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Abstract

The automatic generation of medical reports
plays a crucial role in clinical automation. In
contrast to natural images, radiological images
exhibit a high degree of similarity, while med-
ical data are prone to data bias and complex
noise, posing challenges for existing methods
in capturing nuanced visual information. To
address these challenges, we introduce a novel
normal-abnormal semantic decoupling network
that utilizes abnormal pattern memory. Differ-
ent from directly optimizing the network using
medical reports, we optimize visual extraction
through the extraction of abnormal semantics
from the reports. Moreover, we independently
learn normal semantics based on abnormal se-
mantics, ensuring that the optimization of the
visual network remains unaffected by normal
semantics learning. Then, we divided the words
in the report into four parts: normal/abnormal
sentences and normal/abnormal semantics, op-
timizing the network with distinct weights for
each partition. The two semantic components,
along with visual information, are seamlessly
integrated to facilitate the generation of pre-
cise and coherent reports. This approach mit-
igates the impact of noisy normal semantics
and reports. Moreover, we develop a novel
encoder for abnormal pattern memory, which
improves the network’s ability to detect anoma-
lies by capturing and embedding the abnormal
patterns of images in the visual encoder. This
approach demonstrates excellent performance
on the benchmark MIMIC-CXR, surpassing the
current state-of-the-art methods.1.

1 Introduction

Report writing is a critical responsibility for radi-
ologists. Automatic report generation is clinically
significant as it alleviates the workload of physi-
cians. Recently, substantial advancements have

1Our code is available at https://github.com/kzzjk/
NADM
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(a)

report： Cardiac and mediastinal contours are
within normal limits. The lungs are clear. Bony
structures are intact.

normal ：cardiac normal，mediastinal normal，
lungs clear，bony intact

abnormal：None

report：The cardiomediastinal silhouette is within
normal limits for appearance. The thoracic aorta is
calcified. No focal areas of pulmonary
consolidation. No pneumothorax. No pleural
effusion. The thoracic spine appears intact.

normal ：cardiomediastinal normal，pulmonary
consolidation，pleural effusion，thoracic spine
intact

abnormal：thoracic aorta calcified

(a)

(b)

Figure 1: Radiological images, medical reports and
normal abnormal semantics.

been achieved in this field (Wang et al., 2022c,a,b;
Kong et al., 2022; Qin and Song, 2022). Nonethe-
less, generating radiological reports remains a
formidable undertaking. However, several aspects
require further exploration, such as: 1) the pres-
ence of pronounced visual and textual data biases.
Within medical data, normal images predominate
the section containing descriptions of normal utter-
ances in the reports. 2) Unlike natural images, radi-
ological images frequently exhibit high similarity,
posing challenges in extracting fine-grained visual
details. The presence of noise in reports impacts
network optimization. The descriptions of similar
semantics may vary among different doctors. For
instance, in Figure 1a, "cardiac" and "mediastinal"
are used, whereas in Figure 1b, "cardiomediasti-
nal" is employed. Moreover, it is plausible for the
syntax of the same description to exhibit signifi-
cant variation. Some normal descriptions may not
be mentioned due to physicians’ practices. For in-
stance, in Figure 1b, "consolidation" and "effusion"
are referenced, whereas in Figure 1a, they are disre-
garded. These sources of noise significantly impact
network optimization, yet only limited research has
been dedicated to addressing this issue.

https://github.com/kzzjk/NADM
https://github.com/kzzjk/NADM


To address the aforementioned limitations, we
propose a semantic decoupling network based on
abnormal pattern memory for generating reports.
In medical reports, the fundamental semantic struc-
ture comprises three components: anatomy, obser-
vation, and judgment. To mitigate the impact of
noise in the reports, we optimize the visual extrac-
tor using abnormal semantics. This is based on the
observation that abnormal semantics are relatively
consistent, despite the occasional omission of nor-
mal descriptions and variations in similar semantic
descriptions across reports from different doctors.
We utilize RadGraph (Jain et al., 2021) to extract
the semantics, focusing solely on the core semantic
components while disregarding others. We em-
ploy a visual encoder based on higher-order feature
interaction attention, enhancing the perception of
fine-grained features through a bilinear pool (Kim
et al., 2016), which has been shown to be effective
in fine-grained classification (Lin et al., 2015). Fur-
thermore, drawing inspiration from discrete varia-
tional autoencoder (Van Den Oord et al., 2017), we
store the abnormal modalities of images and incor-
porate higher-order feature interaction processes
to augment anomaly perception. During the re-
port generation phase, we fuse the two modalities,
semantic and visual, to jointly guide the report gen-
eration process. In the training phase, we employ
convolution for image encoding and grid feature
generation. Moreover, we utilize a variational self-
encoder to capture anomaly modality memory and
introduce two semantic branches atop it to predict
both abnormal and normal semantics of the image
during the visual attention phase. We argue that
different words in the report possess varying lev-
els of importance, with abnormal semantics being
intuitively more significant than normal semantics.
However, previous approaches (Jing et al., 2017;
Yuan et al., 2019; Yin et al., 2019; Najdenkoska
et al., 2021; Chen et al., 2021b; Wang et al., 2022c)
tend to treat all report words equally. Therefore,
we divide the reported words into four categories:
normal/abnormal sentences and normal/abnormal
semantics. Subsequently, we automatically learn
distinct weighting parameters for optimization. In
conclusion, our contributions are outlined as fol-
lows:

(1) We introduce a network for report genera-
tion that leverages anomaly semantic extraction.
This approach focuses on optimizing the visual ex-
traction network solely using anomaly semantics,

effectively mitigating the impact of noise and data
bias present in reports.

(2) We develop a visual encoder based on
anomaly pattern memory, which enhances anomaly
perception by explicitly memorizing abnormal pat-
terns and incorporating them during higher-order
interaction in the visual processing phase.

(3) Our approach shows promising performance
on MIMIC-CXR over multiple state-of-the-art
methods.

2 Related Work

Image captioning involves generating relevant tex-
tual descriptions or topics for a given image. Early
approaches utilized templates or retrieval-based
methods for caption generation (Hossain et al.,
2019). In recent years, encoder-decoder frame-
works, primarily based on transformer architec-
tures (Vaswani et al., 2017), have been widely em-
ployed to generate individual descriptive sentences
from images (Cornia et al., 2020; Anderson et al.,
2018; Chen et al., 2021a; Xu et al., 2021). No-
tably, anchor-frame-based methods for title gener-
ation have demonstrated accurate text description
generation (Xu et al., 2021). However, a signifi-
cant portion of the available data lacks annotations.
To address this limitation, (Fang et al., 2022) pro-
posed the use of semantic extraction to enrich in-
formation and improve caption generation. Further-
more, while most caption generation tasks focus on
shorter descriptive discourse, existing approaches
for very long utterances often overlook issues re-
lated to data bias (Melas-Kyriazi et al., 2018). The
image captioning task has a more explicit objec-
tive, but the presence of complex semantic contexts,
judgmental utterances, and noise problems in med-
ical reports introduces additional challenges.

Medical report generation, which falls under
the category of image captioning, predominantly
adopts an encoder-decoder framework. Various
attention mechanisms and hierarchical LSTM mod-
els have been proposed to generate radiology re-
ports (Jing et al., 2017; Yuan et al., 2019; Yin et al.,
2019). Another approach involves constructing
graphs based on medical knowledge and utilizing
graph convolutional neural networks to enhance
feature extraction (Zhang et al., 2020). To ad-
dress the issue of modal bias, (Najdenkoska et al.,
2021) introduced a set of latent variables as top-
ics to guide sentence generation by aligning image
and language patterns in the latent space. Modal



alignment was further improved through the in-
troduction of a cross-modal memory network by
(Chen et al., 2021b), and later refined by (Wang
et al., 2022a) with the proposition of a cross-modal
prototype-driven network. Additionally, (Liu et al.,
2021a) presented a framework that leverages both
a priori and a posteriori data to enhance generative
reporting. (Wang et al., 2022c) utilized semantic
extraction to improve generation, they overlooked
the problems of noise and data bias prevalent in the
reports. In (Jing et al., 2019), the data bias problem
is considered, where the noise of normal statements
still affects the optimization of the model despite
the separate generation of normal/abnormal state-
ments.

3 The Proposed Method

The proposed architecture for the memory of
anomaly patterns is the semantic decoupling net-
work, consisting of three critical components: a vi-
sual extractor, a semantic extractor, and a decoder,
where the visual extractor consists of an image en-
coder and a visual encoder. The overall structure
of the network is illustrated in Figure 2. The visual
extractor is responsible for converting images into
detailed features with the goal of detecting anoma-
lies and generating precise visual representations.
The semantic extractor is divided into two parts:
abnormal semantic extractor and normal seman-
tic extraction. The purpose of abnormal semantic
extractor is to identify semantics related to aberra-
tions from the preceding visual representation and
to capture normal semantics while considering the
abnormal semantics. The decoder is responsible for
processing the visual and semantic characteristics,
and guides the report generation by deep fusion.

3.1 Image Encoder

To extract visual information from the images, we
extracted features using the ResNet50 pre-trained
by BioViL (Boecking et al., 2022). Given an image
I , grid features are obtained by convolution Vl =
ResNet50(I), and combined with global features
Vg with position encoding Epos to compose the
visual information Vc.

Vc = Concat (Vg, Vl) + Epos (1)

3.2 Abnormal Mode Memory

To prevent anomalies from being overwhelmed,
we are inspired by variational autoencoder (Van

Den Oord et al., 2017), and introduce a discrete
potential space called the memory codebook Ω,
where each entry in Ω corresponds to a potential
embedding of an image pattern, and N denotes the
total number of memorized patterns as a hyperpa-
rameter. In the case of an abnormal image, the
features extracted by visual convolution search for
a match within Ω to find the corresponding location
of the memory pattern. While the nearest neigh-
bor approach is a simple way to find a match, it
poses the risk of pattern collapse (Chen et al., 2022).
Thus, we adopt a dichotomous matching approach
and apply the Hungarian algorithm (Kuhn, 1955)
to resolve this issue. When memorizing, we look
for a unique pattern in the memory space corre-
sponding to each image encoding. The Hungarian
algorithm is used to find a unique pattern match
in the memory matrix by treating the image fea-
tures with each pattern of the memory matrix as
an ensemble matching problem. Specifically, we
construct a bipartite graph using all local grid fea-
tures Vg and pattern embeddings in Ω, ensuring
that the sizes of Vg and codebook k are matched
using ∅, and then determine the arrangement of the
k elements τ ∈ SN with the lowest allocation cost.

τ̂ = argmin
τ∈SN

N∑
i

∥∥V i
g − Ωτ(i)

∥∥
2

(2)

3.3 Abnormal Pattern Enhancement
Multi-Head Attention

The general self-attention approach only lever-
ages the interaction of first-order features, which
presents certain limitations. To achieve more de-
tailed feature extraction, we adopt the bilinear at-
tention module designed in accordance with (Pan
et al., 2020). In the implementation, global features
are queries Q, regional features are keys K, and
values V . To incorporate abnormal patterns into
higher-order interactions, we extend the key and
value sets with mnemonics to encode and collect
abnormal patterns from visual convolution. Our
keys and values can be defined as K = [K,Ω] and
V = [V,Ω] , where [, ] denotes splicing and Ω is
all abnormal embeddings of the memory. Then
a low-rank bilinear pooling is performed to ob-
tain the joint bilinear query-key Bk and query-
value BV by Bk = σ (WkK) ⊙ σ

(
Wk

qQ
)

and
BV = σ (WV V)⊙σ

(
WV

q Q
)
,Wv,W

V
q ,Wk and

WK
q are learnable parameters. σ denotes ReLU

unit, and ⊙ represents Hadamard Product. We then
compute the attention on the space and channels by
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Figure 2: The overall structure of the model includes three modules: a visual extractor, a semantic extractor, and a
decoder. The visual extractor module is a combination of an image encoder and a visual encoder. The images are
encoded to obtain embedded features. Fine-grained information is obtained through high-level interactions by the
visual encoder. The semantic extractor module decouples normal/abnormal semantics by the two branches. Finally,
the report is generated through fusion decoding.

projecting each bilinear query key representation
into the corresponding attention weights through
two embedding layers, and then normalize using
the softmax layer to introduce the spatial bilinear
attention B

′
k = σ

(
Wk

BBK

)
,then use another lin-

ear layer to map B
′
k from Dc dimension to 1 di-

mension to obtain the spatial-wise attention weight
αs.Meanwhile, we perform a squeeze-excitation
operation (Hu et al., 2018) to generating channel
attention βc = Sigmoid(Wc)B̄,Wc are learnable
parameters and B̄ is an average pooling of B

′
k.The

basic layers that make up the visual encoder are as
follows:

APE(Vc) = βc ⊙ αsBv (3)

Vi
f = AddLN (FFN (AddLN (APE (Vc))))

(4)
Where V i

f , V i
f represents the i-th layer of visual

feature extraction. FFN denotes a fully connected
feed-forward network, and AddLN represents the
composition of a residual connection and a normal-
ization layer.

3.4 Semantic Extractor
To extract semantic information, we treat it as a
multi-label classification process, and employ Rad-
Graph (Jain et al., 2021) to extract pseudo-medical
concepts as ground-truth for this task. The trans-
former attention block is used to process the in-
termediate features V m

f generated by the image
encoder. To facilitate multi-label perception (MLP)
network prediction, the [CLS] token is added to the
image features, and its corresponding output repre-
sents the concept token. The vocabulary of concept
tokens is the same as that used for the headings.
Importantly, we predict concepts at the token level
rather than the label level, to enable the multimodal
decoding module to directly employ the top-K to-
kens for guidance reporting. The extraction process
of anomaly semantics involves the following:

Att(Q,K, V ) = Softmax

(
QKT

√
d

)
V (5)

MHA = [Att1, Att2...]W
o (6)

fm = MHA
(
V m
f , V m

f , V m
f

)
(7)

Sa = AddLN (FFN (AddLN (fm))) (8)



SK
a = Emb(MLP (S1

a)) (9)

Where Sa is the generated intermediate semantic
prediction, S1

a denotes the output corresponding
to the classification flag [CLS], MLP represents
the final classification layer, Emb represents the
embedding layer, Att represents the attention layer,
and SK

a represents the top-k abnormal semantic
concepts encoded at the end.

After obtaining the abnormal semantics, we con-
sider the acquisition of normal semantics as a con-
ditional probability problem under the condition
of abnormal semantics. Due to the complexity of
the normal semantics, it does not serve as a basis
for optimal visual extractor, so its update is only
related to the normal semantic extractor. We add
a [slot],representing the prediction of the normal
semantics. The extractor process is as follows:

fn = AddLN(MHA
(
SK
a , SK

a , SK
a

)
) (10)

f
′
n = MHA(fn, V

m
f , V m

f ) (11)

Sn = AddLN
(
FFN

(
AddLN

(
f

′
n

)))
(12)

SK
n = Emb(MLP (S1

n)) (13)

Sf = Concat(SK
a , SK

n ) (14)

Where Sn is the generated intermediate semantic
prediction, S1

n denotes the output corresponding
to the classification flag [slot] , SK

n represents the
top-k normal semantic concepts encoded at the end
and Sf represents the final semantic output.

3.5 Decoder
We adopt the decoder structure introduced in (Li
et al., 2022), which leverages the rich visual to-
kens Vf obtained from the visual encoder and the
semantic tokens Sf extracted from the semantic
extractor. The decoder combines both visual and
semantic information to provide guidance for gen-
erating accurate and coherent sentences. Formally,
let R = {r0, r1, ..., rt} denote report of t words
generated. The decoder takes the report R as input
and learns to predict the next word automatically
and regressively, conditional on the visual Vf and
semantic tokens Sf . We implemented the decoder
as an Nd-stacked transformer block. It consists of
a masked multiheaded attention layer Mask-MHA
for modeling the overall textual context h

′
t of the

previously generated word ht, and two crossed mul-
tiheaded attention layers that cross the visual and
semantic tokens to trigger the generation of the cue

hvt , respectively. subsequently, the previous con-
textual, semantic, and visual information is fused
and encoded using Sigmoid to obtain the gating
g.Taking the state at time t as an example, the equa-
tion is as follows:

h
′
t = Mask-MHA(ht, ht, ht) (15)

hv
t = MHA(ht, Vf , Vf ) +MHA(ht, Sf , Sf )

(16)
g = Sigmoid(Wg[h

v
t , h

′
t]) (17)

ht+1 = AddLN(gh
′
t + (1− g)hvt ) (18)

3.6 Objective Function

Memory loss: the anomaly memory codebook
serves the purpose of storing various anomaly in-
formation and interacting with image information.
It is important to note that the learning process of
the codebook should not affect the image coding.
We want to use orthogonality to make the codebook
learn as much information as possible about dif-
ferent modes. We use Sg to represent the gradient
cutoff and E to denote the unit matrix. The loss
function is defined as follows:

Lm =
∥∥sg [V i

c

]
− q

(
V i
c

)∥∥2
2
+
∥∥∥Ω⊤Ω− E

∥∥∥2
(19)

Semantic loss: in the semantic extraction task,
our goal is to extract normal and abnormal seman-
tics, which entails a multi-label classification pro-
cess. However, the semantic distribution in medical
reports is often heavily imbalanced, which can pose
a challenge for standard multi-label classification
approaches. To address this issue, we employ an
asymmetric loss (Fang et al., 2022; Ridnik et al.,
2021; Liu et al., 2021b; Ridnik et al., 2021), which
has shown good performance in handling unbal-
anced problems.

Ls = asym
(
P̃a,ya

)
+ asym

(
P̃n,yn

)
(20)

P̃a, P̃n denotes the predicted probability distribu-
tion corresponding to the abnormal/normal seman-
tics, respectively, and ya, yn denotes its correspond-
ing label.

Reports loss: For the generated reports, we use
minimizing the negative log-likelihood of the given
image features, semantic features to train the model
parameters. Although our positive anomaly seman-
tic decoupling avoids the effect of noise on feature
extraction, the effect of noise is still unavoidable in



Table 1: The performances of our model compared with baselines on MIMIC-CXR dataset. The best results are
highlighted in bold.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

MIMIC-CXR

S&T 0.299 0.184 0.121 0.084 0.124 0.263
AdaAtt 0.299 0.185 0.124 0.088 0.118 0.266

TopDown 0.317 0.195 0.130 0.092 0.128 0.267
R2Gen 0.353 0.218 0.145 0.103 0.142 0.277
PPKED 0.360 0.224 0.149 0.106 0.149 0.284
M2TR 0.378 0.232 0.154 0.107 / 0.272

R2GenCMN 0.353 0.218 0.148 0.106 0.142 0.278
XProNet 0.344 0.215 0.146 0.105 0.138 0.279
GSKET 0.363 0.228 0.156 0.115 / 0.284

R2GenRL 0.381 0.232 0.155 0.109 0.151 0.287
MSAT 0.373 0.235 0.162 0.120 0.143 0.282
Ours 0.402 0.258 0.179 0.130 0.155 0.289

the decoding phase of report generation. Thus, mea-
suring the importance of different words with dif-
ferent weights to mitigate the effect of noisy normal
descriptions makes the network focus more on crit-
ical information. We use RadGraph to classify the
vocabulary in the report into normal/abnormal sen-
tences, and normal/abnormal semantics. Inspired
by the multitasking approach (Kendall et al., 2018;
Liebel and Körner, 2018), the importance of words
is measured using uncertainty. Following (Liebel
and Körner, 2018), the four weights are learned
automatically.

L′
r =

T∑
i=1

logPθ (Rt | R<t,Vf ,Sf ) (21)

Lr =

4∑
m=0

1

σ2
m

Lm
r + log(1 + σm) (22)

Rt denotes the report information at time t, Vf

denotes the image information, Sf denotes the se-
mantic information,σm denotes the different uncer-
tainty parameters. Lm

r denotes category m reports
loss. The final losses are as follows:

L = Lm + Ls + Lr (23)

4 Experiment Settings

4.1 Datasets
We conducted numerical experiments on MIMIC-
CXR2 (Johnson et al., 2019). MIMIC-CXR is the
largest radiology dataset to date, including 473,057

2https://physionet.org/content/mimic-cxr/2.0.
0/

Table 2: The results of clinical efficacy (CE) metrics
on the MIMIC-CXR dataset. The best results are high-
lighted in bold.

Model Precision Recall F1-Score
S&T 0.249 0.203 0.204

AdaAtt 0.268 0.186 0.181
TopDown 0.320 0.231 0.238

R2Gen 0.333 0.273 0.276
R2GenCMN 0.334 0.275 0.278
R2GenRL 0.342 0.294 0.292

Ours 0.417 0.413 0.415

chest x-ray images. In our experiments, for a fair
comparison, we used the official segmentation of
MIMIC-CXR after the work (Chen et al., 2020) and
excluded all sample reports that did not contain a
description of medical observations. We only focus
on the finding part of the medical report.

4.2 Evaluation Metrics
We used the widely used BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
ROUGE-L (Lin, 2004), computed by the standard
evaluation toolkit 3. In particular, BLEU and ME-
TEOR are proposed for machine translation eval-
uation. ROUGE-L was designed to measure the
quality of the summary. For report generation, the
predictive accuracy of the disease should also be
considered. Therefore, we used clinical efficiency
(CE) metrics to express the performance of our
model. We used CheXpert (Irvin et al., 2019)4 to

3https://github.com/tylin/coco-caption
4https://github.com/MIT-LCP/mimic-cxr/tree/

master/txt/chexpert

https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://github.com/tylin/coco-caption
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt/chexpert
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt/chexpert


Table 3: The performances of our model compared with the model without different proposed modules on MIMIC-
CXR dataset. The w/o is the abbreviation of without. The best results are highlighted in bold.

MIMIC-CXR BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Ours 0.402 0.258 0.179 0.130 0.155 0.289

w/o Bio 0.405 0.255 0.171 0.121 0.156 0.286
w/o SE 0.403 0.254 0.171 0.120 0.156 0.284

w/o APE 0.396 0.250 0.169 0.119 0.161 0.284
w/o WE 0.398 0.251 0.172 0.124 0.158 0.289
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multiple
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Figure 3: The BLEU-4 scores and versus memory size
when the model is trained and tested on the MIMIC-
CXR dataset. The horizontal coordinate indicates the
size of the multiplier of the base capacity 49.

extract disease labels from real reports and model
predictions to calculate precision, recall, and F1
scores.

An important note: the implementation details,
dataset splits, preprocessing steps, and additional
experiments are described in the supplementary
materials.

5 Results and Analysis

5.1 Comparison with Previous Studies
To further validate the effectiveness of our method,
we compare our proposed method with conven-
tional image captioning works, e.g. S&T (Vinyals
et al., 2015), AdaAtt (Lu et al., 2017), Top-
Down (Anderson et al., 2018), and the ones pro-
posed for the medical domain, e.g. R2Gen (Chen
et al., 2020), PPKED (Liu et al., 2021a), M2TR
(Nooralahzadeh et al., 2021), R2GenCMN (Chen
et al., 2021b), XProNet (Wang et al., 2022a), GS-
KET (Yang et al., 2022), R2GenRL (Qin and
Song, 2022) and MSAT(Wang et al., 2022c).The
results on S&T (Vinyals et al., 2015), AdaAtt (Lu
et al., 2017), TopDown (Anderson et al., 2018)
from (Chen et al., 2020), and the rest of the results
were cited from the original paper. Table 1 shows
the NLG metrics and Table 2 shows the CE metrics.
As can be seen, thanks to our good framework of
positive anomaly separation and excellent feature
extraction ability. We achieve a large improvement

in both metrics and obtain SOTA results. This
proves the superiority of our method.

5.2 Ablation Study

In this section, we performed ablation experiments
on the MIMIC dataset to investigate the contribu-
tion of each component of our method. Table 3
shows the experimental results. Bio denotes the
initialization of the ResNet network weights us-
ing BioViL (Boecking et al., 2022). DE denotes
the truncated reports loss on the visually extracted
gradients. SE denotes the semantic extractor struc-
ture with normal and abnormal separation. APE
denotes the abnormal memory extraction structure.
WE denotes the report loss weight adjustment.We
investigated the following variants:

w/o Bio indicates that the model for ResNet50
randomly initializes the weight parameters and
leaves the rest of the structure unchanged. w/o
SE indicates that instead of using decoupled extrac-
tion semantics, a single semantic extractor branch
is taken and normal and abnormal semantics are
predicted simultaneously. w/o APE indicates that
instead of using the structure of APE-MHA, the
visual encoder is replaced with the structure of self-
attention MHA. w/o WE indicates that instead of
weight the report loss, but treat all words in the
report equally.

Contribution of each component. We con-
ducted an analysis to evaluate the importance of
different components in our proposed method. We
found that all key components play a critical role
in achieving high performance. Removing any
of these components results in significant perfor-
mance degradation. Specifically, if we do not ini-
tialize our visual extractor with BioVil, we observe
a reduction in performance. This underscores the
importance of BioVil in providing prior informa-
tion by aligning images with reports, thereby re-
ducing the modal differences. This also suggests
that some alignment aspects could potentially be
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Figure 4: Model visualization, where the heatmap shows the anomalies of interest to the model;red text indicates
the abnormal semantics related to the report; blue text indicates the normal semantics related to the report.

integrated with our method to further boost perfor-
mance. Additionally, we found that the decoupling
structure and APE-MHA are crucial components,
and their absence results in the largest performance
degradation. This highlights the significance of
decoupled learning, which mitigates the negative
impact of the uncertainty noise contained in normal
semantics on predicting abnormal semantics. Fur-
thermore, our proposed abnormal modal memory
structure enhances the perception of fine-grained
images and improves model performance. We also
observed that WE enhances the report generation
process by optimizing the grouping of words in
the report and assigning different weights to them.
This allows the decoder to focus more on the key
semantics, resulting in better quality reports. Over-
all, our analysis demonstrates the effectiveness and
importance of each component in our proposed
method.

Impact of memory size. To analyze the effect
of memory capacity on the model during anomaly
modality extraction, we trained the model using
different memory capacities. Since the memory
modality is matched one-to-one with the local fea-
tures of the image, using a multiple of the image
information size of 49 we conducted the experi-
ments and the results are shown in Figure 3. It can
be seen that as the memory capacity increases, the
model performance rises. This is due to the fact
that a larger capacity allows more image informa-
tion to be stored and may capture more anomalies,
which can be used as a prior for subsequent bilinear
extraction. However, when greater than a certain
threshold, the memory of abnormal modes is suffi-
cient, and more capacity instead memorizes unim-
portant secondary information introducing noise
and causing negative effects.

5.3 Qualitative analysis

To evaluate the performance of our model, we per-
formed a qualitative analysis on the MIMIC-CXR

dataset. As shown in the Figure 4, we visualized the
attention graph produced by the model for the im-
ages, as well as for the top 15 predicted semantics.
Abnormal semantics related to the report were high-
lighted in red, while normal semantics related to
the report were highlighted in blue. Our analysis re-
vealed that the model pays close attention to abnor-
mal regions in the images, and successfully predicts
abnormal phenomena such as heart enlargement.
In the prediction of normal semantics, the model
gives a rich set of normal semantic candidates, con-
taining all normal mentions in real reports, such
as consolidation, pleural effusion, and osseous ab-
normality. This shows that our model can produce
relatively accurate and fluent reports. These results
suggest that our model is capable of generating
relatively accurate and fluent reports.In addition,
we visualize the final learned report weights such
that λ = 1

σ2 , then λ corresponding to abnormal
normal semantics, abnormal normal sentences is
[1.502,1.196,0.993, 0.691]. From the weights, we
can see that the abnormal cases have higher weights
and the semantics have higher weights than the nor-
mal sentences. This indicates that the main body
of the report is the anomaly semantics, which con-
tains more information. It is more important to pay
attention to the anomaly semantics when the report
is generated.

6 Conclusions

We propose a new framework for extracting nor-
mal and abnormal semantics separately. By de-
coupling the semantics, the noise that may exist in
the normal semantics is avoided. And we propose
the structure of anomaly modality enhancement to
enhance the extraction of abnormal features. We
classify the reported words into different parts to
automatically learn the weights to measure the im-
portance. This eventually makes better semantic
and visual features jointly know to generate process
accurate reports.



Limitations

While our approach achieves good results, it is not
without limitations. The main limitation lies in
treating semantic extraction as a multi-label classi-
fication process. In practice, medical reports con-
tain many labeling concepts, including some rare
diseases that are seldom mentioned and difficult
for the network to identify. And some specific de-
scriptions such as "acute obliquely oriented lucency
through the right 12th posterior rib" cannot be gen-
erated.Additionally, while noise in the report does
not affect visual feature extraction, optimizing the
report using different weights may only partially
alleviate the effects of noise on the decoder, with-
out addressing the root cause.In the future, it may
be necessary to start at the data level and standard-
ize reporting up front. Reduce the interference
of uncertainty. For rare diseases, additional med-
ical knowledge may need to be introduced into
the model. Improve identification of rare diseases
through external knowledge enhancement. So at
this stage, it can still only play a supporting role in
the medical system.

Ethics Statement

The MIMIC-CXR datasets employed in our study
underwent a meticulous de-identification process.
Our utilization of the MIMIC-CXR dataset aligns
with the PhysioNet Health Data license 1.5.0 7.
Importantly, the distributed MIMIC-CXR dataset
underwent thorough processing to remove all in-
stances of protected health information (PHI). This
approach underscores our commitment to adhering
to ethical standards.
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A Appendix

A.1 Dataset and pre-processing
We used the MIMIC-CXR dataset consisting of
377,110 chest x-ray images. To facilitate compar-
ison, we followed the preprocessing methods of
other previous work (Chen et al., 2020). We only
focus on the finding part of the medical report, ex-
clude invalid data in the data, and use lowercase for
all reports. Words that appear less than 10 times
are ignored and replaced with <unk>. Only the first
100 words are retained for each report. The final
number of training/validation/testing sets obtained
based on official data division: 269235/2112/3851.
In the training process, we scaled the image data
to a uniform size of (256,256) and used the follow-
ing data enhancements: random image cropping to
(224,224) and affine transformation, translation up
to ±2% of image height/width and rotation up to
±10°.
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Table 4: The impact of different semantics and extraction methods on the proposed model on the MIMIC-CXR
dataset.

Setting SE Abnormal Normal BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
a ✓ 0.396 0.248 0.167 0.120 0.150 0.288
b ✓ ✓ 0.403 0.254 0.171 0.120 0.156 0.284
c ✓ ✓ ✓ 0.402 0.258 0.179 0.130 0.155 0.289

Table 5: The proposed model’s performance compared to those different memory modules on the MIMIC-CXR
dataset.

Setting BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
a 0.354 0.222 0.152 0.109 0.132 0.267
b 0.402 0.258 0.179 0.130 0.155 0.289

To enable semantic tagging, we utilize the Rad-
Graph (Jain et al., 2021) method for extracting
clinical entities and their relationships from radi-
ology reports. Specifically, we focus on extract-
ing anatomical entities and observation entities
from the reports. To perform normal/abnormal
semantic classification, we employ a keyword de-
tection method. In particular, we define a set of
normal keywords based on the reference (Yu et al.,
2022). These extracted semantics are then used
as multi-label classification labels for the semantic
extraction task. Purely keyword-based detection
sometimes produces misclassifications due to key-
words. For example, ’enlarged heart size is stable
since’ may be misclassified as normal. To address
these challenges, we have leveraged ChatGPT to
enhance our categorization process. Specifically,
the formidable semantic understanding capabilities
of ChatGPT assist us in discerning between nor-
mal and abnormal cases.We use the GPT-3.5-turbo
model for a two-stage assessment. In the first stage,
we determine whether the sentence is normal or
abnormal. In the second stage, for sentences iden-
tified as abnormal, we use the semantic keywords
extracted by RadGraph to assess whether the spe-
cific semantics are normal or abnormal. In the first
stage,prompt: "You are a specialized radiologist.
Evaluate the following medical descriptions. Note:
any deviation from the imaging presentation of a
normal person is considered abnormal. No need to
explain; answer directly: normal or abnormal. De-
scription: XX." In the second stage, prompt: "You
are a specialized radiologist. Determine whether
the description of a given keyword is abnormal in a
medical description. Note: any deviation from the
imaging presentation of a normal person is consid-
ered abnormal. No need to explain, answer directly:

normal or abnormal. Description: XX. Keyword:
XX." It is important to note that our semantics share
the same word list as the original report, and do not
require any additional tokenization. Furthermore,
the sentences where normal semantics are found
are categorized as normal sentences, while those
containing abnormal semantics are labeled as ab-
normal sentences. Overall, we divide the words
in the report into four parts: normal/abnormal sen-
tences, and normal/abnormal semantics.

A.2 Implementation Details

To ensure consistency with the experimental setup
of previous work, we used one image as input for
MIMIC-CXR. The encoder and decoder modules
in our framework consist of three basic layers. We
set the 8 attention heads, 512 dimensions for hid-
den states and initialize it randomly respectively.
During the report generation process, we set the
beam size to 3. The codebook size N is 98, while
the value of K used in the semantic generation pro-
cess is 25. Semantic branch starts from the first
layer APE-MHA. To optimize the model, we em-
ploy the AdamW optimizer, with a model learning
rate set to 5×10−6. We implement our model using
Pytorch and X-modaler (Li et al., 2021). We used
2080ti at MIMIC-CXR for 30 epoch of training for
a total of 26 GPU hours.

A.3 Additional Experiments

A.3.1 Semantic extraction method
We evaluated the effectiveness of our proposed
method for semantic extraction, and the results are
summarized in Table 4. In the table, SE represents
the decoupled extraction of semantics, where Ab-
normal and Normal indicate abnormal and normal
semantics, respectively. Specifically, a denotes the
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Figure 5: Cosine similarity scores of all patterns memo-
rized in the codebook Ω.

extraction of abnormal semantics only, b denotes
the extraction of both normal and abnormal seman-
tics but without decoupling, and c represents our
proposed decoupling method. Comparing a and b,
we observe that both types of semantics have a posi-
tive impact on the final report generation. However,
when comparing b and c, we find that the decoupled
and separated extraction approach is more effective,
with a 0.9% improvement in BLUE4. This under-
scores the presence of noise in normal semantics,
which can adversely affect the visual extractor and
compromise reporting accuracy. On the other hand,
our proposed decoupling method avoids the effects
of noise and achieves better reporting results.

A.3.2 Memory method
We compared our proposed memory approach
with the memory modeling approach proposed in
method (Cornia et al., 2020) to highlight the role of
abnormal memory. For the experiments, we kept
parameters such as memory capacity constant. The
results show that the memory approach in method
(Cornia et al., 2020) did not perform well. We be-
lieve that this is due to data bias, as method (Cornia
et al., 2020) introduces a memory matrix in the
self-attentive phase, which enables it to automat-
ically memorize features in the training data and
form prior knowledge. However, since data bias
may have caused it to memorize more repetitions
of normal cases, it achieved suboptimal results.

In contrast, our approach provides more useful
information by explicitly memorizing abnormali-

ties. Specifically, we memorize only the images
where anomalies exist, and the model is encouraged
to memorize different features by leveraging one-
to-one matching and mutual exclusion loss. Figure
5 shows the similarity matrix of the memorized
codebooks in our method, and it can be observed
that the patterns memorized in the codebooks only
have a high similarity to themselves. This illus-
trates the diversity of our method’s memory. Over-
all, our abnormal memory approach yields better
results than method A, which underscores its effec-
tiveness in addressing data bias and improving the
performance of medical report generation models.

A.3.3 Noise impact experiment
To explore the effect of noise in report and nor-
mal semantics, we designed additional experiments
with Normal_De denoting the gradient of truncated
normal semantic branches on visual extraction and
Report_De denoting the gradient of truncated re-
port decoding on visual extraction. a denotes that
report noise with normal semantic noise can af-
fect visual extraction, b denotes that report noise
only affects, and c denotes that normal semantic
noise only influence. d indicates our final model,
i.e., truncated with all noise gradients. The results
in Table 6 show that both noises have a negative
impact and cause a decrease in the metrics. This
also shows that our framework of normal anomaly
semantic decoupling can avoid the effect of this
complex noise to some extent.

A.3.4 More detailed evaluation
to comprehensively demonstrate the performance
of our model, we employed the RadGraph-F1
(Yu et al., 2023) test model and provided a de-
tailed breakdown of disease-specific F1 scores and
proportions. Table 9 represents the RadGraph-
F1 scores, where R2Gen (Chen et al., 2020) and
R2GenCMN (Chen et al., 2021b) are obtained by
calculations using the officially provided model
weights and X-REM (Jeong et al., 2023) are from
the original paper. Our metrics achieve the highest
scores. Table 8 represents the F1 scores for the 14
diseases. The weight of this disease occupying all
the MIMIC-CXR data is labeled after each category.
R2Gen (Chen et al., 2020) and R2GenCMN (Chen
et al., 2021b) obtained by calculations using the
officially provided model weights. It can be seen
that the best scores are achieved in most categories.
And the percentage of anomalies is small in terms
of category share. Detection failures can be due



Table 6: Effect of different noise on the proposed model on the MIMIC-CXR dataset.

Setting Normal_De Report_De BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
a 0.397 0.251 0.172 0.124 0.151 0.289
b ✓ 0.394 0.253 0.176 0.128 0.151 0.290
c ✓ 0.391 0.250 0.173 0.125 0.150 0.289
d ✓ ✓ 0.402 0.258 0.179 0.130 0.155 0.289

Table 7: The performances of our model compared with baselines on IU-Xray dataset. The best results are
highlighted in bold.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

IU-Xray

S&T 0.216 0.124 0.087 0.066 / 0.306
AdaAtt 0.220 0.127 0.089 0.068 / 0.308
R2Gen 0.470 0.304 0.219 0.165 0.187 0.371
PPKED 0.483 0.315 0.224 0.168 / 0.376
M2TR 0.486 0.317 0.232 0.173 0.192 0.390

R2GenCMN 0.475 0.309 0.222 0.170 0.191 0.375
GSKET 0.496 0.327 0.238 0.178 / 0.381

R2GenRL 0.494 0.321 0.235 0.181 0.201 0.384
MSAT 0.481 0.316 0.226 0.171 0.190 0.372
Ours 0.506 0.344 0.256 0.198 0.211 0.390

Table 8: The detailed results across all CheXpert categories for previous report generation models and our proposed
model based on MIMIC-CXR.

Class(%) R2Gen R2GenCMN Ours
No Finding (33.119%) 0.512 0.513 0.471
Enlarged Cardiomediastinum (7.266%) 0.360 0.335 0.344
Cardiomegaly (22.336%) 0.377 0.405 0.406
Lung Lesion (3.259%) 0.329 0.327 0.322
Lung Opacity (24.297%) 0.350 0.350 0.364
Edema (17.641%) 0.385 0.428 0.429
Consolidation (6.632%) 0.335 0.354 0.370
Pneumonia (15.295%) 0.347 0.350 0.355
Atelectasis (24.639%) 0.369 0.398 0.341
Pneumothorax (5.044%) 0.338 0.339 0.348
Pleural Effusion (26.386%) 0.383 0.463 0.464
Pleural Other (1.218%) 0.326 0.331 0.331
Fracture (2.171%) 0.322 0.322 0.328
Support Devices (29.318%) 0.506 0.522 0.467

Table 9: Comparison of our model to previous report
generation models on MIMIC-CXR.

Model RadGraph-F1
R2Gen 0.165

R2GenCMN 0.182
X-REM 0.181

Ours 0.209

to different reasons, such as too little training data
(e.g., "fracture", "Lesion") or too difficult to learn
(e.g., "pneumothorax", which is is also difficult for
clinicians to determine).

A.3.5 IU-Xray experiment
The Indiana University chest x-ray collection (IU-
Xray5) (Demner-Fushman et al., 2016) is a pub-
lic radiology examination dataset and a common
dataset used in medical report generation tasks.

5https://openi.nlm.nih.gov/

https://openi.nlm.nih.gov/


The dataset includes 7,470 x-ray images and the
corresponding 3,955 radiology reports. However,
the IU-Xray dataset does not have a standard
dataset segmentation, resulting in some of the pre-
vious methods not performing comparably in terms
of metrics. To facilitate comparison with previous
work, we used the same preprocessing and segmen-
tation as in (Chen et al., 2020). We also compare
only the methods that use the same segmentation.
The training/test/val setting for the entire dataset
was 7:1:2.Our data processing steps were similar to
those of MIMIC-CXR. Due to the small number of
IU-Xray data, we excluded words with less than 3
occurrences and focused only on the first 60 words.

we compare our proposed method with conven-
tional image captioning works, e.g. S&T (Vinyals
et al., 2015), AdaAtt (Lu et al., 2017), and the
ones proposed for the medical domain, e.g. R2Gen
(Chen et al., 2020), PPKED (Liu et al., 2021a),
M2TR (Nooralahzadeh et al., 2021), R2GenCMN
(Chen et al., 2021b) GSKET (Yang et al., 2022),
R2GenRL (Qin and Song, 2022) and MSAT(Wang
et al., 2022c). The results on S&T (Vinyals et al.,
2015), AdaAtt (Lu et al., 2017) from (Chen et al.,
2020), and the rest of the results were cited from
the original paper.As we can see from the results
in Table 7, our method can still achieve good re-
sults on the IU-Xray dataset, which indicates the
generality of our method.

A.4 Hallucination samples

In order to more clearly exemplify the error and
hallucination samples, we have listed a detailed
comparison in Figure 6. It can be seen that our
report (a) observes atelectasis but omits fractures.
This may be mainly due to the fact that the fractures
category is underrepresented in the data. Secondly
we are not able to report specific descriptions like l1
and t12. Although we report degenerative changes,
they are not specific to the right shoulder. For some
of the normal descriptions of (b), we don’t match
well with the real report, we don’t report no acute
bony abnormalities. This has to do with the normal
noise in the report, which is mentioned in some
doctors’ reports and not in others. In (c) we report
patchy opacities, due to lung atelectasis, but in real-
ity it is basilar lung opacities. and we report pleural
effusion on the left side, but in the actual report it is
present on the left side as well as the right side. It
is possible that the model discriminated the pleural
effusion but was inadequate for orientation. This

GTours

(a)

(b)

(c)

frontal and lateral views of the
chest were obtained . there is
no focal consolidation effusion
or pneumothorax . the cardiac

silhouette is top normal in size .
patchy opacity in the right
lower lobe is likely due to

atelectasis . mediastinal and
hilar contours are

unremarkable . pulmonary
vasculature is normal . mild
degenerative changes are

noted  .

chest pa and lateral radiograph
demonstrates unremarkable

mediastinal and hilar contours .
increased opacity overlying the
right diaphragm on background
of right lower lung atelectasis
may indicate pneumonia . no

pleural effusion or
pneumothorax evident . stable

l1 and t12 compression
fractures . stable degenerative
changes of the right shoulder .

the heart is normal in size . the
lungs are clear . there is no

pleural effusion or
pneumothorax .

the heart is normal in size . the
mediastinum is unremarkable .
emphysematous changes are

identified . the lungs are
otherwise grossly clear .

lung volumes are low . the
heart size is mildly enlarged .

the mediastinal and hilar
contours are unremarkable .

cardiac silhouette is enlarged
and accompanied by

pulmonary vascular congestion
. persistent moderate right and
small left pleural effusions with
adjacent basilar lung opacities

which probably reflect
atelectasis although coexisting
pneumonia is possible in the
appropriate clinical setting .

Figure 6: Example of a generated report compared to a
real report.

may be due to the lack of more detailed labeling in
the report.

A.5 More Example Visualizations



image GTours

heart size and mediastinal contours
are within normal limits . the lungs

are clear . there is no pleural effusion
or pneumothorax .

the heart size and mediastinal
contours appear within normal limits

. no focal airspace consolidation
pleural effusion or pneumothorax . no

acute bony abnormalities .

frontal and lateral views of the chest
were obtained . the lungs are clear

without focal consolidation effusion
or pneumothorax . the cardiac
silhouette is mildly enlarged .

mediastinal and hilar contours are
within normal limits . there is no

pulmonary edema . there is no pleural
effusion or pneumothorax . there is
mild degenerative changes in the

thoracic spine .

as compared to the previous
radiograph there is no relevant

change . no new parenchymal opacity
. unchanged moderate cardiomegaly

and unchanged position and course of
the sternal wires and clips after cabg .
the pre-existing platelike atelectasis
in the left mid lung has resolved .

unchanged area of mild right lateral
pleural thickening . no pulmonary

edema . no pleural effusions . no lung
nodules or masses .

lung volumes are low . the heart size
is mildly enlarged . the mediastinal

and hilar contours are unremarkable .
there is mild pulmonary vascular

congestion .  patchy opacities in the
right lower lung base likely due to
atelectasis . small bilateral pleural

effusions are seen on the left . there is
no pneumothorax . there is no

pulmonary edema .there is no acute
osseous abnormalities .

cardiac silhouette is enlarged and
accompanied by pulmonary vascular
congestion . persistent moderate right
and small left pleural effusions with
adjacent basilar lung opacities which
probably reflect atelectasis although
coexisting pneumonia is possible in

the appropriate clinical setting .

the heart is normal in size . the lungs
are clear .  there is no pleural effusion

or pneumothorax .

the heart is normal in size . the
mediastinum is unremarkable .
emphysematous changes are

identified . the lungs are otherwise
grossly clear .

Figure 7: Visualization of prediction results, where GT is the abbreviation of the ground truth, text in red indicates
the reported keywords and ground truth keywords generated by our method.


