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Abstract

Conformal Prediction provides statistical coverage guarantees for uncertainty quantification
but fails to account for spatially varying importance of predictive uncertainty in medical
image segmentation. This paper introduces a spatially-aware conformal prediction frame-
work that enhances uncertainty quantification by incorporating spatial context near critical
anatomical interfaces such as a vessel or critical organ. Our framework consists of three key
components: (1) a base nonconformity score derived from segmentation model probabili-
ties, (2) a calibration mechanism that applies structure-specific importance weights based
on spatial proximity, and (3) a prediction set construction method that preserves mathe-
matical coverage guarantees while providing targeted uncertainty quantification in critical
regions. The calibration mechanism employs a distance-weighted scoring function that ex-
ponentially decays with distance from key interfaces, allowing for structure-specific impor-
tance factors and adaptive uncertainty estimation. We develop pooled and domain-specific
calibration strategies to handle multi-center variability, enabling robust performance across
different imaging protocols and populations. We validate our approach on tumor segmenta-
tion in pancreatic adenocarcinoma imaging from two medical centers. Results demonstrate
that our method achieves the desired coverage levels while generating prediction sets that
adaptively expand near critical interfaces.

Keywords: Uncertainty Quantification, Conformal Prediction, Medical Imaging, Image
Segmentation, Deep Learning.

1. Introduction

Distribution-free uncertainty quantification in computer vision has seen significant advances
through Conformal Prediction (CP), which transforms an algorithm’s predictions into pre-
diction sets with robust finite-sample validity (Fontana et al., 2023). While CP has shown
promising results in classification and regression tasks (Vazquez and Facelli, 2022; Lu et al.,
2022), its application to image segmentation presents several challenges, particularly in sce-
narios where prediction accuracy requirements vary across the output space (Zhou et al.,
2024). Standard CP approaches employ uniform nonconformity scores across prediction
regions, implicitly assuming homogeneous uncertainty throughout the prediction space.
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Figure 1: Illustration of spatially-aware conformal prediction for PDAC tumor segmenta-
tion: (a) the base segmentation of the tumor (blue) adjacent to a major vessel
(red), where precise delineation of the tumor-vessel interface is crucial for surgical
planning; (b) the base segmentation of the tumor (blue) and the standard confor-
mal prediction set (orange) (c) a comparison between standard CP sets (orange)
and SACP sets (purple), where our approach adapts the prediction bounds based
on proximity to critical structures.

However, this assumption breaks down in segmentation tasks where different spatial re-
gions demand distinct levels of certainty measurements. For instance, boundary regions
of a segment often require substantially different uncertainty characterization than inte-
rior regions. This limitation becomes particularly crucial when medical imaging is used for
surgery planning and the boundary regions of a canonical object (e.g., a tumor) and its
closeness to some critical masses (e.g., a vessel) requires varying confidence requirements as
described in the following clinical setting.

In pancreatic ductal adenocarcinoma (PDAC) diagnosis and treatment planning, accu-
rate tumor segmentation near critical vascular structures can mean the difference between
an operable and inoperable assessment. When a tumor interfaces with major blood vessels,
surgeons require millimeter-scale accuracy (with high certainty) in boundary delineation to
determine resectability and surgical plans. Conversely, the precise boundary definition of
the tumor’s interior regions, while important, permits more flexibility in uncertainty quan-
tification. As shown in Figure 1(a), the initial segmentation shows a tumor-vessel interface
in a CT scan, where a PDAC tumor boundary (blue) is adjacent to a major vessel (red). To
consider uncertainty in the prediction, one may apply CP (e.g., with error rate α = 10%)
to ensure at least 90% certainty around the delineated boundaries of the tumor (yellow) as
shown in Figure 1(b). CP generates homogeneous uncertainty set across all voxels, while
for the surgical planner it’s crucial to know, with higher precision (e.g., with error rate only
α = 5%) around the vessels, due to its critical impact on surgery, and error rate α = 10%
elsewhere. This is the challenge the classical CP lacks addressing.

In this paper, we propose Spatially-Aware Conformal Prediction (SACP), to address the
challenge of incorporating varying spatial importance of voxels into conformal prediction set
while preserving its theoretical guarantees. We introduce locally adaptive nonconformity
scores that explicitly account for distance to critical structures, enabling CP to generate
prediction sets with higher precision (thus lower uncertainty) near critical boundaries while
remaining CP-level uncertain elsewhere. When SACP is applied to our motivating example,
as shown in Figure 1(c), the prediction set (shown in purple) expands only around the vessel
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(the critical interface). The set now provides more conservative uncertainty estimates near
vessel interfaces while maintaining computational efficiency in less critical regions. This
varying conservativeness directly impacts surgical decision-making and may lead the surgeon
to seek further and more accurate diagnostic imaging for the region. Our framework consists
of three key components: (1) a base nonconformity score derived from segmentation model
probabilities, (2) a calibration mechanism that applies structure-specific importance weights
based on spatial proximity to critical masses, and (3) a prediction set construction method
that maintains original CP coverage guarantees.

Related Work. CP has emerged as a promising framework for distribution-free uncer-
tainty quantification (Fontana et al., 2023; Karimi and Samavi, 2023; Zhou et al., 2024),
particularly in medical imaging (Angelopoulos et al., 2020; Karimi and Samavi, 2024). Re-
cent work has extended CP to semantic segmentation (Brunekreef et al., 2024), lightweight
post-hoc uncertainty quantification (Mossina et al., 2024), and performance range predic-
tion (Wundram et al., 2024). Researchers also considered incorporating spatial aspects to
CP in domains like hyperspectral imaging (Liu et al., 2024). However, the challenge of
adapting uncertainty estimates based on spatial importance remains open.

Contributions. First, we develop a novel spatially-aware CP method, which is sensitive
to the distance to critical structures, allowing a rigorous presentation of nonuniform un-
certainty across voxels of a segment in an image. Our approach is generalizable to other
fields of image segmentation where nonuniform uncertainty quantification is needed –e.g.,
safety in robotics and quality control in manufacturing, where a false negative can lead to
accidents. Second, we theoretically prove that SACP maintains the original CP coverage,
set size and adaptability characteristics. Third, we experimentally demonstrate that our
approach is efficient and clinically insightful for a real-world clinical case. The code for
experimental evaluation is publicly available at https://github.com/tailabTMU/SACP.

2. Spatially-Aware Conformal Prediction

Conformal Prediction. Conformal prediction is a statistical framework that produces
prediction intervals for any underlying pretrained model with a guarantee on the prediction’s
reliability (Vovk et al., 2005). For a given significance level α ∈ R(0,1), CP ensures that
for a calibration dataset D =

{
(xi, yi)

}n

i=1
and a new test point (xn+1, yn+1) drawn from

the same distribution, P
(
yn+1 ∈ C(xn+1)

)
≥ 1 − α. CP defines a nonconformity score

S : X × Y → R+ that quantifies how well xn+1 conforms to the calibration dataset. The
prediction set is then computed based on the empirical quantiles of these nonconformity
scores: For a chosen confidence level 1−α, the prediction set C(xn+1) is defined as C(xn+1) ={
ŷ ∈ Y : S(xn+1, ŷ) ≤ τα

}
, where τα is the (1 − α)-quantile of the nonconformity scores.

This guarantee is unconditional and holds for any model and any distribution as long as the
underlying exchangeability assumption is satisfied. This assumption implies that for any
permutation σ of 1, 2, . . . , n, permutations of the dataset have the same joint distribution
as P

(
(x1, y1), . . . , (xn, yn)

)
= P

(
(xσ(1), yσ(1)), . . . , (xσ(n), yσ(n))

)
. We refer to (Angelopoulos

and Bates, 2021) for a more in-depth introduction to CP.

2.1. Problem Setup

Let X ⊂ R3 represent a discretized volumetric image obtained from axial slices, where X
is subdivided into a finite, structured grid of cuboidal units called voxels. We define each
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voxel x ∈ X by its indices (xa, xc, xs) along the axial, coronal, and sagittal axes, respectively.
Considering a set of K possible labels Y = {1, ...,K}, we represent the true label y ∈ Y as
the indicator of the organ that the voxel x belongs to, and the baseline segmentation model
fΘ obtains predictive probabilities p(ŷ|x) associated with each label ŷ ∈ Y.

Definition 1 (Canonical Object) Label l ∈ Y denotes a canonical object, if l represents
a primary structure of interest for the downstream task.

Definition 2 (Critical Masses) M is a set of critical masses in the volume, if the prox-
imity of any m ∈ M to the canonical object necessitates conservative decision-making for
the downstream task.

For the clinical settings described in Section 1, a tumor is a canonical object for the
downstream task of surgery planning for the removal of that tumor and the set of vessels in
the volume are critical masses, as when a tumor has a vessel in its proximity, the surgeon
needs a prediction set with lower uncertainty (more conservative prediction).

2.2. Spatially-Aware Non-Conformity Score

To apply CP on voxel-wise tasks (e.g., tumor segmentation for surgery planning), we need
to address two challenges: (1) CP uses a single threshold α across all classes; thus the
prediction set for rare classes will be overly conservative (i.e. almost all labels are included
in the set); this is particularly crucial in tumor segmentation task as tumors are small
structures relative to the total CT image volume. (2) The prediction set generated by CP
is invariant to the voxels in the volume, while we expect, the prediction set to be more
conservative when voxels of the canonical object (e.g., tumor) is closer to one or more
critical masses (e.g., vessels).

To address the first challenge, we adopt Class-Conditional Conformal Prediction (CCCP),
where CP is refined to use various quantile thresholds across different classes (Angelopoulos

et al., 2023). We compute a distinct threshold τ ŷα for each label ŷ ∈ Y independently as the
(1− α)-quantile of the nonconformity scores as,

τ ŷα = Quantile1−α

(
{Sbase(xi, yi) : yi = ŷ}ni=1

)
. (1)

For a new test data point (xn+1, yn+1), the prediction set C(xn+1) is constructed as,

C(xn+1) =
{
ŷ ∈ Y : Sbase(xn+1, ŷ) ≤ τ ŷα

}
. (2)

To address the second challenge, we define a new score function, SSACP, that augments
the original CP nonconformity score function, Sbase, with a parameterized weight wv ∈
R[0.5,1), as a multiplicative factor denoted as,

SSACP(x|ŷ = l) = wv(x, l) · Sbase(x|ŷ = l) , (3)

where v ∈ M is the nearest critical mass to the voxel x, and l ∈ Y is the canonical object.
Our intention is to make the impact of the weight irrelevant (wv ≈ 1) when voxels of
the volume are far from both critical masses and canonical object, therefore generating a
prediction set as conservative as the original base function and maximizing the impact of
the weight (wv = 0.5) when voxels are very close to critical masses and the canonical object.
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The weight has to be also impacted by our confidence in segmenting the canonical object
(tumor) as well as the relevancy of the different critical masses, as we may have more than
one critical mass, each with a different relevancy factor for the downstream task. Formally,
we have four parameters for our weight function:

1. δm: The Euclidean distance of each voxel x to the critical mass m ∈M.

2. ϕl: The Euclidean distance of each voxel x to the canonical object l ∈ Y.

3. I(l): The information-theoretical surprisal or unexpectedness of observing the canon-
ical object l with probability p(ŷ = l|x) that inversely accounts for our confidence on

correct segmentation of the canonical object, where I(l) def
= − log p(ŷ = l|x).

4. γm ∈ R(0,1]: A hyperparameter capturing the relevancy and criticality of each critical
mass m ∈M.

Putting all together, our spatially-aware weight function for each voxel x is defined as,

wv(x, l) = σ

( w̃v︷ ︸︸ ︷
1

γv

(
ϕl + δvI(l)

))
s.t. v = argmin

m∈M
δm , (4)

where w̃v : X × Y × M → R+ is a function that represents the raw weight value and
the constraint ensures we consider the nearest critical mass. w̃v is then normalized to
wv(x, l) ∈ R[0.5,1) using the sigmoid function σ(.) (further details in Appendix B).

Since wv ∈ R[0.5,1), when δv is small and p(ŷ = l|x) is high (i.e. I(l) is low), wv yields
towards its lower bound, reducing the nonconformity scores of label l, making it more
likely to be included in the prediction set (more conservative prediction set). This aligns
with the desire to treat voxels around the critical masses and the canonical object more
conservatively and expand the prediction set for those areas. Conversely, when δv is getting
larger and p(ŷ = l|x) smaller (I(l) is higher), wv moves closer to its upper bound of 1,
eliminating the impact of the weight and making it less likely for distant regions to be
included in the prediction set. ϕl also behaves similarly. Lower ϕl (the voxel being closer to
the canonical object) yields lower weight, making the set more conservative and vice versa.
The relevancy hyperparameter γv accepts values between zero (strictly greater than zero),
for the least critical mass to 1, for the most critical mass. γv has a diminishing impact on w̃v

and in turn to wv. For example, if the user sets the relevancy for a critical mass low (e.g.,
γv = 0.5), the weight computed based on all other factors will be doubled, wv gets closer to
1 and diminishes its impact on original nonconformity score. In contrast, when relevancy
increases, wv gets closer to its lower bound of 0.5 and increases the prediction set size. Note
the value of γv needs to be fine-tuned depending on the context of the application.

Theorem 3 (SACP Conservativeness) If Sbase(x, ŷ) denote the base nonconformity score

for a voxel x ∈ X with the predictive label ŷ, and τ ŷα the (1−α)-quantile of Sbase with the error
rate α, then for the canonical object l ∈ Y, the prediction set produced by the nonconformity
function SSACP(x|ŷ = l) is at least as conservative as sets produced by Sbase(x|ŷ = l).

See Appendix C for the proof of Theorem 3 and Appendix D for conservativeness in CP.
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Corollary 4 For an unseen data point xnew and SSACP(xnew, ŷ) (Equation 3), the inclusion
of canonical object label l in the prediction set C(xnew) with error rate α depends on spatial
properties near high-risk regions that satisfies:

l ∈ C(xnew) ⇐⇒ SSACP(xnew|ŷ = l) ≤ τ lα , (5)

where τ lα is class-specific threshold as (1− α)-quantile of nonconformity scores Sbase.

The spatial relationship that Equations (3) and (4) promote is particularly valuable in
the clinical setting described in Section 1 for determining resectability. This assessment
follows region-specific clinical guidelines - for instance, the NCCN guidelines in the United
States and DPCG guidelines in the Netherlands - each defining different criteria for vessel
involvement and tumor contact thresholds that determine resectability. Consequently, when
deploying pretrained tumor segmentation models across different regions, the calibration
of vessel-specific importance factors also needs to be adjusted to align with local clinical
guidelines and their specific vessel prioritization. The detailed process of generating a
prediction set using SACP is described as Algorithm 1 in Appendix A.

3. Experimental Evaluations

3.1. Data Preparation

Datasets. This retrospective study analyzes 30 contrast-enhanced computed tomography
(CT) scans from the PANORAMA Challenge (Alves et al., 2024). The dataset includes
portal venous phase CT scans from five European centers.

Ground Truth Segmentations. Ground truth segmentations were established through
expert radiologist annotations for PDAC tumors. For surrounding anatomical structures
(pancreatic parenchyma, duodenum, liver, gallbladder, kidneys, adrenal glands, and spleen),
we employed TotalSegmentator (Wasserthal et al., 2023). These complementary segmenta-
tions are integrated using a hierarchical fusion approach that prioritizes radiologists’ tumor
delineations over automated organ segmentations.

AI-Generated Segmentations. We employ two deep learning models: a primary model
for PDAC tumors and surrounding anatomical structures (Bereska et al., 2024), and a vessel-
specific model focused on structures critical for PDAC resectability assessment. The latter
segments five key vessels: the celiac trunk (CeTr), hepatic artery (HA), portal vein (PV),
superior mesenteric artery (SMA), and superior mesenteric vein (SMV). For subsequent
nonconformity score computation, we preserve (1) the pre-softmax probability maps for all
11 classes (10 anatomical labels plus background) from the primary segmentation model,
and (2) distance maps computed from the vessel-specific model, measuring the distance
from each voxel to each of the five resectability-determining vessels. To ensure robustness to
outliers, both distance and probability values are clipped at their respective 95th percentiles
before being used in the nonconformity score computation. The implementation details are
further described in Appendix E.

Cropping. To optimize computational efficiency, we use an adaptive 3D bounding box
cropping strategy. We identify the minimal volumetric boundary encompassing all voxels
with specified target labels (gallbladder, pancreas, duodenum, and tumor) and apply this
crop consistently across all corresponding image modalities and their derivatives.
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3.2. Evaluation Metrics

We evaluate our spatially-aware framework through metrics assessing both predictive per-
formance and anatomical sensitivity. For each voxel x with confidence level 1 − α, we
compute the empirical coverage rate:

cov(C, α) = E
[
y ∈ C(x)

]
=

1

|X |
∑
x∈X

1{y∈C(x)} , (6)

where 1 is the indicator function over non-empty prediction sets, y is the true label, and
C(x) is the prediction set. Coverage is assessed separately for vessel-adjacent (δv ≤ 5mm)
and non-critical regions (δv > 5mm). We also define the Relative Width Ratio (RWR) to
quantify adaptation of prediction set sizes based on anatomical criticality as,

ρ(r) =
µ(C|δv ≤ r)

µ(C|δv > r)
, (7)

where µ(C|δv) = 1
|X |

∑
x∈X

∣∣C(x)∣∣ represents the average set size to evaluate prediction set
efficiency and X represents voxels at distance δv from the nearest vessel v.

3.3. Experimental Setup

We use 10 cases for calibration to determine class-specific nonconformity score thresholds τ ŷα
for each label ŷ ∈ Y and evaluate on 20 held-out cases. Statistical comparisons use paired
t-tests with Benjamini-Hochberg correction (p < 0.05). For the vessel-specific analysis, we
incorporate anatomical context through a weighted scoring mechanism. Critical vessels are
assigned differential weights (γ) based on the NCCN resectability criteria for PDAC, with
arterial vessels (CeTr, HA, SMA) receiving higher weights (γ = 0.8) compared to venous
vessels (PV, SMV: γ = 0.6). This weighting scheme reflects their relative importance in
determining resectability, as arterial involvement beyond 180◦ renders a tumor unresectable,
while venous involvement may permit resection with reconstruction.

To achieve sharp transitions in uncertainty estimates near vessel boundaries, we amplify
the sigmoid response using a gain factor (β = 10), creating more pronounced changes in
uncertainty estimates as predictions approach critical vascular structures. This enhanced
sigmoid sensitivity provides a clearer delineation of high-risk regions for surgical planning.

3.4. Experimental Results

Coverage Analysis. Our framework achieves strong coverage on the PANORAMA dataset
(n = 20) with an overall coverage of 0.987 (mean per-case: 0.981±0.005 SEM). The coverage
significantly exceeds the target coverage of 0.95 (Wilcoxon signed-rank test, p = 0.0007).

Distance-Based Analysis. As shown in Table 1, prediction set size decreases with dis-
tance from vessels while maintaining high coverage. RWR ranges from 2.762± 0.150 SEM
near vessels (≤2mm) to 2.525± 0.036 SEM beyond 20mm, with coverage remaining consis-
tently high across all distances (0.981-0.988). This decreasing RWR pattern suggests our
method adapts to provide more precise predictions in regions farther from vessels, while
maintaining wider prediction sets near critical vascular structures.

Vessel-specific analysis (Table 2) demonstrates robust performance across all major ves-
sels, with excellent coverage in vessel-proximate regions. Notably, we achieve high coverage
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Table 1: Coverage and RWR analysis across
vessel proximity zones for CCCP
and SACP.

CCCP SACP
Distance Coverage RWR Coverage RWR

≤2mm 0.954 ± 0.027 2.887 ± 0.320 0.981 ± 0.008 2.762 ± 0.150
≤5mm 0.970 ± 0.016 2.702 ± 0.262 0.987 ± 0.004 2.684 ± 0.131
≤10mm 0.977 ± 0.016 2.611 ± 0.263 0.988 ± 0.004 2.621 ± 0.122
≤20mm 0.978 ± 0.003 2.574 ± 0.205 0.987 ± 0.001 2.592 ± 0.090
>20mm 0.982 ± 0.002 2.509 ± 0.078 0.988 ± 0.000 2.525 ± 0.036

Table 2: Vessel-specific coverage rates at dif-
ferent proximity zones for CCCP (C)
and SACP (S).

2mm 5mm 10mm 20mm >20mm
Vessel C S C S C S C S C S

CeTr 0.999 1.000 0.999 1.000 0.998 1.000 0.980 0.987 0.980 0.988
HA 0.959 0.980 0.973 0.986 0.987 0.994 0.981 0.989 0.980 0.987
SMA 0.925 0.975 0.967 0.989 0.982 0.994 0.973 0.985 0.984 0.989
PV 0.927 0.953 0.955 0.974 0.957 0.974 0.978 0.989 0.981 0.987
SMV 0.960 0.997 0.956 0.987 0.958 0.980 0.975 0.987 0.983 0.987
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Figure 2: Left: RWR (top) and coverage (bottom) as a function of vessel distance for both
datasets. Right: Comparison of empirical coverage at different confidence levels
between our method (SACP) and standard Class-Conditional CP (CCCP).

in critical surgical planning zones, particularly near arteries. Visual examples of the pre-
diction sets and their relationship to vessel proximity are provided in Appendix G.

Comparison with Standard Class-Conditional CP. Our spatially-aware approach
demonstrates significantly improved coverage (0.981 ± 0.005 SEM vs 0.968 ± 0.038 SEM,
paired t-test t=3.366, p=0.003). Near vessels (≤ 2mm), we achieve both superior coverage
(0.981 vs. 0.954) and reduced RWR (2.762 vs. 2.887). Figure 2 shows consistently better
coverage across target confidence levels, particularly in the 40 − 80% range. Our method
maintains high coverage while exhibiting decreasing RWR with distance from vessels, from
2.762 ± 0.150 SEM at ≤ 2mm to 2.525 ± 0.036 SEM beyond 20mm, demonstrating that
our framework effectively adapts prediction sets based on proximity to critical anatomical
structures. Results from additional experiments are provided in Appendix F.

4. Conclusion

We presented a spatially-aware conformal prediction framework that provides anatomically
informed uncertainty quantification for medical image segmentation. Our method adapts
prediction sets based on proximity to critical vascular structures while maintaining theo-
retical coverage guarantees. Validation on the PANORAMA dataset demonstrates robust
performance, with strong coverage in vessel-adjacent regions and efficient adaptation of pre-
diction set sizes based on anatomical criticality. This approach represents an advancement
toward clinically reliable AI systems, particularly for applications where precise boundary
delineation near critical structures impacts surgical planning and patient care. Future work
will explore extending this framework to other anatomical contexts and clinical workflows.
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Appendix A. Algorithmic Description of SACP

In Algorithm 1, we describe the step-wise procedure and the required computation regarding
applying SACP to incorporate spatial context in 3D voxel-wise segmentation and enhance
uncertainty quantification.

• In Step 1, a pretrained segmentation model fΘ generates voxel-wise predictive prob-
abilities in an input volume X using the softmax function.

• In Step 2, we apply class-conditional calibration to ensure a desired confidence rate
of at least 1− α for each class ŷ ∈ Y using Sbase non-conformity scores of calibration
set of voxels. For each class, the (1− α)-quantile threshold τ ŷα is determined, setting
the baseline for prediction set construction.

• In Step 3, we compute spatial properties as the Euclidean distances of each voxel
x ∈ X to a set of critical masses m ∈ M denoted by δm and to the canonical object
label l ∈ Y denoted by ϕl.

• In Step 4, we identify the nearest critical mass v ∈ M for each voxel, forming a
spatial reference. Then, a normalized weight wv is computed for each voxel x based
on its proximity to the canonical object l and the nearest critical mass v, adjusted by
a mass-specific relevance factor γv. This weight modulates the base non-conformity
score Sbase associated with the canonical object l to refine uncertainty estimation
relative to spatial critical structures. Finally, the prediction set C(x) is constructed
by including the canonical object label l in the set if and only if the adjusted score
SSACP remains below its respective (class-conditional) quantile threshold τ lα.

By integrating spatial information, SACP improves the reliability of conformal pre-
diction in 3D segmentation, particularly in anatomically structured regions where spatial
coherence is essential.

Appendix B. Further Details of SACP Parameters

We compute δm as the Euclidean distance from voxel x to any of the potential critical
masses m ∈M (e.g., major vessels) that is defined by the function d : X ×M→ R+ as,

δm = dEuc(x,m) = min
x′∈Vm

||x− x′|| , (8)

where m ∈M is a critical mass containing a set of voxels Vm ⊂ X .
We compute ϕl as the Euclidean distance from voxel x to the segmentation outcome of

a pretrained model fΘ that is defined by the function d̂ : X × Y → R+ as,

ϕl = d̂Euc(x, l) = min
x′∈Vl

||x− x′|| , (9)

where l ∈ Y is the canonical object label and Vl ⊂ X contains a set of voxels that are
segmented as label l such that:

Vl =
{
x′ ∈ X | argmax

ŷ∈Y
fΘ(x

′, ŷ) = l
}
, (10)
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Algorithm 1: Spatially-Aware Conformal Prediction (SACP)

Input: 3D input volume X : voxels x with true labels y; Set of all possible labels ŷ ∈ Y;
set of critical massesM; canonical object label l; pretrained segmentation

model fΘ; desired error rate α; mass-specific relevance factors {γm}m∈M;

Output: C(x) as prediction set for each voxel;

// Step 1: Get model predictions

1 ∀x ∈ X , ŷ ∈ Y : p(ŷ|x)← softmax
(
fΘ(x, ŷ)

)
// Get predictive probabilities

// Step 2: Class-conditional calibration on n voxels

2 for each class ŷ ∈ Y do

3 τ ŷα ← Quantile1−α

({
Sbase(xi, yi) : yi = ŷ

}n

i=1

)
4 end

// Step 3: Compute spatial distances

5 for each voxel x ∈ X do

6 ∀m ∈M : δm ← dEuc(x,m) // Distance to the critical masses (Eq. 8)

7 Vl ← {x′ ∈ X | argmax{ŷ∈Y} fΘ(x
′, ŷ) = l} // Set of canonical object voxels

8 ϕl ← d̂Euc(x, l) // Distance to the canonical object (Eq. 9 and 10)

9 end

// Step 4: Generate SACP prediction sets

10 for each voxel x ∈ X do

11 v = argmin{m∈M} δm // Find the nearest critical mass

12 wv(x, l)← σ
(

1
γv

(
ϕl + δvI(l)

))
// Compute spatial weight (Eq. 4)

13 SSACP(x|ŷ = l)← wv(x, l) · Sbase(x|ŷ = l) // Score for canonical object

14 l ∈ C(x)⇔ SSACP(x|ŷ = l) ≤ τ lα // Conservative inclusion of ŷ = l (Eq. 3)

15 end

16 return C(x) for all x ∈ X

in which fΘ(x
′, ŷ) is the outcome of the pretrained segmentation model associated with the

label ŷ when classifying the voxel x′.

We also compute the confidence of segmentation model defined as the predictive proba-
bility associated with the canonical object label l (e.g., a tumor) and denoted by p(ŷ = l|x)
for each voxel x. High confidence associated with the canonical object label indicates that
the model is making reliable predictions that a voxel belongs to that label, which can be
valuable in improving reliability in high-risk tasks. The weight function is formulated to
represent lower values with higher probabilities (i.e., more confident predictions) and vice
versa, emphasizing regions where the model is more confident while discounting less certain
regions. To refine the weight computation, we use this segmentation confidence to calculate
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the surprisal function I(l) def
= − log p(ŷ = l|x). This surprisal quantifies the information

content or unexpectedness of observing the canonical object l with probability p(ŷ = l|x)
and accounts for the model’s inherent uncertainty during segmentation. By incorporating
surprisal, the prediction sets dynamically adapt to the probabilistic confidence of the model.

Following class-conditional CP with the desired confidence level 1 − α and according
to Equation (1), we independently compute the class-specific quantile τ ŷα associated with
the canonical object label ŷ = l ∈ Y, based on the Sbase scores of calibration data. Then,
we use SSACP during testing to include the canonical object label l in the voxels’ prediction
sets as proposed in Corollary 4.

Appendix C. Proof of Theorem 3

Proof Following class-conditional CP, τ ŷα denotes the (1 − α)-quantile of Sbase scores
associated with calibration data with label ŷ. Then, for each voxel x, the condition for
inclusion the canonical object label ŷ = l in the prediction set Cbase(x) generated by Sbase

scores is:

Sbase(x|ŷ = l) ≤ τ lα . (11)

By the definition of in Equation (3), SSACP is computed for each voxel x and the canonical
object label ŷ = l using the normalized weight wv as,

SSACP(x|ŷ = l) = wv · Sbase(x|ŷ = l) s.t. wv = σ(w̃v) , (12)

where w̃v ∈ R+ is the raw weight value defined in Equation (4), and σ(.) is the steep sigmoid
function (with the gain factor β) defined as σ(w̃v) =

1
1+exp(−βw̃v)

. For other labels ŷ ̸= l,
Sbase is used to include the labels in the sets. As w̃v is positive and normalized to be less
than 1, so 0.5 ≤ wv < 1. Then, it follows that:

∀x ∈ X : SSACP(x|ŷ = l) < Sbase(x|ŷ = l) . (13)

Note that lim
w̃v→+∞

wv = 1, and consequently, lim
w̃v→+∞

SSACP = Sbase. According to Equa-

tions (11) and (13), the above inequality implies the following condition to include l in the
set:

SSACP(x|ŷ = l) = wv · Sbase(x|ŷ = l) ≤ τ lα . (14)

Therefore, any label ŷ ̸= l included in Cbase(x) (i.e., Sbase(x|ŷ) ≤ τ ŷα) is also included
in the prediction set CSACP(x) generated by SACP, and for the canonical object ŷ = l,
SSACP(x|ŷ = l) < Sbase(x|ŷ = l) holds. Formally, this means:

Cbase(x) ⊆ CSACP(x) . (15)

14



SACP

Appendix D. Conservativeness in Conformal Prediction

Conformal prediction constructs set-valued predictions with a user-specified coverage guar-
antee, ensuring that the empirical coverage of the prediction sets is at least the nominal
confidence level. Given a dataset Dn =

{
(xi, yi)

}n

i=1
and a new test point xn+1, CP produces

a prediction set Cn,α(xn+1) such that

P(yn+1 ∈ Cn,α(xn+1)) ≥ 1− α . (16)

This property, known as conservativeness, guarantees that the probability of the true la-
bel being included in the prediction set is at least 1 − α, often making CP slightly over-
conservative due to the discrete nature of rank-based p-values in finite samples.

Conservativeness leads to both lower and upper bounds on the empirical coverage. The
lower bound is given directly by the validity guarantee, ensuring Equation (16). However,
the actual coverage can be higher than 1− α due to the discreteness of conformity scores,
leading to an upper bound of the form

P
(
yn+1 ∈ Cα(xn+1)

)
≤ 1− α+

1

n+ 1
. (17)

This small excess coverage diminishes as n grows, ensuring that CP becomes asymptotically
exact, meaning

lim
n→+∞

P
(
yn+1 ∈ Cα(xn+1)

)
= 1− α . (18)

For class-conditional CP, n refers to the number of calibration samples in each class. We
encounter stronger conservativeness for rare classes (e.g., tumor label) as classes with small
n suffer from higher over-coverage due to the larger impact of discrete rank-based p-values.
Due to asymptotic exactness, as n→ +∞, the upper bound tightens, and class-conditional
CP approaches exact coverage in Equation (18). Unlike standard CP, class-conditional CP
does not enforce a single global coverage level but rather adapts to the structure of the
data, ensuring per-class validity.

Thus, conservativeness guarantees validity for all sample sizes while maintaining distribution-
free coverage guarantees. Class-conditional CP maintains the fundamental conservativeness
of standard CP but is more sensitive to class imbalances, making it particularly useful when
fairness across classes is a concern.

Appendix E. Experimental Setup Details

E.1. PDAC Segmentation Model Implementation

The PDAC and organ segmentation model utilized a novel tripartite architecture consisting
of a teacher, professor, and student model, implemented using 3D UNet cascade architec-
tures. The teacher model was initially trained on 517 contrast-enhanced CT scans from the
PREOPANC trials (Amsterdam UMC and Leiden UMC), LAPC registry (Dutch Pancre-
atic Cancer Group), and control patients who underwent CT prior to transcatheter aortic
valve implantation (Van Tienhoven et al., 2018; Janssen et al., 2021; Stoop et al., 2022).
Ground truth segmentations were established by three expert radiologists at the Amsterdam
University Medial Centers who manually segmented PDAC tumors in 256 LAP-CTs from
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120 patients with (borderline) resectable PDAC and 66 LAP-CTs from 66 LAPC patients
using 3D Slicer (version 4.11.20210226 (Fedorov et al., 2012)). Additional anatomical con-
text was provided through automated segmentation of surrounding structures (pancreas,
duodenum, spleen, kidneys, adrenal glands, liver, and gallbladder) using TotalSegmentator
version 1.5.6 (Wasserthal et al., 2023). The professor model, trained on 106 CT scans, was
designed to refine the teacher’s pseudo-segmentations using an Underestimation Focuser
correction matrix that prioritized correctly identified tumors and areas of underestimation.
The final student model was trained on an expanded dataset of 1085 CTs from 903 patients,
combining manually segmented data with professor-corrected pseudo-segmentations. The
model weights are publicly available at https://zenodo.org/records/14782552.

E.2. Vessel Segmentation Model Implementation

The vessel segmentation model was implemented using a 3D nnUNet cascade architecture
(low-resolution followed by full-resolution) trained on a dataset of 92 contrast-enhanced
CT scans (Isensee et al., 2021). The model was designed to segment nine vascular struc-
tures: aorta, celiac trunk, hepatic artery, splenic artery, superior mesenteric artery, in-
ferior vena cava, portal vein, splenic vein, and superior mesenteric vein. Training data
was sourced from the PREOPANC trials and control patients, comprising CT scans from
patients with varying stages of pancreatic ductal adenocarcinoma (PDAC) and control
subjects who underwent CT imaging for transcatheter aortic valve implantation (Van Tien-
hoven et al., 2018). Ground truth segmentations were established through manual an-
notation by seven trained observers at the Amsterdam University Medical Centeres us-
ing 3D Slicer (version 4.11.20210226) (Fedorov et al., 2012), with particular focus on the
five vessels critical for PDAC resectability assessment: celiac trunk, hepatic artery, por-
tal vein, and the superior mesenteric vessels. The model weights are publicly available at
https://zenodo.org/records/14782552.

Appendix F. Additional Experimental Results

Dataset Characteristics. We analyze 30 contrast-enhanced computed tomography (CT)
scans from the Memorial Sloan Kettering (MSK) Medical Segmentation Decathlon Pancreas
dataset (Simpson et al., 2019), comprising portal venous phase CT scans from Memorial
Sloan Kettering Cancer Center (New York, USA). Ground truth segmentations were estab-
lished through expert abdominal radiologist annotations for pancreatic masses (including
cysts and tumors), while surrounding anatomical structures were segmented using TotalSeg-
mentator (Wasserthal et al., 2023). These complementary segmentations were integrated
using a hierarchical fusion approach that prioritizes radiologists’ tumor delineations over
automated organ segmentations. This dataset includes a heterogeneous mix of pancreatic
masses including resectable PDAC, intraductal papillary mucinous neoplasms (IPMN), and
pancreatic neuroendocrine tumors (PNET). This composition notably differs from both the
typical clinical presentation of PDAC, where approximately 80 − 85% of patients present
with vessel involvement indicating borderline resectable, locally advanced, or metastatic
disease, and from our primary dataset which specifically captured the full range of PDAC
presentations including locally advanced cases.
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Table 3: Vessel-specific coverage rates at different proximity zones for the MSK dataset.
The missing values (”-”) indicate no tumor voxels were predicted near the celiac
trunk and hepatic artery at these distances, consistent with the MSK dataset’s
focus on resectable PDAC cases.

Vessel ≤2mm ≤5mm ≤10mm ≤20mm >20mm

CeTr - - - 0.985 0.980
HA - 0.956 0.753 0.906 0.991
SMA 1.000 0.995 0.997 0.991 0.975
PV 0.821 0.858 0.918 0.967 0.991
SMV 0.973 0.989 0.986 0.988 0.966
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Figure 3: Comparison of empirical coverage at different confidence levels between our
method (SACP) and standard Class-Conditional CP (CCCP) on the MSK
dataset.

Coverage Analysis. Our framework maintains strong performance on the MSK dataset,
achieving an overall coverage of 0.980 (mean per-case: 0.985 ± 0.007 standard error of the
mean (SEM)). The coverage significantly exceeds the target coverage of 0.95 (Wilcoxon
signed-rank test, p = 0.0009).

Distance-Based Analysis. Table 3 presents vessel-specific coverage rates across different
proximity zones. The coverage patterns reflect the resectable nature of the cases, with no-
tably high coverage rates in regions farther from vessels. Near-vessel regions (≤ 2mm) show
more variable coverage (0.821-1.000) when tumor-vessel contact is present. The relative
width ratio (RWR) analysis shows a consistent relationship between prediction set size and
vessel proximity, though less pronounced than in the primary dataset. Mean RWR values
range from 1.141±0.031 SEM in near-vessel regions (≤ 2mm) to 1.655±0.005 SEM beyond
20mm. This pattern of increasing width with vessel proximity persists across all vessels.
The results from this dataset complement our primary analysis while highlighting the im-
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HA contact point: Purple boundary’s lateral

expansion suggests possible arterial involve-

ment requiring arterial resection planning,

while orange CP misses this critical region.

SMA contact point: Spatially-aware expan-

sion identifies possible arterial invasion,

a distinction missed by uniform CCCP

bounds.

SMV contact point: Purple boundary’s cir-

cumferential expansion indicates potential

venous involvement unlike CCCP’s assess-

ment.

Portal-SMV confluence: Focused purple ex-

pansion suggests confluence involvement

requiring vascular reconstruction planning,

which uniform CCCP bounds fail to detect.

Figure 4: Anatomically-aware conformal prediction sets compared to standard CCCP for
PDAC cases. Ground truth tumor boundaries (blue), model predictions (yellow),
and vessel regions (red) are shown. Our prediction sets (purple) provide adap-
tive uncertainty bounds based on vessel proximity, unlike the uniform width of
standard CCCP (orange), enabling more informed surgical planning in critical
regions.

portance of dataset composition in evaluating conformal prediction frameworks for PDAC
segmentation. The predominantly resectable cases in the MSK dataset provide insights
into framework performance in scenarios with limited vessel involvement, while underscor-
ing the need for diverse datasets that capture the full spectrum of PDAC presentations for
comprehensive validation.
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Comparison with Standard Class-Conditional CP. As described in Figure 3, our
spatially-aware approach yields comparable overall coverage (0.980 vs 0.979) while demon-
strating improved stability in anatomically critical regions. Near vessels (≤ 2mm), we
achieve higher coverage (0.959 vs 0.956) with more efficient prediction sets (RWR 1.141 ±
0.061 SEM vs 1.205±0.095 SEM). The framework shows a more controlled increase in RWR
with vessel proximity, ranging from 1.141 ± 0.061 SEM at ≤ 2mm to 1.655 ± 0.009 SEM
beyond 20mm, demonstrating effective adaptation to anatomical context while maintaining
strong coverage guarantees.

Appendix G. Additional Visualization Examples

Figure 4 shows additional examples of our spatially-aware conformal prediction method
across different PDAC cases taken from the PANORAMA dataset, demonstrating how the
prediction sets adapt to varying tumor-vessel relationships.
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