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Abstract

Susceptibility to misinformation describes the001
degree of belief in unverifiable claims, a latent002
aspect of individuals’ mental processes that is003
not observable. Existing susceptibility studies004
heavily rely on self-reported beliefs, which can005
be subject to bias, expensive to collect, and006
challenging to scale for downstream applica-007
tions. To address these limitations, in this work,008
we propose a computational approach to effi-009
ciently model users’ latent susceptibility levels.010
As shown in previous work, susceptibility is in-011
fluenced by various factors (e.g., demographic012
factors, political ideology), and directly influ-013
ences people’s reposting behavior on social me-014
dia. To represent the underlying mental process,015
our susceptibility modeling incorporates these016
factors as inputs, guided by the supervision of017
people’s sharing behavior. Using COVID-19 as018
a testbed, our experiments demonstrate a sig-019
nificant alignment between the susceptibility020
scores estimated by our computational mod-021
eling and human judgments, confirming the022
effectiveness of this latent modeling approach.023
Furthermore, we apply our model to annotate024
susceptibility scores on a large-scale dataset025
and analyze the relationships between suscep-026
tibility with various factors. Our analysis re-027
veals that political leanings, etc., psychological028
factors exhibit varying degrees of association029
with susceptibility to COVID-19 misinforma-030
tion, and shows that susceptibility is unevenly031
distributed across different professional and ge-032
ographical backgrounds.1033

1 Introduction034

False claims spread on social media platforms, such035

as conspiracy theories, fake news, and unreliable036

health information. They mislead people’s judg-037

ment, promote societal polarization, and exacerbate038

distrust in government (Pennycook and Rand, 2021;039

1We will release all the code used in our paper, along with
our trained model and all collected data.

Nan et al., 2020). The harm is especially significant 040

in various contentious events, including elections, 041

religious persecution, and the global response to the 042

COVID-19 pandemic (Ecker et al., 2022). Many 043

works have investigated the observable behavior 044

of misinformation propagation such as where the 045

information propagates (Taylor et al., 2023), how 046

people share it (Yang et al., 2020), and what people 047

discuss about it (Gupta et al., 2022). However, it is 048

still crucial but challenging to understand the un- 049

observable mental and cognitive processes of how 050

individuals believe misinformation (Ecker et al., 051

2022). Individual susceptibility (i.e., the likelihood 052

of believing and being influenced by misinforma- 053

tion) plays a pivotal role in this context. If one is 054

more susceptible to misinformation, they are not 055

only more likely to share but also more prone to 056

being misled by them (Scherer et al., 2020). 057

Previous works have investigated the psycho- 058

logical, demographic, and other factors that may 059

contribute to the high susceptibility of an indi- 060

vidual (Brashier and Schacter, 2020; Pennycook 061

and Rand, 2017). However, these studies heavily 062

rely on self-reported belief towards false claims 063

collected from questionnaire-based participant sur- 064

veys (Escolà-Gascón et al., 2021; Rosenzweig et al., 065

2021), which presents several limitations. For in- 066

stance, different participants might interpret belief 067

levels differently. Moreover, the data collection is 068

labor-intensive, thereby limiting the scale of down- 069

stream research on the size, scope, and diversity of 070

the target population (Nan et al., 2022). 071

People’s mental processes, which are unobserv- 072

able and influenced by various factors, directly af- 073

fect several externalized behaviors, such as repost- 074

ing on social media (Mitchell et al., 2019; Brady 075

et al., 2020; Islam et al., 2020; Altay et al., 2022). 076

Building on these prior works, we propose a com- 077

putational method to efficiently model individu- 078

als’ unobservable susceptibility levels only based 079

on their observable social media posting and shar- 080
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Figure 1: Computational Modeling of Susceptibility to Misinformation. We represent user susceptibility as a
latent variable, which we capture using a shallow neural network. Our model is trained with the supervision of
users’ observable sharing behaviors, employing two loss functions: binary classification entropy and triplet loss.

ing behaviors. We represent users based on their081

historical posts and perform multi-task learning082

to simultaneously learn to classify whether a user083

would share a post, as well as to rank susceptibility084

scores among similar and dissimilar users when the085

same content is seen. This computational model-086

ing method unlocks the scales of misinformation-087

related studies and provides a novel perspective to088

reveal users’ belief patterns.089

In this paper, we focus our experiments on090

COVID-19 misinformation, and our evaluations091

demonstrate that the estimations from our model092

are highly aligned with human judgment when as-093

sessed through a susceptibility comparison task.094

The correlation study between estimated and095

human-annotated susceptibility verifies the effec-096

tiveness of the indirect susceptibility modeling097

method. To further illustrate the significance of098

our work, we employ our model to annotate sus-099

ceptibility levels on a large-scale dataset. Building100

upon this extensive susceptibility labeling, we then101

conduct a set analysis to examine how various fac-102

tors relate to susceptibility. Our analysis reveals103

that psychological factors, professional fields, and104

political leanings are associated with susceptibil-105

ity to varying degrees. Notably, this large-scale106

analysis enabled by our computational susceptibil-107

ity modeling corroborates the findings of previous108

studies based on self-reported beliefs, e.g. confirm-109

ing that stronger analytical thinking is an indicator110

of lower susceptibility. Moreover, the results of our111

analysis show the potential to extend findings in the112

existing literature. For example, we demonstrate113

that the distribution of COVID-19 misinformation114

susceptibility in the U.S. exhibits a certain degree115

of correlation with political leanings. 116

2 Related Work 117

Measure of Susceptibility The common practice 118

to measure susceptibility is to collect self-reported 119

absolute or relative agreement or disagreement with 120

(or perceived accuracy, credibility, reliability, or va- 121

lidity of) one or more claims verified to be false 122

from a group of individuals (Roozenbeek et al., 123

2020; Escolà-Gascón et al., 2021; Rosenzweig 124

et al., 2021; Nan et al., 2022). A small number 125

of previous studies indirectly assess the suscepti- 126

bility by its impact, however, they can only cap- 127

ture behaviors rather than people’s beliefs (Loomba 128

et al., 2021). Cheng et al. (2021) defines a heuristic 129

susceptibility score as the radio of misinformation 130

posts out of all user’s posts, which unrealistically 131

simplifies the definition of susceptibility. Instead of 132

using expensive and limited self-reported beliefs, 133

we propose a computational model to estimate sus- 134

ceptibility at scale. 135

Contributing Factors and Application of Sus- 136

ceptibility Relying on the manually collected 137

susceptibility annotation, previous research 138

investigates the psychological, demographic, and 139

more factors that contribute to users’ susceptibil- 140

ity (Bringula et al., 2021; van der Linden, 2022). 141

These factors include emotion (Sharma et al., 2022) 142

(e.g. anger and anxiety; Weeks, 2015), analytic 143

thinking (hui Li et al., 2022), partisan bias (Roozen- 144

beek et al., 2022a), source credibility (Traberg and 145

van der Linden, 2022), and repetition (Foster et al., 146

2012). Many theories have been proposed about 147

the reason behind suscetibility (Scherer et al., 148
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2020), including limited knowledge acquiring149

and literacies capabilities (Brashier and Schacter,150

2020), strong preexisting beliefs (Lewandowsky151

and Ecker, 2012), neglecting to sufficiently reflect152

about the truth (Pennycook and Rand, 2017) or153

overconfidence (Salovich et al., 2020).A better154

understanding of the phenomenon and mechanism155

of susceptibility can facilitate various downstream156

applications. These include analyzing the spread157

of bots (Himelein-Wachowiak et al., 2021),158

revealing community properties in information159

pathways (Taylor et al., 2023; Ma et al., 2023),160

combating misinformation by emphasizing161

publisher (Dias et al., 2020) and prebunking inter-162

ventions based on inoculation (Roozenbeek et al.,163

2022b). However, the absence of a computational164

modeling framework significantly limits the scale165

of current susceptibility research.166

Inferring Unobservables from Observables La-167

tent constructs or variables refer to concepts that are168

not directly observable or measurable. Many stud-169

ies have shown that unobservable variables can be170

inferred indirectly through models based on observ-171

able ones (Bollen, 2002; Borsboom et al., 2003).172

These unobservable variables can be estimated us-173

ing various modeling techniques, including nonlin-174

ear mixed-effects models, hidden Markov models,175

or latent class models. In our work, we utilize a176

neural network-based architecture to model peo-177

ple’s latent susceptibility level to misinformation,178

guided by the supervision provided by their observ-179

able sharing behaviors on social media.180

3 Computational Susceptibility Modeling181

Misinformation is characterized as information that182

is false, inaccurate, or misleading, which could183

be created deliberately or accidentally (Pennycook184

and Rand, 2021). The susceptibility to misinfor-185

mation represents the belief in misinformation and186

related constructs, including discernment between187

true and false claims and the extent to which ex-188

posure to misinformation misleads subsequent de-189

cisions (Nan et al., 2022). Previous research on190

susceptibility and misinformation mainly relied191

on self-reported beliefs collected using surveys or192

questionnaires - they suffered from problems like193

being subject to bias, expensive to collect, and chal-194

lenging to reproduce and scale up.195

Existing studies indicating that believing a piece196

of misinformation can influence various outward197

behaviors, such as sharing actions. For example,198

previous studies of the inattention or “classical rea- 199

soning” account contend that people are committed 200

to sharing accurate information, but the unique con- 201

text of social media disrupts their capacity to criti- 202

cally assess the accuracy of news (Pennycook and 203

Rand, 2021; van der Linden, 2022). These studies 204

suggest that people are more likely to share things 205

they genuinely believe (Altay et al., 2022). Inspired 206

by this observation, we propose to model user’s 207

unobservable susceptibility only based on their his- 208

torical posting and sharing behaviors, which are the 209

most available and the easiest collectable data from 210

social media (§3.1) as shown in Fig. 1. Therefore, 211

our proposed framework can efficiently infer users’ 212

susceptibility levels to misinformation on a large 213

scale, demonstrating the potential to expand the 214

scope of previous misinformation-related research. 215

Furthermore, because social media users utilize 216

posts to express their personal and inner thoughts, 217

they reveal information about their characteristics 218

through their posts. Therefore, our proposed sus- 219

ceptibility modeling can incorporate users’ infor- 220

mative hidden factors, such as personality traits, 221

analytical thinking, and emotion, to infer a user’s 222

susceptibility to misinformation. These additional 223

pieces of information are otherwise very difficult 224

to directly collect on social media. 225

3.1 Modeling Unobservable Susceptibility 226

Content-Sensitive Susceptibility In our work, 227

we consider the susceptibility of user u when a par- 228

ticular piece of misinformation p is perceived (i.e. 229

su,p). This allows us to account for the fact that an 230

individual’s susceptibility can vary across different 231

content, influenced by factors such as topics and 232

linguistic styles. By focusing on the susceptibil- 233

ity to specific pieces of misinformation, we aim to 234

create a more nuanced, fine-grained, and accurate 235

representation of how users interact with and react 236

to different misinformation. 237

User and Misinfo Post Embeddings We induce 238

user and post embeddings to reflect hidden factors 239

of the user personality traits and content of the 240

post. As a component of the computational model, 241

we use SBERT (Reimers and Gurevych, 2019), 242

which is developed upon RoBERTa-large (Liu et al., 243

2019), to compute the embedding vector to repre- 244

sent the information contained in the misinforma- 245

tion and user historical posts. We consider the 246

misinformation post as a sentence and produce its 247

representation with SBERT. For the user embed- 248
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ding, we calculate the average of sentence repre-249

sentations for the user’s recent original posts. More250

specifically, for every user-post pair (u, p), we251

gather the historical posts written by user u within252

a 10-day window preceding the creation time of253

the misinformation post p, to learn a representation254

of user u at that specific time.2255

Computational Model for Susceptibility Given256

the input of user historical posts for the user u and257

the content for misinformation post p, the suscepti-258

bility computational model is expected to produce259

the susceptibility score su,p as shown in Eq. 1, re-260

flecting the susceptibility of u when p is perceived.261

su,p = suscep(E(u), E(p)) (1)262

We first obtain the embeddings E(p) and E(u)263

for post p and user u, where u is represented by the264

user’s historical tweets and E is the frozen SBERT265

sentence embedding function. The susceptibility266

score is calculated by the function suscep, which267

is implemented as a multi-layer neural network,268

taking the concatenation of the user and post em-269

beddings as inputs. During the training phase, we270

maintain the sentence embedder as a fixed com-271

ponent and exclusively train the weights for the272

suscep function. Then the learned suscep func-273

tion can be applied to generate susceptibility scores274

for new pairs of users (u) and posts (p) during the275

inference process.276

3.2 Training with Supervision from277

Observable Behavior278

Susceptibility is a latent variable and cannot be279

directly observed. Consequently, it is impractical280

to directly apply supervision to su,p since only the281

user u themselves know their own beliefs regarding282

content p. To address this challenge, we regard sus-283

ceptibility as a crucial factor for sharing behavior284

and train the susceptibility computational model285

using the supervision signals obtained from the286

observable behavior of sharing misinformation.287

To determine the probability of user u sharing288

post p, we compute the dot product of the embed-289

dings of the user and post content, incorporating290

the susceptibility score for the same pair of u and p291

estimated by our model as a weighting factor, and292

pass the resulting value through a sigmoid function,293

as illustrated in (2).294

2We chose the 10-day timeframe because it provides a
substantial amount of data to represent a user and is also
recent enough to capture their dynamics.

prp = σ (E(u) · E(p) · su,p) (2) 295

It is important to highlight that we do not directly 296

utilize the susceptibility score to estimate sharing 297

probability because sharing behavior depends not 298

solely on susceptibility levels but also on various 299

potential confounding factors. For instance, it is 300

possible that a user may possess a significantly high 301

susceptibility score for a piece of misinformation 302

but decides not to share it, potentially influenced 303

by factors such as their personality, the impact of 304

social influence, concerns about potential reper- 305

cussions, and their emotional state at that specific 306

moment, among other variables. To account for 307

these potential confounding factors as comprehen- 308

sively as possible, we incorporate a dot product of 309

the user and post embeddings into our model. 310

Objectives To better train our computational 311

model, we perform multi-task learning to utilize 312

different supervision signals. First, we consider a 313

binary classification task of estimating repost or not 314

with a cross-entropy loss. Additionally, we perform 315

the triplet ranking task (Chen et al., 2009; Hoffer 316

and Ailon, 2014) to distinguish the subtle differ- 317

ences among the susceptibility scores of multiple 318

users when the same false content is present. 319

During each forward pass, our model is pro- 320

vided with three user-post pairs: the anchor pair 321

(ua, p), the similar pair (us, p), and the dissimilar 322

pair (uds, p). We regard the similar user us as the 323

user who reposted p if and only if user ua reposted 324

p. The dissimilar user uds is defined by reversing 325

this relationship. When multiple candidate users 326

exist for either us or uds, we randomly select one. 327

However, if there are no suitable candidate users 328

available, we randomly sample one from the pos- 329

itive (for “reposted” cases) or negative examples 330

(for “did not repost” cases) and pair this randomly 331

chosen user with the misinformation post p. 332

In Eq. 3, we define our loss function. Here, yi 333

takes the value of 1 if and only if user ui reposted 334

misinformation post p. The parameter α corre- 335

sponds to the margin employed in the triplet loss, 336

serving as a hyperparameter that determines the 337

minimum distance difference needed between the 338

anchor and the similar or dissimilar sample for the 339

loss to equal zero. Besides, λ is the control hy- 340

perparameter, which governs the weighting of the 341

binary cross-entropy and triplet loss components. 342
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Lbce(ui, p) = − (yi log(prt(ui, p)) + (1− yi) log(1− prt(ui, p)))

Ltriplet(ua, us, uds, p) = ReLU(∥sua,p − sus,p∥22 − ∥sua,p − suds,p∥
2
2 + α)

L(ua, us, uds, p) =
λ

3

∑
i∈{a,s,ds}

Lbce(ui, p) + (1− λ)Ltriplet(ua, us, uds, p) (3)

4 Dataset and Experiment Setup343

We have chosen Twitter as our data source because344

it hosts a diverse collection of users and allows345

for free-text personal and emotional expression.346

Furthermore, Twitter provides crucial metadata, in-347

cluding timestamps and location data, which are348

useful for our subsequent analysis.349

Misinformation Tweets We consider two mis-350

information tweet datasets: the ANTi-Vax dataset351

(Hayawi et al., 2021) was collected and annotated352

specifically for COVID-19 vaccine misinformation353

tweets. And CoAID (Covid-19 Healthcare Misinfor-354

mation Dataset; Cui and Lee, 2020) encompasses a355

broader range of misinformation related to COVID-356

19 healthcare, including fake news on websites and357

social platforms. The former dataset contains 3,775358

instances of misinformation tweets, while the latter359

contains 10,443. However, a substantial number of360

tweets within these two datasets do not have any re-361

post history. Hence, we choose to retain only those362

misinformation tweets that have been retweeted by363

valid users. Finally, we have collected a total of364

1,271 misinformation tweets for our study.365

Positive Examples We define the positive exam-366

ples for modeling as (upos, p) pairs, where user367

upos viewed and retweeted the misinformation post368

p. We obtained all retweeters for each misinforma-369

tion tweet through the Twitter API.370

Negative Examples Regarding negative exam-371

ples, we define them as (uneg, p) pairs where user372

uneg viewed but did not retweet misinfo post p.373

However, obtaining these negative examples poses374

a considerable challenge, because the Twitter API375

does not provide information on the “being viewed”376

activities of a specific tweet. To address this issue,377

we construct potential negative users uneg who are378

highly likely to have viewed a particular post p but379

did not repost it, following these heuristics: 1) uneg380

should be a follower of the author of the misinfor-381

mation post p, 2) uneg should not retweet p, and 3)382

uneg was active on Twitter within 10 days before383

and 2 days after the timestamp of p.384

Total Positive Negative
# Example 7658 3811 3847
# User 6908 3669 3255
# Misinfo tweet 1271 787 1028

Table 1: Data Statistics of our constructed training
dataset. We show the statistics for the number of the
user-tweet pairs (# Example), unique users (# User), and
unique misinformation tweets (# Misinfo tweet) in the
overall dataset and the positive and negative subsets.

In the end, we collected 3,811 positive examples 385

and 3,847 negative examples, resulting in a dataset 386

consisting of a total of 7,658 user-post pairs. We 387

divide the dataset into three subsets with an 80% 388

- 10% - 10% split for train, validation, and test 389

purposes, respectively. The detailed statistics of the 390

collected data are illustrated in Tab. 1. We provide 391

the training details of our model in Appendix B. 392

5 Evaluation 393

We demonstrate the effectiveness of our susceptibil- 394

ity modeling by directly comparing our estimations 395

with human judgment (§5.1) and indirectly evaluat- 396

ing for assessing sharing behavior (§5.2, §5.3). 397

5.1 Validation with Human Judgement 398

Due to the abstract nature of susceptibility and the 399

absence of concrete ground truth, we encounter 400

challenges in directly assessing our susceptibility 401

modeling. As a result, we tend to human evalua- 402

tions to validate the effectiveness of our modeled 403

susceptibility. Given the inherent subjectivity in 404

the concept of susceptibility, and to mitigate po- 405

tential issues arising from variations in individual 406

evaluation scales, we opt not to request humans to 407

annotate a user’s susceptibility directly. Instead, 408

we structure the human evaluation as presenting 409

human evaluators with pairs of users along with 410

their historical tweets and requesting them to de- 411

termine which user appears more susceptible to 412

overall COVID-19 misinformation. We provide 413

more details regarding the human judgment frame- 414

work and the utilized interface in Appendix C. 415

Subsequently, we compared the predictions 416

made by our model with the human-annotated pre- 417
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Figure 2: Susceptibility Score Distribution among
positive and negative user-tweet pairs. The distribution
of susceptibility levels, estimated by our computational
modeling, among positive (red) and negative (blue) ex-
amples exhibits a significant difference.

dictions. To obtain predictions from our model,418

we compute each user’s susceptibility to overall419

COVID-19 misinformation by averaging their sus-420

ceptibility scores to each COVID-19 misinforma-421

tion tweet in our dataset. As presented in Tab. 2,422

our model achieves an agreement of 72.90% with423

human predictions, indicating a solid alignment424

with the annotations provided by human evaluators.425

Additionally, we consider a baseline that directly426

calculates susceptibility scores as the cosine simi-427

larity between the user and misinformation tweet428

embeddings. Compared to this baseline, our sus-429

ceptibility modeling brings a 9.35% improvement.430

Moreover, we conduct a comparison with ChatGPT431

by providing it with instructions based on the task432

description of the susceptibility level comparison433

setting in a zero-shot manner (more details are in434

Appendix E). We notice that our model even outper-435

forms predictions made by ChatGPT, despite Chat-436

GPT being a significantly larger model than ours.437

These results of the human judgment validate the438

effectiveness of our proposed susceptibility model-439

ing, showcasing its capability to reliably estimate440

user susceptibility to COVID-19 misinformation.441

Our Baseline ChatGPT
Agreement 72.90 63.55 62.62

Table 2: Comparison with Human Judgement.
Baseline refers to a direct comparison based on co-
sine similarity between user and misinformation embed-
dings, while ChatGPT denotes prompting the ChatGPT
model (engine gpt-3.5-turbo) for determining the more
susceptible user in a zero-shot manner.

5.2 Inferred Susceptibility Score Distribution442

We provide a visualization showing the distribu-443

tion of susceptibility scores produced by our model444

for both the positive and negative examples within 445

the training data. As illustrated in Fig. 2, there is 446

a significant disparity in the distribution between 447

positive and negative examples. The difference in 448

the means of the positive and negative groups is 449

statistically significant, with a p-value of less than 450

0.001. This confirms our assumption that the sus- 451

ceptibility level to misinformation is a fundamental 452

influencing factor for subsequent sharing behavior. 453

5.3 Resulting Sharing Behavior Prediction 454

Additionally, as described in §3, a high susceptibil- 455

ity level to misinformation is highly likely to lead to 456

subsequent sharing behavior on social media. Here, 457

we reinforce this assumption by showcasing that 458

our learned susceptibility model exhibits a strong 459

capability to predict subsequent sharing behavior. 460

When tested on the held-out test set, our model 461

achieves a test accuracy of 78.11% and an F1 score 462

of 77.93. These results indirectly demonstrate the 463

validity of our computational modeling for latent 464

susceptibility within the human thought process. 465

6 Analysis 466

To further illustrate the significance of our work 467

for the Computational Social Science community 468

in susceptibility and misinformation research, we 469

conducted a large-scale analysis on our collected 470

large Twitter datasets and analyzed the correla- 471

tion between user’s susceptibility and their psycho- 472

logical factors (§6.1), professional backgrounds 473

(§6.2), and geographical distribution (§6.2). Our 474

findings demonstrate that the large-scale analysis 475

enabled by our proposed efficient susceptibility 476

modeling not only corroborates the results of previ- 477

ous questionnaire-based studies, but also shows the 478

potential of further extending the scope of research 479

on susceptibility and misinformation. 480

6.1 Correlation with Psychological Factors 481

Previous research on human susceptibility to health 482

and COVID-19 misinformation primarily relied on 483

questionnaire surveys (Scherer et al., 2020; Nan 484

et al., 2022; van der Linden, 2022). These studies 485

have identified several psychological factors that 486

influence individuals’ susceptibility to misinforma- 487

tion. For instance, analytical thinking (as opposed 488

to intuitive thinking), trust in science, and positive 489

emotions have been linked to a greater resistance to 490

health misinformation. Conversely, susceptibility 491

to health misinformation is frequently associated 492

6



Factors Coeff. Factors Coeff.
Analytic Thinking -0.31 Emotion - Positive -0.08
Political Leaning 0.13 Emotion - Anxious 0.08
Ethnicity 0.09 Emotion - Angry 0.16
Religiosity 0.10 Emotion - Sad 0.14
Technology -0.09 Swear 0.18
Illness 0.09 Wellness -0.02

Table 3: Correlation Coefficients between our modeled
susceptibility levels and various psychological factors.
Our model reveals correlations that are consistent with
findings from prior questionnaire-based health suscepti-
bility studies. The factors with absolute scores greater
than 0.1 are highlighted in red (+) and blue (-).

with factors such as conspiracy thinking, religios-493

ity, conservative ideology, and negative emotions.494

In this part, we analyze the correlation coefficients495

between our modeled susceptibility scores and the496

aforementioned factors to determine whether our497

results align with previous research findings.498

To achieve this, we compute factor scores for499

each user in our dataset based on their historical500

tweets using LIWC Analysis.3 We mainly consider501

the following factors: Analytic Thinking, Emo-502

tions (Positive emotions, Anxious, Angry and Sad),503

Swear, Political Leaning, Ethnicity, Technology,504

Religiosity, Illness and Wellness. These factors505

have been extensively studied in previous works506

and can be inferred from a user’s historical tweets.507

We calculate and plot the Pearson correlation coef-508

ficients between each factor and the susceptibility509

level estimated by our model in Tab. 3.510

In our analysis, the correlations are consistent511

with findings from previous social science studies512

that relied on surveys to assess participants’ health513

susceptibility. For instance, Analytic Thinking is a514

strong indicator of low susceptibility, with a corre-515

lation coefficient of -0.31. Conversely, certain fea-516

tures such as Swear, Political Leaning, and Angry517

exhibit a weak correlation with a high susceptibility518

level. These results not only corroborate the con-519

clusions drawn from previous questionnaire-based520

studies (van der Linden, 2022; Nan et al., 2022) but521

also provide further validation for the effectiveness522

of our computational modeling for susceptibility.523

6.2 Community Differences524

We further leverage our computational model to525

investigate how susceptibility level differs and com-526

3liwc.app. For each user, we compute the final factor
score by calculating the average value across the user’s histor-
ical tweets. However, for emotional factors like anxiety and
anger, which may appear less frequently, we choose to use the
maximum value instead to better capture these emotions.

pares between different community groups on so- 527

cial networks. Specifically, two different types of 528

communities are considered: professional and geo- 529

graphical communities. 530

To perform a reliable analysis among different 531

communities, a large-scale user dataset is needed. 532

To address this requirement, we sample 100,000 533

users across the world from the existing COVID-19 534

Tweet Dataset (Taylor et al., 2023) which contains 535

all COVID-19-related tweets for a certain time. 4 536

Furthermore, for better interpretability, we normal- 537

ize the resulting susceptibility scores within the 538

range of -100 to 100 using Min-Max normaliza- 539

tion. We define -100 to indicate that the individual 540

holds the most resistance to misinformation, while 541

100 means the individual is easiest to believe in 542

misinformation when encountered. To obtain an 543

aggregated susceptibility score for a community, 544

we calculate the mean of individual susceptibility 545

scores for all users within that community. 546

Occupation and Professional Community We 547

first explore how susceptibility varies among users 548

with different occupations. There is a social con- 549

sensus regarding the susceptibility of the practition- 550

ers within a specific occupation community. For 551

example, susceptibility scores towards health mis- 552

information are expected to be significantly lower 553

among experts in health-related fields compared 554

to the general population (van der Linden, 2022; 555

Nan et al., 2022). We consider the following pro- 556

fessional communities and compare their average 557

susceptibility scores: Education (Edu), Society and 558

Public (S&P), Health and Medicine (H&M), Fi- 559

nance and Business (F&B), Science and Technol- 560

ogy (S&T), Arts and Media (A&M), as well as N/A 561

for Twitter users who do not specify their occupa- 562

tion in their user descriptions. 563

The results are presented in Tab. 4. It is worth 564

noting that professions closely associated with 565

S&T, H&M, and Edu tend to exhibit lower sus- 566

ceptibility to COVID-19 misinformation. In con- 567

trast, occupations within the A&M area demon- 568

strate comparatively higher susceptibility, possibly 569

because of their greater exposure to misinformation 570

and stronger emotional reactions. These findings 571

align with our expectations and reinforce the pre- 572

4Besides, we make sure each sampled user has posted
more than 100 historical tweets between January 2020 and
April 2021. For each user, we utilize the Twitter API to gather
their user descriptions and location information, after which
we extract and categorize their occupations from their self-
reported descriptions with ChatGPT in a zero-shot manner.
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vious conclusions that expertise and knowledge in573

relevant fields serve as protective factors against574

misinformation (Nan et al., 2022)5.575

Occupation Suscep. # Users
N/A 4.6201 35145
Arts and Media -0.1504 12635
Science and Technology -2.2076 7170
Finance and Business -5.4192 5844
Health and Medicine -5.4762 6272
Society and Public -6.7747 10973
Education -7.8070 5261

Table 4: Susceptibility Distribution by Professional
Field. We present the average susceptibility scores,
estimated by our computational modeling, for 6 main
professional fields. S&T, H&M, and Edu (highlighted
in blue) tend to have lower susceptibility to COVID-19
misinformation, consistent with existing studies.

Figure 3: Susceptibility Distribution by U.S. State.
We plot the susceptibility score, estimated by our com-
putational modeling (with Bayesian smoothing), for
each state in the U.S. The average susceptibility score
in the overall U.S. (-2.87) is used as the threshold, with
scores above it displayed in red, and those below it in
blue. Due to insufficient data points, we are only dis-
playing data for 48 contiguous states within the U.S.

Geographical Community We further investi-576

gate the geographical distribution of susceptibil-577

ity to COVID-19 misinformation, specifically fo-578

cusing on different U.S. states.6 This analysis en-579

ables us to explore the influence of political ideol-580

ogy associated with different U.S. states (Gelman,581

2008) on susceptibility to misinformation. Out of582

the 100,000 users sampled from around the world,583

25,653 users are from U.S. states with more than584

5We notice that Twitter users who don’t declare their occu-
pation in their user description (N/A) exhibit a higher suscepti-
bility to COVID misinformation. This may be because those
who are willing to declare their profession are often public
figures who care more about their reputation.

6Given the imbalance in the number of users from different
U.S. states, we calculate average susceptibility scores for each
state with Bayesian smoothing. We use the overall mean and
overall standard deviation as priors, and the more users in the
state, the less the overall mean will affect that state’s score.

200 users for each state. As shown in Fig. 3, the 585

distribution of susceptibility levels estimated by 586

our computational modeling is imbalanced across 587

U.S. states and demonstrates a certain degree of cor- 588

relation with political leanings. In general, states 589

known to have a more conservative population tend 590

to have relatively higher susceptibility scores, while 591

states that are considered more liberal have lower 592

scores. The average susceptibility score for users 593

in blue or red states is -3.66 and -2.82 respectively.7 594

We observe that 60% of the ten states with the high- 595

est susceptibility scores are red states, and 90% of 596

the ten states with the lowest susceptibility scores 597

are blue states. This trend corresponds with the con- 598

clusion observed in various previous studies, where 599

political ideology influences people’s perspectives 600

on scientific information (McCright et al., 2013; 601

Baptista et al., 2021; Imhoff et al., 2022). However, 602

it is important to acknowledge the limitations of 603

our analysis, as it solely reflects the estimated sus- 604

ceptibility distribution of the sampled users within 605

each state. In Appendix F, we present the aver- 606

age susceptibility scores calculated based on our 607

sampled users for each U.S. state, along with the 608

corresponding number of users. 609

7 Conclusion 610

In this work, we propose a computational approach 611

to efficiently model people’s latent susceptibility 612

to misinformation. While previous research on 613

susceptibility is heavily relied on self-reported be- 614

liefs collected from questionnaire-based surveys, 615

our model trained in a multi-task manner can 616

estimate user’s susceptibility levels only based 617

on their posting and sharing behaviors on social 618

media. When compared with human judgment, 619

our model shows highly aligned predictions on 620

a susceptibility comparison evaluation task. To 621

demonstrate the potential of our proposed compu- 622

tational modeling in extending the scope of pre- 623

vious misinformation-related studies, we leverage 624

the susceptibility scores estimated by our model 625

to analyze factors that influence susceptibility to 626

COVID-19 misinformation. Our analysis considers 627

a diverse population from various professional and 628

geographical backgrounds, and the results obtained 629

through our computational modeling not only align 630

with but also support and extend the findings from 631

previous survey-based social science studies. 632

7Red and blue states are determined by the 2020 presiden-
tial election results, with red states leaning Republican and
blue states leaning Democratic.
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Limitations633

Besides investigating the underlying mechanism of634

misinformation propagation at a large scale, the sus-635

ceptibility scores estimated by our model have the636

potential to be used to visualize and interpret indi-637

vidual and community vulnerability in information638

propagation paths, identify users with high risks639

of believing in false claims and take preventative640

measures, and use as predictors for other human641

behaviors. However, while our research represents642

a significant step in computational modeling sus-643

ceptibility to misinformation, several limitations644

should be acknowledged.645

First, our model provides insights into suscepti-646

bility based on the available data and the features647

we have incorporated. However, it’s important to648

recognize that various other factors, both individ-649

ual and contextual, may influence susceptibility to650

misinformation. These factors, such as personal651

experiences and offline social interactions, have not652

been comprehensively incorporated into our mod-653

eling and should be considered in future research.654

Moreover, our modeled susceptibility scores rep-655

resent an estimation of an individual’s likelihood656

to engage with misinformation. These scores may657

not always align perfectly with real-world suscep-658

tibility levels. Actual susceptibility is a complex659

interplay of cognitive, psychological, and social660

factors that cannot be entirely captured through661

computational modeling. Our modeling should be662

viewed as a valuable tool for identifying trends663

and patterns, rather than as a means for providing664

definitive individual susceptibility assessments.665

Finally, our study’s findings are based on a spe-666

cific dataset and may not be fully generalizable to667

all populations, platforms, or types of misinforma-668

tion. Especially when examining the geographical669

distribution of susceptibility, it’s important to note670

that not all U.S. states have a sufficient amount671

of Twitter data available for analysis, due to the672

high cost of data collection. Furthermore, platform-673

specific differences and variations in the types of674

misinformation can potentially impact the effec-675

tiveness of our modeling and the interpretation of676

susceptibility scores.677

Ethics Statement678

Analyzing and modeling susceptibility to misin-679

formation can potentially raise several ethical con-680

cerns, particularly when applied at an individual681

level. Due to its dual nature, our modeling can not682

only be used to identify users with a high risk of 683

believing in misinformation and taking preventa- 684

tive measures to reduce harm, but it also holds the 685

potential for misuse by malicious actors, leading 686

to privacy violations, stigmatization, and targeted 687

attacks. To minimize the risk, we refrained from 688

using any personally identifiable information (PII) 689

data in our work. Nevertheless, it remains impor- 690

tant to carefully consider the ethical implications 691

associated with the deployment of computational 692

models like ours, enhance regulatory oversight, and 693

ensure responsible and transparent utilization. 694

We acknowledge the need for ongoing ethical 695

scrutiny and are committed to the responsible re- 696

lease of our trained model, and this includes re- 697

quiring users to sign a Data Use Agreement that 698

explicitly prohibits any malicious or harmful use 699

of our model. Within this agreement, researchers 700

and practitioners will also be required to acknowl- 701

edge the limitations (§7), that our modeling may 702

not fully or accurately represent an individual’s real 703

susceptibility level. 704
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A Potential Questions995

We address here some potential questions readers996

might have about our work:997

What is the goal of the method design? We aim998

to design a framework to estimate users’ suscep-999

tibility indirectly with a comprehensive represen-1000

tation of their observable reposting behavior data1001

rather than training their ground-truth susceptibil-1002

ity. The sentence embedding model (described in1003

Appendix B) is selected to create rich representa-1004

tions of users and posts. Its effectiveness has been1005

shown in existing works (Levine et al., 2022; Liu1006

et al., 2022, 2023; Xu et al., 2023; Yang et al., 2024;1007

Deng et al., 2024).1008

Proposed framework lacks novelty? Multi-fold1009

novelty: Our work contributes to the literature in1010

multiple dimensions. 1) Proposing a brand new1011

task without existing data, baselines and evaluation1012

setup. Modeling user’s susceptibility efficiently1013

and empirically while no ground-truth suscepti-1014

bility to train or evaluate is provided; 2) Being1015

the first to make large-scale susceptibility analysis1016

possible, while previous works rely on expensive1017

self-reported human-collected questionnaires; 3)1018

Being the first large-scale analysis of the relation-1019

ship between susceptibility and social/psych. fac-1020

tors, professional backgrounds and geographical1021

distribution.1022

Conventional model is a secondary component1023

under a bigger framework: Even though we use1024

RoBERTa model trained in previous works to ob-1025

tain user and post embeddings, we are the first to1026

design an indirect estimation framework for sus-1027

ceptibility from users’ history. The off-the-shelf1028

sentence embedding model is a secondary compo-1029

nent and it can be replaced with other models, such1030

as LLMs.1031

Not just method novelty: The susceptibility mod-1032

eling framework/method is only one part of our1033

contribution, and more importantly, our other im-1034

portant core contribution is the large-scale analy-1035

sis enabled by our proposed susceptibility model-1036

ing method and the interesting findings shown by1037

this large-scale analysis. These findings not only1038

corroborate the findings of previous questionnaire-1039

based studies (which are not possible to scaled-up)1040

but also showing the potential of extending the1041

scope of misinfo research.1042

Reposting behavior not sufficient to provide a1043

full understanding of believing? We acknowl-1044

edge that modeling the user’s susceptibility to mis- 1045

information only with the supervision of their shar- 1046

ing behavior on social media is a little bit limited. 1047

However, other information, like “user’s intent be- 1048

hind reposting”, is almost never indicated on any 1049

social media, and intractable to large-scaly collect 1050

and impossible to scale up, which goes against our 1051

original motivation. And actually, only users them- 1052

selves know their sharing intents, whether they are 1053

expressing approval or perhaps irony, which we 1054

believe are rare cases. Therefore, we propose to in- 1055

fer a user’s susceptibility to misinformation based 1056

solely on their historical tweets, because user’s his- 1057

torical posts and reposting behavior are much easier 1058

to collect. This not only enables effective model- 1059

ing of user’s susceptibility and more importantly, 1060

it enables large-scale analysis to help people better 1061

understand the behind mechanism, patterns, influ- 1062

encing factors and distribution of human’s suscep- 1063

tibility to misinformation, which has been shown 1064

in our work. We have also acknowledged the data 1065

unavailability in the Limitations section of this pa- 1066

per. 1067

Why not use user personality features? We do 1068

not explicitly incorporate additional user charac- 1069

teristics into our modeling, because the additional 1070

information is relatively difficult to get on social 1071

media. However, users could display their personal- 1072

ities, etc., user characteristics information through 1073

their posts, thus justifying our design choice that 1074

our modeling solely based on users’ historical posts 1075

could also take these user characteristics into ac- 1076

count. To further confirm our point, there are lots 1077

of previous works proposing to predict/extract a 1078

user’s personality from their posted or liked social 1079

media posts (Golbeck et al., 2011; Alsadhan and 1080

Skillicorn, 2017). 1081

How reliable are LIWC scores used in analysis 1082

in Section 6.1? LIWC is a widely used, well- 1083

established, and convenient tool for analyzing text 1084

data in the field of computational linguistics and 1085

psychology. There are substantial works based on 1086

LIWC analysis and the reliability of LIWC has 1087

also been demonstrated in numerous studies across 1088

various domains (Wang et al., 2016; Chung and 1089

Pennebaker, 2018; Sundararajan et al., 2022; Boyd 1090

et al., 2022). 1091

Why not add more comparing baselines? We 1092

work on a brand new task setting: estimate users’ 1093

susceptibility indirectly without any ground-truth 1094
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susceptibility labels provided. The only input to1095

the estimation model is users’ historical posts. The1096

unique setting prevents us from finding any prior1097

works that follow this challenging setting, which1098

makes it impossible for us to conduct a direct com-1099

parison with existing susceptibility works. Hence,1100

we come up with two methods: cosine similarity be-1101

tween embeddings and ChatGPT. We also observe1102

that cosine similarity is not a weak baseline, and it1103

yields even better performance than ChatGPT.1104

Why not include more ablation studies? Our1105

work mainly focuses on developing a novel frame-1106

work for susceptibility modeling and demonstrates1107

its potential to enable large-scale analysis and facil-1108

itate susceptibility and misinformation-related re-1109

search. Thus, we prioritize our emphasis on design-1110

ing a reasonable modeling, rather than necessarily1111

aiming for the optimal modeling. This is because,1112

as previously stated, the unobservable nature and1113

lack of ground truth for susceptibility prevent us1114

from directly optimizing the modeling for suscep-1115

tibility itself; instead, we can only do so for the1116

indirect sharing predictions task. Consequently, ab-1117

lation studies are of very limited significance in1118

this context. We believe that including too many1119

ablation studies could even deviate the audience’s1120

focus away from our research goals.1121

How to/what is the performance of adapting the1122

proposed framework to other domains besides1123

COVID-19? The advantage of our method is the1124

capability to estimate susceptibility without the1125

need for ground-truth user susceptibility labels. Us-1126

ing users’ historical posts, target posts, and users’1127

retweet behavior labels is sufficient to train the1128

model. We will release our code, and people can1129

try to robustness check it and extend it to more1130

domains.1131

B Training Details1132

We use the sentence-transformers/all-roberta-1133

large-v1 model from sentence-transformers as1134

our sentence embedder. Through grid search on1135

learning rates ranging from 1e-5 to 5e-4 and λ val-1136

ues from 0 to 1, we train our model using a learning1137

rate of 3e-5, set the hyperparameter λ to 0.9, and1138

the margin α to 1 for 100 epochs on the training set,1139

as detailed in §3. Following the training process,1140

we select the checkpoint with the lowest validation1141

loss and proceed to evaluate its performance on the1142

test set.1143

C Human Judgement 1144

Here, we provide details about the human judgment 1145

framework utilized in our work. 1146

During human judgment, annotators are tasked 1147

with selecting the more susceptible user based on 1148

five historical tweets for each user. We offer the 1149

user interface used for human judgment in Figure 4. 1150

In the task description, susceptibility is described 1151

as being more likely to believe, be influenced by, 1152

and propagate COVID-19 misinformation. To ac- 1153

count for annotator uncertainty, we provide four 1154

options: Definitely User A, Probably User A, Defi- 1155

nitely User B, and Probably User B. Furthermore, 1156

we also request annotators to identify the “most sus- 1157

ceptible tweet” for the selected user, to enhance the 1158

reliability of annotations. This tweet should best 1159

exemplify the user’s susceptibility to COVID-19 1160

misinformation or be the basis for the annotator’s 1161

decision. 1162

Also, it is important to note that even when both 1163

users seem to have low susceptibility to COVID- 1164

19 misinformation, we still ask the annotator to 1165

make a choice. This is because our goal is to rank 1166

users based on their relative susceptibility, offering 1167

a comparative assessment rather than an absolute 1168

determination. 1169

In total, we randomly sampled 110 user pairs 1170

and collected three annotations for each user pair. 1171

We recruited human annotators from Amazon Me- 1172

chanical Turk (AMT) in the U.S. and compensated 1173

each annotator with $0.5 (hourly wage higher than 1174

the federal minimum wage). To determine the gold 1175

label for each user pair, we applied a weighted 1176

majority voting approach, assigning a value of 0.5 1177

to Probably User X and a value of 1 to Definitely 1178

User X. We excluded user pairs with tied annota- 1179

tions, resulting in a final dataset of 107 user pairs. 1180

The kappa score for interrater agreement among 1181

the annotators is 0.74. 1182

D Examples of User Posts and 1183

Susceptibility Scores 1184

The user KatCapps’s susceptibility score is esti- 1185

mated as 38.62 when the user sees the tweet: 1186

The coronavirus infection rate is still too
high. There will be a second wave | David
Hunter [Link]

1187

History tweets posted by the user are: 1188
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• RT @gregggonsalves: Study estimates 241189

states still have uncontrolled coronavirus1190

spread1191

• RT @JoeSudbay: OSHA chas not issued en-1192

forceable guidelines for protecting employees1193

from covid-19, as it did during the H1N1 out-1194

break in1195

• RT @mlipsitch: New Oped with @rickmalley1196

| Treating Mild Coronavirus Cases Could Help1197

Save Everyone - The New York Times1198

• RT @stevesilberman: Texas church that1199

rushed to reopen cancels masses after priest1200

dies and others contract #coronavirus.1201

• RT @carlzimmer: Several cases of coron-1202

avirus reported after a swim party in Arkansas,1203

governor says1204

• RT @GlennKesslerWP: They Survived the1205

Worst Battles of World War II. And Died of1206

the Virus.1207

Another user AmitSin91018424’s susceptibility1208

score is estimated as -12.27 when the user sees1209

the tweet:1210

Dominic Cummings has broken Covid-
19 policy trust, say top scientists [Link]

1211

History tweets posted by the user are:1212

• RT @guardian: The pandemic has laid bare1213

the failings of Britain’s centralised state | John1214

Harris1215

• RT @guardian: Coronavirus world map:1216

which countries have the most cases and1217

deaths?1218

E ChatGPT Prompt Template1219

In Fig. 5, we present the template used to prompt1220

ChatGPT for the susceptibility comparison task1221

(§5.1).1222

F Average Susceptibility Scores and User1223

Counts by U.S. State1224

We provide the aggregated susceptibility scores1225

estimated by our computational modeling for each1226

U.S. state (§6.2), along with the number of sampled1227

users in Tab. 5.1228
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Figure 4: Human Judgement Interface utilized in our work. Participants are instructed to select the more
susceptible user from a user pair based on five historical tweets for each user.

In this task, you will be presented with 2 Twitter users, each with 5 historical tweets presented in
chronological order. Your task is to determine which of the two users is more susceptible to COVID-
related misinformation, which we define as being more likely to believe, be influenced by, and
propagate such misinformation, e.g. through retweeting.

User A's Historical Tweets:
{userA_text}

User B's Historical Tweets:
{userB_text}

It is necessary to make a choice even if both users appear to have low susceptibility to COVID
misinformation.
In such cases, you must select the user who, in your judgment, is relatively more susceptible.

Please answer with one of the following options without any other text: A | B.

Figure 5: ChatGPT Prompt Template for the susceptibility comparison task.
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State Suscep. # Users State Suscep. # Users
Georgia 0.3935 669 Idaho -3.2296 265
Florida -0.2404 1592 Washington -3.2577 526
Arizona -0.5566 499 Montana -3.2590 543
Louisiana -1.3878 202 Oregon -3.2612 260
Ohio -1.6120 679 Utah -3.3324 206
Texas -1.7478 1627 Vermont -3.3548 556
Missouri -1.9076 308 Indiana -3.3901 270
Nevada -1.9857 294 Delaware -3.4139 359
Michigan -2.0996 575 Arkansas -3.4179 418
Alabama -2.3902 377 North Carolina -3.5324 635
Maryland -2.4763 527 South Dakota -3.6020 351
South Carolina -2.5456 298 Virginia -3.7276 528
Mississippi -2.5886 257 Oklahoma -3.7577 291
Maine -2.6193 208 New Hampshire -4.1011 399
Illinois -2.6294 816 Iowa -4.1603 249
Nebraska -2.6339 324 New York -4.4226 2835
Kansas -2.6541 328 West Virginia -4.8056 285
Kentucky -2.7774 469 Minnesota -4.8423 372
Colorado -2.8109 363 Pennsylvania -4.8700 873
Tennessee -2.8554 397 Rhode Island -5.0661 488
New Mexico -2.9178 518 Wisconsin -5.2446 279
Wyoming -2.9401 319 New Jersey -5.2594 598
North Dakota -2.9789 331 Connecticut -5.6912 242
California -3.2206 2849 Massachusetts -6.3191 761

Table 5: Susceptibility Scores Estimated by Our Computational Model and Number of Sampled Users per
U.S. State. Due to insufficient data points, we only consider 48 contiguous states within the U.S.
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