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Abstract

Hitting times provide a fundamental measure of distance in random processes,
quantifying the expected number of steps for a random walk starting at node u
to reach node v. They have broad applications across domains such as network
centrality analysis, ranking and recommendation systems, and epidemiology.
In this work, we develop local algorithms for estimating hitting times between a
pair of vertices u, v without accessing the full graph, overcoming scalability issues
of prior global methods. Our first algorithm uses the key insight that hitting time
computations can be truncated at the meeting time of two independent random
walks from u and v. This leads to an efficient estimator analyzed via the Kronecker
product graph and Markov Chain Chernoff bounds. We also present an algorithm
extending the work of Peng et al. [2021] that introduces a novel adaptation of
the spectral cutoff technique to account for the asymmetry of hitting times. This
adaptation captures the directionality of the underlying random walk and requires
non-trivial modifications to ensure accuracy and efficiency. In addition to the
algorithmic upper bounds, we also provide tight asymptotic lower bounds.
We also reveal a connection between hitting time estimation and distribution testing,
and validate our algorithms using experiments on both real and synthetic data1.

1 Introduction

Markov chains are a fundamental framework for modeling random processes, with widespread
applications across scientific domains including bioinformatics [Krogh, 1998], economics [Chib
and Greenberg, 1996], and network science [Xia et al., 2019]. They are particularly prominent in
modern machine learning, natural language processing [Almutiri et al., 2022], and the analysis of
large-scale social networks [Amati et al., 2018], where the underlying graphs can be massive. In
such settings, storing or processing the entire graph globally is often infeasible due to memory or
computational constraints. This motivates the development of algorithms that access and process
only a small portion of the graph—so-called local algorithms.

In this work, we study the problem of computing the hitting time statistic between two vertices in an
Markov chain. The input is an undirected graph G, where we consider simple random walks: from
any vertex, the next step is chosen uniformly at random among its neighbors. Given two vertices u
and v, the hitting time HG(u, v) is defined as the expected number of steps required for a random
walk starting at u to reach v for the first time. This quantity is a fundamental measure in the analysis

1The code is available at https://github.com/tkhar/hitting-time-at-scale.
2Work done partially while at Boston University.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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of random processes and has been extensively studied from various theoretical perspectives [Port
and Stone, 1967, Patel et al., 2016, Aldous, 1989, Janson and Peres, 2012, Sauerwald and Zanetti,
2019, Oliveira and Peres, 2019, Feige, 1995, Cohen et al., 2016]. It also serves as a crucial building
block in several algorithmic applications, including recommender systems [Cooper et al., 2014] and
learning mixtures of Markov chains [Spaeh et al., 2024].

Despite its importance, computing hitting times exactly is computationally expensive, requiring up
to O(n3) time in the worst case [Xia et al., 2019]. To address this, several approaches have been
developed that either approximate HG(u, v) [Cohen et al., 2016] or impose structural assumptions
on the input graph to enable more efficient computation [Von Luxburg et al., 2010]. However, these
methods are inherently global: they require access to the entire graph to produce an estimate. This
global nature poses a significant scalability challenge, making such algorithms impractical for massive
graphs with millions or billions of nodes.

In this paper, we introduce a suite of algorithms that estimate hitting times locally, by executing a
small number of short random walks centered around the vertices u and v. We rigorously analyze
these algorithms and formally prove that they achieve approximation guarantees comparable to those
of global methods—while operating with significantly lower time complexity and without requiring
access to the full graph.

Related work Our work is closely related to that of Peng et al. [2021], who design local algorithms
for computing the effective resistance Reff(u, v) – a distance measure that captures the voltage
difference between u and v when one unit of current is injected at u and edges act as electrical
resistors. Their approach is based on spectrally decomposing the random walk transition matrix,
interpreting Reff(u, v) as a light-tailed sum that can be efficiently truncated. Effective resistance
is linked to the hitting time as HG(u, v) +HG(v, u) = 2mReff(u, v). As a result, the hitting time
can be efficiently estimated using the effective resistance in graphs where HG(u, v) ≈ HG(v, u),
such as vertex transitive graphs. However, real-world networks exhibit an asymmetric and skewed
hitting time distribution, meaning that new ideas beyond the work of Peng et al. [2021] need to be
introduced.

We also build directly on the work of Cohen et al. [2016], who derive an identity expressing the
hitting time in terms of the Laplacian of the graph G. While powerful, their algorithm remains global
in nature. Finally, a key component of our method is the connection between hitting time and the
notion of meeting time—the expected time for two independent random walks, starting at u and v, to
meet. Related concepts such as the coalescence time have been studied extensively and are known
for many specific graph families [Kanade et al., 2023, Cooper et al., 2013, Oliveira, 2012]. We utilize
this connection from an algorithmic lens, using it to obtain an efficient and practical estimator.

Our Results We summarize our main contributions below:

1. We design and analyze an efficient local algorithm for estimating hitting times, based on a
novel analysis of meeting times (Algorithm 1). We demonstrate its practical effectiveness
through extensive experiments on both synthetic and real-world datasets (Section 6).

2. We extend the spectral cutoff technique introduced by Peng et al. [2021] to derive an
alternative local algorithm for hitting time estimation (Algorithm 3). While generally less
efficient than our meeting-based method, it can outperform it in certain settings.

3. We provide a detailed theoretical study of the trade-off between approximation and sample
complexity in hitting time estimation, including both upper and lower bounds (Section 5).

4. We uncover a theoretical connection between hitting time estimation and sublinear-time
property testing (Subsection 4.1).

2 Preliminaries

Let G = (V,E) be an undirected graph with (n,m) = (|V |, |E|) and A ∈ {0, 1}n×n be its adjacency
matrix. Let D be a diagonal matrix containing the degrees of the vertices in V in its diagonal. Let
P = D−1A be the row-stochastic transition matrix of G. Throughout, we assume that G is connected
and the associated random walk aperiodic. It is known that the transition matrix has a full spectrum
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λ1 = 1 > λ2 ≥ · · · ≥ λn > −1. A random walk in G is a sequence of vertices (Xt)t≥0 such
Xt ∈ V and

Pr[Xt+1 = v | Xt = u] =
1

deg(u)
= Puv

We also let π be the stationary distribution of G, where πv = deg v
m . It can be shown that any initial

distribution over the vertices eventually converges to π:

Definition 2.1 (Mixing Time). The ε-mixing time of G is defined as:

tmix = tmix(ε) = min{t : max
x∈∆n

||xP t − π||TV ≤ ε}

Definition 2.2 (Hitting Time). Let u, v ∈ V . The hitting time HG(u, v) is the expected number of
steps required to reach v from u. In other words, if we let T = min{t ≥ 0 : Xt = v} then

HG(u, v) = E[T | X0 = u].

The following useful Lemma expresses HG(u, v) in terms of the Laplacian I − P⊤. Let us use
ev ∈ Rn to denote the v-th vector of the standard basis.

Lemma 2.1 ([Cohen et al., 2016]). It is true that:

HG(u, v) =

(
1− 1

sv
ev

)⊤
(I − P⊤)+χuv (1)

We define the effective resistance Reff(u, v) in terms of the hitting time, although other equivalent
definitions also exist [Spielman, 2019]:

Reff(u, v) =
1

2m
(HG(u, v) +HG(v, u)) (2)

We shall make scarce use of the Kronecker Product between two graphs.

Definition 2.3 (Kronecker Product). The Kronecker product of two graphs G = (VG, EG) and
H = (VH , EH) is defined as a graph G×H = (VG×VH , EG×H) where ({u, v}, {w, z}) ∈ EG×H
if and only if (u,w) ∈ EG and (v, z) ∈ EH .

Additional preliminary definitions and results are shown in Appendix A.

3 A Meeting Time Perspective

Our primary contribution is an algorithm that estimates the hitting time by relating it to the meeting
time of two parallel random walks starting at u and v. We simulate the walks step-by-step, accumu-
lating terms in the hitting time sum until they meet. Due to the cancellation structure of the infinite
sum defining HG(u, v), this truncated computation suffices. Our algorithm is given as pseudocode in
Algorithm 1.

To analyze Algorithm 1, we first bound the meeting time in probability using the mixing time:

Lemma 3.1. Let (Xt)t≥0 and (Yt)t≥0 be two random walks starting at states X0 = u and Y0 = v.
Let T = min{t ≥ 0 : Xt = Yt} be the meeting time of the two random walks. Then,

Pr[T > t] ≤ O

(
1√

πG(u)πG(v)
exp

(
−∥πG∥22t

72tmix

))

Proof. The proof uses a Markov Chain concentration bound on the Kronecker product G×G and is
included in Appendix B.

Next, we argue that if we make tmax large enough, all the random walks will, with high probability,
meet before then.

Lemma 3.2. Algorithm 1 outputs Failure with probability at most 1
n .
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Algorithm 1: Estimating the Hitting Time via Meeting Times
1 Input: Graph G = (V,E), vertices u, v ∈ V , mixing time tmix, accuracy ε

2 Output: Estimate H̃uv of the hitting time HG(u, v)
3 Define

tmax =
100 · tmix ln

(
n

πG(u)πG(v)

)
∥πG∥22

and ℓ =
2t2max lnn

π2
G(v)ε

2

4 Initialize random walks X(i)
0 = u for i ∈ I with I = {1, 2, . . . , ℓ}

5 Initialize random walks Y (j)
0 = v for j ∈ J with J = {1, 2, . . . , ℓ}

6 Let H̃uv ← 0
7 for t = 0, 1, 2, . . . , tmax do
8 Let xw := |{i ∈ I : X

(i)
t = w}| and yw := |{j ∈ J : Y

(j)
t = w}| for each w ∈ V .

9 for w ∈ V do
10 z = min{xw, yw}
11 Remove z arbitrary indices i ∈ I for which X

(i)
t = w and z indices j ∈ J for which

Y (j) = w.
12 Update

H̃uv ← H̃uv +
yv − xv

ℓ · πG(v)

13 Advance the random walks X(i) for i ∈ I and Y (j) for j ∈ J by one step as defined by G.
14 if I = ∅ then
15 return H̃uv

16 else
17 return Failure

Proof. Let us pretend that random walks in Algorithm 1 continue after meeting and are not eliminated.
Let then Ti,j = min{t ≥ 0 : X

(i)
t = Y

(j)
t } ∈ N≥0 be the meeting time of the of the i-th random

walk starting from u and the j-th random walk starting from v.

Let E be the event corresponding to Ti,j ≤ tmax for all i, j ∈ [ℓ]2. We claim that, conditioned on E ,
Algorithm 2 does not output Failure. Consider a bipartite graph GB = (VB , EB) where VB = A×B
with |A| = |B| = ℓ correspond to the random walks X and Y . The edges of this graph represent
the meeting event of two random walks and they are provided in an online manner: in timestep
t = 0, 1, ..., tmax we see observe a set of random walks in A meeting another set of random walks in
B for the first time. In other words, we observe all the edges At ×Bt where At ⊆ A and Bt ⊆ B.
Once an edge has been given, it is not given again, so this is a partition of the edge set of the graph.

Since E occurs, the bipartite graph is complete and {At × Bt}tmax
t=0 is a partition of all the edges.

Our algorithm tries to produce a matching σ between A and B by greedily matching and removing
vertices as the edges appear in batches. We output Failure if and only if we fail to output a matching.
We claim that, given E , we will always find a matching.

This can be seen via an inductive argument: we claim that before any timestep t we have a valid
matching over all vertices that have appeared as part of previously revealed edges. This easily holds
at t = 0 because the initial matching is empty. Suppose then that it holds for some t. When the edges
At ×Bt are revealed, consider the subsets A′t ⊆ At and B′t ⊆ Bt of unmatched nodes. There has to
exist a perfect matching in A′t ×B′t because all those edges are revealed. We pick any such matching
arbitrarily and so our matching is successfully extended.

Finally, we need to bound the probability that E holds. We know that for any i, j ∈ [ℓ] we have:

Pr[Ti,j > tmax] ≤ O

(√
π(u)π(v) exp

(
− µtmax

72tmix

))
.
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Hence, by a union bound over
(
ℓ
2

)
pairs of random walks:

Pr[¬E ] ≤ O

(
ℓ2√

πG(u)πG(v)
exp

(
−∥πG∥22tmax

72tmix

))
=

1

n

by our choice of tmax and ℓ, where we can assume ℓ ≤ n3 as an upper bound.

Next, we express the hitting time as a function of two random walks that stop upon meeting. To
that end, we first show a structural result similar to [Peng et al., 2021]: By spectrally decomposing
the Laplacian matrix, we can express the hitting time as an infinite series, from which we can
subsequently truncate the tail.
Lemma 3.3. Let W := P⊤ = AD−1. The following identity holds:

HG(u, v) =

∞∑
i=0

(
1− 1

π(v)
1v

)⊤
W iχuv (3)

We prove this lemma shortly, in Section 4. With it in place, our meeting time analysis can proceed.
Lemma 3.4. Let (Xt)t≥0 and (Yt)t≥0 be two random walks in G starting from X0 = u and Y0 = v,
respectively. Let T = min{t ≥ 0 : Xt = Yt} be a random variable for the meeting time of the two
random walks. The following holds:

HG(u, v) = E

[∑
t<T

(
1[Yt=v] − 1[Xt=v]

)]
.

Proof. The hitting time formula of Lemma 2.1 can be written as an infinite sum. Algebraic manipula-
tion then gives us that:

HG(u, v) =

∞∑
t=0

(
1− 1

πG(v)
1v

)⊤
W tχuv

=

∞∑
t=0

(∑
w∈V

Pr[u→t w]︸ ︷︷ ︸
=1

− 1

πG(v)
Pr[u→t v]−

∑
w∈V

Pr[v →t w]︸ ︷︷ ︸
=1

+
1

πG(v)
Pr[v →t v]

)

=
1

πG(v)

∞∑
t=0

(
Pr[v →t v]− Pr[u→t v]

)
(because G is connected)

Due to memorylessness, (Xt)t≥T and (Yt)t≥T have the same distribution. Hence,

πG(u)Huv =

∞∑
t=0

(
Pr[v →t v]− Pr[u→t v]

)
= E

[ ∞∑
t=0

(
1[Yt=v] − 1[Xt=v]

)]

= E

[∑
t<T

(
1[Yt=v] − 1[Xt=v]

)]
+ E

∑
t≥T

(
1[Yt=v] − 1[Xt=v]

)
︸ ︷︷ ︸

=0

= E

[∑
t<T

(
1[Yt=v] − 1[Xt=v]

)]

We conclude our analysis by showing that our algorithm approximates HG(u, v) well.
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Lemma 3.5. If Algorithm 1 does not fail, it outputs an estimate H̃ := H̃G(u, v) where |H̃G(u, v)−
HG(u, v)| ≤ ε with probability at least 1− 1/n.

Proof. Let us denote with (X
(i)
t )t≥0 and (Y

(i)
t )t≥0 the i-th random walk starting form u and v,

respectively. Let Ai = |{0 ≤ t < T : X
(i)
t = v}| be the number of times that the i-th random walk

X(i) visits v before it gets eliminated by meeting at time T . We define Bi accordingly for Y (i),
which allows us to write the output of Algorithm 1 as

H̃ =
1

ℓ

ℓ∑
i=1

1

πG(v)
(Bi −Ai)

and we immediately see that E[H̃] = HG(u, v) by Lemma 3.4. If the algorithm does not report
failure, we know that Ai, Bi ≤ tmax and hence |Bi −Ai| ≤ 2tmax. By a Hoeffding bound,

Pr
[
|H̃ −HG(u, v)| ≥ ε

]
≤ 2 exp

(
−π2

G(v)ℓε
2

2t2max

)
=

1

n

for our choice of ℓ.

Finally, we arrive at the following Theorem:

Theorem 3.1. There exists an algorithm that, given any u, v ∈ V outputs, with probability at least
1− 2/n, an estimate H̃ such that |H̃ −HG(u, v)| ≤ ε and has total runtime

O

(
t3mix

||πG||62 · π2
G(v) · ε2

log3
(

n

πG(u) · πG(v)

))
Proof. The runtime follows directly from Lemmata 3.2 and 3.5 with a union bound.

3.1 Effective Resistance Calculation

Having established Theorem 3.1, we can use it to calculate the effective resistance Reff(u, v).

Algorithm 2: Estimating the Effective Resistance via Meeting Times
1 Input: Graph G = (V,E), vertices u, v ∈ V , mixing time tmix, accuracy ε

2 Output: Estimate R̃ of the effective resistance RG(u, v)

3 H̃uv ← HITTINGTIME(G, u, v, tmix, εm/2)

4 H̃vu ← HITTINGTIME(G, v, u, tmix, εm/2)

5 R̃← 1
2m (H̃uv + H̃vu)

6 return R̃

Corollary 3.1. There exists an algorithm that, given any u, v ∈ V outputs, with probability at least
1− 1/n an estimate R̂ such that |R̂−Reff(u, v)| ≤ ε and has runtime

O

(
t3mix

||πG||62 · µ2
u,v · ε2m2

log3
(

n

πG(u) · πG(v)

))
where µu,v = min{πG(u), πG(v)}.

Proof. Running Algorithm 1 with ε′ = ε
2 · 2m we get that:

|R̂−Reff(u, v)| =
1

2m
|(H̃uv −HG(u, v)) + (H̃vu −HG(v, u))| ≤ ε

The runtime follows from the runtime of Algorithm 1
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4 Hitting Times via Spectral Cutoff

In this section we describe yet another local algorithm for estimating the hitting time HG(u, v)
between two vertices u and v. We first prove the spectral decomposition result from earlier.

Lemma 4.1. Let W := P⊤ = AD−1. The following identity holds:

HG(u, v) =

∞∑
i=0

(
1− 1

π(v)
1v

)⊤
W iχuv (4)

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the spectrum of W , so the eigendecomposition of W is:

W =

n∑
j=1

λjwjw
⊤
j

where the vectors w1, ..., wn form an orthonormal basis. Note that λ1 = 1, so we can write the
pseudo-inverse of I −W as:

(I −W )+ =

n∑
j=2

1

1− λj
wjw

⊤
j

Then we have by the sum of an infinite geometric series that:

(I −W )+ =

n∑
j=2

∞∑
s=0

λs
jwjw

⊤
j =

∞∑
s=0

n∑
j=2

λs
jwjw

⊤
j =

∞∑
s=0

(W s − w1w
⊤
1 )

Now we substitute back to the hitting time calculation of Lemma 2.1:

HG(u, v) =

∞∑
j=0

(
1− 1

π(v)
ev

)⊤
(W j − w1w

⊤
1 )χuv =

∞∑
j=0

(
1− 1

π(v)
ev

)⊤
W jχuv (5)

since w⊤1 χuv = 0 because w1 = 1√
n
1n.

Our local algorithm for estimating the hitting time HB(u, v) relies on Lemma 4.1. We identify a
threshold ℓ such that truncating the sum

∑∞
j=ℓ(1− 1

π(v)ev)
⊤W jχuv incurs additive error up to ε

2

from the total sum. Then, we estimate the rest using a collection of independent random walks.

Algorithm 3: A “Cutoff” Algorithm for Estimating Hitting Times
1 Inputs: Adjacency matrix and degree query access to graph G, Vertices u, v ∈ V .
2 Output: Estimate ĥG(u, v) of the hitting time HG(u, v).
3 Parameters: Spectral gap λ ∈ [−1, 1), ε > 0

4 Let ℓ← log n
ε−ελ

log(1/λ) .

5 Initialize ĥG(s, t)← 0.
6 for i = 0 to ℓ− 1 do
7 Let r ← 32ℓ2 log(40ℓ)

ε2π(v)2

8 Execute r random walks from v of length i and let Tu, Tv be the number of those that end in
u and v respectively.

9 Let p̂i,u ← 2m
deg(v) · Tu

r and p̂i,v ← 2m
deg(v) · Tv

r

10 Update ĥG(u, v)← ĥG(u, v) + (p̂i,v − p̂i,u)

11 Output ĥG(u, v)
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Theorem 4.1. Algorithm 3 returns an estimate ĥG(s, t) such that with probability at least 9/10 it
holds that: ∣∣∣ĥG(s, t)−HG(s, t)

∣∣∣ ≤ ε

Its runtime is bounded by

O

(
ℓ4

ε2 · πG(v)2
log ℓ

)
, where ℓ =

log n
ε−ελ

log 1
λ

for the spectral gap λ := max{|λ2|, |λn|} of G.

Proof. The proof is given in Appendix C.

Remark 4.1. Using this algorithm in the formula Reff(u, v) =
1

2m (HG(u, v) +HG(v, u)) gives us
an algorithm with roughly the same runtime is Algorithm 1 of Peng et al. [2021].

4.1 A Connection with Property Testing

In Algorithm 3, we define the “cutoff” point for the hitting time sum by spectrally decomposing
the Laplacian matrix, as done by Peng et al. [2021]. However, this approach requires knowing the
spectral gap λ, which can only be computed by analyzing the entire graph, and is related to the
Markov Chain’s mixing time, which may be arbitrarily large.

To address this, we propose a local truncation method. Intuitively, if the states u and v are “close”,
random walks from both should converge quickly, even with a large mixing time. We introduce a
local mixing time t

(ε)
min(u, v) and show that when the Markov Chain converges quickly, the cutoff

point is determined by this local mixing time. This result follows from a convergence lemma for
ergodic Markov Chains [Freedman, 2017]. Though we focus on the effective resistance problem for
simplicity, the theory extends to hitting times as well.

The challenge then becomes determining t
(ε)
min(u, v), which we solve using property testing algorithms

[Batu et al., 2013, Chan et al., 2014] to perform a binary search for a good upper bound. These
algorithms run in sublinear time, making our method also sublinear. Under mild convergence
assumptions, this approach removes the need for λ and tmix, yielding a fully local algorithm. Details
of this theoretical development can be found in Appendix F.

5 The Optimality of Walk Sampling

In Appendix D we use a Chernoff bound for Markov Chains to analyze possibly the simplest local
algorithm for hitting time estimation: sample a number of arbitrarily long random walks and return
the average hitting time. Our analysis yields the following result:
Theorem 5.1. Let M be an ergodic Markov chain with stationary distribution π. Let s and t be two
different states. There exists an algorithm calculating the hitting time HG(s, t) to within an absolute
error of ε with probability at least 1

n that uses

Õ

(
t2mix

π(t)2ε2

)
random walk samples of length at most Õ(tmix/π(t)).

Could we have sampled fewer random walks in a similar fashion and aggregated them to obtain a
good estimate? In Appendix E we answer this question in the negative: the walk sampling algorithm
has optimal sample complexity. Our proof involves a carefully constructed “barbell”-like graph and
utilizes anti-concentration arguments for the geometric and binomial distributions.
Theorem 5.2. Suppose an algorithm is able to estimate HG(u, v) within additive error ε with
constant probability of success by taking the average over r random walk samples of unbounded
length. Then, in the worst case, we must have that:

r = Ω

(
t2mix

π(v)2ε2

)

8



un

1

2

n2

...

un−1 u2 u1
Kn· · ·

Figure 1: A ‘barbell”-like graph: a star, a path and a clique

These results demonstrate that estimating hitting times is inherently computationally hard. Nev-
ertheless, our local algorithms—despite having comparable theoretical runtime to the sampling
approach—consistently outperform it in practice.

6 Experimental Results

In this section, we perform a comparative study of different algorithms for estimating the hitting time
HG(u, v) between vertices u and v. Our experiments are conducted in Python 3.6 with Numba 0.53
on a 2.9 GHz Intel Xeon Gold 6226R processor with 384GB of RAM.

2000 4000 6000 8000 10000

Number of nodes n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
es

ti
m

at
io

n
er

ro
r

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Exact Algorithm

2000 4000 6000 8000 10000

Number of nodes n

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e
es

ti
m

at
io

n
er

ro
r

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Exact Algorithm

2000 4000 6000 8000 10000

Number of nodes n

0.00

0.02

0.04

0.06

R
el

at
iv

e
es

ti
m

at
io

n
er

ro
r

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Exact Algorithm

2000 4000 6000 8000 10000

Number of nodes n

10−1

100

101

R
u

n
n

in
g

ti
m

e
[s

]

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Exact Algorithm

2000 4000 6000 8000 10000

Number of nodes n

10−1

100

101

R
u

n
n

in
g

ti
m

e
[s

]

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Exact Algorithm

2000 4000 6000 8000 10000

Number of nodes n

10−1

100

101

R
u

n
n

in
g

ti
m

e
[s

]

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Exact Algorithm

2000 4000 6000 8000 10000

Number of nodes n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
u

m
b

er
of

sa
m

p
le

s

×107

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

2000 4000 6000 8000 10000

Number of nodes n

0.0

0.5

1.0

1.5

2.0

N
u

m
b

er
of

sa
m

p
le

s

×107

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

2000 4000 6000 8000 10000

Number of nodes n

0

1

2

3

4

N
u

m
b

er
of

sa
m

p
le

s

×107

Meeting Time Algorithm

Sampling Algorithm

Cutoff Algorithm

Figure 2: Hitting time estimation on synthetic networks as a function of the number of nodes.
Depicted are: Barabasi-Albert graphs (left), Erdos-Renyi graphs (middle) and Stochastic Block
Model (SBM) Graphs (right).

We compare between Algorithm 1, Algorithm 3, the walk sampling algorithm and an exact solver
which determines HG(u, v) by solving a linear system: Let H ∈ Rn be such that Hw = HG(w, v).
Then, for every u ∈ V we have: Hu = HG(u, v) =

∑
w∈N(v)

1
deg(v)Hw.

Additional information on our experimental setting, experiments with parallelization, and other
ablation studies can be found in Appendix G.
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Synthetic Datasets We first compare the performance and error of each of those algorithms on
synthetic graph datasets. We focus on three random graph models: Erdős-Rényi, where each pair
of vertices forms an edge with probability p, Barabási-Albert, where a preferential attachment
mechanism is used, and the Stochastic Block Model (SBM), where we model the emergence of
community structures. We estimate the hitting time from the first to the last node. We compare the
relative error, running time and number of sample walks.

Our experiments show that our algorithms estimate the hitting time with low relative error. Among the
methods evaluated, the naive walk-sampling algorithm performs the worst, requiring more samples
and yielding weaker error guarantees. In contrast, the meeting-time-based algorithm is highly efficient
while also maintaining very low error. It also notably exhibits much lower variance in the error than
both the sampling algorithm and the cutoff algorithm.

Real World Large Graphs We also run our algorithms on real world graphs, specifically the
American Football Division IA games graph [Girvan and Newman, 2002] and the SNAP Facebook
and Twitter graphs [Leskovec and Mcauley, 2012]. To stress test our algorithms adequately, we
randomly sample pairs u, v uniformly, but also proportionally and inversely proportional according
to the product of degrees or Pagerank centralities Page et al. [1999]: Figure 5 in Appendix G shows
the correlation between hitting times and the degree and Pagerank centrality products. We find that
Algorithm 1 consistently achieves low error with small variance. Note also that we were not able to
compute the true hitting time for the Twitter via a (sparse) linear system. Thus, we report the mean
absolute and mean squared error compared to 100 iterations of the meeting time algorithm, as it is
the only algorithm which is unbiased.

Table 1: Relative estimation error for different pair sampling strategies.

Algorithm
deg(u) · deg(v) pagerank(u) · pagerank(v)

uniform
prop. inv-prop. prop inv-prop.

Fo
ot

ba
ll Meeting Time Alg. 0.013± 0.009 0.012± 0.009 0.012± 0.009 0.011± 0.009 0.012± 0.009

Cutoff Alg. 1.061± 0.778 1.047± 0.805 1.061± 0.806 0.983± 0.763 0.994± 0.778

Sampling Alg. 0.025± 0.019 0.025± 0.019 0.026± 0.019 0.025± 0.019 0.025± 0.019

Fa
ce

bo
ok Meeting Time Alg. 0.011± 0.010 0.011± 0.010 0.016± 0.014 0.016± 0.017 0.012± 0.011

Cutoff Alg. 0.078± 0.096 0.108± 0.129 0.253± 0.297 0.193± 0.357 0.147± 0.156

Sampling Alg. 0.026± 0.020 0.025± 0.021 0.030± 0.025 0.026± 0.021 0.027± 0.021

Tw
itt

er Meeting Time Alg. 0.002± 0.001 0.002± 0.002 0.010± 0.007 0.009± 0.007 0.005± 0.004

Cutoff Alg. 0.022± 0.016 0.023± 0.017 0.162± 0.126 0.102± 0.077 0.086± 0.066

Sampling Alg. 0.025± 0.019 0.024± 0.018 0.026± 0.019 0.027± 0.020 0.024± 0.018

Limitations

Our local algorithms approximate HG(u, v), with accuracy depending on the graph’s structure—a
typical trade-off for efficiency. Our algorithms can be thus less efficient when the mixing time is
large, though this also affects prior methods.

7 Conclusion

We presented theoretical and empirical results on efficient estimators for hitting times in random
walks, bridging Markov chain theory with sublinear-time algorithms. Future research directions
include establishing universal lower bounds, and exploring applications of such algorithms in domains
like recommender systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We design Algorithm 1 and Algorithm 3 as local algorithms for hitting time
estimation. We perform experiments in Section 6 to verify our algorithms’ performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide full proofs of our claims in the main body of the paper and in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmata that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full pseudocode for our algorithms, as well as the datasets and
parameters used in our experiments (Section 6)

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include our codebase as part of our submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 6 we provide detailed descriptions of our experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Figure 2 we showcase the error guarantees achieved by our algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We clarify our compute environment in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not foresee our results to have any ethical implications.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Though they can be used for algorithms analyzing social networks, our work
has no direct social impact as it is focused on the mathematical understanding of a theoretical
problem.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets apart from popular Python libraries.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document our code in detail and provide guidelines for reproducing our
results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Preliminaries

In this Section we deposit additional preliminary definitions and lemmata essential to our main
exposition.
Definition A.1 (Ergodic Markov Chains). A Markov Chain is ergodic if it is aperiodic and positive
recurrent. It is aperiodic when the gcd of all possible return times to any state is equal to 1, and it is
positive recurrent if the expected return time to any state is finite.

We shall assume that the Markov chain defined on G is ergodic, and that G is connected with
minimum vertex degree at least 1. The following theorem describes the rate of convergence of an
ergodic Markov Chain to its stationary distribution π.
Theorem A.1 (Theorem 4.9 from [Freedman, 2017]). If P is ergodic, with stationary π, then there
exist constants 0 < α < 1 and C > 0 such that:

max
v∈V
||P t(v, ·)− π||TV ≤ C · αt (6)

More specifically, let r be the smallest integer for which P r
uv > 0 for all u, v ∈ V and θ =

1− min
u,v∈V

P r
uv

π(v) . Then, the constants α,C above are defined as:

α := θ1/r and C =
1

θ

We call α and C the convergence parameters of the Markov Chain.

The following theorem is a Chernoff-Hoeffding bound for Discrete-Time Markov Chains:
Theorem A.2 (Theorem 3.1. from [Chung et al., 2012]). Let M be an ergodic Markov Chain with
state space [n] and stationary distribution π. Let

tmix = tmix(ε) = min{t : max
x∈∆n

||xM t − π||TV ≤ ε}

be its ε-mixing time for ε ≤ 1/8. Let (V1, ..., Vt) denote a t-step random walk on M starting from an
initial distribution ϕ on [n], i.e. V1 → ϕ. For every i ∈ [t], let fi : [n]→ [0, 1] be a weight function
at step i such that Ev←π[fi(v)] = µ for all i. Define the total weight of the walk by:

X :=

t∑
i=1

fi(Vi)

There exists some constant c such that:

Pr[X ≥ (1 + δ)µt] ≤
{
c||ϕ||π · exp(−δ2µt/(72T )), for 0 ≤ δ ≤ 1

c||ϕ||π · exp(−δµt/(72T )), for δ > 1
(7)

Pr[X ≤ (1− δ)µt] ≤ c||ϕ||π exp(−δ2µt/(72T )), for 0 ≤ δ ≤ 1 (8)

where || · ||π is the π-norm induced by the inner product under the π-kernel:

⟨u, v⟩π =
∑
i∈[n]

uivi
π(i)

B Proof of Lemma 3.1

Lemma B.1. Let (Xt)t≥0 and (Yt)t≥0 be two random walks starting at states X0 = u and Y0 = v.
Let T = min{t ≥ 0 : Xt = Yt} be the meeting time of the two random walks. Then,

Pr[T > t] ≤ O

(
1√

πG(u)πG(v)
exp

(
−∥πG∥22t

72tmix

))

Proof. Note that Zt = (Xt, Yt) ∈ V × V can be modeled as a random walk on the Kronecker
product G ×G, where πG×G(x, y) = π(x)π(v) and tmix(G ×G) = tmix(G). In order to apply a
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Markov Chain Chernoff bound (Theorem A.2), we define the weight function f(x, y) = 1 if x = y

and f(x, y) = 0, otherwise. Let F =
∑t

τ=0 f(Xi, Yi) and observe that t < T if and only if F = 0.
Since πG×G(x, y) = πG(x)πG(y) we also have µ = ∥πG∥22. If δ = 1, then Theorem A.2 gives:

Pr[T > t] = Pr[F = 0] = Pr[F ≥ (1− δ)µt] ≤ O

(
1√

πG(u)πG(v)
exp

(
−∥πG∥22t

72tmix

))
.

C Proof of Theorem 4.1

In this Section we prove Theorem 4.1.

Theorem C.1. Algorithm 3 returns an estimate ĥG(s, t) such that with probability at least 9/10 it
holds that: ∣∣∣ĥG(s, t)−HG(s, t)

∣∣∣ ≤ ε

Its runtime is bounded by

O

(
ℓ4

ε2 · πG(v)2
log ℓ

)
, where ℓ =

log n
ε−ελ

log 1
λ

for the spectral gap λ := max{|λ2|, |λn|} of G.

Proof. It is easy to see that the algorithm runs in Õ(rℓ2), which gives us the claimed runtime. We
therefore just need to argue about the algorithm’s correctness. Analogously to the effective resistance
approach taken in [Peng et al., 2021], we want to find a cut-off point for the series in Equation 4.
That is, we want to find as small an ℓ(ε) as possible such that:∣∣∣∣∣HG(u, v)−

ℓ−1∑
i=0

(
1− 1

π(v)
1v

)⊤
W iχuv

∣∣∣∣∣ ≤ ε

2

We first spectrally decompose the i-th power of W :

W i =

n∑
j=1

λi
jwjw

T
j

as before. Then, we have that:∣∣∣∣∣
∞∑
i=ℓ

(
1− 1

π(v)
1v

)⊤
W iχuv

∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
i=ℓ

(
1− 1

π(v)
1v

)⊤ n∑
j=1

λi
jwjw

T
j

χuv

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
i=ℓ

n∑
j=2

(
1− 1

π(v)
1v

)⊤ (
λi
jwjw

T
j

)
χuv

∣∣∣∣∣∣ (as wT
1 χst = 0)

≤

∣∣∣∣∣∣
∞∑
i=ℓ

λi
n∑

j=2

(
1− 1

π(v)
1v

)⊤ (
wjw

T
j

)
χuv

∣∣∣∣∣∣ (Definition of λ)

We give a straightforward bound for the main term. If j ∈ {2, ..., n}:(
1− 1

π(v)
1v

)⊤ (
wjw

T
j

)
χuv ≤ ||wjw

T
j χuv||1 ≤

√
n
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since we can choose wj so that ||wj ||2 = 1. Thus:∣∣∣∣∣HG(s, t)−
ℓ−1∑
i=0

(
1− 1

π(t)
1t

)⊤
W iχst

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
i=ℓ

λin
√
n

∣∣∣∣∣ ≤ λℓ

1− λ
· n√n

since λ < 1. Now, we aim to set λ such that:

λℓ

1− λ
· n√n ≤ ε

2

It suffices, thus, to set our threshold to:

ℓ =
log
(

4n
√
n

ε−ελ

)
log(1/λ)

= O

(
log n

ε−ελ
log(1/λ)

)
Therefore we only need to ensure that:∣∣∣∣∣ĥG(u, v)−

ℓ−1∑
i=0

(
1− 1

π(v)
1v

)⊤
W iχuv

∣∣∣∣∣ ≤ ε

2
(9)

and then by triangle inequality we would be done. Our algorithm approximates, for each i ∈
{0, 1, ..., ℓ− 1} the following term:(

1− 1

π(v)
1v

)⊤
W iχuv =����

1⊤W i1u −
1

π(v)
1⊤v W

i1u −����
1⊤W i1v +

1

π(v)
1⊤v W

i1v

=
1

π(v)

(
1⊤v W

i1v − 1⊤v W
i1u

)
where the cancellations in the first equality follow from the fact that 1⊤W i = 1⊤. Now we have that:

1⊤v W
i1v = Pr[v →i v] and 1⊤v W

i1u = Pr[v →i u]

where Pr[s→i t] is the probability a random walk starting from s reaches t in i steps. We estimate
these probabilities by performing r independent random walks starting at v and letting Tu and Tv be
the number of those walks ending up in u and v respectively. Then, we estimate:

p̂i,u =
2m

deg(v)
· Tu

r
and p̂i,v =

2m

deg(v)
· Tv

r

We know that as a sum of indicators we have:

E[Ts] = r · Pr[t→i s]

and so the Hoeffding bound gives:

Pr

[∣∣∣∣p̂i,s − 1

π(t)
Pr[t→i s]

∣∣∣∣ ≥ ε

4ℓ

]
= Pr

[
|Ts − E[Ts]| ≥ r · εdeg(t)

8ℓm

]
≤ 2 exp

(−2ε2π(v)2
64ℓ2

· r
)

≤ 1

20ℓ

when we set:

r ≥ 32ℓ2

π(v)2ε2
log(40ℓ)

Through a simple use of the union bound over 2ℓ sums, we conclude that Equation 9 holds with
probability at least 9/10, which concludes our theorem.
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D A Walk Sampling Algorithm

In this section we analyze a simple algorithm for estimating the hitting time HG(s, t): sampling a
collection of random walks from s of various lengths and counting how many of them hit t. The
analysis uses a Chernoff bound for Markov Chains [Chung et al., 2012].
Theorem D.1. Let M be an ergodic Markov chain with stationary distribution π. Let s and t be two
different states. There exists an algorithm calculating the hitting time HG(s, t) to within an absolute
error of ε with probability at least 1

n that uses

Õ

(
T 2

π(t)2ε2

)
random walk samples of length at most Õ(T/π(t)), where T is the ε-mixing time of M .

Proof. Recall the definition of the hitting time:

Hst =

∞∑
i=0

i · Pr [T1(t) = i | X0 = s)] ,

We wish to identify a threshold ℓ such that:
∞∑
i=l

i · Pr [T1(t) = i | X0 = s)] < ε

In the context of Theorem A.2, let f(u) = 1 if u = t and f(u) = 0 otherwise. Then, µ =
EX∼π[f(X)] = PrX∼π[X = t] = π(t). Suppose F (i) =

∑
j≤i f(Xj). Our distribution ϕ has

weight 0 for all points other than s, so ||ϕ||π =
√
⟨ϕ, ϕ⟩π =

√
1

π(s) and thus we have:

Pr[F (i) ≤ (1− δ)µi] ≤ c√
π(s)

exp

(
−δ2 µi

72T

)
⇐⇒

Pr[F (i) ≤ 0] ≤ c√
π(s)

exp

(
−π(t)i

72T

)
where we chose δ = 1. For all i, we have Pr[F (i) = 0] ≥ Pr[T1(t) = i+ 1 | X0 = s] and thus

∞∑
i=ℓ−1

(i+ 1) · Pr[T1(t) = (i+ 1) | X0 = s] ≤
∞∑

i=ℓ−1
(i+ 1) · Pr[F (i) = 0]

≤ c√
π(s)

∞∑
i=ℓ−1

(i+ 1) · exp
(
−π(t)i

72T

)

=
c√
π(s)

∞∑
i=ℓ−1

(i+ 1) · αi

=
c√
π(s)

(
αℓ−1

(1− α)2
+

(ℓ− 1)αℓ−1

1− α

)
≤ 2cℓ√

π(s)
· α

ℓ−1

1− α

for α = exp(−π(t)/72T ) ≪ 1, where for the derivation we used differentiation on the geometric
series. We seek some ℓ that makes the tail have weight at most ε

rℓ , for reasons we will discuss shortly,
where r = ℓ2/ε2:

2cℓ√
π(s)

· α
ℓ−1

1− α
≤ ε

rℓ
⇐⇒ ℓ4αℓ−1 ≤ ε3(1− α)

√
π(s)

2c

(ℓ− 1) ln(α) + 4 ln(ℓ) ≤ ln
ε3(1− α)

√
π(s)

2c
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ℓ ≥ 1 +
1

lnα

(
ln

ε3(1− α)
√
π(s)

2c
− 4 ln ℓ

)
Since we must have that ℓ ≥ 1, it suffices to set:

ℓ ≥ max

1, 1 +
ln

ε3(1−α)
√

π(s)

2c

lnα

 = Ω

(
T

π(t)
ln

√
π(s)

ε3

)
This means that it suffices to take random walks of length approximately equal to the ε-mixing time.
Next, we need to figure out how many of those random walks we need.

Assume now we perform r independent random walks from s to t and record the number of steps as
the random variables X1, . . . , Xr. Let us use E to denote the event that Xi ≤ ℓ for all i. By another
application of Theorem A.2 and our choice of ℓ,

Pr[Xi > ℓ] = Pr[F (ℓ) ≤ 0] ≤ c√
π(s)

exp

(
−π(t)ℓ

72T

)
≤ ε

rℓ

and thus Pr[E] ≤ r · ε
rℓ = ε

ℓ by a union bound. By the law of total expectation,∣∣∣∣∣E
[
1

r

r∑
i=1

Xi

]
− E

[
1

r

r∑
i=1

Xi

∣∣∣∣∣E
]∣∣∣∣∣ = |E [X1]− E [X1 | E]|

= Pr[E] ·
∣∣E [X1 | E]− E

[
X1

∣∣E]∣∣
≤ ℓPr[E] + Pr[E]E

[
X1 | E

]
= ℓPr[E] +

∞∑
i=ℓ+1

i · Pr[X1 = i ∩ E]

= ℓPr[E] +

∞∑
i=ℓ+1

i · Pr[X1 = i]︸ ︷︷ ︸
≤ε

(*)

≤ 2ε

On the other hand, by a Hoeffding bound taken after conditioning on E, we have that:

Pr

[∣∣∣∣∣1r
r∑

i=1

Xi − E

[
1

r

r∑
i=1

Xi

∣∣∣∣∣E
]∣∣∣∣∣ ≥ ε

∣∣∣∣∣E
]
≤ 2 exp

(
−2rε2

ℓ2

)
If we choose

r = O

(
ℓ2 lg n

ε2

)
= Õ

(
T 2

π(t)2ε2

)
then, in combination with (*) we get that with probability at least 1− 1

n :∣∣∣∣∣1r
r∑

i=1

Xi − E

[
1

r

r∑
i=1

Xi

]∣∣∣∣∣ ≤ 3ε

and that concludes our proof.

E Lower Bound to the Number of Sampled Walks

A natural question is whether the upper bound established by our analysis of the walk sampling
algorithm is tight. In this section we answer this question in the affirmative, showing that the number
of random walk samples required to estimate the hitting time is Ω(

t2mix

π(t)2ε2 ) for a certain class of
graphs. This result can be interpreted in the sense that there is no “free lunch” in estimating the
hitting time of a Markov Chain, as there are always pathological graphs that require many samples.

Our lower bound applies to a class of “barbell” graphs with one star and one clique connected by a
path. The main idea is that we can model the hitting time from the clique to the start by the product
Θ(n2) · Geom(1/n). Arguing about the anti-concentration of geometric-like distributions we arrive
at the desired result.
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E.1 Preliminaries

Our analysis starts with the following standard anti-concentration bounds on the Binomial Distribu-
tion:
Lemma E.1 (Anti-concentration of upper tail, [Mousavi, 2010]). Let X1, ..., Xm be iid Bernoulli
random variables with parameter p. If p ≤ 1/4, then for any t ≥ 0 we have:

Pr

[
m∑
i=1

Xi ≥ mp+ t

]
≥ 1

4
exp

(
− 2t2

mp

)
(10)

We use this result to give a bound on the lower tail of the geometric distribution:

Lemma E.2. Let Y1, Y2, . . . , Yk ∼ Geom(1/µ) and Y =
∑k

i=1 Yi. Let Y = 1
kY . Then if ε is a

positive constant with ε ≤ µ/2, we have:

Pr
[
Y ≤ µ− ε

]
≥ 1

4
exp

(
−4kε2

µ2

)
Proof. Let us denote with Bin(r) the sum of r Bernoulli random variables with probability 1/µ. The
event of having Y ≤ k(µ − ε) corresponds to performing at most k(µ − ε) such Bernoulli trials
before observing k successes. Alternatively, the number of successes in the first k(µ− ε) Bernoulli
trials is at least k. So:

Pr
[
Y ≤ µ− ε

]
= Pr [Bin(k(µ− ε)) ≥ k]

Let ν− = E[Bin(k(µ− ε))] = k − k ε
µ . Since µ ≥ 2ε, we have that µ2 − εµ ≥ µ2

2 , and so by our
upper tail anti-concentration bound in Lemma E.1 we have:

Pr [Bin(k(µ− ε)) ≥ k] = Pr

[
Bin(k(µ− ε)) ≥ ν− + k

ε

µ

]
≥ 1

4
exp

(
−2k2ε2

µ2
· 1

k − kε/µ

)
=

1

4
exp

(
− 2kε2

µ2 − εµ

)
≥ 1

4
exp

(
−4kε2

µ2

)
Therefore, we get that:

Pr
[
|Y − µ| ≥ ε

]
≥1

4
exp

(
−4kε2

µ2

)
as desired.

We will also use the following “relaxation lemma” to decouple a random process into two easier-to-
analyze processes and lower bound each anti-concentration separately.
Lemma E.3 (Anti-Concentration Relaxation). Let T be a distribution over N>0 with mean µT ≥ 1
and A be a right skewed distribution over R≥0 with mean µA > 0. Further, let T ∼ T and
A1, A2, · · · ∼ A be independent samples. Define the random variables X =

∑T
t=1 At and Y = µAT

with means µ = E[X] = E[Y ] = µT µA. Then we have:

Pr [X ≤ µ− ε] ≥ 1

2
Pr [Y ≤ µ− ε]

Proof. Let X :=
∑T

t=1 At, where T ∼ T and At ∼ A are all mutually independent random
variables. We have the following sequence of bounds:

Pr [X ≤ µ− ε] ≥ Pr

[
T ≤ µT −

ε

µA
∧X ≤ µ− ε

]
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= Pr

[
T ≤ µT −

ε

µA
∧

T∑
t=1

At ≤ µ− ε

]

≥ Pr

T ≤ µT −
ε

µA
∧

µT − ε
µA∑

t=1

At ≤ µ− ε

 (because T ≤ µT )

= Pr

[
T ≤ µT −

ε

µA

]
· Pr

µT − ε
µA∑

t=1

At ≤ µ− ε

 (independence)

Finally, because A is right-skewed, we can write:

Pr [X ≤ µ− ε] ≥ Pr[Y ≤ µ− ε] · Pr

µT − ε
µA∑

t=1

At ≤ µA

(
µT −

ε

µA

)
= Pr[Y ≤ µ− ε] · Pr

µT − ε
µA∑

t=1

At ≤ E

µT − ε
µA∑

t=1

At


≥ 1

2
Pr[Y ≤ µ− ε]

as desired.

As a corollary, consider applying the relaxation Lemma E.3 to the setting of an average of r random
variables Xi. We can change the definition of T to relax the anti-concentration in that setting as well:
Corollary E.1. Let T be a distribution over N>0 with mean µT ≥ 1 and A be a real, right-skewed
distribution with mean µA > 0. Further, let T ∼ T and A1, A2, · · · ∼ A be independent samples.
Define the random variables X =

∑T
t=1 At and Y = µAT with means µ = E[X] = E[Y ] = µT µA.

Then, suppose we have r random variables X1, ..., Xr, all independently and identically distributed.
We have:

Pr

[
1

r

r∑
i=1

Xi ≤ µ− ε

]
≥ 1

2
Pr

[
1

r

r∑
i=1

Yi ≤ µ− ε

]
where Y1, ..., Yr are independently defined as Yi ∼ µA · T .

Proof. Consider a random variable T ′ =
r∑

i=1

Ti where Ti ∼ T . Suppose T ′ ∼ T ′. Then:

1

r

r∑
i=1

Xi ≡
T ′∑
i=1

A′i

where A′i ∼ 1
rA is right skewed as scaling by a positive value does not affect skewness. Since

µT ′ = rµT and µA′ = 1
rµA, we can apply Lemma E.3 to get:

Pr

[
1

r

r∑
i=1

Xi ≤ µ− ε

]
≥ 1

2
Pr

[
1

r

r∑
i=1

Yi ≤ µ− ε

]

E.2 The Lower Bound Proof

We now proceed to proving our lower bound.
Theorem E.1. Let G be a graph and u, v be two different vertices of it. Suppose an algorithm is
able to estimate HG(u, v) within additive error ε with constant probability of success by taking the
average over r random walk samples of unbounded length. Then we must have that:

r = Ω

(
t2mix

π(v)2ε2

)
in the worst case, where tmix is the mixing time of the graph.
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Proof. Let G be a “barbell”-like graph, as in Figure 3, consisting of a cliques Y = {y1, ..., yn} and a
star S = {v1, ..., vn2 , x} connected via a path P := (x = un ↔ un−1 ↔ · · · ↔ u1 ↔ y1)

un

1

2

n2

...

un−1 u2 u1
Kn· · ·

Figure 3: A ‘barbell”-like graph: a star, a path and a clique

Suppose we want to estimate HG(u1, un). Our estimation procedure samples r random walks from
u1 and averages the time they take to reach un. Let ti be the time it takes for the i-th random walk to
reach un. Then our estimator:

est :=
1

r

r∑
k=1

tk

is an unbiased estimator of the hitting time.

We claim that r = Ω(n6/ε2) samples are required to guarantee that:
|est−HG(u1, un)| ≤ ε

By a Theorem of Feige [Feige, 1995] for the hitting time in lollipop graphs, we know that the
maximum hitting time from any vertex in P ∪ Y to any other vertex is Θ(n3). If the random walk
starts from some vertex in S, then it takes it an expected Θ(n2) steps until it reaches un−1. By a
standard “drunkard’s walk” argument we conclude that the expected hitting time to any vertex in Y is
Θ(n3). Therefore, by a Theorem of Aldous [Aldous and Fill, 2002, Aldous, 1982] stating that the
mixing time is characterized by the maximum hitting time, we get that tmix = Θ(n3). We also know
that π(un) = Θ(1), and therefore the Ω(n6/ε2) lower bound gives us the desired Ω(t2mix/(π(v)

2ε2))
lower bound.

For the remainder of the proof we focus on proving that r ≥ Ω(n6/ε2) is required. Our proof relies
on modeling the random walk from u1 to un through a chain of independent samples from appropriate
distributions. Consider a random walk starting at u1 and let p be the probability that it reaches un

before entering the clique Y . It is a standard calculation that p = 1/n: Let pi be the probability a
random walk reaches u1 before entering Y if it starts from ui. By conditioning on the first step of the
random walk, we get the recurrence:

pi =
1

2
(pi−1 + pi+1)

with boundary conditions p1 = 1 and pn+1 = 0. We solve this by pi =
n−i+1

n , which gives the
expression p = pn = 1

n . Starting from u1 and conditioned on the event that it does not reach un, the
random walk can either follow the path, or become trapped in the clique. As a result, we can model
the time t it takes for a random walk starting at u1 to reach un as:

t ∼
tY∑
i=1

Ai

where tY ∼ Geom(1/n) and:

Ai ∼
{

return time to u1 in path P , with probability 1
2

return time to u1 from clique Y , with probability 1
2

where the Ai random variables are all mutually independent. Both return times in the distribution of
Ai can be modeled as geometric random variables. Thus, their mixture is right skewed, so we can
invoke Corollary E.1 to get that:

Pr

[
1

r

r∑
i=1

ti ≤ µ− ε

]
≥ 1

2
Pr

[
1

r

r∑
i=1

Gi ≤ n− ε

Θ(n2)

]
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with Gi ∼ Geom(1/n). By Lemma E.2 we have that

Pr

[
1

r

r∑
i=1

Gi ≤ n− ε

Θ(n2)

]
≥ 1

4
exp

(
−4rε2

n6

)
Since we seek an algorithm that makes the error at most ε with at least a constant probability, we
must have that r = Ω(n6/ε2), as initially claimed.

F Local Algorithms via Mixing Time Testing

In this section we expand upon our previous discussion on using property testing for hitting time
estimation.

F.1 Choosing a cutoff using local mixing times

For simplicity, we focus on the calculation of effective resistances. Recall the following definition:
Definition F.1 (Effective Resistance). The effective resistance between vertices s, t ∈ V is:

RG(s, t) = χT
s,tL

+χs,t (11)

where the Laplacian is defined as L := D − A, with D being the degree diagonal matrix and A
being the adjacency matrix.

Yoshida and Peng [Peng et al., 2021] show that the effective resistance can be written as a series with
a light tail.
Lemma F.1 ([Peng et al., 2021]). It holds that:

RG(s, t) = χ⊤st

∞∑
i=0

P iD−1χst (12)

At this point, we depart from the exposition of [Peng et al., 2021] and bound the tail of this series by
using a different quantity: the ε-(s, t)-mixing time, which we define as follows:
Definition F.2. Let s, t ∈ V and ε > 0. Then the ε-(s, t)-mixing time is defined as the minimum
number of steps required so that random walks starting from s and t have roughly the same distribution
over the states:

t
(ε)
min(s, t) := min{i ∈ N | ||1sP

i − 1tP
i||1 ≤ ε} (13)

We prove that the ε-(s, t)-mixing time can be used as the cutoff point instead of λ for irreducible and
aperiodic Markov Chains.
Lemma F.2. Assume that our Markov chain is ergodic with convergence parameters (α,C). Let

ℓ := t
(ε/4)
min +

log
(

C
ε′(1−α)

)
− logα

Then it holds that: ∣∣∣∣∣RG(s, t)−
ℓ∑

i=0

χ⊤stP
iD−1χst

∣∣∣∣∣ ≤ ε

2
(14)

Proof. If we truncate the series at Equation 12 after index ℓ, the error we sustain is at most:∣∣∣∣∣
∞∑
i=ℓ

χ⊤stP
iD−1χst

∣∣∣∣∣ ≤
∞∑
i=ℓ

|χ⊤stP iD−1χst|

Suppose ε′ = ε/4. Now, we have by Hölder’s inequality that:

|χ⊤stP iD−1χst| ≤ ||χ⊤stP i||1 · ||D−1χst||∞
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≤ ||1sP
i − 1tP

i||1 ·
(

1

minv∈V deg(v)
− 1

maxv∈V deg(v)

)
≤ ε′

for ℓ ≥ t
(ε′)
min(s, t). We further claim that this term decreases at an exponential rate for ergodic Markov

Chains.

Claim F.1. It holds that f(i) := |χ⊤stP iD−1χst| = O(αi) for some constant 0 < α < 1.

Proof. We have that:
f(i) := |x⊤stP iD−1xst| ≤ |P i

ss − 2P i
st + P i

tt|
Let η = O(αt). Since our Markov Chain is ergodic, Theorem A.1 gives that for any w ∈ V we have
P i
uw = (P i1u)w ≤ πw − η and P i

uw ≥ πw − η, so:

f(i) ≤ |πu + η − πu − πv + 2η + πv + η| = 4η = O(αt)

With Claim F.1 in place, we can bound the error term as follows:∣∣∣∣∣
∞∑
i=ℓ

χ⊤stP
iD−1χst

∣∣∣∣∣ < ε′ + C

∞∑
i=ℓ

αi ≤ ε′ +
Cαℓ

1− α

Setting ℓ >
log

(
C

ε′(1−α)

)
− logα bounds the error by 2ε′ = ε

2 .

Remark F.1. In general, this approach suffers from the same “locality” issue as the original
algorithm of [Peng et al., 2021] which requires knowing λ. In fact, the rate α is closely connected to
λ and they are both connected to the overall mixing time of the Markov chain via Cheeger’s inequality.
Even with a good estimate of tε/4min we are unable to bound the error in really degenerate cases where
α is very close to 1, if we do not know α itself, which, like λ, is a global property. Therefore, for the
remainder of this section we shall assume that ℓ = Θ(tminε/4), ignoring such degenerate cases.

F.2 Guessing t
(ε)
min by property testing

Following Lemma F.2, we are finally ready to design a new algorithm for estimating RG(s, t), one
that does not require knowledge of λ. The idea is to provide an upper bound for t(ε)min(s, t) by using a
property tester. The algorithm of [Batu et al., 2013] can be used to decide whether a Markov chain is
close to mixing or not. The notion of “almost-mixing” used by that algorithm relates to our localized
mixing:
Definition F.3. A Markov Chain is (ε, t)-mixing if there exists some distribution s such that for all
u ∈ V we have:

||1uP
t − s||1 ≤ ε

This kind of mixing implies ε-(s, t)-mixing;

Lemma F.3. If a Markov chain is (ε, t)-mixing, then for any states u, v ∈ V we have t
(2ε)
min (s, t) ≤ t

Proof. Suppose q is the distribution that is referenced by the (ε, t)-mixing definition. By the triangle
inequality:

||1sP
t − 1vP

t||1 ≤ ||1sP
t − q||1 + ||1tP

t − q||1 ≤ 2ε

As a result, if we can find some t such that our Markov Chain is (ε/2, t)-mixing, we would have
an upper bound to t

(ε)
min. We can do this via binary search, assuming that we possess an oracle for

deciding approximate mixing. The problem of deciding whether a Markov Chain is (ε, t)-mixing can
be reduced to the problem of testing whether two distributions are close to each other in ℓ1-distance.
The algorithm provided by [Batu et al., 2013] provides the following guarantee:
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Theorem F.1 (Mixing Test [Batu et al., 2013]). Let M be a Markov chain. Suppose we are given a
tester T for closeness of distributions in ℓ1 norm with time complexity T (n, ε, δ) and distance gap
f(ε) that takes as input sample oracles to distributions p, q ∈ ∆([n]) and outputs, with probability at
least 1− δ:

•“accept” if ||p− q||1 ≤ f(ε)

•“reject” if ||p− q||1 > ε

Then there exists a tester Tmixing with time complexity O(nt · T (n, ε, δ/n)) such that:

• If M is (f(ε)/2, t)-mixing, then Pr[M is accepted] > 1− δ,

• If M is not (ε, t)-mixing, then Pr[M is accepted] < δ.

We can use the ℓ1 closeness tester of [Chan et al., 2014] as the tester T . As shown in [Chan et al.,
2014], this is an optimal sample complexity for any tester.
Theorem F.2 (Closeness test [Chan et al., 2014]). There exists a tester that runs in
O(max{n2/3ε−4/3, n1/2ε−2}) time that, with probability at least 2/3, distinguishes between p = q
and ||p− q||1 ≥ ε.

Since f(ε) = 0, combining Theorem F.1 and Theorem F.2, along with a repetitive boosting argument
gives us an algorithm Tmixing that runs in O(t · n5/3ε−2 log(1/δ)) time and can, with probability at
least 1− δ distinguish whether a markov chain is (ε, t)-mixing or not.

Putting everything together, we consider binary searching for t such that M is (ε, t)-mixing. We
know that 1 ≤ t ≤ D, where D is the diameter of the graph. Using Tmixing with a boosted success
probability of 1− δ

log(D) we conclude the following theorem:

Theorem F.3. There exists a (local) algorithm that determines the smallest t such that a Markov
Chain M with n states is (ε, t)-mixing. The algorithm runs in O(D log(D)n5/3ε−2 log(1/δ)) time,
where D is the diameter of the graph.

As a consequence, this algorithm gives an upper bound to t
(ε)
min and can therefore be used in the

context of Lemma F.2 to approximate the effective resistance without knowledge of spectral gap λ.

G Additional Experimental Results

In this section we deposit additional experimental results and information pertaining to our algorithms.

G.1 Synthetic Experiments Setup Details

Table 2 contains information about the networks we used for our synthetic experiments in the main
body of the paper.

Table 2: Synthetic Networks
Name n m

Erdos-Renyi p = 0.01 1 000 5 007.4± 32.0
Barabasi-Albert k = 10 1 000 9 900
Communities pinter = 0.01, pintra = 0.05 1 000 9 021.4± 51.8
Football 115 613
Facebook 4 039 88 234

G.2 Benefits from parallelism

Our algorithms are highly parallelizable because their local nature lends itself to multi-threaded
computation. Through parallelization we obtain even better performance in computing the hitting
time compared to the exact solver, as shown in Table 3. Here, we compute hitting times on the
Facebook network using 10000 random walks.
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Table 3: Speedup through parallelism. We show the running time in seconds.

Algorithm / Number of cores 1 5 10 20

Meeting Time Algorithm 0.554± 0.071 0.377± 0.065 0.335± 0.026 0.359± 0.018
Exact Algorithm 2.165± 1.270 3.556± 2.047 1.255± 0.026 1.238± 0.024

G.3 Ablation studies

We present additional ablation studies evaluating runtime and relative estimation error as functions of
the number of random walks, using the Football and Facebook networks. We also perform the same
experiment for our synthetic datasets. In the Football network, our cutoff algorithm under-performs
the others, likely due to an overestimated λ parameter—highlighting its sensitivity to hyperparameter
tuning. In contrast, Algorithm 1 appears more robust. We also visualize the correlation between
hitting times and two pair sampling measures, illustrating how our method differs from simpler
uniform sampling.
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Figure 4: Ablation study for the number of random walks in the Football and Facebook networks.
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Figure 5: Correlation between the hitting time and the degree product deg(u) · deg(v) (top) and
the product of pagerank centralities pagerank(u) · pagerank(v) (bottom) on the Football (left) and
Facebook (right) networks.
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Figure 6: Ablation study for the number of random walks in synthetic datasets.
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Figure 7: Absolute estimation error for uniformly sampled pairs on the Football (left) and Facebook
(right) networks. The estimation errors are grouped by the true hitting time.
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