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Abstract
In this study, we consider the realm of covariance
matrices in machine learning, particularly focus-
ing on computing Fréchet means on the mani-
fold of symmetric positive definite matrices, com-
monly referred to as Karcher or geometric means.
Such means are leveraged in numerous machine
learning tasks. Relying on advanced statistical
tools, we introduce a random matrix theory based
method that estimates Fréchet means, which is
particularly beneficial when dealing with low sam-
ple support and a high number of matrices to aver-
age. Our experimental evaluation, involving both
synthetic and real-world EEG and hyperspectral
datasets, shows that we largely outperform state-
of-the-art methods.

1. Introduction
Covariance matrices are of significant interest in machine
learning, especially in scenarios with a limited number of la-
beled data or when dealing with high intra-class variability,
as seen in EEG (Barachant et al., 2011) and remote sensing
(Rußwurm et al., 2020). Numerous machine learning algo-
rithms have been developed when features are covariance
matrices, and therefore symmetrical positive-definite matri-
ces (SPD). A common and notable algorithm in this realm
is the well-established nearest centroid. SPD matrices find
their use in deep learning networks (Huang & Van Gool,
2017; Brooks et al., 2019), metric learning (Zadeh et al.,
2016; Harandi et al., 2017), domain adaptation (Kobler et al.,
2022), privacy protection (Reimherr et al., 2021). A pivotal
component in most machine learning algorithms that uti-
lize SPD matrices is the computation of a class barycenter.
For SPD matrices, this barycenter is known as the Fréchet
mean (or Karcher mean) (Bhatia, 2015). This mean is used,
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for example, for nearest centroid (Tuzel et al., 2008), pool-
ing in SPD deep learning networks (Brooks et al., 2019)
and metric learning (Zadeh et al., 2016). The optimal so-
lution is not available analytically necessitating the use of
iterative algorithms often based on deriving a Riemannian
gradient (Boumal, 2023). These algorithms are grounded
in Riemannian geometry, since matrices belong to specific
manifolds depending on their specific properties (fair SPD,
low rank, etc.) and the chosen metric. The geometry is often
the classical one given for SPD matrices, but alternatives
geometries are available to perform this algorithm such as
Bures-Wassertein (Han et al., 2021), log-Euclidean (Utpala
et al., 2023) and even for a more general manifold (Lou
et al., 2020).

These algorithms generally perform effectively, yet there are
instances where the solution may be numerically unfeasible,
particularly with the presence of a singular matrix. In this
case, the most common solution is to regularize each of the
covariance matrices. There is a plethora of work in this
field. The most common regularization technique involves
shrinking the covariance estimate towards the identity ma-
trix, introducing a parameter upon which the new estimate
hinges. Numerous methods have been proposed to optimally
estimate this parameter according to a chosen criterion. A
seminal contribution in this domain is by (Ledoit & Wolf,
2004), where the mean square error (MSE) between the true
covariance and the regularized covariance is used. The opti-
mal parameter is finally calculated on the basis of statistical
consistency considerations. Improvements have been pro-
posed in (Ledoit & Wolf, 2015) and (Ledoit & Wolf, 2020).
Extensions to non-Gaussian data have also been proposed
(Ollila & Tyler, 2014; Pascal et al., 2014).

In (Tiomoko et al., 2019), a novel approach was introduced,
utilizing a distance-based criterion. This method draws upon
the innovative distance presented in (Couillet et al., 2019),
which offers a consistent estimation of the true distance
between two matrices. This new estimate is derived from
the tools of random matrix theory, which enables us to study
the statistical behavior of the eigenvalues and eigenvectors
of random matrices in a high-dimensional regime (when
the size of the data p and the number of samples n grow
at the same rate). While this new estimator demonstrates
promising potential in terms of estimation, it is not without
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its practical challenges, such as the selection of initial values
and the definition of an appropriate stopping criterion. A
critical issue is its non-compliance with certain conditions
set forth in (Tiomoko et al., 2019) concerning the indepen-
dence of the two matrices in the distance. Furthermore,
similar to traditional regularization methods, this approach
only regularizes the eigenvalues, leaving the eigenspaces
unaltered. As indicated by empirical results, this form of
regularization alone may not suffice to deliver optimal per-
formance in classification or clustering tasks.

We recognize the significance of tailoring regularization
strategies to specific applications. For example, in (Kam-
moun et al., 2018), the criterion is not the MSE or a dis-
tance, but maximizing the probability of detection. Given
the primary goal of detection, this tailored approach yields
substantially better outcomes compared to conventional reg-
ularization techniques. So, based on the results of (Couillet
et al., 2019; Tiomoko et al., 2019), we propose a new regular-
ization strategy directly related to classification algorithms.
In particular, we are interested in barycenters, which are for
instance central to nearest centroid and K-means algorithms.
Specifically, our contributions are the followings:

• First, we improve the RMT based covariance estimator
proposed in (Tiomoko et al., 2019).

• Second, the main contribution is to propose a new RMT
corrected Fréchet mean of SPD matrices by exploiting
the improved distance from (Couillet et al., 2019).

• Third, we adapt learning algorithms, i.e., K-means and
nearest centroid classifier, to our new RMT mean.

• Finally, the interest of our approach is proved on both
simulated and real EEG and hyperspectral data.

To ensure reproducibility, the code for the experiments
discussed is accessible at https://github.com/
AmmarMian/icml-rmt-2024.

2. Preliminaries
2.1. Random matrix theory

Random matrix theory (RMT) is a tremendous tool when
it comes to studying the statistical behaviour of random
matrices when the number of features p and the number
of samples n grow at the same rate toward infinity, i.e.,
as p, n → ∞, p/n → c > 0. In particular, from the
seminal works (Wishart, 1928; Marchenko & Pastur, 1967;
Silverstein & Bai, 1995), we know that the eigenvectors
and eigenvalues of the sample covariance matrix (SCM)
are not consistent in the large dimensional regime. This
lead researchers to regularize the SCM, more specifically
its eigenvalues, in order to obtain consistent estimators;

see e.g. (Ledoit & Wolf, 2015; 2018). Recently, with the
rise of machine learning, distances between covariance ma-
trices have attracted attention; see e.g. (Couillet et al., 2019;
Couillet & Liao, 2022). In the same spirit as for the study
of covariance matrices, it has been shown that the distances
between SPD matrices are not consistent and that it is then
possible to regularize them to obtain improved distances
which are then consistent in the high-dimensional regime.

2.1.1. COVARIANCE ESTIMATION

Let X ∈ Rp×n with true covariance C and SCM Ĉ =
1
nXXT . The most famous – and probably the simplest –
way to regularize the SCM Ĉ consists in the linear shrink-
age: ĈLW = ρIp +

√
1− ρ2Ĉ (Ledoit & Wolf, 2004).

Parameter ρ > 0 is chosen so that it minimizes the expected
ℓ2 distance E[∥C − ĈLW∥2] asymptotically. To estimate ρ
consistently, basic results from RMT are used. However,
in this setting, the eigenvalues are then biased. Another
solution is to obtain a consistent estimate of the true eigen-
values λi(C). A method to estimate these eigenvalues was
first proposed in (El Karoui, 2008), with little success as the
optimization process was very unstable. This was solved
in (Ledoit & Wolf, 2015) and (Ledoit & Wolf, 2018), where
the ℓ2 distance and a Stein loss are leveraged to estimate
the λi(C)’s from the λi(Ĉ)’s with the so-called QuEST
method. The major limitation is that, even though QuEST is
quite accurate, it is computationnally very expensive, which
makes it complicated to employ in real scenarios. Recently,
(Ledoit & Wolf, 2020) proposed an analytical non-linear
shrinkage of the λi(Ĉ)’s, i.e., functions ϕi are learnt such
that the λi(C)’s are estimated through ϕi(λi(Ĉ)). To de-
termine the ϕi’s, RMT, oracle non-linear shrinkage function
and kernels are exploited. They are chosen to minimize the
true variance. This method features the accuracy of QuEST
while being numerically very efficient.

2.1.2. DISTANCE ESTIMATION

Covariance matrices are increasingly exploited in machine
learning algorithms such as Quadratic Discriminant Analy-
sis, Metric Learning, Nearest Centroid, etc. Often, in such
scenarios, covariance matrices are mainly leveraged to com-
pute some kind of distance. In this paper, we focus on
distances between covariance matrices. Unfortunately, as
shown in (Couillet et al., 2019), these are not consistent in
the large dimensionality regime. Some efforts have thus
been dedicated to finding some good estimators.

In (Couillet et al., 2019; Pereira et al., 2023), RMT corrected
estimators of the squared distance between the true covari-
ance matrices of some data are derived. They considered
two different cases. In the first one, random data X1 and
X2 with true covariance C1 and C2 and SCMs Ĉ1 and
Ĉ2 are considered. A consistent estimator δ̃2(Ĉ1, Ĉ2) of
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the squared distance δ2(C1,C2) are derived. In the other
case, only one matrix is random. We have X with covari-
ance C and SCM Ĉ and a deterministic SPD matrix R.
A consistent estimator δ̂2(R, Ĉ) of the squared distance
δ2(R,C) is provided. In both cases, estimators for a wide
range of distances are obtained in closed form. The main
limitation of these RMT squared distance estimators is that
they are valid only when data X1 and X2 are independent
(respectively that R is not constructed with X).

We focus on the squared Fisher distance (Skovgaard, 1984),
which is, for all C1 and C2 ∈ S++

p (manifold of SPD
matrices),

δ2(C1,C2) = 1
2p∥ logm(C−1

1 C2)∥22
= 1

2p

∑p
i=1 log

2(λi(C
−1
1 C2)),

(1)

where logm(·) denotes the matrix logarithm. In the present
work, we exploit the estimator δ̂2 between some random ma-
trix and a deterministic matrix in S++

p derived in (Couillet
et al., 2019). It is provided in Theorem 2.1.

Theorem 2.1 (RMT corrected squared Fisher distance
from (Couillet et al., 2019)). Given X ∈ Rp×n (p > n)
with SCM Ĉ and a deterministic R ∈ S++

p , the RMT cor-
rection of the squared Fisher distance (1) is

δ̂2(R, Ĉ) =
1

2p

p∑
i=1

log2(λi) +
1

p

p∑
i=1

log(λi)

− (λ− ζ)T [
1

p
Q1p +

1− c

c
q]− 1− c

2c
log2(1− c), (2)

where c = p/n < 1; λ and ζ contain the eigenvalues of

R−1Ĉ and Λ−
√
λ
√
λ

T

n , with Λ = diag(λ); q ∈ Rp such
that qi =

log(λi)
λi

; and Q ∈ Rp×p is the matrix such that

Qij =

λi log
(

λi
λj

)
−(λi−λj)

(λi−λj)2
, i ̸= j

1
2λi

, i = j
.

2.2. Riemannian optimization on S++
p

Riemannian optimization (Absil et al., 2009; Boumal, 2023)
provide generic methods to solve constrained optimization
problems over any smooth manifold. In the present work,
we are interested in optimization on the manifold of SPD
matrices S++

p and we are limiting ourselves to the Rieman-
nian gradient descent algorithm. Let f : S++

p → R be an
objective function. The goal is to solve the optimization
problem

argmin
R∈S++

p

f(R).

To do so, the differential structure of S++
p is exploited.

Since S++
p is open in the space of symmetric matrices Sp,

the tangent space at any point R ∈ S++
p can be identified

to Sp. The next step is to equip S++
p with a Riemannian

metric. The choice that appears natural in our case is the
Fisher information metric of the normal distribution, which
yields (1). It is, for all R ∈ S++

p , ξ, η ∈ Sp,

⟨ξ,η⟩R = tr(R−1ξR−1η). (3)

It allows to define the Riemannian gradient ∇f(R) of f at
R ∈ S++

p as the only matrix in Sp such that, for all ξ ∈ Sp,

⟨∇f(R), ξ⟩R = d f(R)[ξ], (4)

where d f(R)[ξ] denotes the directional derivative of f at
R in the direction ξ. The Riemannian gradient provides
a descent direction of the cost function f in the tangent
space at R. From there, we need to obtain a new point
on S++

p . This is achieved by a retraction R, which maps
every tangent vector at any point onto the manifold. In
our opinion, the optimal retraction choice on S++

p is the
second-order approximation of the Riemannian exponential
mapping (generalization of a straight line on a manifold)
defined in (Jeuris et al., 2012), for all R ∈ S++

p and ξ ∈ Sp,
as

RR(ξ) = R+ ξ +
1

2
ξR−1ξ. (5)

All the tools to apply the Riemannian gradient descent al-
gorithm in order to optimize the cost function f have now
been introduced. Given an initial guess R0 ∈ S++

p , the
sequence of iterates {Rℓ} produced by the gradient descent
is given through the recurrence

Rℓ+1 = RRℓ
(−tℓ∇f(Rℓ)), (6)

where tℓ > 0 is the stepsize, which can be computed through
a linesearch; see e.g., (Absil et al., 2009).

3. Closely related work
In this paper, we explore covariance and Fréchet mean es-
timation by leveraging (2). In (Tiomoko et al., 2019), the
problem of estimating covariance by exploiting (2) has al-
ready been considered. Indeed, authors are interested in the
optimization problem

argmin
R∈S++

p

δ̂2(R, Ĉ), (7)

and also consider Riemannian optimization to solve it. As
previously explained, for (2) to provide an accurate approx-
imation of δ2(R,C), R must be sufficiently independent
from X . When trying to solve (7), this is a big issue. The
gradient obviously depends on X . It inevitably induces
some dependency between R and X along iterations. As
a consequence, δ̂2(R, Ĉ) becomes irrelevant at some point
and lead to an inappropriate solution.
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Concerning covariance estimation, the big difference be-
tween their approach and ours lies in how this issue is han-
dled. In (Tiomoko et al., 2019), since δ̂2(R, Ĉ) becomes
negative when it is no longer informative, they considered
optimizing R 7→ (δ̂2(R, Ĉ))2. As it did not appear to be
sufficient, they also limited their search to the eigenvalues of
the true covariance matrix, i.e., they assumed R = U∆UT ,
where U contain the eigenvectors of the sample covariance
Ĉ and ∆ contain the sought eigenvalues.

In our work, we employ a very different strategy. Indeed, we
choose to keep R 7→ δ̂2(R, Ĉ) as the actual cost function
and our search space remains S++

p . Instead of changing
these, we wisely define a new stopping criterion. Further
notice that we derive the gradient in a very different way and
end up with a formula that has a different form. Finally, they
do not consider at all the Fréchet mean estimation problem,
which is clearly the main contribution of our paper.

4. RMT improved covariance estimation
In this section, we improve the RMT based covariance es-
timation proposed in (Tiomoko et al., 2019). This latter is
based on the squared distance estimator (2). The main stake
of this section is to be able to disrupt as much as possible
the dependency on X that is created along the optimization
process which leads to mitigate results in (Tiomoko et al.,
2019). To do so, in Section 4.1, we clean up the method pro-
posed in (Tiomoko et al., 2019), which relies on (2). More
specifically, we don’t take the square of the squared distance
estimator, perform optimization on S++

p , and propose a
properly adapted stopping criterion. Finally, in Section 4.2,
simulations are performed in order to compare the proposed
approach to baseline methods and concluding remarks are
provided.

4.1. Covariance estimator algorithm

We first consider the optimization problem (7), which lever-
ages the squared distance estimator (2). In this scenario,
the covariance estimator Ĉdist is obtained by minimizing
f : R 7→ δ̂2(R, Ĉ), which approximates R 7→ δ2(R,C),
where C is the true covariance of X . To solve the opti-
mization problem, we resort to Riemannian optimization on
S++
p with the tools presented in Section 2.2. To be able to

implement the Riemannian gradient descent, all we need is
the Riemannian gradient of f : R 7→ δ̂2(R, Ĉ).

The objective f is a function of the eigenvalues of R−1Ĉ,
i.e., f(R) = g(Λ), where Λ ∈ D++

p (manifold of pos-
itive definite diagonal matrices) contain the eigenvalues
of R−1Ĉ (or equivalently R

−1/2ĈR
−1/2 to keep a sym-

metric matrix). First, in Proposition 4.1, the Riemannian
gradient ∇f(R) of f in S++

p is given as a function of the
Riemannian gradient ∇g(Λ) of g in D++

p , also equipped

with metric (3). As for S++
p , ∇g(Λ) is the only element of

the space of diagonal matrices Dp such that, for all ξ ∈ Dp,
d g(Λ)[ξ] = tr(Λ−1∇g(Λ)Λ−1ξ).

Proposition 4.1. Let Ĉ ∈ S++
p and f : S++

p → R such
that for all R ∈ S++

p , f(R) = g(Λ), where g : D++
p → R

and Λ is obtained through the eigenvalue decomposition
R

−1/2ĈR
−1/2 = UΛUT . It follows that

∇f(R) = −R
1/2UΛ−1∇g(Λ)UTR

1/2,

where ∇g(Λ) is the Riemannian gradient of g at Λ in D++
p .

Proof. See Appendix A.

It now remains to compute the Riemannian gradient ∇g(Λ)
of g at Λ ∈ D++

p , where g corresponds to the RMT cor-
rected squared Fisher distance (2). It is provided in Proposi-
tion 4.2.

Proposition 4.2. Let g : D++
p → R the function such

that g(Λ) = δ̂2(R, Ĉ), with δ̂2 defined in (2) and Λ the
eigenvalues of R−1/2ĈR

−1/2. It follows that

∇g(Λ) =
1

p
[logm(Λ)+Ip]Λ−Λ2[∆+diag(AV ∆V T )]

− 1

p
Λ2 diag(B1p(λ− ζ)T + 1p(λ− ζ)TC)

− 1− c

c
(Ip − logm(Λ))(Λ− diag(ζ)),

where ζ and V are the eigenvalues and eigenvectors of
Λ −

√
λ
√
λ

T

n ; ∆ = diag( 1pQ1p +
(1−c)

c q), with Q and q
defined in (2); and A, B and C are the matrices such that

Aij =

{
− 1

n

√
λj

λi
, i ̸= j

1− 1
n , i = j

,

Bij =

−
(λi+λj) log(

λi
λj

)

(λi−λj)3
− 2

(λi−λj)2
, i ̸= j

− 1
λ2
i
, i = j

,

Cij =

 1
λj(λi−λj)

+
2λi log(

λi
λj

)

(λi−λj)3
− 2

(λi−λj)2
, i ̸= j

1
2λ2

i
, i = j

.

Proof. See Appendix A.

Injecting Proposition 4.2 in Proposition 4.1 yields the Rie-
mannian gradient of f . This is all that is needed to perform
the Riemannian gradient descent (6) on S++

p in order to
solve (7).

For covariance estimation, the interest of solving (7) lies
in the fact that δ̂2(R, Ĉ) provides an accurate estimation
of δ2(R,C). Unfortunately, δ̂2(R, Ĉ) does not actually
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Algorithm 1 Covariance based on RMT corrected distance

Input: data X ∈ Rp×n, initial guess R0 ∈ S++
p , toler-

ances α > 0, ε > 0, maximum iterations ℓmax
Compute SCM Ĉ = 1

nXXT

Set ℓ = 0
repeat

Compute gradient ∇f(Rℓ) (Prop. 4.1 and 4.2)
Compute stepsize tℓ with linesearch
Rℓ+1 = RRℓ

(−tℓ∇f(Rℓ)), with R defined in (5)
ℓ = ℓ+ 1

until f(Rℓ) < −α/p or δ2(Rℓ,Rℓ−1) < ε or ℓ > ℓmax
Return: Ĉdist = Rℓ

approximate δ2(R,C) for any R ∈ S++
p . Indeed, if R is

too related to X (e.g., R = Ĉ), then δ̂2(R, Ĉ) is no longer
informative. In fact, it can even take negative values. To
handle this, (Tiomoko et al., 2019) chose to rather perform
optimization on the square of the RMT squared distance es-
timator (2). In this paper, we argue that this is not necessary
and that wisely choosing the stopping criterion is enough.
Indeed, starting from an adequate initialization (i.e., one that
is sufficiently independent from X), our idea is to pursue
optimization while δ̂2(R, Ĉ) is relevant and to stop as we
reach the limit. From a statistical point of view, when R
is not too related to X , one expects δ̂2(R, Ĉ) ≥ O(−1/p).
Thus, our new stopping criterion consists in checking that
we have f(R) = δ̂2(R, Ĉ) ≥ −α/p, and to stop as soon as
this is no longer true. Some cross-validation on synthetic
data for various p and n lead us to believe that choosing
α = 10 is the best option. The method to estimate covari-
ance by leveraging the RMT corrected squared distance is
presented in Algorithm 11.

Remark 4.3. Concerning initialization, we need to select
one that is sufficiently unrelated to X . The simplest choice
is Ip. The SCM Ĉ is of course not an option. The non-
linear shrinkage estimator ĈLW-NL from (Ledoit & Wolf,
2020) also usually does not work. Interestingly, the linear
shrinkage estimator ĈLW (Ledoit & Wolf, 2004) appears to
usually be the strongest option we considered.

4.2. Simulations summary and concluding remarks

Detailed simulations on covariance estimation are provided
in Appendix B. Due to space limitations, only a summary
and some concluding remarks are provided here. In our
simulations, we randomly generate a covariance matrix.
We then simulate some data that are used to estimate their
covariance. Various methods are considered: the SCM

1Notice that the linesearch (Absil et al., 2009; Boumal, 2023)
is slightly modified. In addition to the Armijo condition, we add
the condition f(RRℓ(−tℓ∇f(Rℓ)) ≥ −α/p to the backtracking
procedure on tℓ.

Ĉ, the linear Ledoit-Wolf estimator ĈLW (Ledoit & Wolf,
2004), the non-linear Ledoit-Wolf estimator ĈLW-NL (Ledoit
& Wolf, 2020), and our RMT distance based method Ĉdist
from Algorithm 1.

The best performance is obtained with ĈLW-NL. Our estima-
tor Ĉdist improves upon Ĉ and ĈLW at low sample support.
Considering that it is also more expensive (others are ana-
lytical), it does not seem advantageous and exploiting (2)
might not be suited for covariance estimation. Notice how-
ever that in some rare cases at low sample support, Ĉ, ĈLW
and ĈLW-NL behave poorly while our estimator performs
well. We believe that this occurs when the SCM does not
provide good eigenvectors.

5. RMT corrected Fréchet mean on S++
p

This section contains the most interesting contribution of
this paper. We propose an original RMT based method to
estimate the Fréchet mean (also known as Karcher or geo-
metric mean) G ∈ S++

p of a set of K covariance matrices
{Ck} in S++

p when only some data {Xk} in Rp×n are
known. Notice that this corresponds to the setting that is
always encountered in practice when one aims to exploit
one or several Fréchet means of some covariance matrices in
order to perform a learning task. Usually, getting a Fréchet
mean is achieved with a two steps procedure: (i) covariance
matrices are estimated from the data and (ii) their mean is
computed with an iterative method such as (Fletcher & Joshi,
2004; Jeuris et al., 2012). The obtained Fréchet means are
then exploited for classification or clustering, for instance
in Nearest Centroid or K-Means algorithms; see e.g., (Tuzel
et al., 2008; Barachant et al., 2011).

In this work, we rather develop a one step method that
directly estimate the mean G from observations {Xk} with-
out trying to obtain their covariance matrices. As for our
attempt on improving covariance in Section 4, our model
heavily relies on the RMT corrected squared Fisher dis-
tance (2). In Section 5.1, the optimization problem that we
consider along with the algorithm proposed to solve it are
presented. In Section 5.2, our RMT mean is leveraged to
define original Nearest Centroid and K-Means. Finally, in
Section 5.3, our method is compared with the usual two
steps procedure for various covariance estimators on simu-
lated data. Concluding remarks are also provided.

5.1. RMT mean algorithm

Let a set of K raw data matrices {Xk} in Rp×n with SCMs
{Ĉk}. To obtain our RMT based Fréchet ĜRMT on S++

p , we
simply replace the squared Fisher distance δ2 defined in (1)
with its RMT corrected counterpart (2) in the definition of
the Fréchet mean. It follows that ĜRMT is solution to the
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optimization problem

argmin
R∈S++

p

h(R) =
1

K

K∑
k=1

δ̂2(R, Ĉk). (8)

The objective function h : R 7→ 1
K

∑
k δ̂

2(R, Ĉk) aims
to approximate the cost function one would get if the
true covariance matrices {Ck} were known, i.e., R 7→
1
K

∑
k δ

2(R,Ck). Hence, our hope is to significantly im-
prove the estimation of the true mean G as compared to two
steps procedures that compute the Fréchet mean of some
covariance estimators.
Remark 5.1. When n is large enough, the usual cost func-
tion R 7→ 1

K

∑
k δ

2(R, Ĉk) well approximates R 7→
1
K

∑
k δ

2(R,Ck) since the SCM Ĉk asymptotically con-
verges to the true covariance Ck. It is no longer true for a
small n. In comparison, our proposed cost function appears
advantageous for a wider range of number of samples n.

As for covariance estimation from Section 4, it is crucial
to determine whether our cost function is truly informa-
tive. Given k, recall that δ̂2(R, Ĉ)k well approximates
δ2(R,Ck) only if R is sufficiently independent from Xk.
Again, while optimizing h, some dependency on Xk is
introduced. However, this time, the dependency on Xk

is counterbalanced by the ones on the other data matrices
{Xk′}k′ ̸=k. Since data matrices are independent from one
another, overall, we expect R to remain sufficiently inde-
pendent from each Xk as soon as K is large enough2.

To solve (8), we again resort to a Riemannian gradient de-
scent on S++

p . It is thus needed to compute the gradient
of h. Writing h : R 7→ 1

K

∑
k fk(R), with fk : R 7→

δ̂2(R, Ĉk), one has

∇h(R) =
1

K

K∑
k=1

∇fk(R), (9)

where ∇fk(R) is obtained by combining Propositions 4.1
and 4.2. With the tools of Section 2.2, it is enough to
implement the Riemannian gradient descent. Our proposed
method is summarized in Algorithm 2.
Remark 5.2. The complexity of an iteration of Algorithm 2
is of the same order of magnitude as an iteration of the
Riemannian gradient descent for the usual Fréchet mean
on S++

p (i.e., with (1)). The difference between the two
lies in gradients computations. Even though (9) appears
way more complicated, it is not that much more expensive.
Concerning costly operations, in both cases, we have to
perform a Cholesky decomposition and its inverse (to com-
pute R1/2 and R

−1/2), and K eigenvalue decompositions (of

2In practice, it appears true even for small values of K. Indeed,
in our simulations (Section 5.3), even for K = 2, we improve
upon the SCM associated with the usual Fréchet mean on S++

p .

R
−1/2ĈkR

−1/2). To get (9), we further need K eigenvalue
decompositions (of Λ − λλT

n ). The rest only involve less
expensive operations (matrix multiplications, etc.).

Algorithm 2 RMT corrected Fréchet mean on S++
p

Input: data {Xk}Kk=1 in Rp×n, initial guess R0 ∈ S++
p ,

tolerance ε > 0, maximum iterations ℓmax
for k in J1,KK do

Compute SCM Ĉk = 1
nXkX

T
k

end for
Set ℓ = 0
repeat

Compute gradient ∇h(Rℓ) with (9)
Compute stepsize tℓ with linesearch
Rℓ+1 = RRℓ

(−tℓ∇h(Rℓ)), with R defined in (5)
ℓ = ℓ+ 1

until δ2(Rℓ,Rℓ−1) < ε or ℓ > ℓmax
Return: ĜRMT = Rℓ

5.2. Nearest Centroid and K-Means based on RMT

To exploit the RMT corrected Fréchet mean on S++
p in

learning, we adapt the acclaimed Nearest Centroid classi-
fying and K-Means clustering methods. Both algorithms
rely on the RMT Fréchet mean ĜRMT and on the corrected
squared Fisher distance δ̂2.

In the supervised Nearest Centroid setting, provided in Al-
gorithm 3, we have a training set {Xk, yk}Kk=1, where each
Xk ∈ Rp×n belongs to a class yk in J1, ZK. In the fit-

ting phase, the RMT Fréchet means {Ĝ
(z)

RMT} of every class
z ∈ J1, ZK are learnt by solving

Ĝ
(z)

RMT = argmin
R∈S++

p

1

Kz

∑
yk∈Az

δ̂2(R, Ĉk), (10)

where Az = {yk : k ∈ J1,KK and yk = z} and Kz is
the cardinal of Az . They are obtained with Algorithm 2.
Then, in the prediction phase, given some unlabeled data
X ∈ Rp×n with SCM Ĉ, the decision rule is

y = argmin
z∈J1,ZK

{δ̂2(Ĝ
(z)

RMT, Ĉ)}Zz=1. (11)

The Nearest Centroid classifier can be adapted to the un-
supervised K-Means clustering scenario, detailed in Algo-
rithm 4. In this setting, one has a set of K data samples
{Xk} in Rp×n. Given a certain number of classes Z, the
goal is to assign a label yk ∈ J1, ZK to each Xk. This is
achieved iteratively. Each iteration ℓ consists of two steps.

An assignment step, where, given Z means {Ĝ
(z)

RMT(ℓ)}, a
label yk(ℓ) is assigned to each Xk leveraging rule (11).

A mean update step, where every Ĝ
(z)

RMT(ℓ) is recomputed

6
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Algorithm 3 Nearest Centroid classifier based on RMT

Fitting phase

Input: data {Xk}Kk=1 in Rp×n, labels {yk}Kk=1 in J1, ZK
for z in J1, ZK do

Compute Ĝ
(z)

RMT from {Xk : yk = z} with Algo. 2
end for
Return: {Ĝ

(z)

RMT}Zz=1

Prediction phase

Input: unlabeled data X ∈ Rp×n

Compute SCM Ĉ = 1
nXXT

for z in J1, ZK do
Compute δ̂2(Ĝ

(z)

RMT, Ĉ) with (2)
end for
Compute y with (11)
Return: label y ∈ J1, ZK

from {Xk : yk(ℓ) = z}. This is repeated until we reach
some equilibrium. It is well known that the results of this
procedure are very sensitive to the initialization of centroids.
As prescribed in (Arthur & Vassilvitskii, 2007) in the Eu-
clidean case, we consider using several initializations and
keep results from the one maximizing the criterion

I({Xk, yk}, {Ĝ
(z)

RMT}) =
K∑

k=1

δ̂2(Ĝ
(yi)

RMT,Xk). (12)

5.3. Simulations

This section contains simulations conducted to evaluate the
performance of our proposed RMT based method as com-
pared to state-of-the-art algorithms. The experimental setup
is as follows. A center G = U∆UT ∈ S++

p is generated,
where U is uniformly drawn on Op (orthogonal group), and
∆ is randomly drawn on D++

p . Maximal and minimal diag-
onal entries of ∆ are set to

√
a and 1/

√
a, where a = 100 is

the condition number. Remaining non-zero elements are uni-
formly drawn in-between. Then, K matrices {Ck} whose
Fréchet mean is G are randomly generated. To do so, given
k, p(p+1)

2 values are drawn from N (0, σ2), with σ2 = 0.1.
These are used to canonically construct Sk ∈ Sp. A set of
K centered symmetric matrices {ξk} is obtained by can-
celing the mean of the Sk’s, i.e., ξk = Sk − 1

K

∑
k′ Sk′ .

Hence, 1
K

∑
k ξk = 0. Finally, Ck = G

1/2 expm(ξk)G
1/2,

where expm(·) denotes the matrix exponential. After that,
we generate K matrices Xk in Rp×n such that each column
of Xk is drawn from N (0,Ck).

To estimate G from {Xk}, several methods are considered.
First, two steps methods are employed. They consist in
estimating covariance matrices and then their usual Fréchet

Algorithm 4 K-Means clustering based on RMT

Input: data {Xk}Kk=1 in Rp×n, number of classes Z,
tolerance α > 0, maximum iterations ℓmax, number of
different initializations M
for m in J1,MK do

Randomly choose {kz}Zz=1 and set Ĝ
(z)

RMT(0) = Ĉkz

Compute {yk(0)} with (11)
Set ℓ = 0
repeat
ℓ = ℓ+ 1

Compute {Ĝ
(z)

RMT(ℓ)} from {Xk : yk(ℓ − 1) = z}
with Algo. 2
Compute {yk(ℓ)} with (11)

until 1
K

∑
k ∥yk(ℓ)− yk(ℓ− 1)∥2 < α or ℓ > ℓmax

Compute inertia I(m) for initialization m with (12)
end for
Compute mmax = argmaxm∈J1,MK {I(m)}Mm=1.
Return: {yk}Kk=1 associated with mmax.

mean. The mean resulting from the SCM estimator is de-
noted ĜSCM. The ones obtained after employing the linear
and non-linear Ledoit-Wolf estimators are denoted ĜLW
and ĜLW-NL, respectively. These are compared to our pro-
posed RMT based mean ĜRMT obtained with Algorithm 2.
To measure performance, we use the squared Fisher dis-
tance (1) between the true mean and its estimator.

Results are presented in Figure 1. These indicate a distinct
advantage of our proposed RMT-based method over the
others across all examined scenarios. One can observe that
when the number of samples n grows, ĜSCM and ĜLW-NL
slowly catch up with ĜRMT. When n is fixed (moderately
low) and the number of matrices K increases, ĜRMT is
the only one that strongly improves. In conclusion, our
RMT-based method demonstrates superior performance, es-
pecially when the sample size n is moderately limited and
the number of matrices K is large.

6. Real data learning experiments
To assess the practical relevance of the proposed RMT-
based mean estimation method, two real-world scenarios
are considered: (i) electroencephalography (EEG) classifi-
cation using Nearest Centroid classifiers and (ii) clustering
of hyperspectral images using K-Means algorithms. Vari-
ous strategies were implemented for mean computation and
distance. Specifically, for mean estimation, we consider
two step strategies where we first estimate covariances and
then compute their generic Fréchet mean associated with (1).
As before, we consider the SCM, linear Ledoit-Wolf (LW)
and non-linear Ledoit-Wolf (LW-NL) estimators. These
methods were then benchmarked against our proposed RMT-

7
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Figure 1. Mean square error (MSE) over 1000 trials of the estimated Fréchet mean towards the true mean matrix with respect to the
number of samples n (left) and number of matrices K (right). Parameters are p = 64, K = 10 on the left and n = 128 on the right.
Lines correspond to the medians while filled areas correspond to the 5th and 95th quantiles.

SCM LW LW-NL RMT
GrosseWentrup09 0.632 ± 0.0867 0.624 ± 0.0829 × 0.638 ± 0.0917

Schirmeister17 0.597 ± 0.139 0.483 ± 0.0958 0.561 ± 0.120 0.603 ± 0.120
Cho17 0.615 ± 0.158 0.609 ± 0.136 0.601 ± 0.131 0.622 ± 0.158
Lee19 0.666 ± 0.138 0.642 ± 0.130 0.626 ± 0.126 0.66 ± 0.137

Table 1. Classification results on EEG motor imaging data.

based Nearest Centroid and K-Means algorithms, as detailed
in Section 5.2. The development and evaluation of these
methods were conducted in Python. Specifically, SCM and
LW implementations were sourced from the scikit-learn li-
brary (Pedregosa et al., 2018), while LW-NL comes from
scikit-RMT3. The conventional Fréchet means, standard
Nearest Centroid and K-Means algorithms were taken from
the pyRiemann library (Barachant et al., 2023).

6.1. EEG data

We initiated our analysis by assessing the Nearest Centroid
classifier’s efficacy on EEG data, specifically focusing on
motor imagery datasets accessible via the MOABB plat-
form (Aristimunha et al., 2023). In this context, subjects par-
ticipate in experiments where they are instructed to mentally
simulate various movements, encompassing actions like the
motion of the left or right hand, feet, tongue, among oth-
ers. The following datasets are used: GrosseWentrup2009,
where Z = 2, p = 128, signals resampled to 100Hz;
Schirmeister2017, where Z = 4, p = 128, signals resam-
pled to 100Hz; Cho2017, where Z = 2, p = 64, signals
resampled to 128Hz, trials taken from 1s to 3s; Lee2019,
where Z = 2, p = 62, signals resampled to 100Hz, trials
taken from 2s to 3s.

The outcomes are summarized in Table 1. An analysis of
the results reveals that the SCM and RMT methods demon-
strate comparable levels of performance across all datasets,
with RMT achieving marginal enhancements in three out of

3https://scikit-rmt.readthedocs.io/

the four datasets. Conversely, the accuracy rates for both
LW and LW-NL are notably lower. Specifically, in the case
of GrosseWentrup2009, the LW-NL method encountered
issues, failing to produce SPD matrices as required, ren-
dering it non-functional. This observation underscores the
superior reliability of the RMT method as a regularization
technique for these datasets. However, given the minimal
performance gap between RMT and SCM, the incremental
benefit of RMT may not justify the additional complexity
for this particular application.

6.2. Hyperspectral data

Our second experiment with real data delves into the clus-
tering of hyperspectral remote sensing datasets, including
Indian Pines, Salinas, Pavia, and KSC4. These datasets are
inherently diverse, characterized by a unique number of
bands and classes. They also feature annotated ground
truths. Certain zones labeled as ”undefined” are considered
unreliable and hence are omitted from the accuracy calcula-
tions of the clustering methods. Nevertheless, these zones
are included during the clustering phase to ensure realistic
evaluation.

Data preprocessing involves three main steps: normalizing
data by subtracting the image’s global mean, employing
Principal Component Analysis (PCA) to select a set number
of channels p as per prior research (Collas et al., 2021),

4Available at https://www.ehu.eus/ccwintco/
index.php/Hyperspectral_Remote_Sensing_
Scenes.
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SCM LW RMT
p n acc mIoU acc mIoU acc mIoU

Indian pines

5 5×5 0.385 0.278 0.302 0.204 0.454 0.367
16 5×5 0.357 0.229 0.316 0.215 0.413 0.284
24 7×7 0.377 0.253 0.359 0.248 0.453 0.285

Salinas

5 5×5 0.542 0.382 0.402 0.252 0.777 0.631
10 7×7 0.525 0.34 0.449 0.303 0.746 0.532
16 11×11 0.497 0.317 0.404 0.244 0.632 0.461

Pavia 5 5×5 0.629 0.378 0.615 0.319 0.819 0.549
KSC 5 5×5 0.263 0.167 0.247 0.169 0.377 0.222

Table 2. Clustering results for hyperspectral data. For Indian pines, we did 10 initializations and 5 for the other datasets.

and using a sliding window with overlap for data sampling
around each pixel. We excluded the LW-NL method due
to numerical instability. The K-means algorithm, capped
at 100 iterations with early stopping at a 10−4 tolerance,
concludes with a linear assignment optimization to align the
clustered image with ground truth, optimizing classification
accuracy.

The results, detailed in Table 2, evaluate classification accu-
racy and mean intersection over union. Our RMT method
consistently outperforms SCM and LW across all datasets
and varying feature/sample sizes. In our opinion, this suc-
cess can be attributed to the high number of matrices per
class in these datasets, resonating with our simulation in-
sights: in such contexts, the RMT-corrected mean signif-
icantly enhances accuracy. In essence, for data scenarios
with extensive matrices per class, the RMT approach proves
highly effective.

6.3. Discussion

The first thing that we notice on these real data learning
experiments is the is the lower performance of the methods
associated with the linear and non-linear Ledoit-Wolf esti-
mators. For LW, this is in accordance with our simulations.
It is likely that this is because the true covariance matrices
are in fact quite far from the identity matrix. So, linearly
shrinking toward the identity does not improve estimation
in this case. For LW-NL, this is more surprising. On these
real data, LW-NL has proved itself numerically unstable and
unable to consistently provide SPD matrices.

Concerning our RMT-based method, we observe that:

• When the number of samples n is sufficiently big as
compared to the dimension p, our proposed RMT mean
becomes equivalent to the usual Fisher mean. In this
case, one can expect to obtain very similar results with
our method as compared to the method associated with
the SCM. This is indeed what we observe with EEG
data, for which a rather large n is available (and needed
to capture the information contained in the data).

• When n is comparable to p, then our performance
depends on the number of matrices K available to
compute the mean:

◦ when K is very small, the issue is that there is a
clear statistical dependence introduced between
the estimated mean and the data at hand. In this
case, the RMT distance estimator can become
irrelevant and our mean is not very satisfying.
This is the worst case scenario for our method and
its main limitation. However, in our simulations,
a small number of matrices K is enough for our
method to be competitive.

◦ when K becomes big, this is where our estimator
performs very well. In fact, on simulated data,
our RMT estimator appears to converge to the true
mean as K grows while other methods do not. For
the real hyperspectral data that we consider, we
are exactly in this scenario and the performance
we obtain corresponds to our simulations, i.e., our
method performs really well as compared to other
methods.

7. Conclusions and perspectives
The first part of this paper presents a refined regularized
covariance estimator, building upon the corrected squared
distance outlined in (Couillet et al., 2019). While this work
aligns closely with (Tiomoko et al., 2019), it introduces
subtle yet noteworthy enhancements, including a more com-
prehensive treatment of matrix independence and a new
stopping criterion rooted in statistical principles. The pri-
mary contribution, however, is the development of a novel
Fréchet mean algorithm tailored for random matrices under
conditions of low sample support, utilizing a Riemannian
gradient on the SPD matrix manifold. When applied to
Nearest Centroid classifiers and K-means clustering, this
new method demonstrates great potential. It appears very
advantageous when dealing with a large number of matri-
ces per class, offering a big improvement over traditional
methods in this case.
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A. Proofs of Propositions 4.1 and 4.2
A.1. Proof of Proposition 4.1

Let f(R) = g(Λ), where we have the eigenvalue decomposition R
−1/2ĈR

−1/2 = UΛUT . By definition, we have

d f(R) = tr(R−1∇f(R)R−1 dR) = d g(Λ) = tr(Λ−1∇g(Λ)Λ−1 dΛ).

dΛ corresponds to the differential of the eigenvalues of R
−1/2ĈR

−1/2, which is known to be equal to dΛ =
diag(UT d(R

−1/2ĈR
−1/2)U). For any matrix N and diagonal matrix ∆, we have tr(∆diag(N)) = tr(∆N). Hence,

since Λ−1∇g(Λ)Λ−1 is diagonal, we obtain

tr(Λ−1∇g(Λ)Λ−1 diag(UT d(R
−1/2ĈR

−1/2)U)) = tr(Λ−1∇g(Λ)Λ−1UT d(R
−1/2ĈR

−1/2)U).

We further have d(R
−1/2ĈR

−1/2) = d(R
−1/2)ĈR

−1/2 + R
−1/2Ĉ d(R

−1/2), where d(R
−1/2) is the unique symmetric

solution to the equation d(R
−1/2)R

−1/2 +R
−1/2 d(R

−1/2) = d(R−1) = −R−1 dRR−1. Let M = R
−1/2ĈR

−1/2 and
D = Λ−1∇g(Λ). Since UUT = Ip, we have UΛ−1∇g(Λ)Λ−1UT = M−1UDUT = UDUTM−1. From there, we
obtain

d g(Λ) = tr(UDUT (d(R
−1/2)R

1/2 +R
1/2 d(R

−1/2))).

Leveraging d(R
−1/2)R

−1/2 +R
−1/2 d(R

−1/2) = −R−1 dRR−1, one gets

d g(Λ) = − tr(R
−1/2UDUTR

−1/2 dR) = d f(R) = tr(R−1∇f(R)R−1 dR).

The result is finally obtained by identification.

A.2. Proof of Proposition 4.2

To get the gradient of g, the directional derivative d g(Λ) at Λ is computed. Let the eigenvalue decomposition Λ−
√
λ
√
λ

T

n =

V diag(ζ)V T , where λ = diag(Λ). The differential d ζ of the eigenvalues ζ is d ζ = diag(V T d(Λ −
√
λ
√
λ

T

n )V ).
Differentiating each term of g yields

d g(Λ) =
1

2p
d(tr(log2(Λ))) +

1

p
d(log |Λ|)− (dλ− d ζ)T

(
1

p
Q1p +

1− c

c
q

)
− (λ− ζ)T

(
1

p
dQ1p +

1− c

c
d q

)
.

By leveraging classical results, we obtain

1

2p
d(tr(log2(Λ))) +

1

p
d(log |Λ|) = 1

p
tr([log(Λ) + Ip]Λ

−1 dΛ).

In the following, ÷ corresponds to the element-wise division, ⊙ denotes the Hadamard (element-wise) product, and
·⊙· corresponds to the element-wise power function. From (2), q = diag(log(Λ)Λ−1) = logλ

λ , and we obtain d q =

diag((Ip − logΛ)Λ−2 dΛ) =
1p−logλ

λ⊙2 ⊙ dλ. One can also rewrite Q as

Q =
[(λ⊙ logλ) · 1T

p − λ · logλT ]− [λ · 1T
p − 1p · λT ] + Ip

[λ · 1T
p − 1p · λT ]⊙2 + 2Λ

.

Differentiating this yields

dQ =
dΛ[logλ · 1T

p − 1p · logλT ] + [λ · 1T
p − 1p · λT ]⊙ (1p · 1p

λ

T
) dΛ

[λ · 1T
p − 1p · λT ]⊙2 + 2Λ

−
(2 dΛ(1p · 1T

p ) + [Ip − 2(1p · 1T
p )] dΛ)⊙ ([(λ⊙ logλ) · 1T

p − λ · logλT ]− [λ · 1T
p − 1p · λT ] + Ip)

[λ · 1T
p − 1p · λT ]⊙3 + 2Λ2

,

where we use (dλ⊙a) · bT = dΛ(a · bT ) and a · (dλ⊙ b)T = (a · bT ) dΛ. Notice that in the equation above, when the
diagonal part of the numerator is equal to zero, then the diagonal part of the denominator can be replaced with anything
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different from zero. We usually choose Ip. From there, calculations allow to obtain dQ = dΛB +C dΛ with B and C
defined in Proposition 4.2.

Further calculations yield

−(dλ− d ζ)T
(
1

p
Q1p +

1− c

c
q

)
= − tr(∆ dΛ)− tr(diag(AV ∆AT ) dΛ),

where A and ∆ are defined in proposition 4.2. We also have

−1

p
(λ− ζ)T dQ1p = −1

p
tr(diag(B1p(λ− ζ)T + 1p(λ− ζ)TC) dΛ),

and
−1− c

c
(λ− ζ)T d q = −1− c

c
tr(Λ−2(Ip − log(Λ))(Λ− diag(ζ)) dΛ).

The result is obtained by combining all above equation and identification with tr(Λ−2∇g(Λ) dΛ) = d g(Λ).

B. Simulations for covariance estimation of Section 4
The experimental setting is as follows: some random covariance C = U∆UT ∈ S++

p (p = 64) is generated, where
U is uniformly drawn on Op (orthogonal group), and ∆ is randomly drawn on D++

p . Maximal and minimal diagonal
entries of ∆ are set to

√
a and 1/

√
a, where a = 100 is the condition number. Remaining non-zero elements are uniformly

drawn in-between. From there, matrices X ∈ Rp×n are simulated. Each column vector of X is independently drawn from
N (0,C). The effect of the number of samples n is studied. We perform 1000 Monte Carlo simulations.

To estimate C from X , we consider the following methods: (i) the SCM estimator Ĉ; (ii) the linear Ledoit-Wolf estimator
ĈLW (Ledoit & Wolf, 2004) (ii) the non-linear Ledoit-Wolf estimator ĈLW-NL (Ledoit & Wolf, 2020) and (iii) our RMT
distance based method Ĉdist from Algorithm 1. To measure performance, we evaluate the squared Fisher distance (1)
between C and the estimators.

Results are given in Figure 2. We observe that the best performance is obtained by ĈLW-NL. Our estimator Ĉdist improves
upon Ĉ and ĈLW at low sample support. From these results, it does not appear appealing. It is also computationally
significantly more expensive than other estimators, which are analytically known. Thus, exploiting (2) might generally
not be suited for covariance estimation. To conclude on a positive note, notice that, while conducting our simulations, we
encountered some rare cases at low sample support where Ĉ, ĈLW and ĈLW-NL behave poorly (especially ĈLW-NL), while
Ĉdist performed well. We believe that this occurs when the SCM does not provide good eigenvectors.

102 103

100

101

102

Number of samples

M
SE

SCM LW RMT LW-NL

Figure 2. MSE of the estimated covariance. Parameters are p = 64, ℓmax = 100, ϵ = 10−6, α = 10. Plot done over 1000 trials. The line
corresponds to the median and the filled area corresponds to the 5-th and 95-th quantiles over the trials.
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