 56.73 29.27 22.20 47.46
w. NEURONAL 52.71 62.04 70.67 40.28 58.59 29.69 24.00 48.28

MULTIFLOW 52.71 49.96 37.83 26.16 26.01 2090 13.20 324

w. DSnoT 52,71 50.20 38.26 26.09 2841 20.65 11.80 32.59
w. OWL 52.71 50.28 37.83 2641 27.36 20.90 11.00 32.36
AlphaPruning 52.71 49.64 37.95 26.63 27.10 20.31 11.60 32.28
w. NEURONAL 52.71 48.78 37.92 26.45 27.48 20.82 13.40 32.51

80% ‘Wanda 52.35 52,57 37.83 26.52 26.64 20.05 13.80 32.82
w. DSnoT 52.71 49.25 37.83 26.02 26.64 20.14 1240 32.14
w. OWL 52.71 4830 4135 27.09 2748 19.11 11.40 32.49

AlphaPruning 52.71 52.64 62.23 27.74 30.13 19.71 11.00 36.59
w. NEURONAL 5235 50.99 61.65 28.16 29.59 18.17 12.40 36.19

Table 27: Accuracy on the seven Zero-Shot Tasks, computed over LLama-2 70B for four different top-up
pruning algorithms (DSnoT, OWL, AlphaPruning, and NEURONAL) on two pruning algorithms (MULTIFLOW
and Wanda) at 70% and 80% sparsity. “Average” indicates the mean accuracy across tasks. The rows
corresponding to the pruning algorithms refer to the uniform distribution.

o
E 60
@] N 5} 3} <
a ¢ £ 2 ¢ ¢ 2
H i o B [~)
Sparsity Algorithm a4 2 s} = < < o Average
Dense 67.87 7798 83.5 66.10 82.60 5444 37.20 67.10
MULTIFLOW 56.32 71.51 73.95 49.00 70.30 37.29 26.80 55.02
w. DSnoT 59.21 74.43 7535 51.50 7245 39.76 28.8 57.36
w. OWL 61.01 7411 7240 51.10 72.70 37.71 27.20 56.60

AlphaPruning 61.37 73.72 74.50 50.25 71.75 38.05 28.20 56.83
w. NEURONAL 61.01 72.77 75.90 52.20 71.25 37.29 28.20 56.95

70% ‘Wanda 61.01 7443 7465 4880 7175 39.25 27.20 56.73
w. DSnoT 57.40 7285 75.65 49.25 T71.85 38.82 26.80 56.09
w. OWL 64.98 7522 7290 50.95 73.40 38.14 29.80 57.91

AlphaPruning 63.18 7498 73.55 51.30 72.65 3831 29.40 57.62
w. NEURONAL 62.09 75.93 78.90 52.80 74.40 3899 29.60 58.96

MULTIFLOW 52.35 48.62 62.60 27.35 26.00 18.17 11.20 35.18
w. DSnoT 47.65 49.01 62.60 27.70 27.80 17.15 11.80 34.82
w. OWL 46.93 5541 62.75 31.10 37.90 19.80 13.40 38.18

AlphaPruning 46.93 60.93 62.65 33.30 47.85 23.38 16.40 41.63
w. NEURONAL 54.51 65.04 65.55 38.40 46.55 27.99 19.20 45.32

80% Wanda 50.18 4949 6230 26.95 26.80 17.92 11.20 34.98
w. DSnoT 46.93 49.25 61.70 27.15 2740 18.09 12.00 34.65
w. OWL 49.82 57.38 62.70 31.30 40.10 20.14 13.00 39.21

AlphaPruning 48.01 6196 62.65 33.80 4875 2244 16.40 42.00
w. NEURONAL 55.96 68.43 64.90 39.55 49.45 29.44 19.80 46.79

29

Published in Transactions on Machine Learning Research (10/2025)

D.6 NeuronAL on SparseGPT at 60%, 70%, and 80% Sparsity

In Tables 2830, we present the results of NEURONAL on SparseGPT on the WikiText2, C4, and PTB
datasets, using the block-only setting. To note: Since SparseGPT prunes and updates the weights from
columns to rows, the row step of NEURONAL cannot be included: indeed, it would force each row to have a
different sparsity ratio, which is in contrast with the nature of SparseGPT.

Using SparseGPT, the superiority of NEURONAL is less evident than with other pruning algorithms. Never-
theless, NEURONAL turns out to be the best-performing top-up algorithm in 5 out of 15, 8 out of 15, and 7
out of 15 cases, respectively, for WikiText2, C4, and PTB. Interestingly, for lower sparsity, the gap between
uniform and non-uniform distribution (both NEURONAL and OWL) is less remarkable than at higher spar-
sity. We explain these results with the inherent functioning of SparseGPT, which, differently from the other
pruning algorithms, includes a weight reconstruction step. However, we can conclude that, also in this case,
our proposed approach turns out to be effective in many cases at increasing the task performance.

Table 28: Perplexity on WikiText2 using SparseGPT.

Model
Sparsity Top-Up

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B

Uniform 15.8 10.4 10.2 9.4 13.4
60% OWL 15.8 9.4 9.2 9.1 14.2
NEURONAL 15.7 9.9 9.3 9.1 13.7
Uniform 28.9 27.3 27.3 22.0 20.5
70% OWL 27.7 19.2 20.5 18.6 21.6
NEURONAL 27.3 22.6 20.9 17.8 21.8
Uniform 131.0 207.0 122.1 98.4 95.7
80% OWL 107.5 93.8 84.3 77.2 80.8
NEURONAL 113.5 144.7 88.7 70.8 84.0

Table 29: Perplexity on C4 using SparseGPT.

Model
Sparsity Top-Up

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B

Uniform 19.0 12.8 12.9 13.0 15.3
60% OWL 19.2 11.7 11.6 124 15.8
NEURONAL 19.1 12.4 11.7 12.3 15.5
Uniform 28.6 28.3 315 27.8 22.4
70% OWL 28.2 21.1 22.8 23.7 22.4
NEURONAL 27.8 23.8 22.5 21.9 22.2
Uniform 98.7 136.2 104.8 86.5 72.5
80% OWL 79.7 68.3 73.4 66.2 65.4
NEURONAL 86.4 104.2 72.4 61.8 65.0

Table 30: Perplexity on PTB using SparseGPT.

Model

Sparsity Top-Up
Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B

Uniform 28.7 195 430.5 73.7 20.3
60% OWL 29.3 16.9 262.1 70.9 21.0
NEURONAL 28.2 18.2 249.2 67.2 20.6
Uniform 50.3 52.6 3780.0 1532 32.0
70% OWL 51.0 37.0 1643.4 135.0 32.9
NEURONAL 47.3 40.5 861.6 123.4 32.8
Uniform 195.4 295.6 3201.7 316.2 102.3
80% OWL 141.4 162.3 5556.5 278.8 98.9
NEURONAL 156.7 260.2 3659.8 266.6 105.3

30

Published in Transactions on Machine Learning Research (10/2025)

D.7 Results on Broader Sparsity Range

While in the main text, we mainly tested high sparsity configurations (hence s > 0.6), here we report the
results of NEURONAL as well as the baselines for several sparsity values between 10% and 80%. Table
for LLama-2 7B, and Table for Phi-2, show the results of perplexity across three datasets (Wikitext, C4,
and PTB) for different sparsity ratios. The algorithm’s setup has been kept the same as the experiments
in the main text, see Appendix [C| The results provide a non-trivial pattern: for up to 50% sparsity, all the
top-up algorithms perform similarly (with very small deviations), with DSnoT providing almost in all cases
the best results. At such low sparsity values, even Uniform achieves effective results.

However, the pattern completely changes for sparsity above 60%, where, as already shown in the main text,
NEURONAL turns out to be the most reliable among all the tested top-up algorithms in achieving the best
performance. This trend is in line with the results provided in the original baseline papers (Yin et al., |2024;
Lu et al., |2024), where the authors also recognize this sparsity-performance pattern for non-uniform sparsity
top-up algorithms.

Table 31: Perplexity di LLama-2 7B at different sparsity levels (10%-80%) on the WikiText2, C4, and PTB
datasets.

WikiText2

Top-Up

10% 20% 30% 40% 50% 60% 70% 80%
Uniform 5.49 5.59 5.74 6.06 6.92 10.77 78.01 4.93e3
OWL 5.49 5.59 5.76 6.10 6.86 9.17 24.9 663.0
DSnoT 5.48 5.52 5.65 5.96 6.85 10.79 76.11 5.20e3
AlphaPruning 5.49 5.59 5.77 6.14 7.06 9.82 31.97 982.08
NeuronAL 5.50 5.58 5.74 6.09 6.92 9.38 24.05 557.16
Top-Up C4

10% 20% 30% 40% 50% 60% 70% 80%
Uniform 7.28 7.41 7.63 8.10 9.24 13.99 81.01 3.12e3
OWL 7.29 7.43 7.66 8.17 9.22 11.85 30.49 662.95
DSnoT 7.27 7.33 7.50 7.96 9.12 14.11 85.65 4.44e3
AlphaPruning 7.29 7.42 7.68 8.27 9.50 12.62 37.73 670.03
NeuronAL 7.31 7.40 7.63 8.15 9.26 11.99 27.42 660.21
Top-Up PTB

10% 20% 30% 40% 50% 60% 70% 80%
Uniform 33.07 33.65 34.55 38.02 48.20 122.25 599.27 = 5.29e3
OWL 33.01 3345 34.54 36.65 43.16 75.09 333.7 2.28e3
DSnoT 32.81 32.98 34.10 3725 47.08 109.61 491.77 6.69e3

AlphaPruning 33.07 33.83 3472 3720 43.85 69.34 273.84 2.18e3
NeuronAL 33.15 33.74 34.60 36.60 43.33 64.34 206.97 2.40e3

Table 32: Perplexity of Phi-2 at different sparsity levels (10 %-80%) on the WikiText2, C4, and PTB
datasets.

WikiText2

Top-Up

10% 20% 30% 40% 50% 60% 70% 30%
Uniform 9.85 10.07 10.50 11.46 14.22 2578 227.56 2.04e4
OWL 9.83 10.05 10.48 11.47 14.20 24.80 132.65 2.54e3
DSnoT 9.88 10.19 10.75 12.02 15.57 3221 221.86 1.52e4
AlphaPruning 9.87 10.09 10.59 12.05 16.66 165.29 4.22e4 4.30e4
NeuronAL 9.86 10.08 10.51 11.59 14.52 25.26 88.32 2.49e3
Top-Up C4

10% 20% 30% 40% 50% 60% 70% 80%
Uniform 14.25 14.48 14.87 15.81 18.25 29.28 182.70 1.24ed
OWL 14.22 14.46 14.87 15.78 18.24 28.18 116.21 1.21e3
DSnoT 1429 14.74 1520 16.54 20.22 38.02 172.61 6.86e3

AlphaPruning 14.25 14.50 14.98 16.31 20.26 166.48 3.05e4 3.33e4
NeuronAL 1426 1449 14.89 15.89 18.54 27.10 77.69 1.59e3

PTB
Top-Up
10% 20% 30% 40% 50% 60% 70% 80%
Uniform 18.37 18.70 19.47 21.13 25.67 48.89 346.16 3.14ed
OWL 18.34 18.70 1948 21.02 25.68 48.63 183.67 7.06e3
DSnoT 1845 1885 19.75 21.67 27.26 50.58 257.60 1.40e4

AlphaPruning 18.35 18.74 19.65 21.89 28.69 669.69 2.24e4 2.66e4
NeuronAL 1837 1871 1949 21.22 25.62 41.78 129.53 4.03e3

31

Published in Transactions on Machine Learning Research (10/2025)

D.8 Sensitivity to Calibration Data

In Tables we complement the results regarding the seed set of the calibration data at 60% and 80%
sparsity. The results are fully in line with the ones presented in the main text. As expected, the standard
deviation of the performance increases when increasing the sparsity ratio, and at higher sparsity (80%), it
turns out to be model-dependent.

Table 33: Perplexity achieved by NEURONAL with different calibration data seeds (0, 16, 46) at 60% sparsity.

Model
Dataset
Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7TB OPT-6.7B
WikiText2 24.5 + 0.6 9.5 £ 0.1 9.3 £ 0.0 10.1 £ 0.1 16.2 £ 0.1
C4 27.0 £ 0.2 11.9 £ 0.1 11.9 £ 0.0 13.8 £ 0.1 19.1 £ 0.1
PTB 42.3 £ 0.7 17.1 £ 0.3 65.3 = 0.8 74.9 £ 0.2 25.1 £ 0.1

Table 34: Perplexity achieved by NEURONAL with different calibration data seeds (0, 16, 46) at 80% sparsity.

Model
Dataset

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-7B OPT-6.7B

WikiText2 3654.7 £ 255.1 3824 £ 64.7 247.7 £ 294 216.5 £ 12.6 1284.9 £ 482.5
C4 72323.6 + 121.7 250.5 £ 27.1 265.3 +34.1 171.7+£ 9.9 663.5 £ 316.3
PTB 6014.9 £ 788.3 624.4 £ 165.5 1101.9+94.1 706.1 £ 6.9 1056.9 &+ 124.5

E NeuronAL)\ Selection at 60% and 80% Sparsity

In the main text, we presented an experiment regarding the ability of NEURONAL to pick the most performing
A parameters (in the block-only case) at 70% sparsity. Here we include the same analysis at 60% and 80%
sparsity. In Fig. [6] and Fig. [7] it is clearly visible how NEURONAL still performs correctly over different
sparsity ratios. It is also worth noticing that the calibration data always come from the C4 dataset, and
then the results are transferred to the other unknown datasets.

—e— NEUROAL === Uniorm e Rec. Eror

Mistral-78.
PTB WikiText2 C4

[A i

D it :

Phi-2.78 LLama-1 7B
C4 Cc4

WikiText2 PTB kiText2

=
.
Perplexity

Perplexity
Perplexity

)

T 5 \
/| e * P "
« . > ! 12finy !
oy I o uee M e o Q. <l es
000 005 010 015 0 0 006005 010 015 0200 06505310 05 0200 060505010 05 020 065505510 015 028 00550 F 5 015 028 5505 0.0 015520 O TO5~510 0.15 020 . 6605010 0.15 020 .
> » » x A h ») A

Figure 6: Perplexity over different values of A at 60% sparsity. The orange dot indicates the value selected
by NEURONAL.

—e— NEUROAL --- Uniform e Rec. Eror

Phi-2.7B LLama-1 7B Mistral-78
ikiText2 C4 PTB WikiText2 Cc4 PTI WikiText2 C4 PTB
i I] I]
i I lal i /
! £l \ / i
s 3 [\ 3
& l (e || 1 ot 1 ..
I A A = a
i e w N B J\ b
A s ¥ o .. S,
- -e- - —o—. ~e—0— —ot—s| o ol waoy o
0.00 0.05 0.10 0.15 0.20 0. 0.00 0.05 0.10 0.15 0.20 0. 0.00 005 0.10 0.15 0.20 0. 0.04 008 0.12 0.16 0. 0.04 008 0.12 0.16 0. 0.04 008 0.12 0.16 020 0 0.05 0.10 0.15 0.20 0. 0.00 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.

Figure 7: Perplexity over different values of A at 80% sparsity. The orange dot indicates the value selected
by NEURONAL.

32

Published in Transactions on Machine Learning Research (10/2025)

F Reproducibility: \ Parameters Selected by NeuronAL

Here we show the A parameters selected by our proposed approach for each model, sparsity ratio, and pruning
algorithm tested in this work, aiming to facilitate the reproducibility of our results for the community. Please
note that such values are the ones used for each combination of sparsity-pruning algorithm-model that have
been extracted from C) from C4 (using 0 as seed and 8 as size), and then transferred to all the other
datasets/tasks. We report the final A values for both the block and row steps in Table for the first 5
models tested in the main text, and in Table |36 for the LLama 13B models.

Table 35: X\ parameters selected by NEURONAL (block | row) for each combination of sparsity-pruning
algorithm-model. Note that, for SparseGPT, the row step is not possible (see the main text for details).

Model

Sparsity Top-Up

Phi-2.7B LLama-1 7B LLama-2 7B Mistral-TB OPT-6.7B

Magnitude 0.01 [0.25 0.10] 0.20 020004 015[025 0.25]0.25

. Wanda 0.101]0.25 0.09]0.25 0.12]0.25 0.08]0.00 0.01]0.15

60% MULTIFLOW 0.08 | 0.25 0.12]0.25 012025 0.06]0.00 0.01]0.06
SparseGPT 0.01 | 0.02 | 0.06 | 0.09 | 0.02 |

Magnitude 0.06 [0.25 0.20 | 0.20 0.25]0.00 0.20]0.25 0.15]0.20

. Wanda 0.12]0.25 0.15]0.20 0.15]0.25 0.15]0.25 0.25]0.25

0% MULTIFLOW 0.15 | 0.25 0.15 | 0.25 012025 0.15]0.01 0.25]0.25
SparseGPT 0.02 | 0.04 | 0.08 | 0.08 | 0.05 |

Magnitude 0.01 [0.25 0.03] 0.10 0.200.05 0.20]0.20 0.20|0.08

. Wanda 0.201]0.25 0.20] 0.25 020025 0.15]0.25 0.20]0.20

80% MULTIFLOW 0.12 | 0.20 0.20 | 0.25 020020 015]0.20 0.20]0.09
SparseGPT 0.06 | 0.02 | 0.07 | 0.08 | 0.07 |

Table 36: A values selected by NEURONAL on each combination of sparsity-pruning algorithm for LLama

13B (v1 & v2) (block | row).

Sparsity Top-Up

Model

LLama-1 13B LLama-2 13B

Magnitude 0.10 | 0.25 0.12] 0.12
60% Wanda 0.10 | 0.20 0.09 | 0.25
MULTIFLOW 0.15 | 0.25 0.12 | 0.25
Magnitude 0.12 | 0.25 0.25 | 0.25
70% Wanda 0.15 | 0.20 0.12] 0.20
MULTIFLOW 0.15 | 0.20 0.15] 0.25
Magnitude 0.20 | 0.15 0.12 | 0.05
80% Wanda 0.15 | 0.20 0.15 | 0.25
MULTIFLOW 0.20 | 0.25 0.04 | 0.25

33

	Introduction
	Related Work
	Structured Network Pruning
	Unstructured Network Pruning
	Top-Up Algorithms

	Current limitations of top-up algorithms
	Need for Hyperparameter Tuning
	Large Runtime
	Block Importance Metric

	Methodology
	Neuron Alignment
	Block-wise Sparsity Ratio
	Row-Wise Sparsity Ratio

	Non-Uniform Block-Wise Sparsity Distribution

	Experiments
	Experimental Setup
	Experimental Evaluation
	Language Modeling and Zero-shot Tasks

	Aggregate Comparison of Top-up Strategies
	Scalability Study

	Efficiency Analysis
	Runtime vs. Perplexity
	Inference Speed-up

	Ablation Studies
	NeuronAL Selection
	NeuronAL vs. Reconstruction Error and Distance Metrics
	Sensitivity to Calibration Data

	Conclusion and Limitations
	Comparison with Reconstruction Error-Based Pruning
	NeuronAL Complexity Analysis
	Complexity NeuronAl vs. OWL

	Experimental Setup
	Additional experiments
	Results on LLama-3 8B
	Language Modeling at 60% and 80% Sparsity
	Zero-Shot at 60%, 70%, and 80% Sparsity
	Zero-Shot at 60%, 70%, and 80% Sparsity with Magnitude
	Zero-Shot at 70% and 80% Sparsity for LLama 13B (both v1 and v2) and 70B (v2)
	NeuronAL on SparseGPT at 60%, 70%, and 80% Sparsity
	Results on Broader Sparsity Range
	Sensitivity to Calibration Data

	NeuronAL Selection at 60% and 80% Sparsity
	Reproducibility: Parameters Selected by NeuronAL

