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Abstract

While Conformal Prediction provides statistical coverage guarantees, existing non-
conformity measures fail to account for spatially varying importance of predictive uncer-
tainty in medical image segmentation. In this paper, we incorporate spatial context near
critical interfaces such as a vessel or critical organ in medical image segmentation. Our
framework consists of three key components: (1) a base non-conformity score derived from
segmentation model probabilities, (2) employing class-conditional calibration followed by
a validation mechanism equipped with a distance-weighted scoring function that exponen-
tially decays with distance from key interfaces, and (3) a prediction set construction method
that preserves coverage guarantees while providing targeted uncertainty quantification in
critical regions. While our approach is generalizable to different scenarios, for validation
purposes, we employ tumor segmentation in pancreatic adenocarcinoma imaging from mul-
tiple medical centers. Results demonstrate that our method achieves the desired coverage
levels while generating prediction sets that adaptively expand near critical interfaces.

Keywords: Uncertainty, Conformal Prediction, Medical Image Segmentation.

1. Introduction

Distribution-free uncertainty quantification in computer vision has seen significant advances
through Conformal Prediction (CP), which transforms an algorithm’s predictions into pre-
diction sets with robust finite-sample validity (Fontana et al., 2023). While CP has shown
promising results in classification and regression tasks (Vazquez and Facelli, 2022; Lu et al.,
2022), its application to image segmentation presents several challenges, particularly in sce-
narios where prediction accuracy requirements vary across the output space (Zhou et al.,
2024). Standard CP approaches employ uniform non-conformity scores across prediction
regions, implicitly assuming homogeneous uncertainty throughout the prediction space.
However, this assumption breaks down in segmentation tasks where different spatial re-
gions demand distinct levels of certainty measurements. For instance, boundary regions
of a segment often require substantially different uncertainty characterization than inte-
rior regions. This limitation becomes particularly crucial when medical imaging is used for
surgery planning and the boundary regions of a canonical object (e.g., a tumor) and its
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Figure 1: Illustration of spatially-adaptive conformal prediction for PDAC tumor segmenta-
tion: (a) the base segmentation of the tumor (blue) adjacent to a major vessel (red), where
precise delineation of the tumor-vessel interface is crucial for surgical planning; (b) the
base segmentation of the tumor (blue) and the standard conformal prediction set (orange)
(c) a comparison between standard CP sets (orange) and SACP sets (purple), where our
approach adapts the prediction bounds based on proximity to critical structures.

closeness to some critical masses (e.g., a vessel) requires varying confidence requirements as
described in the following clinical setting.

In pancreatic ductal adenocarcinoma (PDAC) diagnosis and treatment planning, accu-
rate tumor segmentation near critical vascular structures can mean the difference between
an operable and inoperable assessment. When a tumor interfaces with major blood vessels,
surgeons require millimeter-scale accuracy (with high certainty) in boundary delineation to
determine resectability and surgical plans. Conversely, the precise boundary definition of
the tumor’s interior regions, while important, permits more flexibility in uncertainty quan-
tification. As shown in Figure 1(a), the initial segmentation shows a tumor-vessel interface
in a CT scan, where a PDAC tumor boundary (blue) is adjacent to a major vessel (red). To
consider uncertainty in the prediction, one may apply CP (e.g., with error rate α = 10%)
to ensure at least 90% certainty around the delineated boundaries of the tumor (yellow) as
shown in Figure 1(b). CP generates homogeneous uncertainty set across all voxels, while
for the surgical planner it’s crucial to know, with higher precision (e.g., with error rate only
α = 5%) around the vessels, due to its critical impact on surgery, and error rate α = 10%
elsewhere. This is the challenge the classical CP lacks addressing.

In this paper, we propose Spatially-Adaptive Conformal Prediction (SACP), to address
the challenge of incorporating varying spatial importance of voxels into a conformal pre-
diction set while preserving its theoretical guarantees. We introduce locally adaptive non-
conformity scores that explicitly account for distance to critical structures, enabling CP to
be more conservative near critical boundaries while remaining CP-level uncertain elsewhere.
When SACP is applied to our motivating example, as shown in Figure 1(c), the prediction
set (shown in purple) expands only around the vessel (the critical interface). This vary-
ing conservativeness directly impacts surgical decision-making and may lead the surgeon to
seek further and more accurate diagnostic imaging or more precise segmentation for that
specific region. Our framework consists of three key components: (1) a base non-conformity
score derived from segmentation model probabilities, (2) employing class-conditional cal-
ibration followed by a validation mechanism equipped with a distance-weighted scoring
function based on spatial proximity to critical interfaces, and (3) a prediction set construc-
tion method that maintains original CP coverage guarantees.
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Related Work. Conformal Prediction (CP) provides a distribution-free framework for
uncertainty quantification in machine learning, ensuring finite-sample coverage guarantees
regardless of data distribution (Fontana et al., 2023; Karimi and Samavi, 2023; Zhou et al.,
2024). In medical imaging, CP has been used for uncertainty estimation in diagnostic
tasks (Angelopoulos et al., 2020; Karimi and Samavi, 2024) and extended to segmenta-
tion (Brunekreef et al., 2024), post-hoc uncertainty quantification (Mossina et al., 2024),
and performance range prediction (Wundram et al., 2024). (Sadinle et al., 2019) introduced
least ambiguous set-valued classifiers that optimize prediction set size while maintaining
class-conditional coverage, but their approach is limited to multi-class classification with-
out spatial calibration. Class-conditional CP, as formulated by (Shi et al., 2013), balances
per-class coverage but lacks spatial awareness, crucial for anatomical segmentation. (Mao
et al., 2024) proposed a model-free spatial prediction framework for geospatial data, yet
its environmental focus limits medical imaging applicability. Similarly, (Guan, 2023) in-
troduced localized CP that adapts to local features but does not incorporate anatomical
structures. Extensions of CP beyond exchangeability address distributional shifts (Barber
et al., 2023) but neglect spatial heterogeneity and pixel imbalance. Region-based CP meth-
ods (Fischer et al., 2024) offer robust uncertainty quantification for radiotherapy but lack
fine-grained voxel-level adaptation. Spatial CP has been explored in remote sensing (Liu
et al., 2024), yet challenges persist in medical segmentation, particularly balancing spa-
tial context with class imbalance near critical structures. Minority class under-coverage
remains a key issue, as small structures are often sparsely represented. Our approach inte-
grates class-conditional calibration with spatial weighting using distance-decaying functions
to maintain coverage while improving precision in critical regions.

Contributions. First, we develop a novel spatially-adaptive CP method, which is sensi-
tive to the distance to critical structures, allowing a rigorous presentation of nonuniform
uncertainty across voxels of a segment in an image. Our approach is generalizable to other
fields of image segmentation where nonuniform uncertainty quantification is needed –e.g.,
safety in robotics and quality control in manufacturing, where a false negative can lead to
accidents. Second, we theoretically prove that SACP maintains the original CP coverage,
set size and adaptability characteristics. Third, we experimentally demonstrate that our
approach is efficient and clinically insightful for a real-world clinical case. The code for
experimental evaluation is publicly available at https://github.com/tailabTMU/SACP.

2. Spatially-Adaptive Conformal Prediction

Conformal Prediction. Conformal prediction is a statistical framework that produces
prediction intervals for any underlying pretrained model with a guarantee on the prediction’s
reliability (Vovk et al., 2005). For a given significance level α ∈ R(0,1), CP ensures that
for a calibration dataset D =

{
(xi, yi)

}n

i=1
and a new test point (xn+1, yn+1) drawn from

the same distribution, P
(
yn+1 ∈ C(xn+1)

)
≥ 1 − α. CP defines a non-conformity score

S : X × Y → R+ that quantifies how well xn+1 conforms to the calibration dataset. The
prediction set is then computed based on the empirical quantiles of these non-conformity
scores: For a chosen confidence level 1−α, the prediction set C(xn+1) is defined as C(xn+1) ={
ŷ ∈ Y : S(xn+1, ŷ) ≤ τα

}
, where τα is the (1 − α)-quantile of the non-conformity scores.

This guarantee is unconditional and holds for any model and any distribution as long as the
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underlying exchangeability assumption is satisfied. The exchangeability assumption implies
that for any permutation π of {1, 2, . . . , n}, permutations of the dataset have the same
joint distribution as P

(
(x1, y1), . . . , (xn, yn)

)
= P

(
(xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))

)
. We refer

to (Angelopoulos et al., 2023) for a more in-depth introduction to CP. The conservativeness
of this guarantee is also adjustable (by defining different thresholds for p-values) and can
be beneficial when cautious coverage is preferred (Appendix D).

2.1. Problem Setup

Let X ⊂ R3 represent a discretized volumetric image obtained from axial slices, where X
is subdivided into a finite, structured grid of cuboidal units called voxels. We define each
voxel x ∈ X by its indices (xa, xc, xs) along the axial, coronal, and sagittal axes, respectively.
Considering a set of possible labels Y, we represent the true label y ∈ Y as the indicator
of the organ that the voxel x belongs to, and the baseline segmentation model fΘ obtains
predictive probabilities p(ŷ|x) associated with each label ŷ ∈ Y.
Definition 1 (Canonical Object) Label l ∈ Y denotes a canonical object, if l represents
a primary structure of interest for the downstream task.

Definition 2 (Critical Masses) M is a set of critical masses in the volume, if the prox-
imity of any m ∈ M to the canonical object necessitates conservative decision-making for
the downstream task.

For the clinical settings described in Section 1, a tumor is a canonical object for the
downstream task of surgery planning for the removal of that tumor and the set of vessels in
the volume are critical masses, as when a tumor has a vessel in its proximity, the surgeon
needs a prediction set with higher uncertainty (more conservative prediction).

2.2. Spatially-Adaptive Non-Conformity Score

To apply CP on voxel-wise tasks (e.g., tumor segmentation for surgery planning), we need
to address two challenges: (1) CP uses a single threshold α across all classes; thus the
prediction set for rare classes will be either over or under-conservative depending on the
class distribution; this is particularly crucial in the tumor segmentation task as tumors are
small structures relative to the total CT image volume. (2) The prediction set is invariant
to the voxels, while we expect, the prediction set to be more conservative when voxels of
the canonical object (e.g., tumor) is closer to one or more critical masses (e.g., vessels).

To address the first challenge, we adopt Class-Conditional Conformal Prediction (CCCP),
where CP is refined to use various quantile thresholds across different classes (Shi et al.,

2013; Sadinle et al., 2019). We compute a distinct threshold τ ŷα for each label ŷ ∈ Y
independently as the (1− α)-quantile of the non-conformity scores as,

τ ŷα = Quantile1−α

(
{Sbase(xi, yi) : yi = ŷ}ni=1

)
. (1)

For a new test data point (xn+1, yn+1), the prediction set C(xn+1) is constructed as,

C(xn+1) =
{
ŷ ∈ Y : Sbase(xn+1, ŷ) ≤ τ ŷα

}
. (2)

To address the second challenge, we define a new score function, SSACP, that augments
the original CP non-conformity score function, Sbase, with a parameterized weight wv ∈
R[0.5,1), as a multiplicative factor denoted as,

SSACP(x|ŷ = l) = wv(x, l) · Sbase(x|ŷ = l) , (3)
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where v ∈ M is the nearest critical mass to the voxel x, and l ∈ Y is the canonical
object. Our intention is to make the impact of the weight irrelevant (wv ≈ 1) when voxels
are far from both critical masses and canonical object, therefore generating a prediction
set as conservative as the original base function and maximizing the impact of the weight
(wv = 0.5) when voxels are very close to critical masses and the canonical object. The weight
has to be also impacted by our confidence in segmenting the canonical object (tumor) as
well as the relevancy of the different critical masses, as we may have more than one critical
mass, each with a different relevancy factor for the downstream task. Formally, we have
four parameters for our weight function:

1. δm: The Euclidean distance of each voxel x to the critical mass m ∈M.

2. ϕl: The Euclidean distance of each voxel x to the canonical object l ∈ Y.

3. I(l): The information-theoretical surprisal or unexpectedness of observing the canon-
ical object l with probability p(ŷ = l|x) that inversely accounts for our confidence on

correct segmentation of the canonical object, where I(l) def
= − log p(ŷ = l|x).

4. γm ∈ R(0,1]: A hyperparameter capturing the relevancy and criticality of each critical
mass m ∈M.

Putting all together, the weight function for each voxel x is defined as,

wv(x, l) = σ

( w̃v︷ ︸︸ ︷
1

γv

(
ϕl + δvI(l)

))
s.t. v = argmin

m∈M
δm , (4)

where w̃v : X × Y × M → R+ is a function that represents the raw weight value and
the constraint ensures we consider the nearest critical mass. w̃v is then normalized to
wv(x, l) ∈ R[0.5,1) using the sigmoid function σ(.) (further details in Appendix B).

The weight approaches 0.5 near critical masses or high-confidence tumor regions, in-
creasing prediction set conservativeness. When δv is small and p(ŷ = l|x) is high (i.e. I(l)
is low), wv yields towards its lower bound, reducing the non-conformity scores of label l,
making it more likely to be included in the prediction set (more conservative). This aligns
with the desire to treat voxels around the critical masses and the canonical object more
conservatively and expand the prediction set for those areas. Conversely, when δv is get-
ting larger and p(ŷ = l|x) smaller (I(l) is higher), wv moves closer to its upper bound of
1, eliminating the impact of the weight and making it less likely for distant regions to be
included in the prediction set. ϕl also behaves similarly. Lower ϕl (the voxel being closer to
the canonical object) yields lower weight, making the set more conservative and vice versa.
The relevancy hyperparameter γv accepts values between zero (strictly greater than zero),
for the least critical mass to 1, for the most critical mass. γv has a diminishing impact on w̃v

and in turn to wv. For example, if the user sets the relevancy for a critical mass low (e.g.,
γv = 0.5), the weight computed based on all other factors will be doubled, wv gets closer to
1 and diminishes its impact on original non-conformity score. In contrast, when relevancy
increases, wv gets closer to its lower bound of 0.5 and increases the prediction set size. Note
the value of γv needs to be fine-tuned depending on the context of the application.

Theorem 3 (SACP Conservativeness) If Sbase(x, ŷ) denote the base non-conformity

score for a voxel x ∈ X with the predictive label ŷ, and τ ŷα the (1 − α)-quantile of Sbase
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with the error rate α, then for the canonical object l ∈ Y, the prediction set produced by
the non-conformity function SSACP(x|ŷ = l) is at least as conservative as sets produced by
Sbase(x|ŷ = l). See Appendix C for the proof.

Corollary 4 For an unseen data point xnew and SSACP(xnew, ŷ) (Equation 3), the inclusion
of canonical object label l in the prediction set C(xnew) with error rate α depends on spatial
properties near high-risk regions that satisfies:

l ∈ C(xnew) ⇐⇒ SSACP(xnew|ŷ = l) ≤ τ lα , (5)

where τ lα is class-specific threshold as (1− α)-quantile of non-conformity scores Sbase.

SACP maintains two key theoretical guarantees: (1) the standard CP coverage P
(
y ∈

C(x)
)
≥ 1−α, and (2) for the canonical object l, C(x) is at least as conservative as standard

CP set (proof in Appendix C). The spatial relationship that Equations (3) and (4) pro-
mote is particularly valuable in the clinical setting described in Section 1 for determining
resectability. This assessment follows region-specific clinical guidelines - for instance, the
NCCN guidelines in the US and DPCG guidelines in the Netherlands - each defining differ-
ent criteria for vessel involvement and tumor contact thresholds that determine resectability.
Consequently, when deploying pretrained tumor segmentation models across different re-
gions, the calibration of vessel-specific importance factors also needs to be adjusted to align
with local clinical guidelines and their specific vessel prioritization. The detailed process of
generating a prediction set using SACP is described as Algorithm 1 in Appendix A.

3. Experimental Evaluations

Datasets and Ground Truth. This retrospective study analyzes 30 contrast-enhanced
CT scans from the PANORAMA Challenge (Alves et al., 2024), comprising portal ve-
nous phase scans from five European centers. We further validate our approach on 30
CT scans from the Memorial Sloan Kettering (MSK) Medical Segmentation Decathlon
dataset (Simpson et al., 2019), with detailed results in Appendix E. Ground truth segmen-
tations for PDAC tumors were provided by expert radiologists, while anatomical structures
(pancreas, duodenum, liver, gallbladder, kidneys, adrenal glands, spleen) were segmented
using TotalSegmentator (Wasserthal et al., 2023). A hierarchical fusion strategy prioritizes
radiologist annotations over automated segmentations.

AI-Generated Segmentations. We employ two deep learning models: a primary model
for PDAC tumors and surrounding anatomical structures (Bereska et al., 2024), and a
vessel-specific model focused on structures critical for PDAC resectability assessment. The
latter segments five key vessels: the celiac trunk (CeTr), hepatic artery (HA), portal vein
(PV), superior mesenteric artery (SMA), and superior mesenteric vein (SMV). The PDAC
segmentation employs a tripartite architecture of teacher, professor, and student models, all
implemented using 3D UNet cascades. The final student model was trained on a dataset of
1085 CTs from 903 patients (see Appendix F for details). For subsequent non-conformity
score computation, we preserve (1) the pre-softmax probability maps for all 11 classes (10
anatomical labels plus background) from the primary segmentation model, and (2) distance
maps computed from the vessel-specific model, measuring the distance from each voxel to
each of the five resectability-determining vessels. To ensure robustness to outliers, both
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distance and probability values are clipped at their respective 95th percentiles before being
used in the non-conformity score computation. Our analysis shows these segmentation
models exhibit spatially varying accuracy, with significantly lower Dice scores near vessels
(≤ 5mm: median 0.75, mean 0.64) compared to more distant regions (median 0.812, mean
0.75). This performance gap, coupled with higher variability near vessels (SD: 0.27 vs. 0.15),
highlights a key challenge in medical image segmentation-critical regions often suffer from
both lower model performance and greater inter-observer variability. Since ground truth
itself is ambiguous in these areas, improving segmentation models alone may not suffice,
underscoring the need for a more precise, region-sensitive uncertainty quantification.

Cropping. To optimize computational efficiency, we use an adaptive 3D bounding box
cropping strategy. We identify the minimal volumetric boundary encompassing all voxels
with specified target labels (gallbladder, pancreas, duodenum, and tumor) and apply this
crop consistently across all corresponding image modalities and their derivatives.

3.1. Evaluation Metrics

We evaluate our spatially-adaptive framework through metrics assessing both predictive
performance and anatomical sensitivity. For each voxel x ∈ X with confidence level
1 − α, we compute the empirical coverage rate for the set-valued predictor function C as
cov(C) = 1

|X |
∑

x∈X 1{y∈C(x)}, where 1 is the indicator function and y ∈ Y is the true label.

Coverage is assessed separately for vessel-adjacent (δv ≤ 5mm) and non-critical regions
(δv > 5mm). A higher coverage rate indicates increased conservativeness in the model’s
predictions, prompting clinicians to exercise additional caution and potentially seek further
diagnostic imaging or expert review for regions where the prediction sets are larger.

To evaluate calibration quality across different prediction set sizes, we employ Size-
Stratified Coverage Violation (SSCV) analysis, which examines how empirical coverage
varies in K different ranges (bins) of prediction set cardinality as Sj ⊂ {1, 2, . . . , |Y|}
where Y is the set of possible classes. SSCV ∈ R[0,1) is computed as SSCV(C, {Sj}Kj=1) =

supj | 1
|Xj |

∑
x∈Xj

1{y∈C(x)}− (1−α)|, where Xj = {x ∈ X : |C(x)| ∈ Sj} represents the set of

voxels having prediction sets in size range Sj (Angelopoulos et al., 2020). Lower SSCV val-
ues indicate better calibration across different set sizes. We also define the Relative Width
Ratio (RWR) to quantify adaptation of prediction set sizes based on anatomical criticality
around an arbitrary distance threshold r as,

ρ(r) =
µ(C|δv > r)

µ(C|δv ≤ r)
, (6)

where µ(C|δv) = 1
|Xv |

∑
x∈Xv

∣∣C(x)∣∣ represents the average set size to evaluate prediction set
efficiency for the set of voxels Xv at distance δv from the nearest vessel v.

3.2. Experimental Setup

We use 10 cases for calibration to determine class-specific non-conformity score thresholds
τ ŷα for each label ŷ ∈ Y and evaluate on 20 held-out cases. Statistical comparisons use paired
t-tests with Benjamini-Hochberg correction (p < 0.05). For the vessel-specific analysis, we
incorporate anatomical context through a weighted scoring mechanism. Critical vessels are
assigned different relevancy hyperparameters (γ) based on the NCCN resectability crite-
ria for PDAC, with arterial vessels (CeTr, HA, SMA) receiving higher weights (γ = 0.8)
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Table 1: Coverage and RWR analysis across
vessel proximity zones using Least Ambigu-
ous Confidence score (LAC) at α = 0.05.

Distance
CCCP SACP

Coverage RWR Coverage RWR
≤ 2mm 0.954 2.887 0.981 2.762
≤ 5mm 0.970 2.702 0.987 2.684
≤ 10mm 0.977 2.611 0.988 2.621
≤ 20mm 0.978 2.574 0.987 2.592
> 20mm 0.982 2.509 0.988 2.525

Table 2: Vessel-specific coverage rates at differ-
ent proximity zones for CCCP (C) and SACP
(S) at α = 0.05.

Vessel
2mm 5mm 10mm 20mm >20mm

C S C S C S C S C S

CeTr 0.999 1.000 0.999 1.000 0.998 1.000 0.980 0.987 0.980 0.988
HA 0.959 0.980 0.973 0.986 0.987 0.994 0.981 0.989 0.980 0.987
SMA 0.925 0.975 0.967 0.989 0.982 0.994 0.973 0.985 0.984 0.989
PV 0.927 0.953 0.955 0.974 0.957 0.974 0.978 0.989 0.981 0.987
SMV 0.960 0.997 0.956 0.987 0.958 0.980 0.975 0.987 0.983 0.987

compared to venous vessels (PV, SMV: γ = 0.6). This weighting scheme reflects their rela-
tive importance in determining resectability, as arterial involvement beyond 180◦ renders a
tumor unresectable, while venous involvement may permit resection with reconstruction.

To achieve sharp transitions in uncertainty estimates near vessel boundaries, we amplify
the sigmoid response using a gain factor (β = 10), creating more pronounced changes in
uncertainty estimates as predictions approach critical vascular structures. This enhanced
sigmoid sensitivity provides a clearer delineation of high-risk regions for surgical planning.
Computational requirements and performance metrics are detailed in Appendix I.

3.3. Experimental Results

Coverage Analysis. Our framework achieves strong coverage on the PANORAMA dataset
(n = 20) with an overall coverage of 0.987 (mean per-case: 0.981±0.005 SEM). The coverage
significantly exceeds the target coverage of 0.95 (Wilcoxon signed-rank test, p = 0.0007).
Size-stratified coverage violation (SSCV) analysis for the tumor label revealed consistent
calibration across 89% of voxels having prediction sets of size 0-3 elements with coverage
violation of 0.037 and coverage rates between 0.987 and 0.988.

Distance-Based Analysis. As shown in Table 1, prediction set size decreases with dis-
tance from vessels while maintaining high coverage. RWR ranges from 2.762± 0.150 SEM
near vessels (≤2mm) to 2.525± 0.036 SEM beyond 20mm, with coverage remaining consis-
tently high across all distances (0.981-0.988). This decreasing RWR pattern suggests our
method adapts to provide more precise predictions in regions farther from vessels, while
maintaining wider prediction sets near critical vascular structures. Vessel-specific analysis
in Table 2 demonstrates robust performance across all major vessels, with excellent coverage
in vessel-proximate regions. Notably, we achieve high coverage in critical surgical planning
zones, particularly near arteries. Visual examples of the prediction sets and their relation-
ship to vessel proximity are provided in Appendix G. We conducted additional experiments
with varying vessel relevancy hyperparameters (γ) to understand their impact on prediction
set characteristics and coverage guarantees; detailed results are presented in Appendix J.

Comparison with Standard Class-Conditional CP. Our spatially adaptive approach
demonstrates significantly improved coverage (0.981 ± 0.005 SEM vs 0.968 ± 0.038 SEM,
paired t-test t=3.366, p=0.003). Near vessels (≤ 2mm), we achieve both superior coverage
(0.981 vs. 0.954) and reduced RWR (2.762 vs. 2.887). Figure 2 shows consistently better
coverage across target confidence levels, particularly in the 40 − 80% range. Our method
maintains high coverage while exhibiting decreasing RWR with distance from vessels, from
2.762 ± 0.150 SEM at ≤ 2mm to 2.525 ± 0.036 SEM beyond 20mm, demonstrating that
our framework effectively adapts prediction sets based on proximity to critical anatomical
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Figure 2: Left: RWR (top) and coverage (bottom) as a function of vessel distance for both
datasets. Right: Comparison of empirical coverage at different confidence levels between
our method (SACP) and standard Class-Conditional CP (CCCP).

structures. Results from additional experiments, including including uniformly conservative
CCCP and a binary weighting scheme (Appendices K and L), and validation on the MSK
dataset demonstrating generalizability across different clinical contexts (Appendix E).

4. Conclusion

We presented a spatially-adaptive conformal prediction framework that provides anatom-
ically informed uncertainty quantification for medical image segmentation. Our method
adapts prediction sets based on proximity to critical vascular structures while maintaining
theoretical coverage guarantees. Validation on the PANORAMA dataset demonstrates ro-
bust performance, with strong coverage in vessel-adjacent regions and efficient adaptation
of prediction set sizes based on anatomical criticality.

SACP Generalizability Beyond Medical Imaging. While SACP was motivated by
and validated on pancreatic cancer surgical planning, the same principles described in this
paper apply to more general scenarios where the segmentation task has to deal with (1)
a spatially structured prediction task, (2) the existence of canonical objects, and (3) the
existence of critical structures within the spatial domain. For example, in natural disaster
prediction from satellite imagery, uncertainty in flood boundary delineation near populated
areas or critical infrastructure carries greater consequences than in remote regions.

SACP Limitations. The method depends on critical mass segmentation and distance
maps as inputs, and inter-observer variability in ground truth annotations—especially
for PDAC—adds uncertainty at anatomical interfaces. The spatial weighting mechanism,
though effective, requires careful hyperparameter tuning. While our analysis leverages mil-
lions of voxels, the number of distinct tumor-vessel interfaces is constrained by our sample
size, limiting the diversity of spatial relationships evaluated. Despite these challenges, this
approach advances AI-driven precision in surgical planning and patient care.

Future Work. We plan to validate our approach on larger datasets to further demonstrate
the generalizability of SACP. We consider applying this framework to robotics, industrial
defect detection, and disaster prediction, where boundary uncertainty affects decisions. Re-
laxing the exchangeability assumption to handle distribution shifts with model adaptations
is another key area. Finally, exploring robust statistical techniques to maintain coverage
under worst-case perturbations could enhance reliability in safety-critical applications.
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Appendix A. Algorithmic Description of SACP

In Algorithm 1, we describe the step-wise procedure and the required computation regarding
applying SACP to incorporate spatial context in 3D voxel-wise segmentation and enhance
uncertainty quantification.

• In Step 1, a pretrained segmentation model fΘ generates voxel-wise predictive prob-
abilities in an input volume X using the softmax function.

• In Step 2, we apply class-conditional calibration to ensure a desired confidence rate
of at least 1− α for each class ŷ ∈ Y using Sbase non-conformity scores of calibration
set of voxels. For each class, the (1− α)-quantile threshold τ ŷα is determined, setting
the baseline for prediction set construction.

• In Step 3, we compute spatial properties as the Euclidean distances of each voxel
x ∈ X to a set of critical masses m ∈ M denoted by δm and to the canonical object
label l ∈ Y denoted by ϕl.

• In Step 4, we identify the nearest critical mass v ∈ M for each voxel, forming a
spatial reference. Then, a normalized weight wv is computed for each voxel x based
on its proximity to the canonical object l and the nearest critical mass v, adjusted by
a mass-specific relevance factor γv. This weight modulates the base non-conformity
score Sbase associated with the canonical object l to refine uncertainty estimation
relative to spatial critical structures. Finally, the prediction set C(x) is constructed
by including the canonical object label l in the set if and only if the adjusted score
SSACP remains below its respective (class-conditional) quantile threshold τ lα.

By integrating spatial information, SACP improves the reliability of conformal pre-
diction in 3D segmentation, particularly in anatomically structured regions where spatial
coherence is essential.

Appendix B. Further Details of SACP Parameters

We compute δm as the Euclidean distance from voxel x to any of the potential critical
masses m ∈M (e.g., major vessels) that is defined by the function d : X ×M→ R+ as,

δm = dEuc(x,m) = min
x′∈Vm

||x− x′|| , (7)

where m ∈M is a critical mass containing a set of voxels Vm ⊂ X .
We compute ϕl as the Euclidean distance from voxel x to the segmentation outcome of

a pretrained model fΘ that is defined by the function d̂ : X × Y → R+ as,

ϕl = d̂Euc(x, l) = min
x′∈Vl

||x− x′|| , (8)

where l ∈ Y is the canonical object label and Vl ⊂ X contains a set of voxels that are
segmented as label l such that:

Vl =
{
x′ ∈ X | argmax

ŷ∈Y
fΘ(x

′, ŷ) = l
}
, (9)
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Algorithm 1: Spatially-Adaptive Conformal Prediction (SACP)

Input: 3D input volume X : voxels x with true labels y; Set of all possible labels ŷ ∈ Y;
set of critical massesM; canonical object label l; pretrained segmentation

model fΘ; desired error rate α; mass-specific relevance factors {γm}m∈M;

Output: C(x) as prediction set for each voxel;

// Step 1: Get model predictions

1 ∀x ∈ X , ŷ ∈ Y : p(ŷ|x)← softmax
(
fΘ(x, ŷ)

)
// Get predictive probabilities

// Step 2: Class-conditional calibration on n voxels

2 for each class ŷ ∈ Y do

3 τ ŷα ← Quantile1−α

({
Sbase(xi, yi) : yi = ŷ

}n

i=1

)
4 end

// Step 3: Compute spatial distances

5 for each voxel x ∈ X do

6 ∀m ∈M : δm ← dEuc(x,m) // Distance to the critical masses (Eq. 7)

7 Vl ← {x′ ∈ X | argmax{ŷ∈Y} fΘ(x
′, ŷ) = l} // Set of canonical object voxels

8 ϕl ← d̂Euc(x, l) // Distance to the canonical object (Eq. 8 and 9)

9 end

// Step 4: Generate SACP prediction sets

10 for each voxel x ∈ X do

11 v = argmin{m∈M} δm // Find the nearest critical mass

12 wv(x, l)← σ
(

1
γv

(
ϕl + δvI(l)

))
// Compute spatial weight (Eq. 4)

13 SSACP(x|ŷ = l)← wv(x, l) · Sbase(x|ŷ = l) // Score for canonical object

14 l ∈ C(x)⇔ SSACP(x|ŷ = l) ≤ τ lα // Conservative inclusion of ŷ = l (Eq. 3)

15 end

16 return C(x) for all x ∈ X

in which fΘ(x
′, ŷ) is the outcome of the pretrained segmentation model associated with the

label ŷ when classifying the voxel x′.

We also compute the confidence of segmentation model defined as the predictive proba-
bility associated with the canonical object label l (e.g., a tumor) and denoted by p(ŷ = l|x)
for each voxel x. High confidence associated with the canonical object label indicates that
the model is making reliable predictions that a voxel belongs to that label, which can be
valuable in improving reliability in high-risk tasks. The weight function is formulated to
represent lower values with higher probabilities (i.e., more confident predictions) and vice
versa, emphasizing regions where the model is more confident while discounting less certain
regions. To refine the weight computation, we use this segmentation confidence to calculate
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the surprisal function I(l) def
= − log p(ŷ = l|x). This surprisal quantifies the information

content or unexpectedness of observing the canonical object l with probability p(ŷ = l|x)
and accounts for the model’s inherent uncertainty during segmentation. By incorporating
surprisal, the prediction sets dynamically adapt to the probabilistic confidence of the model.

Following class-conditional CP with the desired confidence level 1 − α and according
to Equation (1), we independently compute the class-specific quantile τ ŷα associated with
the canonical object label ŷ = l ∈ Y, based on the Sbase scores of calibration data. Then,
we use SSACP during testing to include the canonical object label l in the voxels’ prediction
sets as proposed in Corollary 4.

Appendix C. Proof of Theorem 3

Proof Following class-conditional CP, τ ŷα denotes the (1 − α)-quantile of Sbase scores
associated with calibration data with label ŷ. Then, for each voxel x, the condition for
inclusion the canonical object label ŷ = l in the prediction set Cbase(x) generated by Sbase

scores is:

Sbase(x|ŷ = l) ≤ τ lα . (10)

By the definition of in Equation (3), SSACP is computed for each voxel x and the canonical
object label ŷ = l using the normalized weight wv as,

SSACP(x|ŷ = l) = wv · Sbase(x|ŷ = l) s.t. wv = σ(w̃v) , (11)

where w̃v ∈ R+ is the raw weight value defined in Equation (4), and σ(.) is the steep sigmoid
function (with the gain factor β) defined as σ(w̃v) =

1
1+exp(−βw̃v)

. For other labels ŷ ̸= l,
Sbase is used to include the labels in the sets. As w̃v is positive and normalized to be less
than 1, so 0.5 ≤ wv < 1. Then, it follows that:

∀x ∈ X : SSACP(x|ŷ = l) < Sbase(x|ŷ = l) . (12)

Note that lim
w̃v→+∞

wv = 1, and consequently, lim
w̃v→+∞

SSACP = Sbase. According to Equa-

tions (10) and (12), the above inequality implies the following condition to include l in the
set:

SSACP(x|ŷ = l) = wv · Sbase(x|ŷ = l) ≤ τ lα . (13)

Therefore, any label ŷ ̸= l included in Cbase(x) (i.e., Sbase(x|ŷ) ≤ τ ŷα) is also included
in the prediction set CSACP(x) generated by SACP, and for the canonical object ŷ = l,
SSACP(x|ŷ = l) < Sbase(x|ŷ = l) holds. Formally, this means:

Cbase(x) ⊆ CSACP(x) . (14)
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Appendix D. Conservativeness in Conformal Prediction

Conformal prediction constructs set-valued predictions with a user-specified coverage guar-
antee, ensuring that the empirical coverage of the prediction sets is at least the nominal
confidence level. Given a dataset Dn =

{
(xi, yi)

}n

i=1
and a new test point xn+1, CP produces

a prediction set Cn,α(xn+1) such that

P(yn+1 ∈ Cα(xn+1)) ≥ 1− α . (15)

This property, known as conservativeness, guarantees that the probability of the true la-
bel being included in the prediction set is at least 1 − α, often making CP slightly over-
conservative due to the discrete nature of rank-based p-values in finite samples.

Conservativeness leads to both lower and upper bounds on the empirical coverage. The
lower bound is given directly by the validity guarantee, ensuring Equation (15). However,
the actual coverage can be higher than 1− α due to the discreteness of conformity scores,
leading to an upper bound of the form

P
(
yn+1 ∈ Cα(xn+1)

)
≤ 1− α+

1

n+ 1
. (16)

This small excess coverage diminishes as n grows, ensuring that CP becomes asymptotically
exact, meaning

lim
n→+∞

P
(
yn+1 ∈ Cα(xn+1)

)
= 1− α . (17)

For class-conditional CP, n refers to the number of calibration samples in each class. We
encounter stronger conservativeness for rare classes (e.g., tumor label) as classes with small
n suffer from higher over-coverage due to the larger impact of discrete rank-based p-values.
Due to asymptotic exactness, as n→ +∞, the upper bound tightens, and class-conditional
CP approaches exact coverage in Equation (17). Unlike standard CP, class-conditional CP
does not enforce a single global coverage level but rather adapts to the structure of the
data, ensuring per-class validity.

Thus, conservativeness guarantees validity for all sample sizes while maintaining distribution-
free coverage guarantees. Class-conditional CP maintains the fundamental conservativeness
of standard CP but is more sensitive to class imbalances, making it particularly useful when
fairness across classes is a concern.

Appendix E. Additional Experimental Results for MSK Dataset

Dataset Characteristics. We analyze 30 contrast-enhanced computed tomography (CT)
scans from the Memorial Sloan Kettering (MSK) Medical Segmentation Decathlon Pancreas
dataset (Simpson et al., 2019), comprising portal venous phase CT scans from Memorial
Sloan Kettering Cancer Center (New York, USA). Ground truth segmentations were estab-
lished through expert abdominal radiologist annotations for pancreatic masses (including
cysts and tumors), while surrounding anatomical structures were segmented using TotalSeg-
mentator (Wasserthal et al., 2023). These complementary segmentations were integrated
using a hierarchical fusion approach that prioritizes radiologists’ tumor delineations over
automated organ segmentations. This dataset includes a heterogeneous mix of pancreatic
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Table 3: Vessel-specific coverage rates at different proximity zones for the MSK dataset.
The missing values (”-”) indicate no tumor voxels were predicted near the celiac trunk and
hepatic artery at these distances, consistent with the MSK dataset’s focus on resectable
PDAC cases.

Vessel ≤2mm ≤5mm ≤10mm ≤20mm >20mm

CeTr - - - 0.985 0.980
HA - 0.956 0.753 0.906 0.991
SMA 1.000 0.995 0.997 0.991 0.975
PV 0.821 0.858 0.918 0.967 0.991
SMV 0.973 0.989 0.986 0.988 0.966

masses including resectable PDAC, intraductal papillary mucinous neoplasms (IPMN), and
pancreatic neuroendocrine tumors (PNET). This composition notably differs from both the
typical clinical presentation of PDAC, where approximately 80 − 85% of patients present
with vessel involvement indicating borderline resectable, locally advanced, or metastatic
disease, and from our primary dataset which specifically captured the full range of PDAC
presentations including locally advanced cases.

Coverage Analysis. Our framework maintains strong performance on the MSK dataset,
achieving an overall coverage of 0.980 (mean per-case: 0.985 ± 0.007 standard error of the
mean (SEM)). The coverage significantly exceeds the target coverage of 0.95 (Wilcoxon
signed-rank test, p = 0.0009).

Distance-Based Analysis. Table 3 presents vessel-specific coverage rates across different
proximity zones. The coverage patterns reflect the resectable nature of the cases, with no-
tably high coverage rates in regions farther from vessels. Near-vessel regions (≤ 2mm) show
more variable coverage (0.821-1.000) when tumor-vessel contact is present. The relative
width ratio (RWR) analysis shows a consistent relationship between prediction set size and
vessel proximity, though less pronounced than in the primary dataset. Mean RWR values
range from 1.141±0.031 SEM in near-vessel regions (≤ 2mm) to 1.655±0.005 SEM beyond
20mm. This pattern of increasing width with vessel proximity persists across all vessels.
The results from this dataset complement our primary analysis while highlighting the im-
portance of dataset composition in evaluating conformal prediction frameworks for PDAC
segmentation. The predominantly resectable cases in the MSK dataset provide insights
into framework performance in scenarios with limited vessel involvement, while underscor-
ing the need for diverse datasets that capture the full spectrum of PDAC presentations for
comprehensive validation.

Comparison with Standard Class-Conditional CP. As described in Figure 3, our
spatially-adaptive approach yields comparable overall coverage (0.980 vs 0.979) while demon-
strating improved stability in anatomically critical regions. Near vessels (≤ 2mm), we
achieve higher coverage (0.959 vs 0.956) with more efficient prediction sets (RWR 1.141 ±
0.061 SEM vs 1.205±0.095 SEM). The framework shows a more controlled increase in RWR
with vessel proximity, ranging from 1.141 ± 0.061 SEM at ≤ 2mm to 1.655 ± 0.009 SEM
beyond 20mm, demonstrating effective adaptation to anatomical context while maintaining
strong coverage guarantees.
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Figure 3: Comparison of empirical coverage at different confidence levels between our
method (SACP) and standard Class-Conditional CP (CCCP) on the MSK dataset.

Appendix F. Experimental Setup Details

F.1. PDAC Segmentation Model Implementation

The PDAC and organ segmentation model utilized a novel tripartite architecture consisting
of a teacher, professor, and student model, implemented using 3D UNet cascade architec-
tures. The teacher model was initially trained on 517 contrast-enhanced CT scans from the
PREOPANC trials (Amsterdam UMC and Leiden UMC), LAPC registry (Dutch Pancre-
atic Cancer Group), and control patients who underwent CT prior to transcatheter aortic
valve implantation (Van Tienhoven et al., 2018; Janssen et al., 2021; Stoop et al., 2022).
Ground truth segmentations were established by three expert radiologists at the Amsterdam
University Medial Centers who manually segmented PDAC tumors in 256 LAP-CTs from
120 patients with (borderline) resectable PDAC and 66 LAP-CTs from 66 LAPC patients
using 3D Slicer (version 4.11.20210226 (Fedorov et al., 2012)). Additional anatomical con-
text was provided through automated segmentation of surrounding structures (pancreas,
duodenum, spleen, kidneys, adrenal glands, liver, and gallbladder) using TotalSegmentator
version 1.5.6 (Wasserthal et al., 2023). The professor model, trained on 106 CT scans, was
designed to refine the teacher’s pseudo-segmentations using an Underestimation Focuser
correction matrix that prioritized correctly identified tumors and areas of underestimation.
The final student model was trained on an expanded dataset of 1085 CTs from 903 patients,
combining manually segmented data with professor-corrected pseudo-segmentations. The
model weights are publicly available at https://zenodo.org/records/14782552.

F.2. Vessel Segmentation Model Implementation

The vessel segmentation model was implemented using a 3D nnUNet cascade architecture
(low-resolution followed by full-resolution) trained on a dataset of 92 contrast-enhanced
CT scans (Isensee et al., 2021). The model was designed to segment nine vascular struc-
tures: aorta, celiac trunk, hepatic artery, splenic artery, superior mesenteric artery, in-
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HA contact point: Purple boundary’s lateral

expansion suggests possible arterial involve-

ment requiring arterial resection planning,

while orange CP misses this critical region.

SMA contact point: Spatially-adaptive ex-

pansion identifies possible arterial invasion,

a distinction missed by uniform CCCP

bounds.

SMV contact point: Purple boundary’s cir-

cumferential expansion indicates potential

venous involvement unlike CCCP’s assess-

ment.

Portal-SMV confluence: Focused purple ex-

pansion suggests confluence involvement

requiring vascular reconstruction planning,

which uniform CCCP bounds fail to detect.

Figure 4: Anatomically-adaptive conformal prediction sets compared to standard CCCP
for PDAC cases. Ground truth tumor boundaries (blue), model predictions (yellow), and
vessel regions (red) are shown. Our prediction sets (purple) provide adaptive uncertainty
bounds based on vessel proximity, unlike the uniform width of standard CCCP (orange),
enabling more informed surgical planning in critical regions.

ferior vena cava, portal vein, splenic vein, and superior mesenteric vein. Training data
was sourced from the PREOPANC trials and control patients, comprising CT scans from
patients with varying stages of pancreatic ductal adenocarcinoma (PDAC) and control
subjects who underwent CT imaging for transcatheter aortic valve implantation (Van Tien-
hoven et al., 2018). Ground truth segmentations were established through manual an-
notation by seven trained observers at the Amsterdam University Medical Centeres us-
ing 3D Slicer (version 4.11.20210226) (Fedorov et al., 2012), with particular focus on the
five vessels critical for PDAC resectability assessment: celiac trunk, hepatic artery, por-
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Table 4: Dice coefficient analysis by vessel proximity for PDAC segmentation on the
PANORAMA dataset.

Region Median Dice Mean Dice Std Dev

Overall 0.8084 0.7495 0.1476
Near vessels (<5mm) 0.7539 0.6364 0.2674
Far from vessels (≥5mm) 0.8161 0.7543 0.1544

tal vein, and the superior mesenteric vessels. The model weights are publicly available at
https://zenodo.org/records/14782552.

Appendix G. Additional Visualization Examples

Figure 4 shows additional examples of our spatially-adaptive conformal prediction method
across different PDAC cases taken from the PANORAMA dataset, demonstrating how the
prediction sets adapt to varying tumor-vessel relationships. The visualization boundaries
are obtained by creating a binary segmentation mask where voxels are assigned a value of 1
if the tumor label is included in their prediction set C(x), and 0 otherwise. The boundary of
this binary mask defines our prediction set visualization (shown in purple), while standard
CCCP bounds are shown in orange for comparison.

The examples illustrate various clinically relevant scenarios of tumor-vessel interfaces.
Near the hepatic artery contact point, the spatially-adaptive boundary expands laterally to
indicate possible arterial involvement. At the superior mesenteric artery interface, our
method identifies potential arterial invasion through targeted expansion. The superior
mesenteric vein contact region shows circumferential expansion suggesting venous involve-
ment, while at the portal-SMV confluence, focused expansion indicates potential involve-
ment requiring vascular reconstruction consideration. These cases demonstrate how SACP
provides anatomically-informed uncertainty bounds that adapt based on vessel proximity,
offering more detailed information for surgical planning compared to uniform CCCP bounds.

Appendix H. Segmentation Performance Analysis by Vessel Proximity

To further validate the rationale for spatially-adaptive uncertainty quantification, we ana-
lyzed segmentation performance as a function of distance from critical vascular structures
across both the PANORAMA and MSK datasets. This analysis revealed consistent patterns
of reduced segmentation accuracy near vessel interfaces, indicating that the phenomenon is
inherent to the task rather than dataset-specific. Tables 4 and 5 present the Dice coefficient
analysis for tumor segmentation stratified by proximity to vessels.

In the PANORAMA dataset, we observed a 12% decrease in mean Dice scores for
regions near vessels compared to regions farther from vessels, along with significantly higher
variability in near-vessel performance. This pattern was even more pronounced in the MSK
dataset, which showed a 38% decrease in mean Dice scores near vessels, with the median
score dropping from 0.3553 in distant regions to just 0.0716 near vessels.
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Table 5: Dice coefficient analysis by vessel proximity for pancreatic tumor segmentation on
the MSK dataset.

Region Median Dice Mean Dice Std Dev

Overall 0.3437 0.3799 0.3078
Near vessels (<5mm) 0.0716 0.2392 0.2831
Far from vessels (≥5mm) 0.3553 0.3884 0.3138

The overall lower Dice scores in the MSK dataset compared to PANORAMA can be
attributed to several factors: (1) the MSK dataset includes a more heterogeneous mix
of pancreatic pathologies beyond PDAC, including various cystic neoplasms and neuroen-
docrine tumors that present different imaging characteristics; and (2) annotation protocols
between datasets likely differed in how tumor boundaries were defined. Despite these differ-
ences in overall performance, the spatial pattern of substantially decreased accuracy near
vessels persists across both datasets.

The consistency of this pattern across datasets with different characteristics underscores
the fundamental challenge in accurately segmenting tumor-vessel interfaces—precisely the
regions where clinical decision-making is most critical for treatment planning. These findings
provide evidence for spatially-adaptive uncertainty quantification approaches like SACP,
which can account for this predictable spatial heterogeneity by providing appropriately
expanded prediction sets in anatomically critical regions.

Appendix I. Computational Requirements

The computational analysis was conducted on a MacBook Air equipped with an Apple M2
chip and 8GB of RAM, without GPU acceleration. The computational workflow comprised
two primary phases: calibration and testing. The pre-computation of probability maps
and distance maps is performed separately, with these artifacts serving as input to our
conformal prediction framework. The computation of the tumor and vessel distance maps
takes approximately 10 and 56 seconds for all 30 scans, respectively and is completed on the
cropped scans. The calibration phase, which involves computing non-conformity scores and
deriving quantile thresholds across anatomical labels, required approximately 39 seconds.
The subsequent testing phase, which generates prediction sets and evaluates uncertainty
quantification, took approximately 208 seconds.

Appendix J. Effect of Vessel Relevancy Hyperparameter (γ) on SACP
Performance

J.1. Analysis of Different Vessel Weight Configurations

The selection of vessel Relevancy Hyperparameter (γ) significantly impacts the behavior
of the spatially-adaptive conformal prediction framework. As demonstrated in Table 6,
we systematically evaluated various configurations to understand their effect on coverage
guarantees and prediction set sizes on the PANORAMA dataset.
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Table 6: Impact of vessel relevancy hyperparameter (γ) on performance metrics

Configuration Overall Coverage Coverage RWR RWR RWR
Coverage (≤2mm) (>20mm) (≤2mm) (>20mm) Ratio*

Baseline (arterial: 0.8, venous: 0.6) 0.989 0.984 0.988 2.739 2.525 1.085
Min difference (art: 0.8, ven: 0.8) 0.989 0.984 0.989 2.720 2.524 1.078
Max difference (art: 0.5, ven: 1.0) 0.989 0.979 0.989 2.697 2.516 1.072
CeTr focus (γ=0.6) 0.992 0.991 0.991 2.642 2.527 1.045
HA focus (γ=0.6) 0.992 0.988 0.992 2.657 2.523 1.053
SMA focus (γ=0.6) 0.991 0.986 0.990 2.669 2.528 1.056
PV focus (γ=0.6) 0.991 0.985 0.991 2.678 2.523 1.061
SMV focus (γ=0.6) 0.990 0.990 0.990 2.697 2.534 1.064

*RWR Ratio = ρ(≤ 2mm)/ρ(> 20mm)

J.2. Differential Weighting

Our baseline configuration with lower γ values for arterial vessels (γ=0.6) compared to
venous vessels (γ=0.8) maintained strong coverage guarantees (0.989) while providing pro-
nounced spatial adaptation (RWR Ratio: 1.085). This configuration aligns with clinical
priorities where arterial involvement typically poses greater surgical challenges.

J.3. Varying the Contrast Between Vessel Types

Configurations with minimal contrast between arterial and venous weights (art: 0.8, ven:
0.8) and maximized contrast (art: 0.5, ven: 1.0) both demonstrated strong performance.
The maximized contrast configuration showed a slight decrease in near-vessel coverage
(0.979) compared to other configurations, suggesting a potential coverage-efficiency tradeoff
when the contrast becomes too pronounced.

J.4. Vessel-Specific Configurations

Individual vessel-focused configurations revealed interesting patterns:

1. Celiac Trunk (CeTr) focus: Produced the highest near-vessel coverage (0.991)
with relatively minimal spatial adaptation (RWR Ratio: 1.045)

2. Hepatic Artery (HA) focus: Balanced coverage (0.988 near vessels) with moderate
spatial adaptation (RWR Ratio: 1.053)

3. Superior Mesenteric Artery (SMA) focus: Similar to HA but with slightly more
pronounced spatial adaptation

4. Portal Vein (PV) focus: Maintained good coverage with increased spatial adapta-
tion (RWR Ratio: 1.061)

5. Superior Mesenteric Vein (SMV) focus: Demonstrated excellent near-vessel cov-
erage (0.990) with strong spatial adaptation (RWR Ratio: 1.064)
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Table 7: Coverage and prediction set width comparison across vessel proximity zones

Distance
CCCP UC-CCCP SACP

Coverage Width Coverage Width Coverage Width

≤2mm 0.954 ± 0.027 2.887 ± 0.320 1.000 ± 0.000 1.608 ± 0.160 0.981 ± 0.008 2.762 ± 0.150
≤5mm 0.970 ± 0.016 2.702 ± 0.262 1.000 ± 0.000 1.691 ± 0.175 0.987 ± 0.004 2.684 ± 0.131
≤10mm 0.977 ± 0.016 2.611 ± 0.263 1.000 ± 0.000 1.758 ± 0.187 0.988 ± 0.004 2.621 ± 0.122
≤20mm 0.978 ± 0.003 2.574 ± 0.205 1.000 ± 0.000 1.835 ± 0.191 0.987 ± 0.001 2.592 ± 0.090
>20mm 0.982 ± 0.002 2.509 ± 0.078 1.000 ± 0.000 1.697 ± 0.020 0.988 ± 0.000 2.525 ± 0.036

Overall 0.968 ± 0.038 2.657 ± 0.226 1.000 ± 0.000 1.718 ± 0.147 0.987 ± 0.004 2.637 ± 0.106

J.5. Clinical Implications

The choice of vessel importance weights should align with clinical guidelines and surgical
priorities. For centers following NCCN guidelines (United States), where arterial involve-
ment beyond 180° renders a tumor unresectable, configurations with lower γ values for
arterial vessels (our baseline) may be preferable. For centers following European guidelines
with different resectability criteria, alternative weightings may be more appropriate.

Our experiments confirm that the γ parameter provides an effective mechanism for
tuning the spatial awareness of the conformal prediction framework while maintaining strong
coverage guarantees across all configurations.

Appendix K. Comparison with Uniformly Conservative CCCP

To evaluate whether spatial awareness provides benefits beyond simply increasing overall
conservativeness, we compared our SACP approach with a uniformly conservative CCCP
(UC-CCCP) on the PANORAMA dataset. The uniformly conservative CCCP applies the
minimum weight factor from our spatial approach (0.5) uniformly across all voxels, repre-
senting the most conservative setting possible under our weighting scheme.

K.1. Experimental Setup

We implemented the uniformly conservative CCCP by modifying the non-conformity score
as,

SUC-CCCP(x|ŷ = l) = 0.5 · Sbase(x|ŷ = l) . (18)

This reduces all non-conformity scores for the canonical object by 50%, creating prediction
sets that are uniformly more conservative regardless of vessel proximity. We evaluated this
approach on the same 20 test cases using identical metrics as our primary experiments.

K.2. Results

Table 7 shows the comparative results between standard CCCP, uniformly conservative
CCCP (UC-CCCP), and our spatially-adaptive approach (SACP).

The results reveal a critical limitation of the uniformly conservative approach: UC-
CCCP achieves perfect coverage (1.000) across all regions, but this comes with a funda-
mental change in the prediction set structure. The perfect coverage indicates that for every
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(a) CCCP (b) UC-CCCP (c) SACP

Figure 5: Comparison of prediction sets across different conformal prediction methods.
Blue shows standard CCCP prediction sets, pink represents uniformly conservative CCCP
sets, orange illustrates SACP prediction sets, and red represents the Superior Mesenteric
Vein. The figure demonstrates how SACP provides more nuanced uncertainty quantification
compared to standard and uniformly conservative CCCP approaches.

voxel, the prediction set includes all possible labels - effectively rendering the predictions
meaningless from a clinical perspective.

The reported width values for UC-CCCP might appear smaller than CCCP and SACP,
but this is misleading because the width metric measures average cardinality relative to the
total number of classes. When a prediction set includes all possible labels (as happens with
UC-CCCP), the prediction set width calculation is affected by how the metric is normalized.
The actual prediction sets are maximally large, including all possible label options for every
voxel, which renders them clinically unusable.

In contrast, SACP maintains high coverage (0.987) while producing prediction sets that
spatially adapt to anatomical context. As shown in Figure 5, SACP creates tighter predic-
tion sets away from vessels and more conservative sets near vessels, aligning with clinical
priorities for surgical planning. Additional image comparisons are presented on our github
https://github.com/tailabTMU/SACP.

These results demonstrate a fundamental advantage of SACP: it achieves the necessary
balance between coverage guarantees and prediction set efficiency. Simply making CCCP
uniformly more conservative leads to perfect but clinically useless prediction sets. SACP,
on the other hand, focuses conservativeness where it matters most - near vessels where
accurate boundary delineation is crucial for surgical planning - while maintaining efficient
prediction sets elsewhere.

Appendix L. Analysis of Binary versus Continuous Weighting Schemes

The binary weighting approach represents a simplified baseline for incorporating anatomical
context into conformal prediction. To ensure fair comparison, we derived the binary weights
from our continuous method, using 0.5 and 0.997 as they represent the minimum weights
applied across all voxels and cases for near (< 5mm) and far (> 5mm) regions respectively.
This choice ensures the binary method maintains at least the same level of conservativeness
as our continuous approach in each region. This method divides the prediction space into
two distinct regions based on proximity to critical structures:
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wbinary(x) =

{
wnear if δv ≤ dthreshold

wfar if δv > dthreshold
(19)

where δv represents the distance to the nearest vessel v, dthreshold is a fixed distance threshold
(e.g., 5mm), and wnear, wfar are predetermined weights for near and far regions, respectively.

To compare this baseline against our spatially-adaptive approach, we implemented the
binary scheme using weights of 0.5 and 0.997 for near (< 5mm) and far (> 5mm) regions
respectively, derived from the empirical weight distribution of our original method. The
binary approach achieved the following results:

• Strong nominal coverage: Vessel-wise coverage reached 1.000 for regions within 5mm
across all vessels

• Maintained coverage of 0.985-0.989 for regions beyond 10mm

• Prediction sets exhibited significantly larger volumes near vessels compared to our
continuous approach

However, this apparently strong performance revealed several limitations:

1. Spatial Discontinuity: The sharp transition at the 5mm boundary creates artificial
discontinuities in prediction sets that do not reflect the gradual nature of anatomical
relationships

2. Over-conservative Estimates: The binary approach tends to include entire vessel-
adjacent regions in prediction sets, leading to unnecessarily large prediction regions

3. Loss of Anatomical Context: The simplified weighting scheme fails to capture the
nuanced spatial relationships present in medical images

The limitations of the binary approach become immediately apparent in Figure 6. While
achieving strong numerical coverage (> 0.98 across all vessel-wise evaluations), the binary
method produces prediction sets that are too broad to be clinically useful. As shown in
Figure 6(b), it effectively includes entire vessel-adjacent regions in its prediction sets. Ad-
ditional image comparisons are presented on our github https://github.com/tailabTMU/

SACP. In contrast, our continuous weighting approach offers several advantages:

• Smooth transitions in prediction set boundaries

• Adaptive uncertainty estimation based on continuous distance measures

• Integration of multiple anatomical factors through ϕl and I(l)

Appendix M. Additional Analysis of Relative Width Ratio

The Relative Width Ratio (RWR) provides a quantitative measure of how prediction set
sizes adapt based on proximity to critical anatomical structures. Table 8 presents a com-
prehensive analysis of both coverage and RWR values across different vessels and distance
thresholds. The RWR values demonstrate several key patterns:
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(a) SACP (Our Method) (b) Binary Threshold Baseline

Figure 6: Visual comparison between our spatially-adaptive approach and the binary thresh-
old baseline. Both images show a pancreatic tumor (yellow) adjacent to a critical vessel
(red). While both methods achieve the target coverage rate, the binary approach (b) pro-
duces clearly unsuitable prediction sets. It effectively includes almost the entire vessel-
adjacent region (light blue), failing to provide meaningful uncertainty bounds for surgical
planning. In contrast, our SACP method (a) generates focused prediction regions (orange)
that maintain anatomical relevance while ensuring coverage.

Table 8: Vessel-specific coverage rates and Relative Width Ratios (RWR) at different prox-
imity zones

2mm 5mm 10mm 20mm >20mm
Vessel CCCP SACP CCCP SACP CCCP SACP CCCP SACP CCCP SACP

Cov RWR Cov RWR Cov RWR Cov RWR Cov RWR Cov RWR Cov RWR Cov RWR Cov RWR Cov RWR

CeTr 0.999 2.539 1.000 2.569 0.999 2.570 1.000 2.563 0.998 2.650 1.000 2.630 0.980 2.720 0.987 2.722 0.980 2.455 0.988 2.471
HA 0.959 3.369 0.980 3.275 0.973 3.136 0.986 3.153 0.987 3.007 0.994 3.040 0.981 2.826 0.989 2.849 0.980 2.443 0.987 2.454
SMA 0.925 2.761 0.975 2.627 0.967 2.569 0.989 2.501 0.982 2.501 0.994 2.468 0.973 2.476 0.985 2.479 0.984 2.524 0.989 2.552
PV 0.927 3.152 0.953 3.006 0.955 2.847 0.974 2.877 0.957 2.698 0.974 2.743 0.978 2.614 0.989 2.642 0.981 2.468 0.987 2.478
SMV 0.960 2.615 0.997 2.331 0.956 2.387 0.987 2.327 0.958 2.201 0.980 2.222 0.975 2.236 0.987 2.270 0.983 2.655 0.987 2.672

1. Distance-dependent Adaptation: Both CCCP and SACP show decreasing RWR
values as distance from vessels increases, indicating more precise prediction sets in
non-critical regions.

2. Vessel-specific Behavior: Arterial vessels (HA, SMA) show higher RWR values in
close proximity (≤2mm) compared to venous vessels (PV, SMV), reflecting the clinical
importance of arterial involvement in surgical planning.

3. SACP Improvements: Our method generally maintains or reduces RWR values
while achieving higher coverage, particularly in critical regions (≤5mm from vessels).

4. Stability at Distance: Beyond 20mm, RWR values stabilize around 2.4-2.6 for both
methods, indicating consistent behavior in non-critical regions.
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