
An LLM Compiler for Parallel Function Calling

Sehoon Kim * 1 Suhong Moon * 1 Ryan Tabrizi 1 Nicholas Lee 1 Michael W. Mahoney 1 2 3

Kurt Keutzer 1 Amir Gholami 1 2

Abstract
The reasoning capabilities of the recent LLMs
enable them to execute external function calls
to overcome their inherent limitations, such as
knowledge cutoffs, poor arithmetic skills, or lack
of access to private data. This development has
allowed LLMs to select and coordinate multiple
functions based on the context to tackle more
complex problems. However, current methods
for function calling often require sequential
reasoning and acting for each function which
can result in high latency, cost, and sometimes
inaccurate behavior. To address this, we introduce
LLMCompiler, which executes functions in par-
allel to efficiently orchestrate multiple function
calls. Drawing inspiration from the principles of
classical compilers, LLMCompiler enables par-
allel function calling with three components: (i) a
Function Calling Planner, formulating execution
plans for function calling; (ii) a Task Fetching
Unit, dispatching function calling tasks; and (iii)
an Executor, executing these tasks in parallel.
LLMCompiler automatically generates an opti-
mized orchestration for the function calls and can
be used with both open-source and closed-source
models. We have benchmarked LLMCompiler
on a range of tasks with different patterns of
function calling. We observe consistent latency
speedup of up to 3.7×, cost savings of up
to 6.7×, and accuracy improvement of up to
∼9% compared to ReAct. Our code is available at
https://github.com/SqueezeAILab/LLMCompiler.

1. Introduction
Recent advances in the reasoning capability of Large Lan-
guage Models (LLMs) have expanded the applicability of
LLMs beyond content generation to solving complex prob-
lems (Besta et al., 2023; Chen et al., 2023b; Gao et al., 2022;

*Equal contribution 1UC Berkeley 2ICSI 3LBNL. Correspon-
dence to: Amir Gholami <amirgh@berkeley.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Kojima et al., 2023; Wang et al., 2023b; Wei et al., 2022;
Yang et al., 2022; Yao et al., 2023b; Zhou et al., 2023b);
and recent works have also shown how this reasoning ca-
pability can be helpful in improving accuracy for solving
complex and logical tasks. The reasoning capability has also
allowed function (i.e., tool) calling capability, where LLMs
can invoke provided functions and use the function outputs
to help complete their tasks. These functions range from a
simple calculator that can invoke arithmetic operations to
more complex LLM-based functions.

The ability of LLMs to integrate various tools and function
calls could enable a fundamental shift in how we develop
LLM-based software. However, this brings up an important
challenge: what is the most effective approach to incorpo-
rate multiple function calls? A notable approach has been
introduced in ReAct (Yao et al., 2022), where the LLM calls
a function, analyzes the outcomes, and then reasons about
the next action, which involves a subsequent function call.
For a simple example illustrated in Fig. 1 (Left), where the
LLM is asked if Scott Derrickson and Ed Wood have the
same nationality, ReAct initially analyzes the query and de-
cides to use a search tool to search for Scott Derrickson. The
result of this search (i.e., observation) is then concatenated
back to the original prompt for the LLM to reason about
the next action, which invokes another search tool to gather
information about Ed Wood.

ReAct has been a pioneering work in enabling function
calling, and it has been integrated into several frame-
works (Langchain; Liu, 2022). However, scaling this ap-
proach for more complex applications requires considerable
optimizations. This is due to the sequential nature of Re-
Act, where it executes function calls and reasons about their
observations one after the other. This approach, along with
the agent systems that extend ReAct (Khot et al., 2023; Qin
et al., 2023; Ruan et al., 2023b; Sumers et al., 2023; Yao
et al., 2023b), may lead to inefficiencies in latency and cost,
due to the sequential function calling and repetitive LLM
invocations for each reasoning and action step. Furthermore,
while dynamic reasoning about the observations has benefits
in certain cases, concatenating the outcomes of intermedi-
ate function calls could disrupt the LLM’s execution flow,
potentially reducing accuracy (Xu et al., 2023). Common
failure cases include repetitive invocation of the same func-

1

https://github.com/SqueezeAILab/LLMCompiler

An LLM Compiler for Parallel Function Calling

ReAct LLMCompiler

Question: Were Scott Derrickson and Ed Wood of the same nationality?

Tool invocation

Appended to prompt

Tool invocation

Appended to prompt

Function Calling Planner
$1 = search(Scott Derrickson)
$2 = search(Ed Wood)

Parallel tool invocations

Search Tool
Observation: … Scott Derrickson (born July
16, 1966) is an American filmmaker …

Search Tool
Observation: … Edward Wood Jr was an
American filmmaker, actor, and …

DAG of tasks

Executor

St
ep

LLM
Thought: I need to search Scott Derrickson.
Action: search(Scott Derrickson)

LLM
Thought: I need to search Ed Wood.
Action: search(Ed Wood)

LLM
Thought: They are both American filmmakers.
Action: finish(yes)

Search Tool
Observation: … Scott Derrickson (born July 16, 1966)
is an American filmmaker …

Search Tool
Observation: … Edward Wood Jr was an American
filmmaker, actor, and ….

Latency Speedup: 1.8x

LLM
Thought: They are both American filmmakers.
Action: finish(yes)

Figure 1. An illustration of the runtime dynamics of LLMCompiler, in comparison with ReAct (Yao et al., 2022), given a sample
question from the HotpotQA benchmark (Yang et al., 2018). In LLMCompiler (Right), the Planner first decomposes the query into
several tasks with inter-dependencies. The Executor then executes multiple tasks in parallel, respecting their dependencies. Finally,
LLMCompiler joins all observations from the tool executions to produce the final response. In contrast, sequential tool execution of the
existing frameworks like ReAct (Left) leads to longer execution latency. In this example, LLMCompiler attains a latency speedup of
1.8× on the HotpotQA benchmark. While a 2-way parallelizable question from HotpotQA is presented here for the sake of simple visual
illustration, LLMCompiler is capable of managing tasks with more complex dependency patterns (Fig. 2 and Sec. 5).

tion, which is also highlighted in the original paper (Yao
et al., 2022), and early stopping based on the partial inter-
mediate results, as will be further discussed in Sec. 5.1 and
Appendix A.

To address this challenge, we draw inspiration from clas-
sical compilers, where optimizing instruction executions
in traditional programming languages has been extensively
explored. A key optimization technique in compilers in-
volves identifying instructions that can be executed in paral-
lel and effectively managing their dependencies. Similarly,
one can envision a compiler, tailored for LLM function
calling, which can efficiently orchestrate various function
calls and their dependencies. This shares a similar philos-
ophy with the recent studies that align LLMs with com-
puter systems (Karpathy, 2023; Packer et al., 2023). To
this end, we introduce LLMCompiler, a novel framework
that enables parallel multi-tool execution of LLMs across
different models and workloads. To the best of our knowl-
edge, LLMCompiler is the first framework to optimize
the orchestration of LLM function calling that can not only
improve latency and cost, but also accuracy, by minimizing
interference from the outputs of intermediate function calls.
In more detail, we make the following contributions:

• We introduce LLMCompiler, an LLM compiler that
optimizes the parallel function calling performance of
LLMs. At a high level, this is achieved by introducing
three key components: (i) a Function Calling Planner
(Sec. 3.1) that identifies an execution flow; (ii) a Task

Fetching Unit (Sec. 3.2) that dispatches the function calls
in parallel; (iii) an Executor (Sec. 3.3) that executes the
dispatched tasks using the associated functions.

• We evaluate LLMCompiler on embarrassingly parallel
patterns using HotpotQA (Yang et al., 2018) and Movie
Recommendation (Srivastava et al., 2022), where we ob-
serve 1.80×/3.74× speedup and 3.37×/6.73× cost reduc-
tion compared to ReAct (Sec. 5.1).

• To test the performance on more complex patterns, we
introduce a new benchmark called ParallelQA which in-
cludes various non-trival function calling patterns. We
show up to 2.27× speedup, 4.65× cost reduction, and 9%
improved accuracy compared to ReAct (Sec. 5.2).

• We evaluate LLMCompiler’s capability in dynamic re-
planning, which is achieved through a feedback loop
from the Executor back to our Function Calling Planner.
For the Game of 24 (Yao et al., 2023b), which requires
repeated replanning based on the intermediate results,
LLMCompiler demonstrates a 2× speedup compared
to Tree-of-Thoughts (Sec. 5.3).

• We show that LLMCompiler can explore the interactive
decision-making environment effectively and efficiently.
On WebShop, LLMCompiler achieves up to 101.7×
speedup and 25.7% improved success rate compared to
the baselines (Sec. 5.4).

2

An LLM Compiler for Parallel Function Calling

2. Related Work
2.1. Latency Optimization in LLMs

Various studies have focused on optimizing model de-
sign (Chen et al., 2023a; Dettmers et al., 2023; Frantar &
Alistarh, 2023; Frantar et al., 2022; Kim et al., 2023; 2024;
Kwon et al., 2022; Leviathan et al., 2023; Lin et al., 2023)
and systems (tgi; trt; Kwon et al., 2023; Yu et al., 2022) for
efficient LLM inference. Optimizations at the application
level, however, are less explored. This is critical from a prac-
tical point of view for situations involving black-box LLM
models and services where modifications to the models and
the underlying inference pipeline are highly restricted.

Skeleton-of-Thought (Ning et al., 2023) recently proposed
to reduce latency through application-level parallel decod-
ing. This method involves a two-step process of an initial
skeleton generation phase, followed by parallel execution
of skeleton items. However, it is primarily designed for
embarrassingly parallel workloads and does not support
problems that have inherently interdependent tasks, as it
assumes no dependencies between skeleton tasks. This
limits its applicability in complex scenarios such as cod-
ing (Austin et al., 2021; Chen et al., 2021; Hendrycks et al.,
2021a; Madaan et al., 2023) or math (Hendrycks et al.,
2021b;c) problems, as also stated in the paper (Ning et al.,
2023). LLMCompiler addresses this by translating an
input query into a series of tasks with inter-dependencies,
thereby expanding the spectrum of problems it can handle.

Concurrently to our work, OpenAI has recently introduced
a parallel function calling feature in their 1106 release, en-
hancing user query processing through the simultaneous
generation of multiple function calls (OpenAI, 2023). De-
spite its potential for reducing LLM execution time, this
feature has certain limitations, as it is exclusively avail-
able for OpenAI’s proprietary models. However, there is
a growing demand for using open-source models driven
by the increasing number of open-source LLMs as well
as parameter-efficient training techniques (Houlsby et al.,
2019; Hu et al., 2022; Lester et al., 2021) for finetuning and
customization. LLMCompiler enables efficient parallel
function calling for open-source models, and also, as we
will show later in Sec. 5, it can potentially achieve better
latency and cost.

2.2. Plan and Solve Strategy

Several studies (Hao et al., 2023; Patel et al., 2022; Press
et al., 2023; Wolfson et al., 2020; Zhou et al., 2023b) have
explored prompting methods of breaking down complex
queries into various levels of detail to solve them, thereby
improving LLM’s performance in reasoning tasks. Specif-
ically, Decomposed Prompting (Khot et al., 2023) tackles
complex tasks by decomposing them into simpler sub-tasks,

each optimized through LLMs with dedicated prompts.
Step-Back Prompting (Zheng et al., 2023) enables LLMs to
abstract high-level concepts from details to enhance reason-
ing abilities across various tasks. Plan-and-Solve Prompt-
ing (Wang et al., 2023a) segments multi-step reasoning
tasks into subtasks to minimize errors and improve task
accuracy without manual prompting. However, these meth-
ods primarily focus on improving the accuracy of reasoning
benchmarks. In contrast, LLMCompiler uses a planner
to identify parallelizable patterns within queries, aiming to
reduce latency while maintaining accuracy.

In addition to the aforementioned works, TPTU (Ruan
et al., 2023a), HuggingGPT (Shen et al., 2023), and
ViperGPT (Surı́s et al., 2023) have introduced end-to-end
plan-and-solve frameworks. LLMCompiler sets itself
apart by providing a general framework that enables ef-
ficient and accurate function calling in a broader range of
problems. This stems from LLMCompiler’s capabilities
in (i) planning and replanning; (ii) parallel execution; and
(iii) addressing a wider range of problem domains, which
will be discussed in more detail in Appendix F.

Another notable work is ReWOO (Xu et al., 2023) which
employs a planner to separate the reasoning process from the
execution and observation phases to decrease token usage
and cost as compared to ReAct. Our approach is different
from ReWOO in multiple aspects. First, LLMCompiler
allows parallel function calling which can reduce latency
as well as cost. Second, LLMCompiler supports dynamic
replanning which is important for problems whose execu-
tion flow cannot be determined statically in the beginning
(Sec. 5.3).

2.3. Tool-Augmented LLMs

The enhanced reasoning capability of LLMs has enabled
them to invoke user-provided functions and use their outputs
to effectively complete tasks. Detailed exploration of this
subject is provided in the Appendix C.1.

3. Methodology
To illustrate the components of LLMCompiler, we use a
simple 2-way parallel example in Fig. 2. To answer “How
much does Microsoft’s market cap need to increase to ex-
ceed Apple’s market cap?,” the LLM first needs to conduct
web searches for both companies’ market caps, followed by
a division operation. While the existing frameworks, includ-
ing ReAct, perform these tasks sequentially, it is evident that
they can be executed in parallel. The key question is how to
automatically determine which tasks are parallelizable and
which are interdependent, so we can orchestrate the execu-
tion of the different tasks accordingly. LLMCompiler ac-
complishes this through a system that consists of the follow-

3

An LLM Compiler for Parallel Function Calling

User Input

“How much does
Microsoft's market cap

need to increase to exceed
Apple's market cap?”

$1 = search(Microsoft Market Cap)

$2 = search(Apple Market Cap)

$3 = math($1 / $2)

$4 = llm($3)

Function Calling Planner

DAG of Tasks

Executor

Task
Fetching

Unit

Resolves
Dependency

Fetches
Task

Tools

search math … llm

Tool

Memory

Tool

Memory

Tool

Memory

Tool

Memory

Figure 2. Overview of the LLMCompiler framework. The Function Calling Planner generates a DAG of tasks with their inter-
dependencies. These tasks are then dispatched by the Task Fetching Unit to the Executor in parallel based on their dependencies. In this
example, Task $1 and $2 are fetched together for parallel execution of two independent search tasks. After each task is performed, the
results are forwarded back to the Task Fetching Unit to unblock the dependent tasks after replacing their placeholder variables (e.g., the
variable $1 and $2 in Task $3) with actual values. Once all tasks have been executed, the final answer is delivered to the user.

ing three components: a Function Calling Planner (Sec. 3.1)
that generates a sequence of tasks and their dependencies; a
Task Fetching Unit (Sec. 3.2) that replaces arguments based
on intermediate results and fetches the tasks; and an Execu-
tor (Sec. 3.3) that executes the tasks with associated tools.
To use LLMCompiler, users are only required to provide
tool definitions, and optional in-context examples for the
Planner, as will be further discussed in Sec. 4.1.

3.1. Function Calling Planner

The Function Calling Planner is responsible for generating a
sequence of tasks to be executed along with any dependency
among them. For instance, Tasks $1 and $2 in Fig. 2 are
two independent searches that can be performed in paral-
lel. However, Task $3 has a dependency on the outcomes
of the first and second searches. Therefore, the Planner’s
role is to automatically identify the necessary tasks, their
input arguments, as well as their inter-dependencies using
the sophisticated reasoning capability of LLMs, essentially
forming a directed acyclic graph of task dependencies. If
a task is dependent on a preceding task, it incorporates a
placeholder variable, such as $1 in Task 3 of Fig. 2, which
will later be substituted with the actual output from the
preceding task (Sec. 3.2).

The Planner in LLMCompiler leverages LLMs’ reasoning
capability to decompose tasks from natural language inputs.
To achieve this, the Planner LLM incorporates a pre-defined
prompt that guides it on how to create dependency graphs
and to ensure correct syntax (see Appendix H for details).
Besides this, users also need to supply tool definitions and
optional in-context examples for the Planner. These exam-
ples provide detailed demonstrations of task decomposition
specific to a problem, helping the Planner to better under-
stand the rules. Further details on user-supplied information
for LLMCompiler are elaborated in Sec. 4.1. In Sec. 4.2,
we introduce an additional optimization for the Planner that

streams tasks as soon as they are created, instead of waiting
to complete the entire planning process.

3.2. Task Fetching Unit

The Task Fetching Unit, inspired by the instruction fetching
units in modern computer architectures, fetches tasks to the
Executor as soon as they are ready for (parallel) execution
based on a greedy policy. Another key functionality is
to replace variables with the actual outputs from preceding
tasks, which were initially set as placeholders by the Planner.
For the example in Fig. 2, the variable $1 and $2 in Task $3
would be replaced with the actual market cap of Microsoft
and Apple. This can be implemented with a simple fetching
and queuing mechanism without a dedicated LLM.

3.3. Executor

The Executor asynchronously executes tasks fetched from
the Task Fetching Unit. As the Task Fetching Unit guar-
antees that all the tasks dispatched to the Executor are in-
dependent, it can simply execute them concurrently. The
Executor is equipped with user-provided tools, and it del-
egates the task to the associated tool. These tools can be
simple functions like a calculator, Wikipedia search, or API
calls, or they can even be LLM agents that are tailored for a
specific task. As depicted in the Executor block of Fig. 2,
each task has dedicated memory to store its intermediate
outcomes, similar to what typical sequential frameworks
do when aggregating observations as a single prompt (Yao
et al., 2022). Upon completion of the task, the final results
are forwarded as input to the tasks dependent on them.

3.4. Dynamic Replanning

In various applications, the execution graph may need to
adapt based on intermediate results that are a priori unknown.
An analogy in programming is branching, where the path

4

An LLM Compiler for Parallel Function Calling

of execution is determined only during runtime, depending
on which branch conditions are satisfied. Such dynamic ex-
ecution patterns can also appear with LLM function calling.
For simple branching (e.g., if-else statements) one could
statically compile the execution flow and choose the right
dynamically based on the intermediate results. However, for
more complex branching it may be better to do a recompila-
tion or replanning based on the intermediate results.

When replanning, the intermediate results are sent back
from the Executor to the Function Calling Planner which
then generates a new set of tasks with their associated de-
pendencies. These tasks are then sent to the Task Fetching
Unit and subsequently to the Executor. This cycle continues
until the desired final result is achieved and can be delivered
to the user. We show an example use case of this in Sec. 5.3
for solving the Game of 24 using the Tree-of-Thoughts
approach.

4. LLMCompiler Details
4.1. User-Supplied Information

LLMCompiler requires two inputs from the user:

1. Tool Definitions: Users need to specify the tools that
LLMs can use, including their descriptions and argument
specifications. This is essentially the same requirement
as other frameworks like ReAct and OpenAI function
calling.

2. In-context Examples for the Planner: Optionally,
users can provide LLMCompiler with examples of
how the Planner should behave. For instance, in the case
of Fig. 2, users may provide examples illustrating ex-
pected inter-task dependencies for certain queries. These
examples can assist the Planner LLM understand how
to use various tools and generate the appropriate depen-
dency graph for incoming inputs in the correct format.
In Appendix G, we include the examples that we used
in our evaluations.

4.2. Streamed Planner

The Planner may incur a non-trivial overhead for user
queries that involve a lot of tasks as it blocks the Task Fetch-
ing Unit and the Executor, which must wait for the Planner
output before initiating their processes. However, analogous
to instruction pipelining in modern computer systems, this
can be mitigated by enabling the Planner to asynchronously
stream the dependency graph, thereby allowing each task
to be immediately processed by the Executor as soon as its
dependencies are all resolved. In Table C.1, we present a
latency comparison of LLMCompiler with and without
the streaming mechanism across different benchmarks. The
results demonstrate consistent latency improvements with
streaming. Particularly, in the ParallelQA benchmark, the

streaming feature leads to a latency gain of up to 1.3×. This
is attributed to the math tool’s longer execution time for
ParallelQA, which can effectively hide the Planner’s latency
in generating subsequent tasks, unlike the shorter execution
times of the search tool used in HotpotQA and Movie
Recommendation.

5. Results
In this section, we evaluate LLMCompiler using a variety
of models and problem types. We use both the proprietary
GPT models and the open-source LLaMA-2 model, with
the latter demonstrating LLMCompiler’s capability in en-
abling parallel function calling in open-source models. Fur-
thermore, there are various types of parallel function calling
patterns that can be addressed with LLMs. This ranges
from embarrassingly parallel patterns, where all tasks can
be executed in parallel without any dependencies between
them, to more complex dependency patterns, as illustrated
in Fig. 3. Importantly, we also assess LLMCompiler
on the Game of 24 benchmark, which involves dynamic
replanning based on intermediate results, highlighting its
adaptability to dynamic dependency graphs. Finally, we
apply LLMCompiler to the WebShop benchmark to show-
case its potential in decision-making tasks. Overall, we start
presenting results for simple execution patterns, and then
we move to more complex ones.

5.1. Embarrassingly Parallel Function Calling

The simplest scenario involves an LLM using a tool re-
peatedly for independent tasks such as conducting parallel
searches or analyses to gather information on different top-
ics, like the pattern depicted in Fig. 3 (a). While these tasks
are independent of each other and can be executed in paral-
lel, ReAct, along with other LLM solutions as they stand,
would need to run sequentially. This leads to increased
latency and token consumption due to its frequent LLM in-
vocations for each tool usage, as also illustrated in Fig. 1. In
this section, we demonstrate how LLMCompiler can iden-
tify parallelizable patterns and execute independent tasks
concurrently to resolve this issue. To do so, we use the
following two benchmarks:

• HotpotQA: A dataset that evaluates multi-hop reason-
ing (Yang et al., 2018). We only use the comparison dev
set. This contains 1.5k questions comparing two different
entities, thus exhibiting a 2-way embarrassingly parallel
execution pattern. An example question is shown in Fig. 1.

• Movie Recommendation: A dataset with 500 examples
that asks to identify the most similar movie out of four
options to another set of four movies, exhibiting an 8-way
embarrassingly parallel pattern (Srivastava et al., 2022).

5

An LLM Compiler for Parallel Function Calling

search

math

search

math

(c) Which has higher total healthcare expenses, Florida
or New York, considering both public and private sectors?

search

math

searchsearch

math

search

math

(b) If Stanford and UCLA were to merge, would they
have more Nobel laureates than UC Berkeley?

search
Analyzer
Agent

output

output output

(a) Analyze Apple and Microsoft's latest 10-K
form and compare their sales forecast.

Analyzer
Agent

Figure 3. Examples of questions with different function calling patterns and their dependency graphs. HotpotQA and Movie Recommen-
dation datasets exhibit pattern (a), and ParallelQA dataset exhibits patterns (b) and (c), among other patterns. In (a), we need to analyze
each company’s latest 10-K. In (b), we need three searches for each school, followed by one addition and one comparison operation. In (c),
we need to search for each state’s annual healthcare spending in each sector, sum each state’s spending, and then perform a comparison.

Table 1. Accuracy and latency comparison of LLMCompiler compared to the baseline on different benchmarks, including HotpotQA,
Movie Recommendation, our custom dataset named ParallelQA, and the Game of 24. For HotpotQA and Movie Recommendation, we
frequently observe looping and early stopping (Sec. 5.1). To minimize these behaviors as much as possible, we incorporated ReAct-specific
prompting which we denote as ReAct†. ReAct (without †) indicates the original results without this prompting. We do not include the
latency for the original ReAct since looping and early stopping make precise latency measurement difficult.

Benchmark Method
GPT (Closed-source) LLaMA-2 70B (Open-source)

Accuracy (%) Latency (s) Speedup Accuracy (%) Latency (s) Speedup

HotpotQA

ReAct 61.52 - - 54.74 - -
ReAct† 62.47 7.12 1.00× 54.40 13.44 1.00×

OAI Parallel Function 62.05 4.42 1.61× - - -
LLMCompiler 62.00 3.95 1.80× 57.83 9.58 1.40×

Movie Rec.

ReAct 68.60 - - 70.00 - -
ReAct† 72.47 20.47 1.00× 70.60 33.37 1.00×

OAI Parallel Function 77.00 7.42 2.76× - - -
LLMCompiler 77.13 5.47 3.74× 77.80 11.83 2.82×

ParallelQA
ReAct 89.09 35.90 1.00× 59.59 15.47 1.00×

OAI Parallel Function 87.32 19.29 1.86× - - -
LLMCompiler 89.38 16.69 2.15× 68.14 26.20 2.27×

Game of 24 Tree-of-Thoughts 74.00 241.2 1.00× 30.00 952.06 1.00×
LLMCompiler 75.33 83.6 2.89× 32.00 456.02 2.09×

Table 2. Input and output token consumption as well as the esti-
mated cost on HotpotQA, Movie Recommendation, and our cus-
tom dataset named ParallelQA. The cost is computed based on the
pricing table of the GPT models used for each benchmark.

Benchmark Method Tokens Cost Cost
In. Out. ($/1k) Red.

HotpotQA
ReAct 2900 120 5.00 1.00×

OAI Para. Func. 2500 63 2.66 1.87×
LLMCompiler 1300 80 1.47 3.37×

Movie Rec.
ReAct 20000 230 20.46 1.00×

OAI Para. Func. 5800 160 6.14 3.33×
LLMCompiler 2800 115 3.04 6.73×

ParallelQA
ReAct 46000 470 480 1.00×

OAI Para. Func. 25000 370 260 1.81×
LLMCompiler 9200 340 103 4.65×

Experimental Setups. As a baseline method, we com-
pare LLMCompiler with ReAct. We follow the ReAct
setup (Yao et al., 2022) using the same Wikipedia search
tool that LLMs can use to search for information. We did
not include the lookup tool since it is not relevant to our
problem setting. We have optimized the prompt and in-
context examples for both ReAct and LLMCompiler to
the best of our abilities. For all experiments across these

datasets, we use gpt-3.5-turbo (1106 release). For the exper-
iments using GPT, we additionally report the results using
OpenAI’s parallel function calling capability, which was
announced concurrently with our work. We also show how
LLMCompiler can be effectively combined with the open-
source LLaMA-2 70B model to provide the model with
parallel function calling capabilities. For all experiments,
we have measured accuracy, end-to-end latency, as well as
input and output token usage. See Appendix D for details
on experimental setups.

Accuracy and Latency. We report the accuracy, end-to-
end latency, and relative speed-up of LLMCompiler com-
pared to ReAct in Tab. 1. First, we observe that ReAct
consistently achieves lower accuracy compared to OpenAI
parallel function calling and LLMCompiler. We identify
two main failure modes in ReAct: (1) the tendency for re-
dundant generation of prior function calls, a point also noted
in the original ReAct paper (Yao et al., 2022); and (2) pre-
mature early stopping based on the incomplete intermediate
results. In Appendix A, we offer a detailed analysis demon-
strating how these two prevalent failure cases significantly

6

An LLM Compiler for Parallel Function Calling

hurt ReAct’s accuracy, and how they can be resolved with
LLMCompiler, leading to an accuracy enhancement of
up to 7 – 8%. Furthermore, we have conducted interven-
tional experiments in which we incorporated ReAct-specific
prompts to avoid repetitive function calls and early stopping.
ReAct† in Tab. 1 refers to ReAct with this ReAct-specific
prompt. The ReAct-specific prompt yields a general accu-
racy improvement with ReAct† as compared to the original
ReAct. Nevertheless, LLMCompiler still demonstrates
on-par and better accuracy than ReAct†, as such prompting
does not serve as a perfect solution to completely avoiding
the erroneous behavior of ReAct.

Additionally, when compared to ReAct†, LLMCompiler
demonstrates a noticeable speedup of 1.80× and 1.40× on
HotpotQA with GPT and LLaMA, respectively. Similarly,
LLMCompiler demonstrates 3.74× and 2.82× speedup
on Movie Recommendation with each model. Note that
we benchmark the latency of LLMCompiler against that
of ReAct† since the repeating and early stopping behav-
ior of the original ReAct as discussed above makes its la-
tency unpredictable and unsuitable for a fair comparison.
LLMCompiler demonstrates a speedup of up to 35% com-
pared to OpenAI parallel function calling whose latency
gain over ReAct is 1.61× and 2.76× on each benchmark.1

Costs. Another important consideration of using LLMs
is cost, which depends on the input and output token us-
age. The costs for GPT experiments are provided in Tab. 2.
LLMCompiler is more cost-efficient than ReAct for cost,
as it involves less frequent LLM invocations. Interestingly,
LLMCompiler also outperforms the recent OpenAI par-
allel function calling in cost efficiency. This is because
LLMCompiler’s planning phase is more prompt length
efficient than that of OpenAI parallel function calling since
our Planner’s in-context examples are rather short and only
include plans, not observations (see Appendix H).

5.2. Parallel Function Calling with Dependencies

The cases considered above are rather simple, as only one
tool is used and all tasks can be executed independently
of one another. However, similar to code execution in tra-
ditional code blocks, we may encounter function calling
scenarios that involve more complex dependencies. To sys-
tematically evaluate the capability to plan out function call-
ing in scenarios that involve complex task dependencies, we
have designed a custom benchmark called ParallelQA. This
benchmark is designed to incorporate non-trivial function
calling patterns, including three different types of patterns
in Fig. 3 (b) and (c). Inspired by the IfQA benchmark (Yu

1 Unfortunately, we are unable to conclude why this is the case, as OpenAI
has not publicly disclosed any details about their function calling mechanism. One
speculation is that there might be additional overheads to validate the function and
argument names and to convert them into a system prompt. Nevertheless, we have
seen a consistent trend with multiple runs over several days.

et al., 2023), ParallelQA contains 113 examples that involve
mathematical questions on factual attributes of various en-
tities. In particular, completing the task requires using two
tools (i.e., search and math tools), with the second tool’s ar-
gument depending on the result of the first tool’s output. We
have meticulously included questions that are answerable
only with information from Wikipedia’s first paragraph, ef-
fectively factoring out the failure cases due to unsuccessful
searches. See Appendix I for more details in ParallelQA.

Experimental Setups. Similar to Sec. 5.1, we use Re-
Act (Yao et al., 2022) as the main baseline. Here, both Re-
Act and LLMCompiler are equipped with two tools: (1)
the search tool, identical to the one mentioned in Sec.5.1;
and (2) the math tool, which solves mathematical problems.
The math tool is inspired by the Langchain (Langchain)’s
LLMMathChain, which uses an LLM as an agent that in-
terprets input queries and invokes the numexpr function
with the appropriate formula. This enables the math chain to
address a broad spectrum of math problems that are written
both in mathematical and verbal form. See Appendix D for
more details on experimental setups.

Accuracy and Latency. As shown in the ParallelQA row
of Tab. 1, LLMCompiler arrives at the final answer with
an average speedup of 2.15× with gpt-4-turbo and 2.27×
with LLaMA-2 70B, by avoiding sequential execution of
the dependency graphs. Beyond the latency speedup, we ob-
serve higher accuracy of LLMCompiler with the LLaMA-
2 model as compared to that of ReAct, due to the rea-
sons discussed in Sec. 5.1. Particularly in the LLaMA-
2 experiment, where LLMCompiler achieves around a
9% increase in accuracy, we note that ∼20% of the ex-
amples experienced repetitive function calls with ReAct,
aligning with our observations from the accuracy analy-
sis detailed in Appendix A. Additionally, a comprehensive
analysis of LLMCompiler’s failure cases is provided in
Appendix B, where we note minimal Planner failures, high-
lighting LLMCompiler’s effectiveness in breaking down
problems into complex multi-task dependencies.

Cost. Similar to Sec. 5.1, LLMCompiler demonstrates
substantial cost reductions of 4.65× and 2.57× compared
to ReAct and OpenAI’s parallel function calling, respec-
tively, as indicated in Tab. 2. This efficiency stems from
LLMCompiler’s reduced frequency of LLM invocations,
which is also the case with OpenAI’s parallel function call-
ing, which is limited to planning out immediate paralleliz-
able tasks, not the entire dependency graph. For example, in
Fig. 3 (c), OpenAI’s method would necessitate three distinct
LLM calls for initial search tasks, following math tasks, and
the final math task. In contrast, LLMCompiler achieves
this with a single LLM call, planning all tasks concurrently.

7

An LLM Compiler for Parallel Function Calling

5.3. Parallel Function Calling with Replanning
In the previous sections, we have discussed cases in which
dependency graphs can be determined statically. However,
there are cases where dependency graphs need to be con-
structed dynamically depending on intermediate observa-
tions. Here, we consider one such dynamic approach in the
context of the Game of 24 with the Tree-of-Thoughts (ToT)
strategy proposed in (Yao et al., 2023b). The Game of 24 is
a task to generate 24 using a set of four numbers and basic
arithmetic operations. For example, from the numbers 2, 4,
4, and 7, a solution could be 4 × (7 − 4) × 2 = 24. ToT
approaches this task through two iterative LLM processes:
(i) the thought proposer generates candidate partial solutions
by selecting two numbers and applying an operation (e.g.
2, 3, 7 from 2, 4, 4, 7 by calculating 7 - 4); (ii) the state
evaluator assesses the potential of each candidate. Only
the promising candidates are then processed in subsequent
iterations of the thought proposer and state evaluator until
24 is reached. Details about the Game of 24 benchmark and
the ToT strategy can be found in Appendix J.

While ToT achieves significant improvement at solving
the Game of 24, its sequential, breadth-first search ap-
proach through the state tree can be time-consuming.
LLMCompiler offers a faster alternative by enabling par-
allel execution of the thought proposer and the subsequent
feasibility evaluator, akin to a parallel beam search method.

Experimental Setups. Although LLMCompiler offers
latency advantages, solving this problem with a single
static graph is not feasible, as the Planner cannot plan
out the thought proposing stage before identifying the
selected candidates from the state evaluator of the pre-
vious iteration. Consequently, the Planner is limited to
planning only within one iteration at a time. To address
this, we resort to LLMCompiler’s replanning capabil-
ity. In particular, LLMCompiler is equipped with three
tools: thought proposer and state evaluator,
which are both LLMs adapted from the original ToT
framework, and top k select, which chooses the top
k candidates from the thought proposer based on the
state evaluator’s assessment. After all these tools
are executed, LLMCompiler can decide to “replan” if no
proposal reaches 24, triggering the Planner to devise new
plans using the shortlisted states from top k select of
the previous iteration. In this way, LLMCompiler can dy-
namically regenerate plans of each iteration, being able to
tackle highly complex tasks that require iterative replanning
based on the outcomes of previous plans.

To evaluate LLMCompiler’s performance on the Game of
24, we use 100 different instances of the game. For each
problem, we consider the output as successful if its opera-
tions are valid and yield 24 while also using the provided

numbers exactly once each. Further details on experiment
setups are outlined in Appendix D.

Success Rate and Latency. In the last two rows of Tab. 1,
we explore the latency and success rate of LLMCompiler
in comparison to the baseline described in (Yao et al., 2023b)
on the Game of 24 benchmark. With the gpt-4 model,
LLMCompiler demonstrates a 2.89× enhancement in la-
tency while slightly improving the success rate compared
to the baseline. Similarly, when applied with the LLaMA-2
model, LLMCompiler shows a 2.01× improvement in la-
tency, again without compromising on success rate. These
results demonstrate not only a significant latency reduction
without quality degradation, but also the replanning capabil-
ity of LLMCompiler for solving complex problems.

5.4. Application: LLMCompiler in Interactive Decision
Making Tasks

In this section, we demonstrate that LLMCompiler can
explore language-based interactive environments effectively
by benchmarking LLMCompiler on WebShop (Yao et al.,
2023a). As highlighted in (Shinn et al., 2023; Yao et al.,
2022; 2023a), WebShop exhibits considerable diversity,
which requires extensive exploration to purchase the most
appropriate item. While recent work feature advanced explo-
ration strategies and show promising results (Ma et al., 2023;
Zhou et al., 2023a), their approaches are largely based on a
sequential and extensive tree search that incurs significant
latency penalties. Here, LLMCompiler showcases an ex-
ploration strategy that is both effective and efficient with the
use of parallel function calling. Our method enables broader
exploration of items in the environment, which improves
success rate compared to ReAct. At the same time, this ex-
ploration can be parallelized, yielding up to 101.7× speedup
against baselines that perform sequential exploration.

Experimental Setups. We evaluate LLMCompiler
against three baselines on this benchmark, ReAct (Yao
et al., 2022), LATS (Zhou et al., 2023a), and LASER (Ma
et al., 2023), using 500 WebShop instructions. The evalu-
ation metrics are success rate, average score, and latency.
More details of the WebShop environment and the baseline
methods are provided in Appendix K. For this experiment,
LLMCompiler is equipped with two tools: search and
explore. The search function triggers the model to
generate and dispatch a query that returns a list of typically
ten items from the Webshop environment. The explore
function then clicks through links for each of the found
items and retrieves information about options, prices, at-
tributes, and features that are available. Finally, based on
the gathered information, LLMCompiler decides on the
item that best matches the input instruction for purchasing.
Further details on experiments can be found in Appendix D.

8

An LLM Compiler for Parallel Function Calling

Table 3. Performance and Latency Analysis for WebShop. We
evaluate LLMCompiler with two models: gpt-4 and gpt-3.5-
turbo and compare LLMCompiler against three baselines: ReAct,
LATS, and LASER. We report success rate and average score in
percentage. We reproduce the success rate and average score for
ReAct, while those for LATS and LASER are from their papers.
N denotes the number of examples used for evaluation.

Model Method Succ. Rate Score Latency (s) N

gpt-3.5-turbo

ReAct 19.8 54.2 5.98 500
LATS 38.0 75.9 1066 50

LLMCompiler 44.0 72.8 10.72 50
LLMCompiler 48.2 74.2 10.48 500

gpt-4-0613
ReAct 35.2 58.8 19.90 500

LASER 50.0 75.6 72.16 500
LLMCompiler 55.6 77.1 26.73 500

Performance and Latency. Our approach significantly
outperforms all baseline models as shown in Table 3. When
using gpt-3.5-turbo, LLMCompiler achieves a 28.4%
and 6% improvement in success rate against ReAct and
LATS; with gpt-4, our method improves upon ReAct and
LASER by 20.4% and 5.6%, respectively. In terms of
latency, LLMCompiler exhibits a 101.7× and 2.69×
speedup against LATS and LASER. While we note that
LLMCompiler execution is slightly slower than ReAct on
this benchmark, mainly due to the Planner overhead, we
also highlight that the gains in success rate far outweigh the
minor latency penalty.

We further delve into why LLMCompiler attains such an
improved success rate and score compared to ReAct. Based
on our observations, we discover that the ReAct agent tends
to commit to a decision with imperfect information, a sce-
nario that can arise when the agent has not gathered suf-
ficient details about the features and options available for
items. This observation was also noted in (Shinn et al.,
2023) – without exploring more items in the environment,
the agent struggles to differentiate between seemingly simi-
lar choices, ultimately failing to make the correct decision.
In contrast, LLMCompiler undergoes further exploration
by visiting all ten items found by search and retrieving
relevant information about each item. We find that employ-
ing an effective search strategy is critical to decision-making
tasks such as the WebShop benchmark.

The relatively high performance of LATS can also be ex-
plained in terms of its exploration scheme. In this frame-
work, the agent executes a brute-force search through the
state and action space of Webshop, exploring as many as
30 trajectories before making the final purchase. While this
approach provides richer information for decision-making,
the end-to-end execution becomes prohibitively slow.

We report that our method, LLMCompiler, outperforms
LASER by an average score of 1.5. When compared to
LATS, this score is within the standard deviation range of
our method. The average score for LLMCompiler, along

with its standard deviation, is 72.8± 4.01 for gpt-3.5-turbo.
Further note that while the performance differences are
marginal, our method exhibits significant execution speedup,
101.7× over LATS and 2.69× over LASER.

6. Conclusions
Existing methods for invoking multiple functions with
LLMs resort to sequential and dynamic reasoning. As a
result, they suffer from inefficiencies in latency, cost, and
accuracy. As a solution, we introduced LLMCompiler,
a compiler-inspired framework that enables efficient paral-
lel function calling across various LLMs, including open-
source models like LLaMA-2 and OpenAI’s GPT se-
ries. By decomposing user inputs into tasks with defined
inter-dependencies and executing these tasks concurrently
through its Planner, Task Fetching Unit, and Executor com-
ponents, LLMCompiler demonstrates substantial improve-
ments in latency (up to 3.7×), cost efficiency (up to 6.7×),
and accuracy (up to ∼9%), even outperforming OpenAI’s
parallel function calling feature in latency gains. We look
forward to future work building upon LLMCompiler that
will improve both the capabilities and efficiencies of LLMs
in executing complex, large-scale tasks, thus transforming
the future development of LLM-based applications.

Impact Statement

This paper presents research towards advancing the field of
Machine Learning. While there are many potential societal
consequences of our work, we do not find any one to be
particularly noteworthy.

Acknowledgements

We appreciate the valuable feedback from Minwoo Kang.
We acknowledge gracious support from Furiosa team. We
also appreciate the support from Microsoft through their
Accelerating Foundation Model Research, including great
support from Sean Kuno. Furthermore, we appreciate sup-
port from Google Cloud, the Google TRC team, and specif-
ically Jonathan Caton, and Prof. David Patterson. Prof.
Keutzer’s lab is sponsored by the Intel corporation, Intel
One-API, Intel VLAB team, the Intel One-API center of
excellence, as well as funding through BDD and BAIR. We
also appreciate support from Samsung including Dongkyun
Kim, and David Thorsley. We appreciate the great support
from Ellick Chan, Saurabh Tangri, Andres Rodriguez, and
Kittur Ganesh. Sehoon Kim and Suhong Moon would like
to acknowledge the support from the Korea Foundation for
Advanced Studies. Amir Gholami was supported through
funding from Samsung SAIT. Michael W. Mahoney would
also like to acknowledge a J. P. Morgan Chase Faculty Re-
search Award as well as the DOE, NSF, and IARPA. Our
conclusions do not necessarily reflect the position or the

9

An LLM Compiler for Parallel Function Calling

policy of our sponsors, and no official endorsement should
be inferred.

References
https://huggingface.co/text-generation-inference.

https://github.com/nvidia/tensorrt-llm.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and
Sutton, C. Program synthesis with large language models,
2021.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gi-
aninazzi, L., Gajda, J., Lehmann, T., Podstawski, M.,
Niewiadomski, H., Nyczyk, P., and Hoefler, T. Graph of
thoughts: Solving elaborate problems with large language
models, 2023.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling, 2023a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
2021.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks, 2023b.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression, 2023.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh,
D. GPTQ: Accurate post-training compression for
generative pretrained transformers. arXiv preprint
arXiv:2210.17323, 2022.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y.,
Callan, J., and Neubig, G. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435, 2022.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model, 2023.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring coding challenge competence
with apps. NeurIPS, 2021a.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021c.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp. In
International conference on machine learning, pp. 2790–
2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022.

Karpathy, A. Intro to large language models, 2023.

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson, K.,
Clark, P., and Sabharwal, A. Decomposed prompting:
A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen,
S., Mahoney, M. W., and Keutzer, K. Squeezellm: Dense-
and-sparse quantization, 2023.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners, 2023.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers, 2022.

10

An LLM Compiler for Parallel Function Calling

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Langchain. https://github.com/langchain-ai/langchain.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning, 2021.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding, 2023.

Liang, Y., Wu, C., Song, T., Wu, W., Xia, Y., Liu, Y., Ou, Y.,
Lu, S., Ji, L., Mao, S., Wang, Y., Shou, L., Gong, M., and
Duan, N. Taskmatrix.ai: Completing tasks by connecting
foundation models with millions of apis, 2023.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., Gan, C., and
Han, S. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2023.

Liu, J. LlamaIndex, 11 2022. URL https://github.
com/jerryjliu/llama_index.

Ma, K., Zhang, H., Wang, H., Pan, X., and Yu, D. Laser:
Llm agent with state-space exploration for web naviga-
tion, 2023.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Gupta, S., Majumder, B. P., Hermann, K., Welleck,
S., Yazdanbakhsh, A., and Clark, P. Self-refine: Iterative
refinement with self-feedback, 2023.

Ning, X., Lin, Z., Zhou, Z., Wang, Z., Yang, H., and Wang,
Y. Skeleton-of-thought: Large language models can do
parallel decoding, 2023.

OpenAI. Gpt-4 technical report, 2023.

OpenAI. New models and developer products announced at
devday, 2023.

Packer, C., Fang, V., Patil, S. G., Lin, K., Wooders, S., and
Gonzalez, J. E. Memgpt: Towards llms as operating
systems, 2023.

Patel, P., Mishra, S., Parmar, M., and Baral, C. Is a question
decomposition unit all we need? 2022.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. Gorilla:
Large language model connected with massive apis, 2023.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N. A.,
and Lewis, M. Measuring and narrowing the composi-
tionality gap in language models, 2023.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y.,
Cong, X., Tang, X., Qian, B., et al. Toolllm: Facilitating
large language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789, 2023.

Ruan, J., Chen, Y., Zhang, B., Xu, Z., Bao, T., Du, G., Shi,
S., Mao, H., Zeng, X., and Zhao, R. Tptu: Task planning
and tool usage of large language model-based ai agents.
arXiv preprint arXiv:2308.03427, 2023a.

Ruan, Y., Dong, H., Wang, A., Pitis, S., Zhou, Y., Ba, J.,
Dubois, Y., Maddison, C. J., and Hashimoto, T. Identify-
ing the risks of lm agents with an lm-emulated sandbox.
arXiv preprint arXiv:2309.15817, 2023b.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T. Tool-
former: Language models can teach themselves to use
tools. arXiv preprint arXiv:2302.04761, 2023.

Shen, Y., Song, K., Tan, X., Li, D., Lu, W., and Zhuang, Y.
Hugginggpt: Solving ai tasks with chatgpt and its friends
in hugging face, 2023.

Shinn, N., Cassano, F., Berman, E., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language agents
with verbal reinforcement learning, 2023.

Song, Y., Xiong, W., Zhu, D., Wu, W., Qian, H., Song,
M., Huang, H., Li, C., Wang, K., Yao, R., Tian, Y., and
Li, S. Restgpt: Connecting large language models with
real-world restful apis, 2023.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L.
Cognitive architectures for language agents, 2023.

Surı́s, D., Menon, S., and Vondrick, C. Vipergpt: Visual
inference via python execution for reasoning, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,

11

https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index

An LLM Compiler for Parallel Function Calling

M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-W.,
and Lim, E.-P. Plan-and-solve prompting: Improving
zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023a.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models,
2023b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. volume 35,
pp. 24824–24837, 2022.

Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg,
Y., Deutch, D., and Berant, J. Break it down: A question
understanding benchmark. Transactions of the Associa-
tion for Computational Linguistics, 2020.

Xu, B., Peng, Z., Lei, B., Mukherjee, S., Liu, Y., and Xu,
D. Rewoo: Decoupling reasoning from observations for
efficient augmented language models, 2023.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W.,
Salakhutdinov, R., and Manning, C. D. Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering. arXiv preprint arXiv:1809.09600, 2018.

Yang, Z., Dong, L., Du, X., Cheng, H., Cambria, E., Liu,
X., Gao, J., and Wei, F. Language models as inductive
reasoners, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents, 2023a.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of Thoughts: Deliberate
problem solving with large language models, 2023b.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Yu, W., Jiang, M., Clark, P., and Sabharwal, A. Ifqa: A
dataset for open-domain question answering under coun-
terfactual presuppositions, 2023.

Zheng, H. S., Mishra, S., Chen, X., Cheng, H.-T., Chi, E. H.,
Le, Q. V., and Zhou, D. Take a step back: Evoking
reasoning via abstraction in large language models, 2023.

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language agent tree search unifies
reasoning acting and planning in language models, 2023a.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q. V.,
and Chi, E. H. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh
International Conference on Learning Representations,
2023b.

12

An LLM Compiler for Parallel Function Calling

A. Accuracy Analysis: ReAct vs. LLMCompiler
In this section, we delve into a detailed analysis that compares the accuracy of both ReAct and LLMCompiler, highlighting
two failure cases that are prevalent in ReAct: (i) premature early stopping; and (ii) repetitive function calls. Furthermore,
we demonstrate that while those failure cases negatively impact the ReAct accuracy, they can be effectively addressed
by LLMCompiler, thereby yielding the improved accuracy of our framework. We analyze two specific scenarios: the
Movie Recommendation evaluation with GPT, where ReAct often prematurely stops, leading to significantly lower accuracy
compared to LLMCompiler (68.60 vs. 77.13 in Tab. 1); and the HotpotQA evaluation with LLaMA-2 70B, where ReAct’s
repetitive function calls result in a notable accuracy degradation compared to LLMCompiler (70.00 vs. 77.80 in Tab. 1).

4 5 6 7 8
Function Calls

0.0

0.2

0.4

0.6

0.8

1.0 ReAct

4 5 6 7 8
Function Calls

0.0

0.2

0.4

0.6

0.8

1.0 ReAct + additional prompts

4 5 6 7 8
Function Calls

0.0

0.2

0.4

0.6

0.8

1.0 LLMCompiler

Figure A.1. Distributions of the number of function calls when running the Movie Recommendation benchmark on ReAct (Left), ReAct
with specific prompts to avoid early stopping (Middle, corresponding to ReAct† in Tab. 1), and LLMCompiler (Right). LLMCompiler
(Right) consistently completes the search for all 8 movies, whereas ReAct (Left) often exit early, demonstrated by about 85% of examples
stopping early. Although the custom prompts shift ReAct’s histogram to higher function calls (Middle), they still fall short of ensuring
comprehensive searches for all movies. gpt-3.5-turbo is used for the experiment.

4 5 6 7 8
Function Calls on ReAct

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

ReAct
LLMCompiler

Figure A.2. The Movie Recommendation accuracy of the examples that are categorized by the number of function calls on ReAct,
measured both on ReAct and LLMCompiler. The plot indicates that in ReAct, a decrease in the number of function calls correlates
with lower accuracy, indicating that premature exits lead to reduced accuracy. In contrast, when the same examples are evaluated using
LLMCompiler, which ensures complete searches for all eight movies before reaching a decision, they achieve higher and more consistant
accuracy than those processed by ReAct. gpt-3.5-turbo is used for the experiment, and the results are averaged over 3 different runs.

Premature Early Stopping of ReAct. ReAct frequently suffers from premature early stopping, ceasing function calls
too early, and making decisions based on incomplete information. A clear example of this is observed in the Movie
Recommendation benchmark, where ReAct often searches for fewer than the required 8 movies before delivering its final
answer. In Fig. A.1 (Left), we illustrate the distribution of the number of function calls within ReAct (using GPT) across
thhe Movie Recommendation benchmark. Here, we observe around 85% of the examples exhibit early stopping, making
decisions without completing all 8 movie searches. This contrasts with LLMCompiler (Right), where almost all examples
(99%) complete the full search of 8 movies. Although adding specific prompts to ReAct to prevent early stopping shifts
the distribution towards more function calls (Fig. A.1, Middle), resulting in an accuracy improvement from 68.60 to 72.47
(ReAct† in Tab. 1), it is nevertheless an imperfect solution.

To further assess how early stopping negatively impacts accuracy, we categorize Movie Recommendation benchmark
examples by their number of function calls in ReAct. We then evaluated these groups using LLMCompiler, ensuring
complete search results for all 8 movies. Fig. A.2 reveals that fewer function calls in ReAct correlate with lower average

13

An LLM Compiler for Parallel Function Calling

1 2 3 4+ (div.)
Function Calls

0.0

0.2

0.4

0.6

0.8

1.0 ReAct

1 2 3 4+ (div.)
Function Calls

0.0

0.2

0.4

0.6

0.8

1.0 LLMCompiler

Figure A.3. Distributions of the number of function calls when running the HotpotQA benchmark on ReAct (Left) and LLMCompiler
(Right). While LLMCompiler (Right) consistently completes the task within 2 function calls, which is expected as HotpotQA exhibits a
2-way parallelizable pattern, ReAct (Left) shows that around 10% of the examples undergo repetitive (>4) function calls, resulting in a
diverging behavior of the framework. LLaMA-2 70B is used for the experiment.

2 3 4+ (div.)
Function Calls on ReAct

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

ReAct
LLMCompiler

Figure A.4. The HotpotQA accuracy of the examples that are categorized by the number of function calls on ReAct, measured both on
ReAct and LLMCompiler. The plot indicates that in ReAct, repetitive function calls of more than or equal to four times can result in
a significant accuracy degradation due to its infinite looping and diverging behavior. On the other hand, when the same examples are
evaluated using LLMCompiler, which ensures only two searches per example, they achieve a higher of around 50%. LLaMA-2 70B is
used for the experiment.

accuracy (green line). Conversely, if these examples were processed through LLMCompiler, with complete searches for
all eight movies, they consistently attained higher accuracy (purple line). This not only indicates that ReAct struggles with
premature exits (which is not fully addressed by prompting), but the earlier it stops, the greater the decline in accuracy,
contributing to the overall accuracy drop observed in Tab. 1. In contrast, LLMCompiler effectively addresses this issue.

Repetitive Function Calls of ReAct. Another common failure case of ReAct is its tendency for repetitive function calls,
often leading to infinite loops or exceeding the context length limit. This problem is particularly noticeable in the HotpotQA
benchmark where ReAct repeatedly calls the same function if the Wikipedia search returns insufficient information about the
searched entity. Although HotpotQA is inherently 2-way parallelizable, as illustrated in Fig. A.3, we observe that about 10%
of its examples require more than four function calls in ReAct, usually resulting in an infinite loop or a divergent behavior.
In contrast, LLMCompiler executes only two function calls for most examples.

To show how the repetitive function calls impact the overall accuracy, we conduct an accuracy analysis similar to the
previous case. In Fig. A.4, we categorize HotpotQA benchmark examples by the number of function calls in ReAct, and
then we compare their accuracy on both ReAct and LLMCompiler. The analysis reveals that examples that launch two
function calls in ReAct maintain the same accuracy in LLMCompiler. However, cases with more than four function calls
in ReAct, which often lead to divergent behavior, show less than 10% accuracy in ReAct. On the other hand, when these
examples are processed with LLMCompiler, they achieve around 50% accuracy by circumventing repetitive calls. It is
worth noting that there are instances with three function calls in ReAct, where an extra search can lead to improved accuracy
by retrying with an alternate entity name when the initial search fails, yielding a better accuracy than LLMCompiler.
While this shows a potential adaptability advantage of ReAct, such instances represent less than 3% of cases.

14

An LLM Compiler for Parallel Function Calling

Table C.1. A latency comparison between using and not using streaming in the Planner. Streaming yields consistent latency improvement
across different benchmarks, as it enables the Task Fetching Unit to start task execution immediately as each task is produced by the
Planner. The impact of streaming is especially notable in the ParallelQA benchmark, where tool execution times are long enough to
effectively hide the Planner’s execution time.

Benchmark w/o streaming (s) w/ streaming (s) Latency speedup

HotpotQA 4.00 3.95 1.01×
Movie Rec. 5.64 5.47 1.03×
ParallelQA 21.72 16.69 1.30×

B. Failure Case Analysis of LLMCompiler
This section delves into a qualitative analysis of LLMCompiler’s failure cases on the ParallelQA benchmark, which can
be broadly attributed to failures in the Planner, Executor, or the final output process. Failures in the final output process
refer to cases when LLMs are unable to use the observations collected from tool execution (which are incorporated into
the context) to deliver the correct answer to the user. Among the 10.6% (36 examples) of LLMCompiler’s total failures
reported in Tab. 1, we have noted that the Planner, Executor, and final output process contributed to 8%, 64%, and 28% of
the failures, respectively. The Planner’s 8% failure rate is exclusive to LLMCompiler. For instance, the Planner would
incorrectly map inputs and outputs by assigning a wrong identifier as an input to a subsequent task, thereby forming an
incorrect DAG. However, with adequate tool definitions and in-context examples, Planner errors are significantly reduced
(only 3 instances in total throughout our evaluation), highlighting the LLM’s capability to decompose problems into complex
multi-task dependencies.

The remaining 92% of the total failures are attributed to the Executor and the final output process. The Executor accounts
for most of these failures (64%), with common issues like the math tool choosing wrong attributes or mishandling
unit conversions. For the final output process (28% of failures), errors include incorrect conclusions from the gathered
observations, such as failing to pick the smallest attribute from the collected data. It’s worth noting that these problems are
not exclusive to LLMCompiler, but they also occur in ReAct. Nevertheless, LLMCompiler tends to have slightly fewer
failures in these areas than ReAct, as it provides only relevant contexts to each tool, aiding in more accurate information
extraction. We believe that optimizing the structure of the agent scratchpad, rather than simply appending observations,
could further reduce failures in the final output process.

C. Related Work
Here, we continue with related work, which we started in Sec. 2.

C.1. Tool-Augmented LLMs

A notable work is Toolformer (Schick et al., 2023), which produces a custom LLM output to let the LLM decide what the
inputs for calling the functions should be and where to insert the result. This approach has inspired various tool calling
frameworks (Liang et al., 2023; Shen et al., 2023). ReAct (Yao et al., 2022) proposed to have LLMs interact with external
environments through reasoning and action generation for improved performance. Gorilla (Patil et al., 2023) introduced a
finetuned LLM designed for function calling, and ToolLLM (Qin et al., 2023) and RestGPT (Song et al., 2023) have extended
LLMs to support real-world APIs. Moreover, OpenAI (OpenAI, 2023) released their own function calling capabilities,
allowing their LLMs to return formatted JSON for execution.

D. Experimental Details
Our experiments evaluate two different common scenarios: (1) using API-based closed-source models; and (2) using open-
source models with an in-house serving framework. We use OpenAI’s GPT models as closed-source models, in particular,
gpt-3.5-turbo (1106 release) for HotpotQA and Movie Recommendation, gpt-4-turbo (1106 release) for ParallelQA, and
gpt-4 (0613 release) for Game of 24. Experiments on HotpotQA, Movie Recommendation, and ParallelQA were all
conducted in November 2023 after the 1106 release. The Game of 24 experiments were conducted over a two-month
period from September to October 2023. For an open-source model, we use LLaMA-2 (Touvron et al., 2023), which was
hosted on 2 A100-80GB GPUs using the vLLM (Kwon et al., 2023) framework. All the runs have been carried out with

15

An LLM Compiler for Parallel Function Calling

zero temperature, except for thought proposer and state evaluator for the Game of 24 evaluation, where the
temperature is set to 0.7. Since OpenAI has randomness in outputs even with temperature 0, we have conducted 3 runs, and
we reported the average accuracy. Across ReAct, OpenAI parallel function calling, and LLMCompiler, we perform 3,
1, and 5-shot learning for HotpotQA, Movie Recommendation, and ParallelQA, respectively; the same examples across
different methods were used to ensure a fair comparison. For the Game of 24, we use 2 in-context examples for the Planner.
We use the same instruction prompts across different methods for a fair comparison, except for ReAct† in Sec. 5.1 with
additional ReAct-specific prompts. For WebShop experiment, we use gpt-4-0613 with 8k context window and gpt-3.5-turbo
model with 16k context window.

E. Analysis
E.1. Parallel Speedup Modeling

While LLMCompiler shows noticeable latency gain in various workloads, it is not achieving the N× latency speedup
for N-way parallel workloads. This is mostly due to the overhead associated with LLMCompiler’s Planner and final
answering process that cannot be parallelized. In our Movie Recommendation experiment, LLMCompiler’s Planner and
the answering process have an overhead of 1.88 and 1.62 seconds on average, respectively, whose combined overhead
already comprises more than half of LLMCompiler’s overall latency in Tab 1. Another source of overhead is the straggler
effect among the parallel tasks when they need to join together. We observe the average latency of the slowest search to
be 1.13 seconds, which is nearly 2× the average latency of all tasks, which is 0.61 seconds. Below, we provide an analytical
latency modeling of ReAct, LLMCompiler, and LLMCompiler with streaming, and we provide an analysis of achievable
latency speedup.

In this section, our focus is on embarrassingly parallelizable workload (pattern Fig. 3(a)), as this allows for a clearer
understanding of the impact of each component on potential latency gains. For the precise latency analysis, we consider
three key components: the Planner, the Task Fetching Unit, and the Executor, in Fig. 2. Assume that the Planner generates N
different tasks to be done. We define Pi as the Planner’s output corresponding to the i-th atomic task. Each Pi is a blueprint
for a specific atomic task, which we refer to as Ei. The execution of Ei involves a specific function call using the appropriate
tool. The latency function of each unit in the system is defined to quantify the time taken for specific operations. For the
Planner, the latency is denoted as TP (Pi), representing the time taken by the Planner to generate the plan Pi. Similarly, for
the Executor, the latency, TE(Ei), corresponds to the time required to complete the task Ei. We ignore the latency of Task
Formulation Unit, as it is negligible in this section. Our focus here is on comparing the latency models of ReAct (Yao et al.,
2022), and LLMCompiler.

To begin our analysis of ReAct’s latency, we express its total latency as:

TR =

N∑
i=1

(
TR
P (Pi) + TE(Ei)

)
. (1)

Here, the superscript R refers to ReAct. In the ReAct agent system, the process typically involves initial thought generation,
followed by action generation and the acquisition of observations through function calls associated with the tool. The
creation of both thought and action are collectively considered as part of generating Pi. It is important to note that while the
Planner’s latency is denoted with a superscript (indicating ReAct), the Executor’s latency does not have such a superscript.
This is because the function calling and the tools execution remain the same between ReAct and LLMCompiler.

For LLMCompiler, where all parallelizable tasks are processed concurrently, the total latency is determined by the slowest
task among these tasks. Hence, the latency model for LLMCompiler can be represented as:

TC =

N∑
i=1

TC
P (Pi) + max

k∈1,...,N
TE(Ek). (2)

This expression captures the sum of all planning times plus the execution time of the longest task, reflecting the system’s
focus on parallel execution.

16

An LLM Compiler for Parallel Function Calling

2 3 4 5
Number of Parallelizable Tasks

0

10

20

30

40

50

La
te

nc
y

(s
)

Latency vs. # Parallelizable Tasks
ReAct
LLMCompiler (Ours)

Figure E.5. Latency on the ParallelQA benchmark grouped by the number of maximum parallelizable tasks.

Further, if the Planner employs streaming of the dependency graph, the latency model undergoes a modification and can be
expressed as:

TSC =

N∑
i=1

TC
P (Pi) + TE(EN). (3)

It is important to note that TSC ≤ TC . This implies that the streaming mechanism allows for a more efficient handling of
task dependencies, potentially reducing overall latency.

In evaluating the potential speedup achievable with the LLMCompiler framework compared to ReAct, the speedup metric,
denoted as γ, is defined as follows:

γ =
TR

TC
=

∑N
i=1

(
TR
P (Pi) + TE(Ei)

)∑N
i=1 T

C
P (Pi) + maxk∈1,...,N TE(Ek)

. (4)

This ratio represents the comparative efficiency of LLMCompiler over ReAct, considering both planning and execution
latencies.

To estimate the upper bound of this speedup, γmax, we assume that the executor latency TE(Ei) is dominant over the
planning latency TP (Pi) and all the latencies of executing tasks remain the same. Under this assumption, the upper bound is
calculated as:

γmax ≈
∑N

i=1 TE(Ei)

maxk∈1,...,N TE(Ek)
= N, (5)

indicating the theoretical maximum speedup, γmax, is equal to the number of tasks, N .

On the other hand, the lower bound of the speedup, γ, is observed when the planning latency is the predominant factor.
Given that the planning latencies of both ReAct and LLMCompiler are generally similar, the minimum speedup is
approximated as:

γmin ≈
∑N

i=1 T
R
P (Pi)∑N

i=1 T
C
P (Pi)

≈ 1. (6)

From these observations, we can conclude that to achieve significant latency gains with LLMCompiler, it is crucial to (i)
reduce the planner overhead and (ii) minimize the occurrence of stragglers.

E.2. Latency versus Number of Parallelizable Tasks

In Fig. E.5, we also report a more detailed latency breakdown on ParallelQA where we show the end-to-end latency as a
function of the number of parallel tasks. This is often referred to as weak-scaling in high-performance computing, where the
ideal behavior is to have a constant latency as the number of tasks is increased. We can see that ReAct’s latency increases
proportionally to the number of tasks, which is expected as it executes the tasks sequentially. In contrast, the latency of
LLMCompiler increases at a much smaller rate, as it can perform multiple function calls in parallel when possible. The
reason the end-to-end latency increases slightly with LLMCompiler is due to the overhead of the Planner, which needs to
generate plans initially, and which cannot be parallelized. We provide a further analysis of this in Appendix E.1.

17

An LLM Compiler for Parallel Function Calling

Table E.2. Accuracy and latency comparison of LLMCompiler compared to ReAct on the HotpotQA bridge benchmark. ReAct† denotes
ReAct with additional prompting that minimizes looping and early stopping, similar to Tab. 1.

Method Accuracy (%) Latency (s)

ReAct 22.7 7.07
ReAct† 23.1 6.42

LLMCompiler 26.3 4.70

Table E.3. Qualitative comparison between LLMCompiler and other frameworks including ReAct (Yao et al., 2022), TPTU (SA for
Sequential Agent and OA for One-step Agent) (Ruan et al., 2023a), ViperGPT (Surı́s et al., 2023) and HuggingGPT (Shen et al., 2023).

Method Planning Replanning Parallel Execution Domain

ReAct X - X All
TPTU-SA X - X All
TPTU-OA O X X All
ViperGPT O X X Limited

HuggingGPT O X O Limited
LLMCompiler O O O All

E.3. Additional Experiments on the HotpotQA Bridge Benchmark

In our main experiments in Sec. 5.1, we used the comparison benchmark in HotpotQA to demonstrate the capability of
LLMCompiler in efficiently executing 2-way parallelizable workloads. The other part of the benchmark, called ‘bridge,’
involves sequential tasks such as “What government position was held by the woman who portrayed Corliss Archer in the
film Kiss and Tell?” LLMCompiler is not limited to the comparison benchmark, but it can also be applied to the bridge
benchmark due to its replanning capability: initially, it searches for the woman who played Corliss Archer in the film Kiss
and Tell, and then, through replanning, searches the government position held by this woman for the example above.

Similar to our experiments with the comparison benchmark, Tab. E.2 compares LLMCompiler against ReAct and ReAct
with the additional prompt that avoids repetitive function calling and early stopping (ReAct†) on the bridge benchmark. We
observe 4 and 3% accuracy improvement, respectively, which is attributed to ReAct’s repetitive function invocation – even
with the additional prompt (ReAct†), we have still observed 5% of the examples failing with this issue. Furthermore, such
repetitive function call also accounts for the slightly higher latency of ReAct compared to ours. This experiment demonstrates
that LLMCompiler allows for efficient and accurate function calling for both parallel and sequential workloads.

F. Additional Discussions about Related Works
TPTU (Ruan et al., 2023a), HuggingGPT (Shen et al., 2023), and ViperGPT (Surı́s et al., 2023) have introduced end-to-end
plan-and-solve frameworks. In this section, we discuss how LLMCompiler distinguishes itself from other frameworks
from various angles, including the capabilities in (i) planning and replanning; (ii) parallel execution; and (iii) addressing a
wider range of problem domains. Refer to Tab. E.3 for the summary.

Parallel Execution: Parallel execution is a critical feature in the LLMCompiler framework that allows for efficient
function calling and job completion. While the One-step Agent in TPTU (i.e., TPTU-OA) incorporates planning, it does
not enable parallel function calling, as it only decomposes a user input into a sequence of functions and the associated
arguments without their inter-dependencies. ViperGPT generates Python codes. However, ViperGPT, by itself, does not
support parallel execution without a dedicated parallel processing engine since the standard Python interpreter lacks support
for parallel execution. While HuggingGPT enables parallel execution, it strictly targets models in HuggingFace, making it
hard to apply in a wide range of problems and domains that LLMCompiler supports.

Planning and Replanning: The TPTU’s Sequential Agent (i.e., TPTU-SA) is an iterative framework like ReAct (Yao
et al., 2022) that executes one action per iteration. While TPTU-OA, HuggingGPT, and ViperGPT are all planning-based
frameworks that plan out multiple actions prior to execution, they lack replanning capabilities. LLMCompiler, in contrast,
incorporates the replanning mechanism to generate a new set of tasks when the previous plans are not sufficient enough to
deliver the response back to the user. This enables LLMCompiler to adapt plans based on intermediate results that are a
priori unknown, without the need for introducing complex branching logic, thereby extending the scope of problems that it
can address.

18

An LLM Compiler for Parallel Function Calling

Table F.4. Accuracy and latency speedup comparison of LLMCompiler compared to ReAct and TPTU (SA for Sequential Agent and OA
for One-step Agent) on the HotpotQA comparison benchmark using gpt-3.5-turbo. ReAct† and TPTU-SA† denote ReAct and TPTU-SA
with additional prompting that minimizes looping and early stopping, respectively, similar to Tab. 1.

Method Accuracy (%) Speedup

ReAct 61.52 -
ReAct† 62.47 1×

TPTU-SA 34.16 -
TPTU-SA† 44.59 1.09×
TPTU-OA 57.50 1.35×

LLMCompiler 62.00 1.51×

Problem Domains: ViperGPT and HuggingGPT aim for vision tasks via Python code generation and models in HuggingFace,
respectively, showing significant promise in these specific areas. In contrast, LLMCompiler targets a general framework
that enables efficient and accurate function calling in a wide range of problem domains, rather than restricting itself to
specific fields.

F.1. Quantitative Comparison between LLMCompiler and TPTU

Additionally, in Tab. F.4, we additionally provide accuracy and latency speedup of LLMCompiler against TPTU-SA and
TPTU-OA. Since the official implementation of TPTU is not available, we implemented TPTU-SA and TPTU-OA based on
the prompts provided in the original paper. As can be seen in the table, the results clearly demonstrate LLMCompiler’s
latency and accuracy benefit over both TPTU-SA and TPTU-OA. Compared with TPTU-SA, LLMCompiler exhibits a
significant accuracy improvement due to TPTU’s prevalent issue with repetitive function calls. Note that this issue is not
fully mitigated even with better prompting (TPTU-SA†), leading to ∼15% of examples failing with repetitive function calls.
Compared with both TPTU-SA and TPTU-OA, LLMCompiler also benefits from reduced latency through parallel task
execution. Overall, the results are consistent with the main experiments and analysis against other baseline methods (i.e.,
ReAct and OpenAI’s parallel function calling).

G. User-Supplied Examples for LLMCompiler Configuration
LLMCompiler provides a simple interface that allows for tailoring the framework to different use cases by providing tool
definitions as well as optional in-context examples for the Planner. Below, we provide the Planner example prompts that are
used to set up the framework for the Movie Recommendation and Game of 24 benchmarks with only a few lines of prompts.

G.1. Movie Recommendation Example Prompts

Question: Find a movie similar to Mission Impossible, The Silence of the
Lambs, American Beauty, Star Wars Episode IV - A New Hope
Options:
Austin Powers International Man of Mystery
Alesha Popvich and Tugarin the Dragon
In Cold Blood
Rosetta

1. search("Mission Impossible")
2. search("The Silence of the Lambs")
3. search("American Beauty")
4. search("Star Wars Episode IV - A New Hope")
5. search("Austin Powers International Man of Mystery")
6. search("Alesha Popvich and Tugarin the Dragon")
7. search("In Cold Blood")
8. search("Rosetta")
Thought: I can answer the question now.

19

An LLM Compiler for Parallel Function Calling

9. finish()
###

G.2. Game of 24 Example Prompts

Question: "1 2 3 4", state list: [""]
$1 = thought proposer("1 2 3 4", "")
$2 = state evaluator("1 2 3 4", "$1")
$3 = top k select("1 2 3 4", ["$1"], ["$2"])
$4 = finish()
###
Question: "1 2 3 4", state list: ["1+2=3(left:3 3 4)","2-1=1(left:1 3
4)","3-1=2(left:2 2 4)","4-1=3(left:2 3 3)","2*1=2(left:2 3 4)"]
$1 = thought proposer("1 2 3 4", "1+2=3(left:3 3 4)")
$2 = thought proposer("1 2 3 4", "2-1=1(left:1 3 4)")
$3 = thought proposer("1 2 3 4", "3-1=2(left:2 2 4)")
$4 = thought proposer("1 2 3 4", "4-1=3(left:2 3 3)")
$5 = thought proposer("1 2 3 4", "2*1=2(left:2 3 4)")
$6 = state evaluator("1 2 3 4", "$1")
$7 = state evaluator("1 2 3 4", "$2")
$8 = state evaluator("1 2 3 4", "$3")
$9 = state evaluator("1 2 3 4", "$4")
$10 = state evaluator("1 2 3 4", "$5")
$11 = top k select("1 2 3 4", ["$1", "$2", "$3", "$4", "$5"], ["$6", "$7",
"$8", "$9", "$10"])
$12 = finish()
###

H. Pre-defined LLMCompiler Planner Prompts
The pre-defined LLMCompiler Planner prompt provides it with specific instructions on how to break down tasks and
generate dependency graphs while ensuring that the associated syntax is formatted correctly. This prompt contains specific
rules such as assigning each task to a new line, beginning each task with a numerical identifier, and using the $ sign to
denote intermediate variables.

- Each action described above contains input/output types and descriptions.
- You must strictly adhere to the input and output types for each action.
- The action descriptions contain the guidelines. You MUST strictly follow
those guidelines when you use the actions.
- Each action in the plan should strictly be one of the above types. Follow
the Python conventions for each action.
- Each action MUST have a unique ID, which is strictly increasing.
- Inputs for actions can either be constants or outputs from preceding
actions. In the latter case, use the format $id to denote the ID of the
previous action whose output will be the input.
- Ensure the plan maximizes parallelizability.
- Only use the provided action types. If a query cannot be addressed using
these, invoke the finish action for the next steps.
- Never explain the plan with comments (e.g. #).
- Never introduce new actions other than the ones provided.

20

An LLM Compiler for Parallel Function Calling

In addition to user-provided functions, the Planner includes a special, hard-coded finish function. The Planner uses this
function either when the plan is sufficient to address the user query or when it can no longer proceed with planning before
executing the current plan, i.e., when it deems replanning necessary. When the Planner outputs the finish function, its
plan generation stops. Refer to Appendix G for examples of the Planner’s usage of the finish function in planning. The
definition of the finish function is as below and is included as a prompt to the Planner along with the definitions of other
user-provided functions.

finish():
- Collects and combines results from prior actions.
- A LLM agent is called upon invoking join to either finalize the user

query or wait until the plans are executed.
- join should always be the last action in the plan, and will be called in

two scenarios:
(a) if the answer can be determined by gathering the outputs from tasks to

generate the final response.
(b) if the answer cannot be determined in the planning phase before you

execute the plans.

I. ParallelQA Benchmark Generation
Inspired by the IfQA benchmark (Yu et al., 2023), our custom benchmark ParallelQA contains 113 examples that are
designed to use mathematical questions on factual details of different entities to answer questions, thus requiring a mix of
search and mathematical operations that are interdependent in various ways. For instance, the benchmark includes examples
like “If Texas and Florida were to merge and become one state, as well as California and Michigan, what would be the
largest population density among these 2 new states?” requires four parallel search tasks, followed by math tasks dependent
on the search outcomes, that can be executed in parallel.

The main objective of the benchmark is to quantify the framework’s ability to decompose an input into multiple tasks to
derive an answer. Therefore, we have meticulously selected 56 distinct entities across various domains whose attributes
can be accessible from Wikipedia search. By minimizing tool execution (i.e., Wikipedia search) failures, we have aimed
our benchmark to effectively assess the frameworks’ abilities to decompose questions into multiple tasks, plan them
out, and derive final answers based on observations. Furthermore, to incorporate diverse execution patterns, we crafted
various dependency patterns that perform unary and binary math operations after searching for additional information about
entities in a given question. We have also curated different questions that accommodate different numbers of maximally
parallelizable tasks, ranging from 2 to 5, and we have included varying numbers of joins between parallel function calls
as well to increase problem complexity. For instance, we have 2 and 3 joins in Fig. 3 (b) and (c), respectively. The
benchmark contains 113 different examples, that were populated by GPT-4 based on the aforementioned criteria and labeled
by humans afterward.

J. Details of the Game of 24 and the Tree-of-Thoughts Approach
The Game of 24 is a mathematical reasoning game that challenges players to manipulate a given set of four numbers, using
the basic arithmetic operations of addition, subtraction, multiplication, and division, to arrive at the number 24. The rule of
this game is that the given numbers must be used only once. For instance, given the numbers 2, 4, 4, and 7, one possible
solution is 4× (7− 4)× 2 = 24. This is a non-trivial reasoning benchmark for LLMs, highlighted by the fact that even
advanced models like GPT-4 exhibit only a 4% success rate, even when using chain-of-thought prompting (Yao et al.,
2023b).

In ToT, the problem is solved in several steps. At each step, the LLM, referred to as the thought proposer, generates
thoughts. Each thought is a partial solution that consists of two numbers and an arithmetic operation between them. Then,
these thoughts are fed into the state evaluator which assigns a label for each of them. These labels are ‘sure,’ ‘likely,’ and
‘impossible,’ which are given to thoughts to denote how likely they could produce 24 with additional arithmetic operations
between the result and the remaining numbers. Only the thoughts that are likely to produce 24 continue onto the next step.
This process is illustrated in Figure J.6.

21

An LLM Compiler for Parallel Function Calling

Input: 2, 4, 4, 7

7-4=3
(left: 2, 3, 4)

7/2=3.5
(left: 3.5, 4, 4)

4+4=8
(left: 2, 7, 8)

2*3=6
(left: 4, 6)

4*6=24
(left: 24)

4-2=2
(left: 2, 3)

4/2=2
(left: 2, 3)

Thought Proposer
Input: 2, 4, 4, 7
Possible next steps:

State Evaluator
Evaluate if given numbers can reach 24
(sure/likely/impossible)

Figure J.6. Visualization of the Tree of Thoughts (ToT) in the Game of 24. Each node represents a distinct proposal, beginning with the
root node and branching out through the application of single operations by the thought proposer. Subsequent states are evaluated by the
state evaluator for their potential to reach the target number 24. The ToT retains the top-5 states according to their values.

K. Details of WebShop Experiments
K.1. WebShop Environment

The WebShop environment simulates an online shopping platform. Tasks are designed for the agent to find the item that best
matches the given instruction. For instance, if the instruction specifies, “I am looking for a queen-sized bed that is black,
and priced lower than 140.00 dollars,” the agent’s task is to pinpoint the bed that precisely fits these criteria: “queen-sized,”
“black,” and “priced under 140.00 dollars.” For each item, there is an associated reward measuring how well this item
matches the instruction based on price, item options, and other details contained in the item page. The evaluation metrics
are the success rate—the proportion of episodes where the selected product satisfies all requirements—and the average
score—the mean reward across episodes.

K.2. Baseline Methods

In addition to ReAct, we use LASER (Ma et al., 2023) and LATS (Zhou et al., 2023a) as baseline methods to compare
against LLMCompiler. LASER (Ma et al., 2023) solves tasks through a state-exploration approach. In the context of
WebShop, the possible environment pages are encoded as different states (e.g., search page, item page, and item detail
subpage). Actions are used to transition between these states, such as executing a search query, selecting an item, checking
the item detail, navigating the next search page and so on. The Webshop exploration is therefore reduced to a search problem
on the given state-space graph.

Using a variant of Monte Carlo Tree Search, LATS (Zhou et al., 2023a) plans its actions by constructing a decision tree,
evaluating potential moves based on their likelihood of success, and selecting actions through a balance of exploration and
exploitation. The agent then adapts its strategy based on feedback from the environment, learning from both successes and
failures to refine its decision-making process. This iterative approach allows LATS to navigate complex online shopping
tasks, albeit much more slowly due to its exhaustive tree search.

22

