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ABSTRACT

Reinforcement learning (RL) based on the final answer’s reward has driven recent
progress in small language models (SLMs) on reasoning-heavy tasks such as
math and code. However, applying the same techniques to retrieval-augmented
generation (RAG) benchmarks like multi-hop QA has yielded limited gains—often
trailing supervised or prompting-only baselines. Instead, we argue that a viable
path for RL in multi-hop QA is to use test-time scaling judiciously, for optimizing
both the final answer accuracy and the efficiency in reaching that answer. We
propose FrugalRAG, a two-stage finetuning framework that adaptively reduces
the number of retrieval steps based on a question’s difficulty. First, we train an
SLM with supervised finetuning on a full-exploration policy that generates broad
sub-queries. Then, we apply RL to adaptively prune search depth based on question
difficulty, directly rewarding policies that balance correctness with frugality. Unlike
prior approaches requiring 100× more data, our method achieves competitive
performance with only 1,000 examples. On HotPotQA and other multi-hop
QA benchmarks, FrugalRAG attains state-of-the-art efficiency–accuracy tradeoffs,
cutting retrieval cost nearly in half. Moreover, on the challenging BrowseCompPlus
benchmark, it generalizes zero-shot and surpasses SLM-based and other baselines.
These results demonstrate the use of RL—not to increase reasoning steps but to
optimize them—as an effective solution for scalable, efficient RAG.

1 INTRODUCTION

We study the problem of answering questions, such as “Can a microwave melt Toyota Prius battery?”,
given access to a large unstructured corpus like Wikipedia. The de facto approach to solving the
problem is to use language models (LMs) coupled with the ability to retrieve relevant documents
(e.g., Wiki passages) against queries, i.e., the retrieval-augmented generation (RAG) paradigm (Jeong
et al., 2024; Jiang et al., 2023; Chan et al., 2024; Asai et al., 2023). However, answering complex
questions often requires multi-hop reasoning and retrieval, i.e., the LM has to iteratively decompose
the user utterance into sub-queries or search phrases (e.g., “melting point of Toyota Prius battery”),
retrieve documents relevant to the sub-queries, and reason through the retrieved documents to issue
further sub-queries, until the LM is able to generate an answer for the original query.

Based on the success of reinforcement learning (RL) in math and code applications (DeepSeek-AI,
2025), recent work applies RL-based finetuning to optimize retriever tool calling and generation
of the right queries to answer a given question. However, the accuracy gains in multi-hop QA
benchmarks are less impressive. For instance, on the HotPotQA benchmark (Yang et al., 2018), a
simple ReAct-based Yao et al. (2023) strategy of letting a model generate up to 10 subqueries leads
to higher document recall (63%) than state-of-the-art RL methods such as Search-R1 (see Table 2).
Therefore, the key question is not how RL can be used to improve accuracy, rather how RL can be
used to optimize the search process and make a RAG system more efficient (e.g., for HotPotQA, most
questions can ideally be solved in 2-3 search queries). Ideally, we want a system that can adapt the
number of search queries based on a question’s difficulty level.

On efficiency, a second problem is the availability of labelled training data that maps a question to its
correct answer. Outside of general web question-answering, it may be difficult to obtain ground-truth
labels for questions when adapting a RAG system to work in a real-world application domain (with
potentially private documents), Typical solutions in the literature (Jin et al., 2025a; Hsu et al., 2024),
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however, train on 90,000-1,00,000 examples from existing benchmarks such as HotPotQA (Yang
et al., 2018). Therefore, a second key problem is finetuning a language model for retrieval when
labelled data is scarce. For concreteness, we set the number of training examples as 1000, an order of
magnitude lower than existing efforts.

Under these considerations, we ask the question: How can we train a model to answer questions
using as few search calls as necessary? And can we do it using only 1000 training examples? Our
solution, FRUGALRAG, is a two-stage framework that uses exploration to generate a large number
of search queries per question (Stage 1), and uses RL to optimize the number of search queries per
question (stage 2). Specifically, in the first stage, the model is trained to maximize evidence coverage
by generating diverse and informative search queries across multiple hops. In the second stage, we
post-train the model using RL to decide when to stop retrieving and generate an answer. This decision
is modeled explicitly, allowing the model to weigh the cost of further retrievals against the confidence
in the retrieved evidence. Optimizing for coverage and efficiency in a single stage leads to unstable
training; we find that models either over-retrieve or stop too early. Our key insight is that learning
when to stop is more naturally learned through reinforcement learning (RL) signals, whereas better
coverage can be obtained by repeatedly issuing high quality search queries using frameworks such as
ReAct.

We evaluate FRUGALRAG on standard multi-hop datasets such as HotPotQA (Yang et al., 2018),
2WikiMultiHopQA (Ho et al., 2020) and MuSiQue (Trivedi et al., 2022b), using both document
retrieval metrics such as recall and answer quality metrics. Compared to baselines, we show that
FRUGALRAG obtains the highest document recall and answer quality while incurring a low number
of search queries per question. In particular, our models obtain state-of-the-art accuracy on the
recently released FlashRAG index benchmark for HotPotQA and the MuSiQue, despite being trained
on only 1000 examples.

We also find that the same FRUGALRAG model generalizes to harder information search tasks. A
recently released benchmark from OpenAI tests models’ abilities on challenging needle-in-a-haystack
problems, wherein the reasoning steps (and hence the search queries) to find the answer can be
much larger. The same FRUGALRAG 7B model described above generalizes zero-shot on this
out-of-domain task; obtaining an accuracy of 20%, which is higher than that of bigger models such
as DeepSeek-R1 and Search-R1-32B. Remarkably, it adapts to issue a larger number of queries for
the BrowseComp data compared to earlier datasets, unlike other RL methods such as Search-R1 (Jin
et al., 2025a).

2 RELATED WORK

In this section, we present a detailed overview of the relevant literature comprising representative
multi-hop RAG methods, recent work leveraging reinforcement learning for search, and finally
standard metrics for evaluation.

Multi-Hop RAG. Retrieval Augmented Generation is an active area of research that aims to ground
the responses generated by LLMs in real world information, tackling fundamental limitations like
hallucinations and trustworthiness. Several works (Guu et al., 2020; Lewis et al., 2021; Shao et al.,
2023; Jeong et al., 2024; Jiang et al., 2023; Asai et al., 2023; Chan et al., 2024; Hsu et al., 2024; Li
et al., 2025; Wang et al., 2025) have been proposed in recent literature that explore this problem.
Guu et al. (2020) and Lewis et al. (2021) showed that augmenting the inputs of language models with
retrieved information significantly improved their performance on knowledge intensive tasks like
question answering. Subsequently, Trivedi et al. (2022a) leveraged few-shot Chain-of-Thought (Wei
et al., 2022) prompts and iteratively retrieved information for complex questions that required multiple
reasoning and retrieval steps (i.e. multi-hop settings). Shao et al. (2023) also incorporate a similar
iterative retrieval approach. By using the intermediate traces, the IRCoT is able to decide what
to retrieve by issuing the right search queries. Iter-RetGen (Shao et al., 2023) improves evidence
gathering in multi-hop scenarios by combining retrieval and generation iteratively, such that a model’s
response is incorporated in the reasoning trace. However, both IRCoT (Trivedi et al., 2022a) and
Iter-RetGen (Shao et al., 2023) rely on a fixed or predefined number of retrieval loops at inference,
offering limited control over latency. Toolformer(Schick et al., 2023) uses a self-supervised objective
to train an external model that decides to call tools (like Bing and Google search engines). ReAct (Yao
et al., 2023) uses a general prompting framework by interleaving thoughts, actions, and tool calls
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in order to perform complex tasks. Khattab et al. (2023) invoked LLMs through declarative calls,
allowing a more structured programmatic way of calling LLMs. Further Khattab et al. (2023) also
design example-data efficient compilers to optimize a given metric.

Beyond prompting, SelfRAG (Asai et al., 2023) trains small language models (SLMs) with dense
supervision from stronger models to decide when to retrieve external information during question
answering. RQRAG (Chan et al., 2024) leverages LLMs to curate datasets that teach smaller models
essential skills such as query decomposition and backtracking. In addition, Chan et al. (2024)
highlight the effectiveness of advanced decoding strategies such as tree-of-thought sampling for
identifying high-quality reasoning trajectories. More recently, approaches like CoRAG (Wang
et al., 2025) have scaled test-time computation by jointly reasoning over multiple trajectories and
training models through rejection sampling. However, these methods (SelfRAG, RQRAG, CoRAG)
demand substantial supervision (100k+ annotated examples) and are constrained either by inference
inefficiency (RQRAG (Chan et al., 2024)) or by limited flexibility (CoRAG (Wang et al., 2025)),
which relies on predefined number of search). Other works, such as DRAGIN (Su et al., 2024) and
Adaptive RAG (Jeong et al., 2024), train multiple modules with large-scale supervised data to enable
dynamic retrieval. SimpleDeepResearcher (Sun et al., 2025) propose data-engineering strategies
to mitigate the problem of domain shift between training and testing environment showing that
supervised finetuning on a small number of representative samples can yield strong improvements. In
contrast to these approaches, we introduce the first method that jointly accounts for both training and
inference costs. Our key intuition is that reinforcement learning can be leveraged to scale down search
effectively, thereby reducing supervision requirements while maintaining competitive performance.

Reinforcement Learning for Search. Recently, framing search query as an RL problem has received
attention. LeReT (Hsu et al., 2024) is an early work that adopted RL by performing preference
optimization using diverse few shot prompts leveraging hundred-thousands of ground truth annotated
documents. However, this finetuning process is computationally expensive and cannot be cheaply
and readily generalized to variable-hop scenarios. As a result, LeReT utilizes a fixed amount of
compute (i.e. search calls) per instance during inference. Similarly, concurrent works, Jin et al.
(2025a) and Chen et al. (2025a) propose end-to-end RL-based optimization that only leverages the
final answer annotation. R1-Seacher (Song et al., 2025) proposes an RL-only strategy for finetuning
demonstrating strong performance on multihop RAG benchmarks by utilizing a curated balanced
dataset with outcome based rewards. These methods show that RL can effectively be used to
teach the search query generator model to issue more search queries for multi-hop problems without
considering latency. Our two-stage RL framework, by contrast, first explores without RL to maximize
recall and then learns to stop at test time using RL.

Metrics for Evaluation. Multi-hop QA involves two sub-tasks: retrieving relevant documents, and
then answering the question based on the documents. Some methods report document retrieval-
specific metrics such as recall (Hsu et al., 2024) whereas others report final answer metrics such as
exact match (Jin et al., 2025a). Typically, a model is trained to optimize a particular metric (such as
recall) and also evaluated on the same metric. For robustness, in this work we train on the recall metric
and test on all metrics, including final answer metrics. Unlike Wang et al. (2025); Li et al. (2025);
Jin et al. (2025a); Song et al. (2025) we train on the reasoner module which performs reasoning and
issues search calls keeping the final answer generator fixed.

3 FRUGALRAG: EFFICIENT TWO-STAGE FINETUNING FOR RAG

We describe FRUGALRAG, a novel framework for enhancing retrieval augmented generation in LMs
by decoupling the evidence exploration stage from answer generation. FRUGALRAG demonstrates
several key advantages over contemporary RAG approaches – (1) Requires only 1000 annotated
training examples which is a 100 times reduction in dataset size compared to existing works (Jin et al.,
2025a; Hsu et al., 2024; Chan et al., 2024), (2) Dynamically adapts test-time compute which results
in low inference time latency and high retrieval recall, unlike existing fixed compute methods (Hsu
et al., 2024). Algorithm 1 summarizes our framework.

Problem Formulation. Let Q denote a complex user question that requires multiple iterative
retrievals to answer. Let f denote a language model (LM) that, at each reasoning hop, examines the
current context and determines the next action. At hop h (where 1 ≤ h ≤ B, and B is the maximum
allowed number of hops), the model f produces a thought–action-search query triplet (Th, Ah, Sh).
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The search query Sh is passed to a retriever R(·), which returns a set of documents: Dh = R(Sh)
from the document index I.

LetD0 denote the initial context which is either empty or initialized asR(Q). At hop h, the model has
access to the context: {Q} ∪ {(Dh, Th, Ah, Sh)}h−1

0 . This includes the original query, all previously
retrieved documents, and the previously generated thought, action, search query triplets. The process
continues until the model outputs a special FINISH action, terminating after hterm hops (or at the
budget limit B). At this point, a separate generator LM g is invoked to produce the final answer,
conditioned on the original question Q and the full context accumulated up to termination.

The central challenge for f is to iteratively construct highly targeted queries Sh such that the retriever
R can surface a minimal yet sufficient set of documents to answer Q within the hop budget B.

Our key observation is that, with sufficient test-time compute, even base models can generate multiple,
diverse search queries to address a question (e.g., see Sec 4, Table 2, ReAct+Dspy). Therefore, the
goal of our work is not to scale up test-time computation, as argued in prior work (Jin et al., 2025a;
Chen et al., 2025a), but rather to adaptively control it based on the difficulty of each question.

Our framework, FRUGALRAG requires access only to ground truth documents Y during training. It
does not require supervision in the form of final answer annotations. These documents are used to
provide fine-grained feedback signals. At inference time, FRUGALRAG relies solely on the input
question Q, the document index I, and a trained retrieverR.

In the following subsections, we describe the two stages of our learning algorithm: (1) Stage 1
(Sec. 3.1): Generating a base policy that maximizes evidence coverage through exploration, and (2)
Stage 2 (Sec. 3.2): Finetuning this policy with reinforcement learning to control test-time compute.

3.1 STAGE 1: EVIDENCE COVERAGE MAXIMIZATION (EXPLORE)

Gathering evidence plays a crucial role in answering multi-hop questions, which often require iterative
retrieval and reasoning across multiple sources. Drawing on recent advances in test-time scaling,
we observe that we can boost evidence coverage (i.e., recall) simply by letting the model f issue
multiple search queries Sh at inference time. This approach sidesteps the need for massive supervised
fine-tuning—instead, it harnesses the model’s own generated rollouts to gather, and then integrate
additional information. In the next section, we describe how we construct our training data and design
our fine-tuning protocol to fully leverage this capability.

Training Dataset Generation. We refer to a rollout as a set of outputs generated by the model
f . Each rollout comprises a thought-action pair (ThAh) at each hop h ∈ [1, B], where Ah is
either a call to the retriever R or FINISH indicating the end of rollout. This setup is similar to
the standard ReAct (Yao et al., 2023) framework which provides a general prompting template
for interleaving external (retrieved) information and model generated outputs. At each hop h, we
generate samples {(T 1

h , A
1
h, S

1
h) . . . (T

n
h , A

n
h, S

n
h )} using n bootstrapped prompts (Khattab et al.,

2023) (See Appendix B). For each search query Si
h, i ∈ [1, n] we retrieve corresponding documents

Di
h = R(Si

h), then discard any documents already present in the context. We then compute recall
against ground-truth labels and add the sample i that achieves the highest recall to the context for
the next hop h+ 1. This dataset generation strategy is simple and easily parallelizable. We conduct
two separate runs – a standard run where f is allowed terminate generation by generating FINISH,
and the second where f can only call the retriever till maximum budget is reached. Although the
former is more efficient and finishes before B search hops, we observe that the latter yields a higher
overall recall owing to a greater number of retrievals. Unlike previous work (Chan et al., 2024; Asai
et al., 2023; Hsu et al., 2024; Jin et al., 2025a) that generated orders of magnitude more data, we only
generate 1000 examples during this step.

Supervised “Exploration” Finetuning (FRUGALRAG-Explore). Although the base model f without
FINISH maximizes exploration, we cannot use it directly for reinforcement learning because it does not
include FINISH. Consequently, during fine-tuning, we sample rollouts from both the configurations
described above, i.e., 90% without FINISH and 10% with it. We want to use supervised finetuning to
build a strong base-policy for RL, that prioritizes exploration while ensuring that FINISH remains in
the model’s generation distribution. Hence, we finetune the model f to obtain our base policy fS .
At each iteration, the model predicts the next (Th, Ah, Sh) tuple given the rollout which comprises
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interleaved thought-action-search tuples and retrieved documents represented as an ordered set
{(D0, T0, A0, S0), (D1, T1, A1, S1) . . . (D(h−1), T(h−1), A(h−1), Sh−1)} till h − 1, using standard
cross-entropy error as the objective function. fS has several notable advantages – (1) off-the-shelf
model f does not explore. Despite prompt optimization, f is generally over-confident and predicts
the answer without sufficient exploration. (2) removing FINISH results in over-retrievals. We observe
that simply removing FINISH from the action space yields high recall even with the base model f ,
however, the model is forced to utilize the full budget for every question and cannot be post-trained
for efficiency as it never generates a rollout with FINISH.

3.2 STAGE 2: CONTROLLING TEST-TIME COMPUTE WITH RL

Given a finetuned base policy model fS , we propose a strategy that enables the model to generate
extended rollouts only when required. This mechanism allows the model to adaptively determine the
appropriate rollout length based on the complexity of the question, rather than scale the number of
retrievals as in recent RL techniques (Jin et al., 2025a). Since fS generally prioritizes exploration,
our only goal is to learn when to sufficient evidence has been gathered. In turn, we can also reduce
the overall search latency during inference whenever possible. Below we show how this problem
can be formulated as a reinforcement learning task, as it requires evaluating and comparing different
rollouts.

Reward Design. Our reward function is designed to guide the model toward discovering the optimal
rollout length. To compute the reward, we first generate the complete rollout using the policy fS and
then evaluate it with ground truth evidence. Let h∗ denote the optimal number of retrieval steps (or
hops), defined as the point beyond which further retrievals do not improve a predefined metric, say
c. If the model terminates at a hop hterm > h∗, it incurs a penalty for redundant steps. Conversely,
stopping at hterm < h∗ is also penalized to encourage sufficient exploration. This reward structure
enables the model to explore adequately for complex queries while avoiding unnecessary computation
for simpler ones. Mathematically,

R =



max

(
−Rmax,min

(
log

(
1−∆

∆

)
, Rmax

))
, if ∆ > 0 ∧ c ≥ τ (late stop)

Rmax + α ·
(
h∗

B

)
, if ∆ = 0 ∧ c ≥ τ (perfect stop)

max

(
−Rmax,min

(
log

(
1−∆

∆

)
, 0

))
, if c < τ (early stop)

(1)

Here, ∆ is the normalized difference (hterm − h)/B, where B is the maximum hop budget. Rmax

is the upper bound on the reward, and α is a tunable hyperparameter that scales the bonus for
stopping exactly at h∗. This bonus is proportional to h∗/B, thereby assigning higher reward to
correct terminations on more complex (i.e., longer) rollouts. A rollout is considered answerable if it
performs better than a threshold c ≥ τ .

Intuitively, the reward function penalizes deviations from the optimal stopping point in proportion
to |∆|. The closer the model stops to h∗, the higher the reward, with the maximum attained when
hterm = h∗.

In addition to R, we define a format reward Rf to enforce adherence to the format. If the output
deviates from the expected format and results in failed retrievals, we assign a reward of −0.5;
conversely, if the retrievals succeed, the model receives a reward of +0.5. This reward is averaged
across all hops. The final reward is the mean of the main reward R and the format reward Rf ,
yielding an overall reward in the range [−Rmax − 0.50, Rmax + α+ 0.50].

Optimal Rollout Length. We define the optimal rollout length h∗ as the minimum number of retrieval
steps required to answer a query Q effectively. Any additional retrievals beyond h∗ are considered
redundant. Conversely, if the rollout has not yet gathered sufficient evidence to answer the query, it
should continue retrieving. To balance retrieval efficiency and performance, we use FRUGALRAG-
Explore (fS) as a reference policy, assuming it represents the best achievable performance within a
fixed budget B. Similarly, we determine the threshold τ based on the performance of the base policy
FRUGALRAG-Explore (fS).
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Table 1: Results on HotPotQA, 2Wiki, and MuSiQue with ColBERTv2 retriever. FRUGALRAG
demonstrates superior performance on Model Based Evaluation (MBE) and Gold Evidence Recall
(%) compared to standard baselines.

Method HotPotQA 2Wiki MuSiQue
MBE Recall Searches MBE Recall Searches MBE Recall Searches

Zero-Shot 28.1 NA NA 28.4 NA NA 10.6 NA NA
Zero-Shot CoT 29.10 NA NA 29.8 NA 10.7 NA NA NA
Zero-Shot RAG 51.0 59.05 1 28.8 34.75 1 0.185 23.96 1
ReAct + DsPy 64.2 79.60 2.76 45.60 58.5 3.37 29.20 52.1 3.37

FrugalRAG-Explore 7B 67.70 86.40 5.99 47.6 68.90 5.99 30.10 59.10 5.93
FrugalRAG 7B 68.47 82.80 2.05 48.93 63.50 2.95 33.72 54.00 3.02

Table 2: Comparison of FRUGALRAG with state-of-the art methods on three datasets (HotPotQA,
2WIki, MuSiQue) using Answer (MBE) and Retrieval (Recall) metrics using E5-base-v2 retriever
model. FRUGALRAG achieves a consistently competitive performance despite only being trained on
1000 training examples.

Method #Train HotPotQA 2Wiki MuSiQue
MBE Recall Searches MBE Recall Searches MBE Recall Searches

Zero-Shot - 28.10 NA NA 28.4 NA NA 10.60 NA NA
Zero-Shot CoT – 29.10 NA NA 29.8 NA 10.7 NA NA NA
Zero-Shot RAG - 45.50 52.49 1 28.80 35.00 1 18.00 22.01 1
ReAct + Dspy 100 49.30 0.634 3.23 35.65 60.03 3.27 27.30 49.8 3.74
IRCOT - 45.60 66.90 3.31 30.53 57.80 3.41 20.62 44.10 3.19
ITER-RETGEN 36k 46.10 55.40 3.00 32.10 45.30 3.00 19.10 34.20 3.00
Ret-Robust 1000 39.38 35.90 4.02 45.17 31.50 4.23 24.24 18.80 4.23
Self RAG 7B 150k 37.60 52.60 1.00 30.10 41.30 1.00 15.00 26.70 1.00
Self RAG 13B 150k 39.70 52.60 1.00 31.50 41.30 1.00 15.00 26.70 1.00
O2 Searcher - 42.70 50.10 1.77 45.70 55.20 2.42 26.40 37.00 1.95
SimpleDeepSearcher 871 50.40 64.80 2.75 49.30 60.50 3.64 34.30 50.40 2.86
R1-Searcher 8k 57.66 69.10 2.22 52.00 60.40 2.36 39.78 57.70 2.31
Search-R1 100k+ 46.20 48.20 1.28 36.20 47.70 1.89 24.80 38.10 1.36
CoRAG 100k+ 58.20 64.30 4.00 59.00 65.40 4.00 40.50 54.00 4.00

FrugalRAG-7B 1000 69.50 70.40 2.89 53.00 58.80 3.03 41.50 53.30 3.30

Optimization. We adopt GRPO (Shao et al., 2024) optimization algorithm because of its memory
efficiency. At each hop h, we sample v tuples {T i

h, A
i
h, S

i
h}vi=1, and retrieve non-duplicate documents

Di
h. We collect sample tuples and documents through this process until FINISH or till maximum

budget is exhausted. For each rollout i, we then compute a cumulative reward using Eq. 1, and
backpropagate through every logit produced by the policy along that rollout.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks and Evaluation. We evaluate FRUGALRAG on three widely adopted multi-hop
retrieval-augmented generation (RAG) benchmarks—HotPotQA (Yang et al., 2018), 2WikiMul-
tiHopQA (Ho et al., 2020) (2Wiki), and MuSiQue (Trivedi et al., 2022b)—under their full-wiki
setting using the development splits, following the protocol of FlashRAG (Jin et al., 2025b). Be-
yond multi-hop RAG, we also assess FRUGALRAG in a highly challenging deep research scenario
using BrowseCompPlus (Chen et al., 2025b). To demonstrate the effectiveness of FRUGALRAG,
we experiment with three different retrievers: ColBERT-v2 (Santhanam et al., 2021), Qwen3-8B-
Embedding (Zhang et al., 2025), and E5-base-v2 (Wang et al., 2022). Additional details on the
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datasets and indexing are provided in Appendix C. Following prior work, we adopt a robust LLM
judge-based evaluation metric (Chen et al., 2025b) to assess the accuracy of the final answers (MBE -
Model Based Evaluation). We choose Qwen3-32B for answer evaluation. For retrieval-level evalua-
tion, we follow FlashRAG (Jin et al., 2025b) and use recall as the metric, which measures whether
the ground truth answer is present in the retrieved documents, assigning a score of 1 if it is found.
Finally, to evaluate efficiency, we report the number of searches performed as a proxy for latency
across different methods.

Baselines. We perform extensive experiments comparing FRUGALRAG with several strong baselines
and state-of-the-art models. Our evaluation covers: (1) zero-shot performance; (2) prompting-based
methods such as ReAct (Yao et al., 2023), IRCOT (Trivedi et al., 2022a), and DsPy (Khattab et al.,
2023); (3) finetuned approaches including Iter-RetGen (Shao et al., 2023), Ret-Robust (Yoran et al.,
2024), and Self-RAG (Asai et al., 2023). We further benchmark FRUGALRAG against recent
reasoning-focused models, including CoRAG (Wang et al., 2025), O2 Searcher (Mei et al., 2025),
Simple Deep Searcher (Sun et al., 2025), and R1-Searcher (Song et al., 2025).

Training. FRUGALRAG is model-agnostic; we train Qwen2.5-7B-Instruct using our two-stage
framework. Both supervised finetuning and reinforcement learning (RL) stages leverage the TRL
library (von Werra et al., 2020), with prompt bootstrapping based on DsPy (Khattab et al., 2023).
For each dataset, Stage 1 finetuning uses 1000 randomly sampled training examples, performing
full-parameter training for one epoch with a learning rate of 2× 10−5, weight decay of 0.01, and a
maximum sequence length of 4096 (Sec. 3.1). Stage 2 applies GRPO (Shao et al., 2024) to further
train the models (Sec. 3.2). Full hyperparameter details are in Appendix B.

4.2 MAIN RESULTS: EFFECTIVENESS OF FRUGALRAG

Table 1 compares FRUGALRAG with standard zero-retrieval and prompt-based baseline (ReAct).
For fair comparison, all baselines use the ColBERTv2 (Santhanam et al., 2021) retriever indexed on
Wikipedia (See Appendix B) and Qwen2.5-7B-Instruct as the base model. The key takeaway is that
FRUGALRAG consistently outperforms the baselines on both answer and retrieval metrics, using
competitive or significantly smaller number of searches on average.

The ReAct Few Shot (FS) baseline (Yao et al., 2023; Khattab et al., 2023) outperforms vanilla Retrieval
Augmented Generation. The optimized prompts enable ReAct FS to generate more search queries,
and as a result achieve very strong performance. Strikingly, on HotPotQA, ReAct FS achieves
(a) 79.60%, which is greater than the recall achieved by LeReT (Hsu et al., 2024) (77.1% using
Llama3.1-8B) after significant finetuning; signifying the importance of building a strong baseline.

Table 1 demonstrate the overall effectiveness of FRUGALRAG-Explore achieving the highest Recall
and MBE scores compared to all baselines. However, we note that FRUGALRAG-Explore is either
best or second best in terms of both answer and recall metrics but introduces a very high latency
compared to FRUGALRAG. Stage-2 finetuning significantly reduces the number of searches required
while retaining the performance across three datasets. For instance, the search count on HotPotQA
reduces on average by ≈50% across the three datasets while the MBE scores improve. Overall, our
results highlight that FRUGALRAG strikes a significantly better efficiency-accuracy tradeoff.

4.3 COMPREHENSIVE BASELINE COMPARISONS

Table 2 demonstrates the performance of FRUGALRAG against 14 baselines and state-of-the-art
RAG methods. For fair comparison, we setup our experiment using FlashRAG (Jin et al., 2025b)
with a common retriever backend, E5-Base-V2 and an index of 21 million wikipedia passages.

FRUGALRAG establishes a strong performance on HotPotQA achieving a MBE score of 69.50%,
significantly higher than the next best baseline at 58%. Notably, FrugalRAG is trained on only
1100 examples, yet outperforms state-of-the-art approches on HotPotQA. The second-best method,
CoRAG (Wang et al., 2025) is a “fixed” inference-time compute approach, i.e., it issues a predefined
number of searches (here, 4) regardless of the question. This makes CoRAG less generalizable to
more complex datasets requiring different number of searches or inefficient for much easier tasks.
On the contrary, FRUGALRAG adaptively assigns test time compute. Similarly, FRUGALRAG
ranks either best or second-best on MBE score on 2Wiki and MuSiQue demonstrating strong QA
capabilities.
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Table 3: BrowseCompPlus. FrugalRAG, trained on datasets such as HotPotQA generalizes to this
harder task and outperforms significantly larger models such as DeepSeek-R1.

Method Model Size Accuracy (%) Recall (%) Avg. Searches

Sonnet 4 - 37.35 47.33 9.03
Opus 4 - 36.75 50.84 10.24
kimi-k2-0711-preview - 35.42 38.38 11.22
Gemini-2.5-Flash - 34.58 40.19 9.77
Gemini-2.5-Pro - 29.52 35.31 6.04

oss-120b-low 120B 25.54 22.50 2.21
oss-20b-high 20B 35.06 49.29 23.87
oss-20b-medium 20B 30.48 41.31 13.64
oss-20b-low 20B 14.10 17.37 1.87
DeepSeek-R1-0528 - 16.39 16.32 2.72
Qwen3-32B 32B 10.72 7.80 0.94
Search-R1-32B 32B 11.08 10.17 1.69

FrugalRAG-ColBERTv2 (HotPotQA) 7B 20.46 23.57 7.95
FrugalRAG-ColBERTv2 (2Wiki) 7B 21.53 22.93 10.96
FrugalRAG-ColBERTv2 (MuSiQue) 7B 21.14 23.73 8.39

Table 4: Comparison of SFT baselines (Stage 1 and SFT Finish) vs. Ours across datasets.

Method HotpotQA 2Wiki Musique
Recall MBE Searches Recall MBE Searches Recall MBE Searches

E5
SFT (with FINISH) 68.9 57.8 2.84 52.6 43.8 3.48 52.5 31.8 3.43
FRUGALRAG-Explore 77.0 59.6 10.88 64.3 46.8 10.79 51.7 35.3 10.85
FRUGALRAG 70.4 69.5 2.89 58.8 53.0 3.03 53.3 41.5 3.30

ColBERTv2
SFT (with FINISH) 79.9 67.7 2.07 63.7 48.5 3.13 51.70 29.80 3.25
FRUGALRAG-Explore 86.4 67.7 5.99 68.9 47.6 5.99 59.1 30.1 5.93
FRUGALRAG 82.8 68.5 2.05 63.5 48.9 2.95 54.0 33.7 3.02

4.4 RESULTS ON DEEP RESEARCH

We evaluate FRUGALRAG on BrowseComp-Plus, a recent, challenging deep research dataset that
demands massively multihop search and reasoning. Strikingly, our models trained HotPotQA,
MuSiQue, and 2Wiki readily generalize to harder datasets like BrowseComp-Plus. In Table 3 we
show that FRUGALRAG issues between 7-10 queries on average despite being trained with a budget
of 5 queries. We show that FRUGALRAG achieves superior performance compared to many larger
models like Search-R1 32B, Qwen3-32B (Yang et al., 2025), and DeepSeek-R1 (DeepSeek-AI, 2025)
on both answer accuracy (MBE) and recall.

4.5 ANALYSIS

FrugalRAG is Adaptive. Table 5 shows that FRUGALRAG adaptively increases test-time compute,
measured as the number of searches, with the difficulty of the question. To quantify difficulty, we
use MuSiQue, which provides explicit labels for the expected number of hops, and 2Wiki, where
we use the number of ground-truth evidence documents as a proxy. As shown in Fig. 2, there is a
strong correlation between question hardness and the number of queries issued by FRUGALRAG:
r = 0.82 on 2Wiki and r = 0.95 on MuSiQue, demonstrating that FRUGALRAG effectively adapts
to multi-hop reasoning challenges.
FrugalRAG is robust. In Table 7, we report results for models trained on HotPotQA, 2Wiki,
and MuSiQue and evaluated across all datasets, testing FRUGALRAG’s ability to generalize to
unseen scenarios. Despite the distribution shift, FRUGALRAG maintains strong performance without
compromising efficiency. This robustness holds for both E5-base-v2 and ColBERT-v2 retrievers.
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Figure 1: FRUGALRAG on average outperforms fixed budget and SFT based baselines, demonstrating
the effectiveness of both Stage-1 finetuning and Stage-2 learning to control test time compute. The
plots show the Tradeoff metrics (See Table 4 for detailed results).

FrugalRAG outperforms SFT. To capture the trade-off between answer quality and retrieval cost,
we define a simple metric: Efficiency Tradeoff: MBE+Recall

2∗Searches . This metrics allow us to jointly evaluate
answer accuracy and evidence quality relative to the number of retrieval steps, enabling a comparison
of efficiency across models and budgets. To assess the impact of the RL-finetuning (Stage 2), we
conduct an ablation study by comparing FRUGALRAG against a simple baseline, called SFT (with
FINISH). This baseline is trained for 1 epoch on the dataset generated during Stage 1, but with one
key modification. Instead of sample 90% rollouts without FINISH, we sample all traces where the
model outputs FINISH on its own. In Fig. 1, we demonstrate that FRUGALRAG on average across all
models is better on both Efficiency Tradeoff. FRUGALRAG outperforms both FRUGALRAG-SFT
and FRUGALRAG-Explore by a significant margin using Qwen2.5-7B-Instruct on all the datasets as
illustrated in Fig. 1. We provide the metrics in Table 4.

Table 5: FRUGALRAG issues more queries for harder questions. We see a clear increasing trend in
num. of search queries with amount of ground truth evidence (2Wiki) and ground truth num. of hops.

2WikiMultiHopQA MuSiQue
Num

GT Evidence
Number of
Questions Searches Actual

Hops
Number of
Questions Searches

2 9,595 2.665 ± 1.430 2 1,252 3.054 ± 1.433
3 88 2.875 ± 1.483 3 760 3.924 ± 1.464
4 2,806 3.909 ± 1.502 4 405 4.205 ± 1.368

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this work, we argue that efficiency is an equally important metric to study in RAG solutions,
besides the traditional RAG metrics such as retrieval performance and accuracy of the generated
answers. We demonstrate that simple ReAct baseline that iteratively retrieves (by invoking the search
tool) and reasons (to decide what search call to issue next) is quite competitive, especially if we
can optimize its few-shot prompt using just tens of training examples. We propose a two-stage
framework FRUGALRAG that a) works with 1000 training examples, compared to state-of-the-art
RAG techniques that use over 100,000 examples, and b) yet achieves competitive accuracies while
also using far fewer search queries at inference time, on popular multi-hop QA datasets.
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Table 6: FrugalRAG is modular: We demonstrate on HotPotQA using the E5-base retriever that
FrugalRAG can be used with any answer generator in a plug and play fashion without sacrificing
performance.

HotPotQA
Method Recall MBE Searches
CoRAG 0.6430 0.5820 4.00
CoRAG + FrugalRAG 0.7040 0.5750 2.89

Table 7: FrugalRAG demonstrates robust performance: adapted using 1,000 training examples from
each of HotPotQA, 2Wiki, and MuSiQue, and evaluated on all datasets. Despite testing on unseen
data, FrugalRAG maintains high answer quality and evidence recall while requiring a low number of
searches.

HotPotQA 2Wiki MuSiQue

Method Variant Recall MBE Searches Recall MBE Searches Recall MBE Searches

FrugalRAG + E5
(HotPotQA) 70.40 69.50 2.89 60.40 49.66 3.623 53.70 34.10 3.47
FrugalRAG + E5
(2Wiki) 71.00 54.96 2.85 58.80 53.00 3.03 52.22 29.41 3.38
FrugalRAG + E5
(MuSiQue) 69.10 53.95 2.72 59.70 52.20 3.33 53.30 41.50 3.30

FrugalRAG + ColBERTv2
(HotPotQA) 82.80 68.47 2.05 64.20 48.47 3.07 53.80 36.27 2.75
FrugalRAG + ColBERTv2
(2Wiki) 81.90 68.34 2.56 63.50 48.93 2.95 53.80 34.30 3.10
FrugalRAG + ColBERTv2
(MuSiQue) 83.10 61.11 2.53 60.80 46.41 3.13 51.70 29.80 3.02

A ADDITIONAL RESULTS
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Figure 2: Question complexity and performance

B TRAINING DETAILS

Algorithm 1 shows the overall training framework of FRUGALRAG. We plan to publicly release our
code soon. Below, we discuss each step along with their implementation details.

Few-Shot Prompt Optimization Details. We leverage DSPy (Khattab et al., 2023) for automatic
few-shot prompt generation following LeReT (Hsu et al., 2024). Specifically, we use 50 training
examples (Linit) with the BOOTSTRAPFEWSHOTWITHRANDOMSEARCH method, which uses the
LM f to generate few-shot examples, selecting the best performing ones for subsequent prompting.
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We select 4 best performing few-shot prompts from a total of 15 candidate sets using the sum of
answer EM and answer passage match. Answer EM checks for an exact string-match between the
generated and actual answer, and passage match checks if the actual answer is present in the retrieved
passages. This step is crucial because it facilitates dataset generation using diverse rollouts and
ensures the answer format is followed by the model. For this step, we serve our model on one GPU
using VLLM (Kwon et al., 2023). For all experiments involving Qwen2.5, we utilize the 7B-Instruct
variant for prompt optimization. The optimized prompts are then reused without modification for the
3B variant.

Dataset Generation Details. For each few-shot prompt pi, the model f generates a tuple (T i
h, A

i
h, S

i
h)

representing a candidate output for the next hop. As described in Sec. 3.1, we evaluate all candidate
tuples at hop h and select one with the highest recall. This selected candidate is then used as the
context for the next hop and the process is repeated till budget B (optionally till the selected candidate
action Ah indicates FINISH). We set the budget B = 6, where the initial retrieval step is always
R(Q(j)) with Q(j) denoting the original user utterance. The generated dataset is denoted by D.
For all experiments involving Qwen2.5, we utilize the 7B-Instruct variant along with its prompts to
generate the dataset. For further improving results, we can repeat few shot prompt optimization and
dataset generation using different base models.

Supervised "Explore" Finetuning Details. We use the standard next token prediction loss given by:

max
f

E(x,y)∼D log pf (x|y) (2)

where y = (Th, Ah, Sh) and x = Q(j) ∪ {Tk, Ak, Sk,Dk}h−1
k=0 sampled from the generated dataset

D.

We train the model f for 1 epoch using a batch size of 4 and apply gradient accumulation of 2 steps,
resulting in an effective batch size of 8. Optimization is performed using AdamW (Loshchilov and
Hutter, 2017) with a learning rate of 2× 10−5. We use a linear learning rate scheduler with a warmup
phase of 20 steps. The training is performed using 8 H100 80GB GPUs.

Controlling test-time compute with RL. Our RL step employs GRPO for fine-tuning the base policy
fS . Specifically, following the notation in DeepSeekMath (Shao et al., 2024), for each question Q(j),
we sample a group of outputs {o1h, o2h, . . . , ovh} at hop h, where v is set to 8. We optimize our base
policy fS using the standard GRPO objective using the cumulative rollout reward as defined in Eq. 1.
We use a KL divergence penalty with weight 0.1 since we have a trained base policy, and set the
maximum reward Rmax = 2.0 for stability. Generation is limited to a maximum of 256 completion
tokens and the maximum prompt size is 1024. Training is conducted using DeepSpeed-Zero2 (Rasley
et al., 2020) and 7 H100 GPUs (where 1 is exclusively reserved for sampling). We set the learning
rate to 10−6. Due to the long prompt (which includes retrieved documents from previous hops), we
use a total batch size of 48. We train FRUGALRAG for 400 steps across datasets and models, and
report the performance using the final checkpoint.

C DATASET AND RETRIEVAL INDEX

We use the pre-processed Wikipedia abstracts index 1 provided by ColBERTv2 (Santhanam et al.,
2021) for all our experiments on HotPotQA (Yang et al., 2018). For each instance, we retrieve the top
3 documents and their titles and perform a maximum 6 retrievals. HotPotQA annotations consists
of document title and evidence sentences which are used to compute the Recall and Supporting
Document F1 respectively.

Since 2WikiMultiHopQA (Ho et al., 2020) and MuSiQue (Trivedi et al., 2022b) datasets are created
using both the body and abstract of wikipedia articles we use the pre-processed dump of Wikipedia
provided by Karpukhin et al. (2020) and index it using ColBERTv2 (Santhanam et al., 2021). The
generated index consists of 21M passages. For each instance, we retrieve top 5 documents and append
it to our context. For experiments in Table 2, we use E5-base provided by FlashRAG Jin et al. (2025b)
indexed on Wikipedia Petroni et al. (2021) which consists of 21 million passages, and retrieve top 5
documents for all datasets.

1https://downloads.cs.stanford.edu/nlp/data/colbert/baleen/wiki.
abstracts.2017.tar.gz
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Algorithm 1: Our novel two-stage framework, FRUGALRAG consists of (1) Dataset Generation
and Supervised "Explore" Finetuning, and (2) Controlling test-time compute wth RL.

Input: Labeled dataset L = {(Q(j), Y (j))}1000j=1 , Linit = {(Q(j), Y (j))}50j=1, retrieverR, base
LM f , budget B, max hops m, number of samples v

// Prompt Optimization
1 Perform prompt optimization on f using Linit to obtain few-shot prompts {p1, . . . , pn};
// Dataset Generation

2 Initialize finetuning dataset: D← [];
3 for Q(j), Y (j) in L do
4 Initialize buffer: main_rollout← [];
5 Initialize D0 ← R(Q(j)) or ∅;
6 Initialize T0, A0;
7 H0 ← {Q(j), T0, A0,D0} // stores previous context
8 AppendH0 to main_rollout;
9 for h = 1 to m do

10 for i in 1 . . . n do
11 for h = 1 to B do
12 (T i

h, A
i
h, S

i
h)← f(Hi

h−1; pi);
// occurs in 10% of calls

13 if Ai
h = FINISH then

14 break
15 Di

h ← R(Si
h);

16 Remove duplicate retrievals from Di
h ;

17 Hi
h ← Hi

h−1 ∪ {T i
h, A

i
h, S

i
h,Di

h};

18 Evaluate all {Di
h}ni=1 (recall against ground truth Y (j));

19 Select best-performing trajectoryH∗;
20 AppendH∗ to main_rollout;
21 Append each hop from main_rollout to D;

// Stage 1: Supervised "Explore" Finetuning
22 fS ← Fine-tune f on D using standard next-token prediction // See Eq. 2

// Stage 2: Controlling test-time compute with RL

23 for Q(j), Y (j) in L do
24 for h = 1 to m do
25 Generate v sample tuples {T i

h, A
i
h, S

i
h,Di

h}vi=1 for hop h ;
26 for i = 1 to v do
27 Compute reward Ri ← R({Di

h}mh=1, Y
(j), fS) // See Eq. 1

28 Backpropagate loss on {T i
h, A

i
h, S

i
h}mh=1 using Ri;
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