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Abstract

The long-standing research challenge of Zero-shot Cooperation (ZSC) have been tackled1
by applying cooperative reinforcement learning to train an agent by optimizing the2
environment reward function and evaluating their performance through task performance3
metrics such as task reward. However, such evaluation focuses only on task completion,4
while being agnostic to ‘how’ the two agents work with each other. Specifically, we are5
interested in understanding the cooperative behaviors arising within a team - a problem6
that has been overlooked by the existing literature in MARL. To formally address this7
problem, we propose the concept of constructive interdependence - measuring how8
much agents rely on each other’s actions to achieve the shared goal - as a key metric9
for evaluating cooperation in teams. We interpret interdependence in terms of action10
interactions in a STRIPS formalism, and define metrics that allow us to assess the11
degree of reliance between the agents’ actions. We pair state-of-the-art ZSC agents12
with other agents for the popular Overcooked domain, and evaluate the task reward and13
teaming performance for such teams. Our results demonstrate that although trained14
agents attain high task rewards, they fail to induce cooperative behavior, showing very15
low levels of interdependence across teams. Furthermore, our analysis reveals that16
teaming performance is not necessarily correlated with task reward, highlighting that17
task reward alone cannot reliably measure cooperation arising in a team.18

1 Introduction19

Achieving zero-shot cooperation (ZSC) to build agents capable of working with a wide range of20
partners remains a long-withstanding challenge in cooperative RL. This capability is particularly21
important in the setting of human-agent teaming (HAT) to develop agents that must interact and22
work alongside humans. Popular approaches in these settings use cooperative reinforcement learning,23
where agents learn with limited set of training partners and generalize these skills to collaborate24
with previously unseen partners during deployment. Performance of these agents when paired25
with a partner are commonly evaluated using metrics such as mean episode rewards over multiple26
runs (Yu et al., 2023; Strouse et al., 2022; Lou et al., 2023) or the time-steps taken to complete27
the task in the environment (Sarkar et al., 2023; Zhao et al., 2022a). However, evaluating a team28
using metrics which measure only the task reward obscures critical details about the performance29
of the individual teammates and the interactions that arise between them, especially in cases where30
they can successfully complete the task without necessarily cooperating with each other. Here, we31
borrow from the distinction introduced in (Zhang et al., 2016), Required cooperation (RC) refers32
to scenarios where the participation of all team members is necessary to achieve the shared goal33
whereas non-required cooperation (Non-RC) describes settings where each individual can achieve the34
goal independently, without relying on the contributions of other teammates. For example, consider35
a human-agent team working in the environment layout shown in Figure 1 from the Overcooked36
Game. The players act together in the environment to cook and deliver soups by collecting onions,37
cooking them in a pot, transferring the soup to a dish, and delivering it at the serving station. The38
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Figure 1: Depicted are two strategies to fill a pot with onions in a cooking game. The coordinated
strategy (right) is more efficient than the individual strategies (left), but runs the risk of failure if
cooperation is not achieved.

participation of both players is not required to complete the task. The team could complete the task39
using a strategy with minimal interactions between the teammates, such as one where only the human40
is completing the task and the agent is merely staying out of the human’s way. The team could also41
be using a strategy where the human and the agent interact and collaborate with each other by using42
the passing counter to pass onions. Using only the task reward to evaluate the performance would43
assign the same reward to both teams regardless of their teaming performance. Therefore, in non-RC44
settings, the task performance is not representative of the teaming performance.45
This raises a natural question: what is the value of cooperation in settings where it is not strictly46
required to achieve the goal? To answer this question, it is important to note that ZSC agents are47
supposed to adapt their behavior and do the best response to diverse partner policies, including those48
that involve coordination between the teammates. For non-RC settings, Matignon et al. (2012);49
Fulda & Ventura (2007) describe the shadowed equilibrium problem in cooperative RL when there50
are multiple equilibria (since there are exist multiple way to achieve the task in a non-RC setting,51
including the agents doing the task independently vs working together). This brings about a persistent52
challenge in cooperative reinforcement learning is that, during training, agents may fail to encounter53
cooperative strategies—leading them to converge on behaviors that do not require coordination (Lerer54
& Peysakhovich, 2019). This creates a significant risk of miscoordination in the ad hoc setting of55
zero-shot cooperation and human-agent teaming. For instance, in Fig. 1, if one player attempts to56
follow a cooperative policy—such as passing the onion—but their partner defaults to an uncoordinated57
strategy, the result is a coordination failure (Carroll et al., 2020). Focusing on only the task reward to58
evaluate the performance of a ZSC agent hides this fundamental failure of the agent—specifically,59
the inability of the agent to engage in cooperative behavior when paired with a partner wants to60
cooperate. Therefore, to truly assess the capabilities of ZSC agents, especially when they are used61
for human-agent teaming, it is imperative to evaluate their teaming performance—not just their task62
success. Only by measuring how well agents cooperate with diverse partners can we develop robust,63
generalizable solutions for real-world collaboration.64
In an effort to measure cooperative behavior in a team, we focus on a specific form of cooperation in65
teams characterized by structured interdependence among team members, as introduced in (Johnson66
et al., 2020). Such interdependence is central to many real-world teaming applications, as seen for the67
domains of Urban Search and Rescue (Pateria et al., 2019), collaborative trash removal (Ghavamzadeh68
et al., 2006), and multi-agent predator-prey systems (Wu et al., 2023; Barton et al., 2018b). Four69
types of task interdependence have been identified in the study of teamwork: pooled, sequential,70
reciprocal, and team interdependence (Verhagen et al., 2022; Singh et al., 2016; 2014). In this work,71
we focus on measuring the sequential and reciprocal interdependencies arising in teams. We propose72
a novel metric for measuring such interdependencies between multiple agents working as a team,73
which can be used as a quantifiable measure of cooperation. We map a two-player Markov Game to74
a symbolic STRIPS formalism, introducing symbolic structure to the world states and the actions,75
allowing tracking of the interdependencies within the players in a team. We pair state-of-the-art76
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methods trained for zero-shot cooperation for the Overcooked domain with a scripted cooperative77
agent, human teammates in a user study and in self-play. While our metric is generalizable to any78
domain, we choose Overcooked because it is a popular benchmark for testing cooperation in multi-79
agent and human-agent teams, leading to the development of numerous approaches for zero-shot80
cooperation and human-agent teaming in this domain (Strouse et al., 2022; Carroll et al., 2020; Zhao81
et al., 2022b; Yu et al., 2023; Li et al., 2024), thus making it a good testbed for assessing the current82
state-of-the-art. We use the proposed metrics to comprehensively evaluate the teaming performance83
of teams. Using this metric, we are trying to answer the following research questions - 1. Are trained84
ZSC agents capable of engaging in cooperative behavior when paired with partners that attempt to85
initiate cooperation? 2. How does the degree of cooperative behavior vary when these agents are86
paired with teammates in Required Cooperation (RC) versus Non-Required Cooperation (Non-RC)87
settings? 3. To what extent do these agents initiate cooperative behavior in teams, and how effectively88
can they recognize and respond to cooperative intent when it is initiated by their partners? Our89
results show that ZSC agents are unable to induce/respond to cooperative behavior when paired with90
partners that attempt to initiate cooperation. Even when the partner follows a known coordination91
policy, agents don’t respond to interdependencies initiated by the partner. In Non-RC settings, teams92
often achieve high task rewards, but are accompanied by minimal constructive interdependencies,93
indicating a lack of cooperation arising in these teams. In contrast, in RC settings, higher task94
rewards are consistently aligned with higher constructive interdependencies. Across all settings, ZSC95
agents seldom initiate interdependencies themselves and don’t respond to those initiated by human96
teammates. Overall, ZSC agents lack the ability to respond to, or initiate cooperative behaviors in97
settings where cooperation is helpful but not enforced.98

2 Related Works99

Previous works in multi-agent teaming use task performance or episodic reward (Strouse et al., 2022;100
Yu et al., 2023; Zhao et al., 2022b; Li et al., 2024; Wang et al., 2024a; Lou et al., 2023) to evaluate101
the team’s performance. (Zhao et al., 2022a; Knott et al., 2021; Fontaine et al., 2021) emphasize the102
significance of designing different metrics for evaluation such as collaborative fluency, robot and103
human idle time etc. (Zhao et al., 2022a) and subjective user studies to measure trust, engagement and104
fluency of the agents when paired with a human (Zhao et al., 2022a; Ma et al., 2022; Nalepka et al.,105
2021). However, such metrics depend heavily on specific environment layouts and task structures.106
Subjective user studies only offer limited insight into the quality of cooperation existing within the107
team. In contrast, the proposed metric of interdependence is generalizable across domains. Zhang108
et al. (2024) capture outcomes and certain aspects of the collaboration process such as contribution109
rate, individual effort, communication frequency whereas Bishop et al. (2020) uses action-based110
metrics like Productive Chef Actions (PCA), PCA duration, and Chef Role Contribution (CRC) to111
quantify individual effort and role distribution during task execution. Ries et al. (2024) uses the team112
member contribution calculated as the difference between the relative proportion of tasks completed113
by humans versus AI agents. While these metrics measure the contribution of the agents to the114
task, they do not measure the underlying cooperative dynamics or the structural task dependencies115
between the actions of the team members. We discuss and compare the interdependence metric with116
the evaluation presented by Wang et al. (2025), who examine how human-agent teams adapt and117
evolve over time, focusing on the dynamic processes that shape team interactions and outcomes.118
Aspects of team formation such as shared goals and team acceptance are measured through subjective119
perception (Liang et al., 2019), whereas the interdependence metric can objectively reveal whether120
team members are acting in ways that enable or anticipate each other’s contributions. Successful121
creation and fulfillment of interdependencies indicate role adherence (Wang et al., 2024b), team122
trust and coordination (Moran et al., 2013; Cai et al., 2019). Johnson et al. (2014; 2020) places123
interdependence at the center of their model for designing human-machine systems, making it the124
organizing principle around which the rest of the team’s structure and behavior revolves. Barton125
et al. (2018a); Wu et al. (2023); Barton et al. (2018b) leverage Convergent Cross Mapping (CCM)126
to measure causal influence between time-series of agent actions, primarily focusing on low-level127
motion coordination. In contrast, our approach aims to capture more structured and symbolic task128
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interdependencies. Verhagen et al. (2022); Singh et al. (2014) have identified four primary types129
of task interdependence in teams: pooled, sequential, reciprocal, and team interdependence. Pooled130
interdependence involves team members working independently without interaction, while sequential131
interdependence requires tasks to be performed in order. Reciprocal interdependence requires team132
members taking turns to complete portions of a task, and team interdependence involves concurrent133
execution of individual tasks with potential joint actions. We define interdependence when the134
effect of one agent’s action satisfies the precondition of another’s, modeled through a STRIPS-based135
formalism. This allows us to identify both unidirectional (sequential) and bidirectional (reciprocal)136
dependencies.137

3 Preliminaries138

Two-Player Markov Game : A two-player Markov game for a human-AI cooperation scenario139
can be defined as ⟨S,A, T,R⟩ where S is the set of world states, A : A1 × A2 where Ai is set of140
possible actions for agent i, T : S × A1 × A2 → S is the transition function mapping the present141
state and the joint action of the agents to the next state of the world, Ri : S × A1 × A2 → Ri is142
the reward function mapping the state of the world and the joint action to the global reward. For143
a 2-player cooperative markov game, R = R1 = R2 where R is the global environment reward144
function. The joint policy is defined as π = (π1, π2) where the policy πi : S → Ai is defined for an145
agent i over set of possible actions Ai. The objective of each agent i is to maximize the expected146
discounted return Eπ [

∑∞
t=0 γ

tR(st, at1, a
t
2)] by following the policy π from a given state. Therefore,147

the policy π is learned by optimizing the task reward received by the agents from the environment.148
Multi-Agent Planning : A STRIPS problem is represented as ⟨P,A, I,G⟩ where P is the set of149
propositions which can be used to denote facts about the world, A is the set of planning actions, I150
is the initial state and G is the goal state. Each fluent p ∈ P is a symbolic, variable that describes151
the current state of the environment, with each proposition representing a specific property of an152
object in the world. The possible fluents for the Overcooked environment can be counter-empty -153
describes whether the counter is empty or not, pot-ready - indicates whether the soup is ready in the154
pot, soup-served - indicates whether the soup has been served at the serving station etc. I denotes the155
propositions representing the initial state of the world and G denotes the propositions corresponding156
to the goal state of the world. A planning action can be defined as a =< pre(a), add(a), del(a) >157
where pre(a) is the set of propositions that must be true before the action can be executed, add(a) are158
the propositions that become true after the action is performed and del(a) are the propositions that159
become false after the action is performed. Extending this to multiple agents, a Multi-agent Planning160
task can be denoted as ⟨P,N, {Ai}Ni=1, I, G⟩ where N is the number of agents and Ai is the set of161
actions for the agent i. We assume that the agents take turns to act and not in parallel. A plan is162
defined as a sequence of actions

(
{a1i }Ni=1, {a2i }Ni=1, . . . , {ani }Ni=1

)
where n is the number of steps in163

the plan. A plan is a solution Π if it is a sequence of actions that can be applied to the initial state I164
and results in a world state which satisfies G i.e. Π =

(
{a1i }Ni=1, {a2i }Ni=1, . . . , {ani }Ni=1

)
is a valid165

solution plan if {ani }Ni=1

(
. . . . . .

(
{a2i }Ni=1

(
{a1i }Ni=1 (I)

)))
⊆ G166

4 Interdependencies167

We pose the teaming problem as a two-player Markov game, where the actions of the teammates take168
place sequentially. We focus on the case where the team is trying to reach a set of goal states SG such169
that SG ⊆ S. The states in SG are absorbing i.e. ∀s ∈ SG and aGi ∈ Ai, we have T (s, {aGi }2i=1) = 0.170
We represent the solution trajectory for a single agent τi as τi =

(
ati, a

t+1
i , . . . aki . . . a

n
i

)
and the171

joint-action solution trajectory τ of two agents starting from timestep t and reaching a goal state at172
timestep n as τ =

(
(at1, a

t
2) ,

(
at+1
1 , at+1

2

)
. . . (an1 , a

n
2 )
)
. An execution trace Tr of a policy π from an173

initial state st as is denoted as
(
st, at, st+1, at+1, . . . sn

)
, where Tr corresponds to the state-action174

sequence that starts at timestep t and terminates at a goal state sn ∈ SG at a timestep n, with175
ak =

(
ak1 , a

k
2

)
and aki = πi

(
sk
)
. The agents receive a task reward Rtask at the end of Tr and τ on176

reaching the goal state. We define our problem Given the execution trace Tr and the joint solution177
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trajectory τ of a team, we only receive Rtask which does not represent how good or "cooperative" the178
solution trajectory τ is. To capture the cooperative interactions arising between the teammates in τ ,179
we define the concept of interdependence in the next section.180
Mapping the Markov Game to STRIPS : In a Markov Game, the state at a current timestep st ∈ S181
is typically a high-dimensional vector. st can be denoted as a symbolic state with a set of true182
propositions pt which denotes the current state of the world. Doing this, we effectively describe183
each state as a finite set of relevant symbolic facts. Therefore, there exists a function F : S → P184
mapping the states to symbolic propositions. Here, we refer to Fig. 1. We consider the predicate185
counter-empty to denote if the middle counter is empty. We consider the transition when the green-hat186
agent (A2) takes an action to place the onion on the counter. The state at which the agent performs187
this action has the proposition counter-empty set as True, while the action sets counter-empty as188
False in the next state. Therefore, mapping the state to a symbolic state helps us capture the effect189
of the agents’ actions in terms of relevant symbols. We can recall from the execution trace Tr of190
a Markov Game that the state of the world at time t is st. From st, taking action at causes the191
state of the world to change to st+1. We can map each transition

(
st, st+1, at

)
to the symbolic192

formulation with the help of F . st+1 can be represented as a set of true propositions pt+1 and st can193
be represented as pt. Similarly, we now map the action at = (at1, a

t
2) to a symbolic representation.194

Recall that since the teammates take turns to play, at = (at1, no-op) or at = (no-op, at2). For195
action ati, there exists a mapping from (st, ati, st+1) to a STRIPS style planning action such that196
pre (ati) ⊆ pt, add (ati) ⊆ pt+1 and del (ati) ⊆ P \ pt+1. Therefore, the solution trajectory τ can197
be represented as a joint solution plan Π, where each single-agent action ati in the trajectory can198
be represented as ati = ⟨pre(ati), add(ati), del(ati)⟩. This way we can track the preconditions and199
effects of the actions of individual agents in the trajectory as symbolic propositions and track the200
interdependencies between them.201
Agent Interdependencies : Given a joint-action solution trajectory τ and the solution trajectory202
τi for an agent i, we define the following properties about τ and τi to formalize the concept of203
interdependence for the solution trajectory:204

Definition 4.1. For τ , we define Interdependence Int as a pair of actions (at0+k
i , at0j )i ̸=j such205

that add(at0j ) ⊆ pre(at0+k
i ). An Interdependent pair of actions (at0+k

i , at0j )i ̸=j has two agents, a206

Giver agent performing the action at0j and a Receiver agent performing the action at0+k
i . Each207

interdependent pair of actions is going to be associated with an object objint.208

Definition 4.2. For τi, the set of Trigger actions is Tri = (ai | ∀aj ∈ Aj ∩ j ̸= i, eff (ai) ⊆ pre)209
where ai ∈ Ci.210

Definition 4.3. For any object in the world and a starting timestep t0, the object influence trajectory211
from time t0, denoted by τ t0obj, captures all state transitions in the plan from timestep t0 onward where212
this object is involved.213

τ t0obj = {(pt, at, pt+1) | t ≥ t0, ∃p ∈ pre(at) ∪ add(at) ∪ del(at) where obj ∈ O(p)}

where O(p) denotes the set of objects mentioned in proposition p. In other words, τ t0obj includes all214
transitions from timestep t0 onward where the object explicitly appears in the action’s conditions215
or effects. Also, we have pGn i.e. the set of goal predicates at the end of the trajectory. Here, other216
objects that are affected by obj can be captured in the state of that object.217

Definition 4.4. An interdependence Int = (at0+k
i , at0j )i̸=j is a Goal Reaching Interdependence if218

the final state of the object associated with that interdependence (objint) is also present in the set of219
goal predicates. Using p

objint
final to denote the last entry in τ t0objint

, I is a goal reaching interdependence if220

p
objint
final ⊆ pGn .221

Definition 4.5. Let pobj
t denote the predicate for that object at timestep t, therefore containing222

nformation about the state of obj at t. An interdependence Int = (at0+k
i , at0j ) associated with object223

objint is said to be a Non-looping Interdependence if the following conditions hold; The giver agent224
(agent j), who gives the object objint at timestep t0, does not receive the object back in the same225
state at any future timestep t > t0 + k:226

∄t > t0 + k, s.t. agent j receives objint in the same state as at time t0

5



Under review for RLC 2025, to be published in RLJ 2025

. The receiver agent (agent i), who receives the object at timestep k + t0, did not have the object in227
that same state at any time t < t0 + k:228

∄t < t0 + k, s.t. agent i had objint in the same state

Definition 4.6. An interdependence Int = (aki , a
k−t
j ) is a Constructive Interdependence, if it is a229

Goal Reaching Interdependence and a Non-looping Interdependence.230

Consider a scenario in the Counter Circuit layout where agent j places an onion on the counter at231
timestep t0 via action at0j , whose effect is add(at0j ) = {onion-on-counter}. Subsequently,232

at timestep t0 + k, agent i performs action at0+k
i to pick up the onion from the counter, with233

precondition pre(at0+k
i ) = {onion-on-counter}. This pair of actions (at0+k

i , at0j ) constitutes234
a sequential interdependence Int linked to the object objint = onion. The associated object235
influence trajectory τ t0onion captures all state transitions involving the onion, culminating in a final236
state where the soup contains the onion. Provided that the onion is not returned to agent j in the237
same state and that agent i had not previously held the onion in that state, this interdependence is238
Non-looping. Consequently, this interaction qualifies as a Constructive Interdependence. A Trigger239
action for an agent is placing the onion on the counter, since it could potentially be the precondition240
for the other agent picking that onion from the counter.241

5 Experiment and Results242

In this section, we evaluate the performance of state-of-the-art methods (Fig.1 in the Overcooked243
domain when teamed with a scripted cooperative partner, humans teammates and in self-play, on244
the forced coordination (RC) and counter circuit (non-RC) layout in Fig. 2. Further details can be245
found in Section. 7. To assess the quality of cooperation within teams, we use the following metrics:246
the number of constructive interdependencies (Intcons) and non-constructive interdependencies247
(Intnon-cons). The first metric captures task interdependencies that contribute to task progress248
and are non-redundant, reflecting efficient and goal-directed coordination. In contrast, the second249
metric includes interactions that fail to support goal completion or are cyclic, thereby indicating250
ineffective or unproductive collaboration. In addition, we perform a sub-analysis to measure how251
many interdependencies are initiated by each team member and how many of those are accepted and252
acted upon by the teammate.253
ZSC Agent paired with Cooperative Partner : We test whether the ZSC agents can successfully254
adapt to a partner that initiates a coordination policy in a non-RC setting. We consider the coordination255
policy for the counter circuit layout, as introduced by Carroll et al. (2020) and shown in Fig. 1. In256
this policy, the green-hat chef puts onions on the counter and the blue-hat chef puts the onions in257
the pot. Once the soup is ready in the pot, the blue-hat agent picks a dish and serves the soup at the258
serving station. We set up the game such that a scripted agent performs the role of the green-hat259
chef, following only their side of the coordination policy and putting onions on the counter. The ZSC260
agents are assigned the role of the blue-hat chef. This represents a scenario where the agents are261
paired with a partner who is attempting to perform a known coordination strategy. They are expected262
to be able to adapt to the actions of the partner and perform actions which complement the green-hat263
agent’s actions, by picking the onion and putting it in the pot. Note that the coordination policy264
exhibits sequential interdependence, captured by Intcons. Using this metric to assess teams, we can265
assess the quality of cooperation that emerges when ZSC agents are paired with a scripted cooperative266
partner. From Table. 1, we observe that all ZSC agents exhibit a low number of interdependencies,267
despite being paired with a scripted agent that follows a known coordination policy. This suggests that268
the ZSC agents are largely unable to respond effectively to the partner playing a coordination strategy.269
Although the scripted partner consistently attempts to initiate interdependencies, most of these efforts270
are rejected by the ZSC agents. Note that by capturing the sequential interdependencies with a271
single scalar metric, we avoid the need for analyzing the whole trajectory of the agents, enabling272
efficient evaluation of key cooperative behaviors. Furthermore, this metric generalizes to any domain273
with coordination policies exhibiting inter-agent interdependencies, providing a scalable tool for274
quantifying this kind of cooperation across diverse multi-agent settings.275
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Agent Task Reward Intcons Intnon-cons %P
trig
tot-sub

%P
not-trig-acc
trig

COLE 36 0.6 1.2 38.5 88.88
MEP 43.33 1.834 1.667 41.28 75.55
HSP 0 0 0.5 28.57 100.0
FCP 0 0 0.167 21.79 100.0

Table 1: ZSC Agents paired with a scripted coordination policy, %P trig
tot-sub are the interdependencies

that were triggered by the scripted agents, %P not-trig-acc
trig are the triggered interdependencies not

accepted by the ZSC agents. The task and teaming score are averaged across 20 runs with the scripted
agent.

Task vs Teaming Score for ZSC paired with Human Participants : We compute the average task276
reward and the number of constructive and non-constructive interdependencies for teams of the ZSC277
agent paired with a human teammate. From Table. 2, we observe that, in Non-RC settings, task278
reward does not reliably reflect the quality of cooperation. Conversely, in RC settings, there is clear279
correlation: higher task rewards are consistently accompanied by significantly more constructive280
interdependencies. We also report that the number of interdependencies in Non-RC domains remains281
low, highlighting that ZSC agents generally fail to exhibit cooperative behavior when paired with282
human teammates. From Table. 4a, we observe that human players frequently attempt to initiate283
cooperative interactions, yet a substantial portion of these are not accepted by ZSC agents. From284
Table. 4b, even in their highest-scoring runs, ZSC agents in Non-RC settings often achieve task285
success through independent action, rather than by responding to or building on their human part-286
ner’s coordination attempts These findings suggest that current ZSC models, while capable of task287
completion, lack adaptability required for robust human-agent coordination.

Agent Task Reward Intcons Intnon-cons

Non-RC RC Non-RC RC Non-RC RC
COLE 76.21 56.875 1.89 11.375 3.29 2.875
MEP 50.00 44.102 0.928 8.692 1.285 2.769
HSP 41.11 60.55 1.388 12.055 2.138 3.083
FCP 22.55 35.34 0.97 7.06 0.872 3.441

Table 2: ZSC Agents paired with human teammates; the task reward and teaming metrics are averaged
across 36 runs with participants.

288
Task vs Teaming Performance of ZSC in Self-Play To assess the upper bound of cooperative289
behavior achievable through self-play, we analyze the top-performing team for each ZSC agent type290
when paired with an identical copy of itself across both non-RC and RC layouts. This analysis serves291
to evaluate whether the agents are capable of effective cooperation when paired with itself. Analyz-292
ing Table. 3, we observe a consistent pattern across all agent types: constructive interdependence293
remains low in Non-RC layouts despite agents achieving high task rewards. This indicates a lack of294
genuine cooperative behavior. In contrast, agents demonstrate markedly higher levels of constructive295
interdependence in RC settings, aligning more closely with their task performance and suggesting296
that the dependencies inherent to RC domains facilitate coordination. Crucially, the number of297
non-constructive interdependencies in Non-RC environments consistently exceeds constructive ones,298
highlighting that when interdependence does occur, it is often unproductive— looping or irrelevant299
interactions that do not contribute to task success. These findings further reinforce that task reward300
alone is not a reliable proxy for cooperative behavior in Non-RC scenarios. Moreover, these findings301
indicate that even in self-play, ZSC agents fail to induce cooperative strategies.302
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Agent Task Reward Intcons Intnon-cons

Non-RC RC Non-RC RC Non-RC RC
COLE 120 200 10.23 30.43 6.58 6.83
MEP 100.00 140 1.05 29.5 10.19 7.53
HSP 120 100 1.82 22.87 12.32 10.667
FCP 60 80 0 16.0 0 16.0

Table 3: Best performing team with ZSC Agents in self-play

Agent %H-subtrig
tot−sub %H-subnot trig−acc

trig

Non-RC RC Non-RC RC
COLE 60.28 45.28 70.05 38.34
MEP 66.82 43.57 82.39 39.82
HSP 52.22 42.92 80.85 40.58
FCP 48.30 43.62 98.41 36.84

(a) Analysis of triggered vs accepted interdependen-
cies for the human player.

Agent %H-subtrig
tot−sub %H-subnot trig−acc

trig

Non-RC RC Non-RC RC
COLE 40.58 35.89 11.76 5.01
MEP 59.10 46.57 82.39 0.20
HSP 28.67 49.27 33.34 20.58
FCP 44.62 48.68 80.17 18.92

(b) Analysis of triggered vs accepted interdependen-
cies for the best ZSC Agent–human team.

Table 4: Analysis of interdependencies triggered by the human partner vs those accepted by the ZSC
agent for human-agent teams, %H trig

tot-sub are the interdependencies that were triggered by the scripted
agents, %Hnot-trig-acc

trig are the triggered interdependencies not accepted by the ZSC agents.

6 Conclusion303

This work evaluates whether Zero-Shot Coordination agents can generalize to behaviors potentially304
outside their training distribution—particularly when paired with unseen scripted partners or humans305
who attempt to perform the cooperative policy. To this end, we introduce a metric that captures306
structured task interdependencies and allows for assessment of cooperation in teams. We also307
ensure that these interdependencies are constructive—meaning they directly contribute to achieving308
the team’s goal—thereby distinguishing meaningful cooperative interactions from unproductive309
or redundant ones. Our results show that while ZSC agents achieve high task rewards in non-310
required cooperation settings, these scores often arise from independent execution rather than actual311
cooperative behavior. While the agents themselves do not initiate cooperative behavior, they also312
fail to respond to or build on coordination attempts initiated by partners, including humans, rejecting313
a majority of triggered interdependencies. In contrast, in Required Cooperation (RC) settings,314
cooperative behavior—as measured by constructive interdependencies—correlates strongly with315
task performance. These findings challenge the adequacy of task reward as a standalone metric for316
evaluating generalizable cooperation in non-RC settings. This work highlights a critical gap in current317
state-of-the-art for Zero-Shot Coordination: their limited ability to engage in meaningful cooperation318
when paired with partners attempting to coordinate. Future work would include broadening this metric319
to include other kinds of interdependencies and cooperative behaviors. Another research direction320
would be to use the interdependence metric as an additional reward signal to guide learning towards321
effective cooperation. Prior work by Barton et al. (2018a) has emphasized the importance of explicitly322
incorporating coordination objectives within learning, rather than relying on coordination to emerge323
implicitly from the task reward. In non-RC settings, the shadowed equilibrium problem (Matignon324
et al., 2012; Fulda & Ventura, 2007) causes agents to not explore the cooperative strategies during325
training, since multiple equilibria exist including the non-cooperative strategies. Integrating the326
interdependence metric as a reward signal could potentially encourage agents to actively recognize327
and pursue coordination during exploration, potentially learning to play with a diverse set of partners328
and reducing miscoordination in human-agent teaming scenarios. Ultimately, this paves the way for329
developing ZSC agents that not only succeed at tasks but also robustly cooperate with previously330
unseen partners, thereby enhancing the reliability when deployed in real-world environments.331
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456

7 Environment Details457

The team of 2 players is in a gridworld environment with onion dispensers, dish dispensers, pots,458
serving stations, and empty counters. The players can either move in the environment or interact with459
these objects. The objective of the game is to cook and deliver three soups as quickly as possible. To460
do this, the team must do the following tasks: pick and drop three onions from the onion dispenser,461
place them in the cooking pot, and wait for the soup to be done. The next steps are to pick a dish from462
the dish dispenser, transfer the cooked soup to the empty dish, and deliver the soup to the serving463
station. Each player and each counter can hold only one object at a time. On successful delivery of a464
soup, both the players receive the task reward. Therefore, both players are incentivised to collaborate465
to prepare the soup and deliver it as many times as possible. The environment is fully observable and466
communication is not allowed between agents in the environment.467
SOTA Methods: FCP Strouse et al. (2022), MEP Zhao et al. (2022b),HSP Yu et al. (2023) and468
COLE Li et al. (2024) are trained using a two-stage training framework, where a diverse partner469
population is created through self-play in the first stage, followed by the second stage where the470
ego agent is iteratively trained by having it play against sampled partners from the population471
and optimizing mainly the task reward using reinforcement learning. All these methods focus on472
improving the diversity of the partner population in the first stage. While MEP adds maximum473
entropy to the reward for increasing the diversity of the population, HSP tries to model the human474
teammate’s reward as event-based rewards to construct a set of behavior-preferring agents. COLE475
presents cooperative games as graphic-form games and calculates the reward from the cooperative476
incompability distribution. The ego agent in all these approaches are trained to optimize the episodic477
task reward, which is also the objective metric being used to measure cooperation when these agents478
are paired with an unseen teammate (also human). We recruited 36 participants from our university in479
the range from 18 to 31 who were pursuing either an undergraduate or a graduate degree. We initially480
conducted a pilot study on 5 participants spread across each of the two evaluation domains. The final481
study, refined using the pilot study responses, had a sample size of 31 participants. Participants had482
an average age of 20.75 years, and a median age of 22.5 years. Out of the 36, there were 24 male483
participants and 12 female participants. 23 participants (63.9%) reported to not have any familiarity484
with playing the Overcooked game earlier, and the remaining 13 (36.1%) were familiar with the game.485

Figure 2: Left: Forced coordination layout which is a required cooperation (RC) setting. Right:
Counter circuit layout which is an non-required cooperation (Non-RC) setting.

486
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8 Pipeline487

To support reproducibility and generalizability of our proposed cooperation metric, we provide a488
domain-agnostic software package1 that allows researchers to apply our analysis across any multi-489
agent domains. While the main paper demonstrates the utility of the metric in the Overcooked490
environment, the framework is explicitly designed to be decoupled from any domain-specific assump-491
tions. The system is structured into two independent modules (which are described in detail in the492
next two sub-sections):493

(1) Mapping Module: This module abstracts execution traces into a symbolic representation,494
generating the grounded trajectory. Given a trajectory τ = (st, at, st+1)

T
t=0 from any Markov Game,495

the module uses a user-defined mapping function F : S → 2P to convert each low-level state st into496
a set of true symbolic propositions pt ⊆ P , where P is the set of domain predicates. Likewise, each497
agent action ati is mapped into a STRIPS-style operator ⟨pre(ati), add(ati), del(ati)⟩, derived from the498
symbolic state transitions (pt, pt+ 1). The mapping configuration—defining predicates, object types,499
and effect extraction functions—is modular and can be specified declaratively for any domain.500
(2) Analysis Module: This module performs an interdependence analysis on the grounded trajectory501
by examining how the effects of one agent’s action satisfy the preconditions of subsequent actions by502
teammates. The analysis module classifies such interactions into constructive (task-contributing) and503
non-constructive (redundant or not task-contributing) interdependencies. This module generates the504
count of each type of interdependence in the team’s action trajectory in one round of the game.

Raw Trajectory :(st, at, st+1)Tt=0

Mapping Module

Grounded Symbolic Trajectory :(pt, ⟨pre, add, del⟩)Tt=0

Analysis Module

Output Metrics : Constructive / Non-constructive Interdependencies

Requires:
- Domain predicates P
- Object types
- Mapping function F : S → 2P

Detect sequential interdependencies:
- Identify when ati’s effects

satisfy at+k
j ’s preconditions

- Categorize as:
Constructive (goal-relevant)
Non-constructive (redundant)

Figure 3: Software architecture for our domain-agnostic cooperation analysis framework. The
Mapping Module converts raw trajectories to symbolic STRIPS-style traces, and the Analysis Module
identifies interdependencies

505

8.1 Mapping Module506

The mapping module provides a general-purpose utility to convert trajectories from any Markov507
Game environment into a symbolic STRIPS-like planning formalism expressed in PDDL. This508

1Repository: https://anonymous.4open.science/r/neu25/
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abstraction is achieved by defining a declarative mapping between environment states and a set of509
domain-specific predicates that describe the symbolic state of the world.510

The module is designed to be domain-agnostic. Users define a configuration file specifying:511

• The list of symbolic predicates relevant to their environment.512

• Custom extraction functions for identifying which predicates hold in a given state.513

• Mappings from low-level environment actions to high-level symbolic actions, including their514
preconditions, add effects, and delete effects.515

Given a trajectory consisting of (st, at, st+1) tuples, the mapping module automatically generates:516

• A symbolic trace of world states pt = F(st).517

• A sequence of STRIPS-style operator instances for each agent’s action, of the form:518

ati = ⟨pre(ati), add(ati), del(ati)⟩.

The output is a valid, grounded PDDL trace. Internally, the codebase is modular and allows plugging519
in new domain environments with minimal changes — only the symbolic interface for states and520
actions needs to be defined. This module supports multi-agent turn-based trajectories by assuming521
alternating agent moves and handles each agent’s action separately when computing symbolic522
transitions. Conflicts arising from simultaneous execution are handled in the mapping module, so523
although each agent’s moves are processed independently, the code remains fully generalizable to524
any multi-agent environment.525

Algorithm 1 Convert Grounded Trajectory to PDDL Trace Logs (convert_traj_to_pddl)

Require: trajectory: list of timesteps, each containing a list of (agent, action) pairs
Ensure: (Grids,Logs): sequence of grid states and action-logs per timestep

1: grid ← InitGrid()
2: Grids ← [ ]; Logs ← [ ]
3: for each timestep t = 0 to |trajectory| − 1 do
4: stepActions ← trajectory[t].action
5: logCurrent ← {}
6: for each (agent, act) ∈ stepActions do
7: (pre, eff , del , grid)← ApplyAction(act, grid , agent)
8: logCurrent [agent] ← {pre_conditions : pre, effects : eff , deletes :

del }
9: end for

10: Append
(
clone(grid)

)
to Grids

11: Append logCurrent to Logs
12: end for
13: return (Grids,Logs)

Key Helper Functions:526

• ApplyAction(action, grid, agent_index): Applies the specified action for the527
given agent on the current grid state, returning the pre-conditions, effects, deletes list, and the528
updated grid. Note: This function is domain-dependent and must be implemented according to the529
specific dynamics and action schema of your environment.530

8.2 Analysis Module531

The analysis module, as depicted in Algorithm 1, provides a domain-agnostic framework for detecting532
and categorizing interdependent interactions between agents within a multi-agent environment. Given533
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a sequence of environment states (snapshots) and corresponding action logs parsed from PDDL534
traces (generated by the mapping module, the algorithm dynamically maintains effect lists for each535
agent. At each timestep, the algorithm systematically checks whether the preconditions of an agent’s536
action are satisfied by the effects of another agent’s prior actions, thereby identifying potential537
interdependencies. Each detected interdependence is further classified into constructive, looping,538
irrelevant, or non-constructive categories by evaluating whether the object involved contributes to a539
goal, is repeatedly exchanged, or is otherwise extraneous. This modular design enables the analysis540
code to be readily applied across different domains, provided that the environment logs have been541
mapped to a consistent PDDL schema by the mapping module.

Algorithm 2 Detecting Interdependencies and Their Types in the grounded state and action trajectory
(detect_int)

Require: Data logs: snapshots (state log), action_logs;
Ensure: Counts of interdependencies along with their types, and lists of actions by each agent which

triggered an interdependence.
1: For each agent: effect_list[agent]← [ ] ▷ Initialize empty effect list
2: for each timestep t up to trajectory length do
3: for each agent do
4: if agent delivers an object then
5: Record the delivered object in goal objects array
6: end if
7: end for
8: end for
9: for each timestep t up to trajectory length do

10: for each agent do
11: effect_list[agent] ← filter_effect_list_by_state(effect_list[agent], snap-

shots[t])
12: Check if the current action’s precondition matches an effect in the other agent’s
13: effect list via check_precondition_in_effect_list
14: if precondition matches then
15: Assess:

Goal-reaching: Is the object part of the goal? (check_if_int_goal)

Giver loop: Does the object return to the giver in the same state? (check_if_giver_loop)

Receiver loop: Did the receiver ever possess the object in the same state? (check_if_receiver_loop)

16: if all conditions met then
17: Increment constructive interdependencies count
18: else if loops detected then
19: Increment looping interdependencies count
20: else if not goal-reaching then
21: Increment irrelevant interdependencies count
22: else
23: Increment non-constructive interdependencies count
24: end if
25: end if
26: end for
27: Save deep copy of current effect lists for next timestep
28: end for
29: return Interdependence counts of four types, list of trigger actions for each agent

542

Key Helper Functions:543
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• extract_cells_with_object(grid_state): Extracts cells containing an ’object’ prop-544
erty.545

• filter_effect_list_by_state(effect_list, state_snapshot): Filters and546
deduplicates effect entries by verifying object presence and state against the snapshot.547

• check_precondition_in_effect_list(action, effect_list_other_agent):548
Checks if an action’s precondition matches any effect in another agent’s effect list.549

• check_if_int_goal(int_obj_id, goal_object_arr): Determines if an object is550
part of the goal.551

• check_if_giver_loop(int_obj_id, giver_agent_id, snapshots): Checks552
if a giver receives the object back.553

• check_if_receiver_loop(int_obj_id, rec_agent_id, snapshots): Checks554
if the receiver already held the object.555

9 Illustrating Evaluation of Cooperative Behavior in a Search and Rescue556

Domain557

We demonstrate that the proposed metric for measuring cooperation generalizes naturally to a558
heterogeneous Search and Rescue (SAR) domain. The domain simulates a common emergency559
setting—a house partially engulfed in flames with multiple victims scattered throughout. The scenario560
is modeled on a discrete 2D grid representing rooms and hallways within the house. Some areas are561
blocked by debris or actively burning fires, and victims may be located in proximity to these hazards.562
Successful rescue requires coordinated efforts from a heterogeneous team of agents — each with563
specialized capabilities and constraints. With its heterogeneous team of firefighters and nurses, this564
domain provides a rich testbed for analyzing cooperative behavior.565

9.1 Domain Specification566

We define the SAR environment as:567

GSAR = ⟨I,S,A, T,R, γ⟩

• Agents: I = {Nurse (N),Firefighter (F)}568

– Nurse (N): Can treat victims without a medical kit as well as administer aid using a medical kit569
to victims.570

– Firefighter (F): Can extinguish fire using a fire extinguisher.571

The locations and states of all the victims is unknown to the agents upon initialization. All the572
agents explore the space to discover new victims.573

• State Space: S includes:574

– Agent Locations: The grid coordinates of each agent.575

– Victim Locations: The positions of all victims in need of rescue.576

– Victim Status: Each victim may be in one of two states: untreated or treated.577

– Cell Conditions: Each grid cell can contain:578

* Debris (present or cleared),579

* Fire (burning or extinguished).580

– Agent Inventories: For each agent, a list of carried objects (e.g., medical kit, fire extinguisher).581

– Guard Status: A Boolean flag indicating whether an agent is currently being guarded by a582
police agent.583
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• Actions: Each agent has a discrete action space consisting of five actions: —up, down, left, and584
right and an interact action that allows it to engage with objects in the environment.585

• Transition Function T : The environment transitions are governed by object-agent interactions and586
spatial constraints. The transition function T (s, a, s′) depends on the current state s, the agent’s587
action a, and environmental conditions. Some examples of critical transition functions in this588
domain are:589

– Blocked Movement: Movement actions are invalid or fail if the target cell contains uncleared590
debris or active fire.591

– Interact(Firefighter, Extinguisher,Fire: Fire in the target cell is extinguished.592

– Interact(Nurse,Medical Kit,Victim): Victim status transitions from untreated to treated593
within 20 timesteps. It takes 100 timesteps if there is a fire in the room.594

– Interact(Firefighter,Medical Kit,Nurse:) Transfers medical kit from firefighter to nurse.595

– Interact(Firefighter,Debris, Cell): Clears debris in the current cell.596

• Reward Function R: At the end of a run of a fixed number of timesteps, all agents receive +10 for597
each victim successfully treated.598

9.2 Mapping to PDDL599

The Search and Rescue (SAR) domain described above can be seamlessly integrated with the600
mapping module to produce grounded symbolic trajectories. By specifying a domain configuration601
file, users can declaratively define the set of symbolic predicates (e.g., VictimLocationKnown,602
Has(Nurse, MedicalKit), FireExtinguished), along with extraction functions that de-603
tect these predicates from environment states. Low-level actions, such as Interact(Nurse,604
MedicalKit, Victim), are mapped to high-level symbolic operators with well-defined precon-605
ditions and effects. As agents traverse the environment and execute actions, the mapping module606
produces a symbolic trace that reflects the evolving state of the environment and the effects of agent607
actions, in a post-hoc manner.608

9.3 Interdependencies in the SAR Domain609

Once trajectories are converted into grounded symbolic traces by the mapping module, the610
analysis module can be directly applied to detect and categorize interdependent interactions611
among agents. The analysis algorithm, as described in Algorithm 1, processes these traces to dynam-612
ically track how agent actions influence one another. We can now formally define interdependencies613
between agents in the SAR domain. We illustrate examples of sequential interdependencies below:614

Example 1: Firefighter discovers victim → Nurse treats victim : In this domain, fire-615
fighter and nurse agents collaboratively explore the environment to locate and assist victims.616
While they may search independently to maximize spatial coverage, coordination enables them617
to operate in parallel effectively. In this example, Firefighter 1 (F1) discovers Victim 1618
(V1) by performing the action at0j = Interact(Firefighter, Victim), which res-619
ults in the predicate VictimLocationKnown ∈ add(at0j ). At the same time, Nurse 2620
(N2) is exploring other areas. Once the victim’s location is known, N2 can execute the ac-621
tion at0+k

i = Navigate(Nurse Current Location, Victim Location), which has622
VictimLocationKnown ∈ pre(at0+k

i ) as a precondition. Since only nurses are capable of623
treating victims, this coordination allows N2 to reach and assist V1.624

• Giver Action: at0j = Interact(Firefighter, Victim)625

• Effect: VictimLocationKnown ∈ add(at0j )626

• Receiver Action: at0+k
i = Navigate(Nurse Current Location, Victim Location)627
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Figure 4: Illustration of an instance of the Search and Rescue Domain

• Precondition: VictimLocationKnown ∈ pre(at0+k
i )628

• Object: Victim629

Example 2: Firefighter passes medical kit → Nurse treats victim : This scenario illustrates630
constructive sequential interdependence through the transfer of an object required for task comple-631
tion. Nurse 1 (N1) needs a medical kit to treat Victim 2 (V2) but does not currently have one in632
their inventory and is located farther away from the kit. Firefighter 2 (F2), who is closer to the633
medical kit, performs the action at0j = Interact(Firefighter, MedicalKit, Nurse),634
resulting in the effect Has(Nurse, MedicalKit) ∈ add(at0j ). This enables N1 to sub-635

sequently perform the action at0+k
i = Interact(Nurse, MedicalKit, Victim), which636

has Has(Nurse, MedicalKit) ∈ pre(at0+k
i ) as a precondition. Since only nurses are capable637

of treating victims, F2’s assistance is critical in enabling N1 help V2.638

• Giver Action: at0j = Interact(Firefighter, MedicalKit, Nurse)639

• Effect: Has(Nurse, MedicalKit) ∈ add(at0j )640

• Receiver Action: at0+k
i = Interact(Nurse, MedicalKit, Victim)641

• Precondition: Has(Nurse, MedicalKit) ∈ pre(at0+k
i )642

• Object: MedicalKit643

Example 3: Firefighter extinguishes fire → Nurse treats victim faster : This example644
highlights constructive interdependence where one agent modifies the environment to im-645
prove the effectiveness of another agent’s action. In this scenario, Victim 3 (V3) is loc-646
ated in a room affected by fire, which hinders medical intervention. Nurse 2 (N2) is647
en route to treat the victim, but treatment is significantly faster and more effective if the648
fire has already been extinguished. Firefighter 1 (F1), who is in proximity to the fire,649
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performs the action at0j = Interact(Firefighter, Extinguisher, Fire), res-650
ulting in the effect FireExtinguished ∈ add(at0j ). This condition satisfies the pre-651

condition FireExtinguished ∈ pre(at0+k
i ) of the nurse’s treatment action at0+k

i =652
Interact(Nurse, MedicalKit, Victim), thereby enabling faster and more efficient treat-653
ment. This form of interdependence ensures that F1’s timely intervention directly enhances N2’s654
ability to save the victim.655

• Giver Action: at0j = Interact(Firefighter, Extinguisher, Fire)656

• Effect: FireExtinguished ∈ add(at0j )657

• Receiver Action: at0+k
i = Interact(Nurse, MedicalKit, Victim)658

• Precondition: FireExtinguished ∈ pre(at0+k
i ) (for fast treatment)659

• Object: Fire660

These sequential interdependencies are goal-reaching and non-looping.661

9.4 Looping vs. Non-Looping Sequential Interdependence662

In our framework, sequential interdependencies (at0+k
i , at0j ) are defined as goal-reaching if the663

interaction contributes to final reward acquisition (e.g., successful victim treatment), and non-looping664
if the associated object objint is not returned to the original agent in the same state. That is, the665
influence trajectory τ t0obj must be strictly progressing toward a terminal effect and not cyclic with666

respect to the state of objint. To illustrate a looping interdependence, consider the case where a police667
agent transfers a medical kit to a nurse at time t0, and at time t0 + k, the nurse returns the same668
kit to the police. If the state of the medical kit—denoted s(MedicalKit)—remains unchanged669
(e.g., unused, intact, full-capacity), and the kit does not contribute to any further task670
completion, then this constitutes a looping and non-goal-reaching interdependence. It is redundant671
and does not affect the task reward. Here, we consider a more nuanced scenario: At time t0, the nurse672
agent transfers a MedicalKit to the police agent temporarily to free up their inventory (e.g., under673
an assumption that the nurse can initiate victim treatment bare-handed). At a later time t0 + k, the674
police agent returns the same MedicalKit to the nurse, who then uses it to complete the victim675
treatment. In this case:676

• The interdependence is goal-reaching since the treatment concludes successfully with enhanced677
reward.678

• However, it is looping, as the object returns to its original holder in the same nominal state.679

To resolve the case of useful transfers, we modify the state of the MedicalKit by augmenting it680
with a usage-linked attribute, such as:681

s(MedicalKit) =


unused

used-for-treatment

passed-temporarily

By tagging the medical kit’s state based on the context in which it was transferred (e.g., part of682
a treatment pipeline for a victim), we can distinguish constructive looping interdependence from683
useful transfers. This allows us to retain goal-relevant looping interdependencies while discarding684
non-contributing loops.685

10 User Study Design:686

We conducted a user study to evaluate the performance of state-of-the-art zero-shot coordination687
(ZSC) agents in a cooperative cooking game. The user study was built from Li et al. (2024; 2023);688
Sarkar et al. (2022). The purpose of this study was to understand how well these AI agents coordinate689
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with human partners in real-time gameplay. Below we describe the study design, participants, game690
environments, agent details, and data collection process.691

10.1 Consent and Experimental Statement692

Each participant began the study by reviewing and agreeing to a consent statement. The statement693
explained the goals of the study, what participants would be asked to do, and how their data would be694
handled.695

• Purpose: Participants were asked to take part in a study evaluating human performance when696
playing a cooperative cooking game with an AI partner.697

• Instruments: The game was played using a computer screen and a keyboard.698

• Procedure:699

1. After agreeing to the statement, participants filled out a demographic questionnaire.700

2. They read detailed instructions on how the game worked, including controls, rules, and object-701
ives.702

3. They played a trial round with a scripted agent to become familiar with gameplay.703

4. They then played 16 rounds, each with a different pretrained AI partner.704

5. After each round, they filled out a short post-game questionnaire.705

• Confidentiality: All data collected was kept confidential and anonymized. No personally identifi-706
able information was stored or shared.707

Figure 5: Consent statement shown to participants before starting the study.
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10.2 IRB Certification for this User Study708

10.3 Game Instructions and Layouts709

Participants were introduced to the game rules and controls through an instruction page. The game710
involves two players (one human, one AI), cooking and serving onion soup. Each round involved711
coordination to serve a single soup within 60 seconds.712

We used two layout types in our evaluation:713

• Counter Circuit: Players can perform independent tasks with minimal interference.714

• Forced Coordination: A layout that restricts movement and requires players to coordinate, making715
collaboration essential.716

10.4 AI Partners and Evaluation717

SOTA Methods: We evaluated four zero-shot coordination agents — FCP Strouse et al. (2022),718
MEP Zhao et al. (2022b), HSP Yu et al. (2023), and COLE Li et al. (2024). All these methods were719
trained using a two-stage framework:720

• Stage 1: A diverse partner population is created through self-play.721

• Stage 2: The ego agent is trained by playing against sampled partners from the population and722
optimizing task rewards using reinforcement learning.723

Each approach differs in how partner diversity is encouraged:724

• FCP: Direct self-play-based partner generation.725

• MEP: Adds a maximum entropy term to encourage behavioral diversity in partners.726
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Figure 6: Instructions page shown to participants.

Figure 7: Left: Trial round gameplay with scripted partner. Right: Real round gameplay with SOTA
AI partner.

• HSP: Constructs agents that model human preferences using event-based rewards.727

• COLE: Treats the game as a graphical-form cooperative game, with rewards based on cooperative728
incompatibility distributions.729

The ego agent in each case is evaluated based on episodic task reward while paired with a human730
partner.731
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10.5 Participants732

We recruited 36 participants aged between 18 to 31 from our university, with a median age of 22.5733
and an average age of 20.75. Out of these, 24 participants identified as male and 12 as female. A734
majority (63.9%) reported no prior familiarity with the Overcooked game. We conducted a pilot with735
5 participants, and then used feedback from it to refine the final study with 31 participants.736

10.6 Post-Round Questionnaire737

After each round, participants filled out a questionnaire assessing collaboration, perceived responsive-738
ness, and mutual intent. Each question was answered using a 5-point Likert scale (from "Strongly739
Disagree" to "Strongly Agree").740

• Team Performance:741

– Q1. My partner and I worked together to deliver the soups.742

– Q2. My partner contributed to the successful delivery of the soups.743

• Were you working with your partner?744

– Q3. I attempted to work with my partner to deliver the soups.745

– Q4. My partner responded to my attempts to work with them.746

• Was your partner working with you?747

– Q5. My partner attempted to work with me.748

– Q6. I responded to their attempts to work with them.749

Figure 8: Post-round questionnaire interface shown to participants.

10.7 Questionnaire Design750

Evaluating teamwork purely through task-based performance (e.g., reward or completion time) can751
miss nuanced aspects of coordination, intent, and mutual understanding — particularly in zero-shot752
collaboration scenarios. In this study, we developed an objective metric - interdependence, to753
measure the quality of team performance and cooperation in human-AI teams. The questionnaire was754
therefore designed to provide additional subjective insights into how humans perceived their AI755
partner’s behavior. The central goal of our user study is to evaluate whether AI agents are capable of756
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effective cooperation with human partners in zero-shot settings. Specifically, we want to assess two757
critical aspects of cooperative behavior:758

• Responsiveness: Does the AI agent recognize and respond to the human’s attempts to collaborate?759

• Proactiveness: Does the AI agent initiate behaviors that attempt to induce or enable cooperation760
from the human partner?761

This enabled us to answer a core research question: Do the trajectories that score well under the762
interdependence metric also align with human perceptions of effective teamwork? This alignment763
— or misalignment — between subjective and objective measures of teaming can reveal important764
gaps in AI-agent design, particularly in cooperative settings where behavior must be interpretable,765
responsive, and intuitive to humans. Each questionnaire was administered after a single round of766
gameplay and asked participants to reflect on their experience with that round’s AI partner. The767
questions were grouped into three conceptual categories:768

• Team Performance (Q1, Q2): These items measure whether the participant felt the round involved769
joint effort and contribution from both teammates toward the goal of delivering soup.770

• Agent Responsiveness to Participant Coordination (Q3, Q4): Evaluates how effectively the771
agent responds when the participant initiates coordination.772

• Agent-Initiated Coordination and Participant Response (Q5, Q6): Assesses how often the773
agent initiates coordination and how well these attempts are received by the participant.turn.774

Each question was answered on a 5-point Likert scale (from Strongly Disagree to Strongly Agree).775
This design was inspired by constructs in human-robot interaction and team cognition research, such776
as perceived shared agency, responsiveness, and mutual intention. The repeated structure across 16777
gameplay rounds allowed us to collect a rich set of human-AI interaction trajectories paired with778
subjective labels.779

10.8 Statistical Tests780

We tested the following null hypotheses related to participants’ subjective perceptions of cooperation781
with their AI partners:782

• Counter Circuit Layout:783

– H1.1
0 : The mean response to the statement "My partner responded to my attempts to work with784

them" equals the neutral midpoint (i.e., mean = 3).785

– H1.2
0 : The mean response to the statement "My partner attempted to work with me" equals the786

neutral midpoint (i.e., mean = 3).787

• Comparison Between Layouts (Counter Circuit vs. Forced Coordination):788

– H2.1
0 : There is no difference in mean responses to "My partner responded to my attempts to789

work with them" between the two layouts (i.e., mean difference = 0).790

– H2.2
0 : There is no difference in mean responses to "My partner attempted to work with me"791

between the two layouts (i.e., mean difference = 0).792

Formally, these hypotheses were tested using one-sample t-tests against the neutral midpoint for793
individual layouts, and paired t-tests for within-subject comparisons across layouts. For Q4, regarding794
partner responsiveness, responses in the Counter Circuit layout yielded a mean rating of 3.33. The one-795
sample t-test rejected the null hypothesis (t(168) = 3.04, p = 0.0027), indicating that participants796
perceived their partners as responding to their cooperation attempts at a level significantly above797
neutral. When comparing the two layouts within participants, a paired t-test showed a statistically798
significant difference (t(23) = −2.24, p = 0.0352), with higher perceived responsiveness reported799
in the Forced Coordination layout. Similarly, for Q5, which captures perceptions of partner initiative800
to cooperate, the Counter Circuit responses averaged 3.31. The one-sample t-test again rejected the801
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null hypothesis of neutrality (t(168) = 2.80, p = 0.0057), suggesting that participants generally802
agreed their partners attempted to work with them.803

Taken together, these subjective ratings suggest that, on average, participants felt their AI partners804
both responded to and attempted to cooperate with them. However, it is important to contextualize805
these findings within the broader experimental setting of zero-shot cooperation, where agents were806
paired with human participants exhibiting diverse behaviors — some actively seeking cooperation,807
while others preferred to act independently. This is reflected in objective measures, such as the808
average value of %H trig

tot-sub, which reveal that not all human participants wanted to engage in the809
cooperative strategy. These results underscore a key limitation of relying solely on subjective reports810
to evaluate cooperation: although participants generally perceive that their partners respond and811
attempt to work with them, this perception does not necessarily indicate that human-agent teams812
actually follow cooperative strategies. Objective behavioral analyses demonstrate that these teams813
did not do acooperative strategies, highlighting the importance of complementing subjective feedback814
with rigorous quantitative metrics when assessing human-agent collaboration.815
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