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ABSTRACT

Circuit routing has been a historically challenging problem in designing electronic
systems such as very large-scale integration (VLSI) and printed circuit boards
(PCBs). The main challenge is that connecting a large number of electronic com-
ponents under specific design rules and constraints involves a very large search
space, which is proved to be NP-complete. Early solutions are typically designed
with hard-coded heuristics, which suffer from problems of non-optimal solutions
and lack of flexibility for new design needs. Although a few learning-based meth-
ods have been proposed recently, their methods are cumbersome and hard to ex-
tend to large-scale applications. In this work, we propose a new algorithm for cir-
cuit routing, named as Ranking Cost (RC), which innovatively combines search-
based methods (i.e., A* algorithm) and learning-based methods (i.e., Evolution
Strategies) to form an efficient and trainable router under a proper parameteri-
zation. Different from two-stage routing methods ( i.e., first global routing and
then detailed routing), our method involves an one-stage procedure that directly
optimizes the global objective function, thus it can be easy to adapt to new rout-
ing rules and constraints. In our method, we introduce a new set of variables
called cost maps, which can help the A* router to find out proper paths to achieve
the global objective. We also train a ranking parameter, which can produce the
ranking order and further improve the performance of our method. Our algo-
rithm is trained in an end-to-end manner and does not use any artificial data or
human demonstration. In the experiments, we compare with the sequential A*
algorithm and a canonical reinforcement learning approach, and results show that
our method outperforms these baselines with higher connectivity rates and better
scalability. Our ablation study shows that our trained cost maps can capture the
global information and guide the routing result to approach global optima.

1 INTRODUCTION

As described in Moore’s Law (Schaller, 1997), the number of transistors in a dense integrated circuit
(IC) increases exponentially over time and the complexity of chips and printed circuit boards (PCBs)
becomes higher and higher. Such high complexity makes the IC design a time-consuming and error-
prone work. Thus more capable automatic design systems, such as electronic design automation
(EDA) tools, are needed to improve the performance. In the flow of IC designs, we need to find
proper paths to place wires which connect electronic components on ICs, and these wires need to
achieve expected connectivity under certain constraints. One of the most important constraints is that
wires on the same layout should not intersect. In addition, to reduce the signal propagation delay, the
wire-length should be minimized. This is a critical and challenging stage in the IC design flow (Hu &
Sapatnekar, 2001), known as circuit routing, which has been studied by lots of researchers (Kramer,
1984; Zhang & Chu, 2012; He & Bao, 2020).

Circuit routing involves a large number of nets (a net is a set of vertices with the same electrical
property) to be routed, which is computationally expensive and makes manual design extremely
time-consuming (Kong et al., 2009; Coombs & Holden, 2001). Even under the simplest setting,
where only two pairs of pins need to be routed, it is an NP-complete problem (Kramer, 1984).
Although lots of circuit routing algorithms have been proposed (Zhang, 2016), there still remain
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three major challenges: (1) Early solutions (Hu & Sapatnekar, 2001) are typically designed with
hard-coded heuristics , which suffer from problems of non-optimal solutions (Zhang, 2016) and
lack of flexibility over new design needs. Therefore, a more powerful routing method that does not
depend on domain knowledge is highly desired. (2) To reduce the difficulty of complex routing
problems, traditional routing algorithms often adopt a two-stage procedure — first global routing
and then detailed routing (Chen & Chang, 2009; Kahng et al., 2011). The problem is that these
two stages do not always coordinate well (Zhang & Chu, 2012; Shi & Davoodi, 2017). Sometimes
a low-congested global routing result may lead to downstream detailed router un-routable. Hence,
an end-to-end algorithm is preferred which can optimize the final global objective (e.g., the total
wire-length) directly. (3) Although a few learning-based methods have been proposed (Liao et al.,
2020; He & Bao, 2020) recently, their methods are hard to extend to large-scale applications. In real
settings, there are lots of components and nets on a single chip, which shows greater demand for the
scalability of routing algorithms.

To relieve the problems mentioned above, we propose a new algorithm, denoted as Ranking Cost
(RC), for circuit routing. In this paper, we innovatively combine search-based methods (i.e., A*
algorithm) and learning-based methods (i.e., Evolution Strategies (Salimans et al., 2017)) to form an
trainable router with proper parametrization. Our method is flexible for integrating new constraints
and rules so long as they can be merged into the global objective function. Moreover, our method is
an one-stage algorithm, which optimizes the global objective function directly. In our method, we
introduce a new set of variables called cost maps, which can help the A* routers to find out proper
paths to achieve the global objective. We also train a ranking parameter, which can produce the
ranking order and further improve the performance of our method. In the experiments, we compare
our method with the commonly used A* method and a canonical reinforcement learning approach,
and results show that our method outperforms these baselines with higher connectivity rates. Our
ablation study also shows that trained cost maps can capture the global information and guide the
routing solution to approach global optimal. Experiments also show that our method is scalable to
larger applications.

2 RELATED WORK

In this section, we summarize the related work on circuit routing.

2.1 TWO-STAGE ROUTING ALGORITHMS

The routing problem can be heuristically separated into two stages, the first being the global routing
step, followed by detailed routing. On the one hand, there are multiple heuristic-based approaches
for global routing including regionwise routing (Hu & Sapatnekar, 2001), force-directed routing (Mo
et al., 2001), and rip-up and reroute (Cho et al., 2007). On the other hand, the most commonly used
detailed routing algorithms are channel routing and its variants (Ho et al., 1991; Mandal et al.,
2020), which decompose the routing region into routing channels and generate wires in these chan-
nels (Chen & Chang, 2009). One main issue of the two-stage methods is that these two stages do
not always coordinate well (Shi & Davoodi, 2017), which results in enormous difficulty in joint op-
timization. Instead, our method is an one-stage algorithm and new design constraints can be simply
involved into the objective function without changing the algorithm itself.

2.2 SEQUENTIAL ROUTING ALGORITHMS

A more straightforward strategy for circuit routing is to select a specific order and then route nets
sequentially, e.g., sequential A* algorithm and Lees algorithm (Huang et al., 2014; Malavasi &
Sangiovanni-Vincentelli, 1993). The major advantage of this type of approaches is that the conges-
tion information for previously routed nets can be taken into consideration while routing the current
one. However, the drawback of these sequential approaches is that the quality of the solution is very
sensitive to the orders (Zhang, 2016). Moreover, earlier routed paths only focus on finding their own
best solutions and are impossible to take into account the situation of subsequent paths. Such greedy
strategies may make a solvable circuit routing problem insolvable. Figure 1 shows an example that
the sequential A* algorithm will fail to handle. In this example, there are two pairs of points to be
routed, i.e., we should connect start vertices Si and end vertices Ei, i ∈ {1, 2}, respectively. If we
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(d) (e) (f)

Figure 1: Yellow vertices are the start vertices, green vertices are the end vertices and black blocks
are obstacles where paths can not pass through. (a) Examples of maps without obstacle.(b) Examples
of maps with obstacles. (c) Circuit routing results derived by our algorithm. (d) and (e) show that
sequential A* algorithm will greedily find a shortest path of one pair, and it fails to obtain a global
solution. (f) shows the solution found by our algorithm, which is actually globally optimal.

connect the pair (S1, E1) first in its shortest path, it will make (S2, E2) disconnected as showed in
Figure 1(d), and vice versa (Figure 1(e)). But this case can be solved easily by our algorithm as
showed in Figure 1(f), which means that our algorithm can take into account the global information
when generating each path.

2.3 LEARNING-BASED ALGORITHMS FOR CIRCUIT ROUTING

There are some learning-based algorithms for circuit routing (Qi et al., 2014; Liao et al., 2020).
Early methods are more focusing on supervised learning, such as learning models to predict routing
congestion (Qi et al., 2014) or predicting the routability (Zhou et al., 2015; Xie et al., 2018). But
the performances of these supervised models are constrained by the limits of human knowledge.
Recently, Liao et al. (2020) trained a deep Q-network (DQN) to solve the global routing problem
and their method still suffers from the miscoupling problem of two-stage routing algorithms. In
addition, He & Bao (2020) reform circuit routing to a tree search problem and utilize a deep neural
network as the rollout policy. However, their rollout policy is trained in a supervised manner with
artificial data. Instead, our method optimizes the global objective function directly and does not
require any artificial data or human demonstration.

3 BACKGROUND AND NOTATIONS

In this section, we will formalize the circuit routing problem first and then give a brief introduction
to the OpenAI-ES algorithm (Salimans et al., 2017).

3.1 CIRCUIT ROUTING

Circuit routing is a path search problem, where the goal is to find non-intersecting paths that connect
an arbitrary number of pairs of vertices. It can be formalized as a grid graph G = (V,E), where
each vertex vi ∈ V represents an intersection on the grid, and each edge eij ∈ E represents the
path between vi and its 1-hop neighbors vj ∈ V . And the non-routable obstructive vertices form a
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obstacle set, denoted as O ⊂ V . In circuit routing, a net N = {vn1, vn2, ...} ⊂ V is a set of vertices
that need to be connected and a multi-vertex net can be decomposed into multiple two-vertex nets
via a minimum spanning tree (MST) or a rectilinear Steiner tree (RST) (de Vincente et al., 1998;
Hu & Sapatnekar, 2001). Following He & Bao (2020), we simplify this problem by letting each net
only contain two vertices, i.e, a two-vertex net is defined as N = {vs, ve} with a start vertex vs and
an end vertex ve. The net should be connected by a path P = [v1, v2, ..., vn] with vs = v1, ve = vn
and P ∩ O = ∅. We use |P | to represent the length of the path P . Given a set N of nets {Ni}, we
need to find a set P of paths {Pi} that connect these nets. A reasonable routing plan for a given set
of nets is that all the paths do not share any vertex. In some cases, the routing problem do not have
a solution because such a non-intersecting set P does not exist. In circuit routing, the routed paths
should satisfy some constraints or achieve some goals. In this paper, we choose the most commonly
used goal, i.e., minimize the total length of paths. Given a solution P , the total length of paths is
defined as L =

∑
P∈P |P |.

3.2 EVOLUTION STRATEGIES

Evolution Strategies (ES) is a class of black box optimization methods (Rechenberg, 1994; Hansen
& Ostermeier, 2001). Recently, an evolution strategy variant, referred as the OpenAI-ES (Sali-
mans et al., 2017), has attracted attention because it could rival the performance of modern deep
reinforcement learning methods on multiple control tasks. In the OpenAI-ES, there is a reward
function, denoted as F (ψ), where ψ is a solution vector, which is sampled from a probability dis-
tribution function ψ ∼ pθ(ψ). The goal is to maximize the expected value J(θ), which is defined
as:

max
θ
J(θ) = max

θ
Eψ∼pθ [F (ψ)] = max

θ

∫
F (ψ)pθ(ψ)dψ. (1)

A straightforward way to achieve this is to use the gradient ascent:

θ ← θ + α∇θJ(θ), (2)

where α is the learning rate. In the OpenAI-ES, a score function estimator is used to calculate the
gradient, which is similar to REINFORCE (Williams, 1992):

∇θJ(θ) = ∇θEψ∼pθ [F (ψ)] = Eψ∼pθ [F (ψ)∇θ log pθ(ψ)]. (3)

Usually, pθ is an isotropic multivariate Gaussian with mean θ and fixed covariance σ2I . And the ex-
pected value can be rewritten as Eψ∼pθ [F (ψ)] = Eε∼N(0,I)[F (θ+σε)]. Thus the gradient estimator
changes to:

∇θJ(θ) = ∇θEε∼N(0,I)[F (θ + σε)] =
1

σ
Eε∼N(0,I)[F (θ + σε)ε], (4)

where ε is sampled from a standard normal distribution. Once we form an objective function J(θ),
the gradient ∇θJ(θ) can be approximated via Equation 4 and parameters θ can be updated via
Equation 2.

4 METHODOLOGY

In this section, we will first introduce the Ranking Learning algorithm and then the Cost-Map Learn-
ing algorithm. At last, we give out our final algorithm (Ranking Cost) and its training strategy.

4.1 SEQUENTIAL A* WITH RANKING LEARNING

The A* algorithm can be used to find the shortest path in a two-vertex net N = {vs, ve}, which is
considered more efficient than breadth-first search. A* finds a path between a start vertex vs and an
end vertex ve, with a priority function defined as:

s(v) = g(v) + h(v), (5)

where v is a vertex in the graph, g(v) represents the total length from vs to the current vertex v,
and h(x) represents the future heuristic cost from v to the end vertex ve. The h(x) is often set to
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the Euclidean distance (in this work) or Manhattan distance. In a circuit routing problem, there
are k nets to be routed. Given a specific ranking order R, we can apply the A* algorithm to each
net sequentially. For example, if there are 3 nets {N1, N2, N3} to be routed and a ranking order
R = (2, 1, 3) is given. We can apply A* to these 3 nets following the order N2 → N1 → N3.
After the routing procedure, we can get a total path length from this ranking order, denoted as L(R).
Different ranking orders will result in different total lengths. We can go through all the ranking
orders and get their corresponding total lengths. The ranking order with minimum total length can
be used as the final solution. However, this is unacceptable in time complexity because a routing
problem with k nets has O(k!) different ranking orders.

To relieve the problem of combinatorial explosion of ranking orders, we propose a method to learn
the ranking order. We define a k-dimension ranking parameter θr = {β1, β2, ..., βk}. And the
ranking order is determined completely by the ranking parameter. More concretely, the order of
values in θr is exactly the routing order, and the net with largest value will be routed first and the
rest may be deduced by analogy. For example, given a ranking parameter θr = {0.5, 0.2, 0.4}, we
have β1 > β3 > β2 and the corresponding ranking order will be Rθr = (1, 3, 2). And the ranking
parameter will determine the final routing result and also the total path length. We define a reward
function over the ranking parameter:

F (θr) = −L(Rθr ), (6)

where L(Rθr ) is the total length when taking the order Rθr , and less length leads to larger reward.
As described in Section 3.2, we define the expected value over F (·) as:

J(θr) = Eψ∼pθrF (ψ) = Eε∼N(0,I)F (θr + σε). (7)

The gradient ∇θrJ(θr) can be estimated via Equation 4, and θr can be updated via Equation 2.

As mentioned in Section 2.2, a sequential routing algorithm may make a solvable circuit routing
problem insolvable. And even a method with a learned ranking order will still suffer from this
problem. In the following section, we will introduce how our method could overcome this problem
by coupling the A* algorithm with cost maps.

4.2 CIRCUIT ROUTING WITH COST MAPS

As introduced in previous section, g(v) in Equation 5 represents the total length from start vertex vs
to current vertex v, thus the A* algorithm can only search for the shortest path of current net and it
can not take into account the information of following paths. Our goal is to add global information
to the A* routers so that these routers can cooperate together to achieve their common objective.
First, for each net Ni, i ∈ {1, ..., k}, we define its cost map as Ci = {c1, c2, ..., cm} ∈ Rm, where
m = |V | is the number of vertices in graph G. Therefore, there are total k cost maps, and all the
cost maps can be learned with our algorithm. We apply a cost-map function C(i, vj) = cj , cj ∈ Ci
to simplify the notation. In this way, we can reformulate the A* algorithm by adding the cost maps:

s(v) = g(v) +

k∑
i=1

C(i, v) + h(v), (8)

where g(v) and h(v) are with the same definitions as in Equation 5. The cost-map enhanced A*
algorithm reveals two key points: (1) When removing g(v) and h(v) from Equation 8, it will de-
generate into a pure learning-based algorithm and the path will be determined completely by the
cost function. (2) When removing the cost functions or set them to zero (i.e., C(i, v) = 0), it is a
pure search-based algorithm. Hence, it is a method which combines the searched-based algorithm
and the learning-based algorithm and could take advantage of both sides. On the one hand, the A*
search makes our method easier to find a connected path in a complex environment, where learning-
based methods are hard to find a connected path (Tamar et al., 2016). On the other hand, the global
information can be merged into cost maps and the global objective can be approached by tuning the
cost maps.

To learn the cost maps, we first define a cost-map parameter θc ∈ Rk×m and the value in cost maps
are defined as cj = max(0, θc[i, j]), cj ∈ Ci. Given a ranking order R and cost maps, we can route
the nets sequentially using the cost-map enhanced A* and a total path length Lwill be obtained from
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the routing result. Similar to Equation 6, we define a reward function over the cost-map parameter
and also its the expected value:

F (θc) = −L(R,Cθc)
J(θc) = Eψ∼pθcF (ψ) = Eε∼N(0,I)F (θc + σε),

(9)

where Cθc presents the cost maps derived from θc, and θc can be updated via Equation 2. By
iteratively executing the A* search and cost-map learning step, our method could approach the
optimal solution in the process of time and solve some problems that a sequential routing algorithm
can not solve as showed in Figure 1. In next section, we will introduce how the cost-map learning
can couple with ranking learning and how to train the algorithm efficiently in practice.

4.3 RANKING COST ALGORITHM

Our final algorithm, denoted as Ranking Cost (RC), can learn the ranking parameter θr and cost-map
parameter θc jointly. In Equation 8, all the cost maps are used when calculating the priority function
and the ranking order has no impact on the cost maps. To learn the cost-map with ranking order, we
change the priority function to:

sj(v) = gj(v) +

k∑
i=j+1

C(i, v) + hj(v), (10)

where sj(v) is the priority function for the net whose ranking order is the j-th. This modification
is reasonable, because the earlier routed nets will use more cost maps and observe more global
information. For example, when routing the first net, its ranking index is j = 1 and it will use all the
rest k − 1 cost maps. As a result, the first routed path focuses more on its impact on other unrouted
nets. When routing the last net, its ranking index is j = k and no cost map will be used. As a result,
the last net is routed via a normal A* algorithm and the searched solution is actually the shortest path
at current situation. As all the previous nets have been routed, the best way for routing the last net
is just to find out the shortest path. Our RC algorithm achieves this naturally and makes it flexible
for arbitrary ranking orders. When the ranking order changes, the order and the usage of cost maps
change accordingly. In this way, the reward function can be defined as:

F (θr, θc) = −L(Rθr , Cθc), (11)

and both θr and θc can be updated via the OpenAI-ES algorithm. Actually, the reward function F
can be integrated with arbitrary metrics, such as the signal latency. Thus the cost maps are free to
adapt to new constraints and design rules.

In the OpenAI-ES algorithm, we will sample a fixed number of Gaussian noises and add them to
original parameters to form new parameters. These new parameters are then fed into n evaluators
(or workers). The evaluator has an independent environment and executes the algorithm based on
received parameters. Finally, each evaluator will return a scalar reward. To stabilize the training
process, we normalize collected rewards {r1, ..., rn} from all the evaluators:

ri = (ri − rmean)/rstd, (12)

where rmean and rstd are the mean and standard deviation of all the rewards. Algorithm 1 in
Appendix A shows the overall training procedure of our RC algorithm. In practice, all the evaluators
can execute in parallel as proposed in Salimans et al. (2017). The source code of Ranking Cost can
be found in the supplementary material.

5 EXPERIMENTS

In this section, we will compare our proposed method with some other baselines. We will also
study how the ranking learning and cost maps work in our algorithm. Finally, we further show the
scalability of our algorithm for larger applications.

5.1 METHODS EVALUATION

To evaluate our algorithm, we build a grid map simulator as the test environment. We construct
300 maps with three different sizes: 16 × 16, 32 × 32 and 64 × 64. These maps are split into two

6



Under review as a conference paper at ICLR 2021

16× 16 (4 pairs) 32× 32 (6 pairs) 64× 64 (10 pairs) time (s/map)no obstacle with obstacles no obstacle with obstacles no obstacle with obstacles
Seq A*(5) 0.94(37.1) 0.9(37.2) 0.96(114.0) 0.58(116.7) 0.8(459.9) 0.08(393.7) 0.8

Seq A*(200) 0.96(36.7) 0.96(36.9) 1.0(111.3) 0.78(111.1) 0.84(457.2) 0.24(383.0) 41.5
VINs 0.84(37.1) 0.86(37.2) 0.54(129.4) 0.18(122.2) 0.0(-) 0.0(-) 1.4
CL 0.94(38.3) 0.9(37.7) 0.98(114.6) 0.68(118.7) 0.88(485.4) 0.16(408.3) 37.5

RC(ours) 1.0(36.7) 0.98(37.0) 1.0(113.4) 0.82(111.8) 0.86(431.3) 0.32(378.3) 38.3

Table 1: Evaluation results of different algorithms. Two values are reported. The first value is the
success rate (the higher the better) and the second value in the bracket is the common average length
(the lower the better). Ranking Cost achieves the best performance on all the maps. The comparison
between CML and RC shows that the ranking parameter learning can improve the performance of
our algorithm. We also report the wallclock time of different algorithms in the last column. The
Ranking Cost algorithm takes more running time, but it is worthy to sacrifice more time to earn
better solutions.

types, i.e., a simple one without obstacle and a more complex one with obstacles. Figure 1(a) and
Figure 1(b) show some of the maps used in our experiments. Algorithms will be evaluated on these
maps, and the success rates and the average of total lengths will be reported. More details about the
maps can be found in Appendix B.

Baselines:
Sequential A*: Sequential A* is a common used search-based algorithm in circuit routing. It
routes nets with a specific ranking order and different orders will lead to different results. In the
experiments, we randomly sample 5 different ranking orders and run the algorithm 5 times. The
best score of 5 runs will be reported. We further randomly sample 200 different ranking orders and
run the algorithm 200 times. The best score of 200 runs will be reported.
Value Iteration Networks (VINs) (Tamar et al., 2016): The VIN is a learning-based approach for
routing on grid maps. VINs use the value iteration from reinforcement learning and can achieve
better performance compared with supervised models. We apply VINs to the circuit routing
problem by sequentially executing it on each net. Similar to sequential A* algorithm, we randomly
sample five different ranking orders and run the VIN five times. The best score of five runs will be
reported.
Cost-Map Learning (CML): We construct a Cost-Map Learning algorithm from the Ranking
Cost. In the CML, the ranking parameter will not be trained (the ranking order is fixed) and only
the cost-map will be trained.

The Ranking Cost (RC) as presented in Algorithm 1 is our final method for circuit routing problem
and more details about its hyper-parameters can be found in Appendix C. Table 1 shows the eval-
uation results of different algorithms on all the maps. Two values are reported for each algorithm.
The first value is the success rate (the higher the better) and the second value in the bracket is the
common average length (the lower the better). Our final algorithm (Ranking Cost) achieves the best
performance on all the maps. On the most complex maps (with size 64× 64, obstacles and 10 pairs
of vertices), Ranking Cost outperforms other baselines by a large margin, which implies that our
method has greater advantage on handling more challenging tasks. The comparison between Cost-
Map Learning and Ranking Cost shows that the ranking parameter learning can further improve the
performance of our algorithm.

5.2 ABLATION STUDY

In this section, we study how each part of our algorithm works and the scalability of the RC.

5.2.1 IMPACT OF RANKING ORDERS

To show the impact of the ranking learning, we increase the sample number of orders for sequential
A* and use the Ranking Learning algorithm described in Section 4.1 as comparison. Table 2 in
Appendix D shows the changes of success rates with different order sample numbers and Figure 2(a)
shows the curve of success rates and sample numbers. The result shows that we can improve the
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(a) (b) (c)

Figure 2: (a) The curve of success rates and sample numbers. Our learned ranking order achieves
better performance than randomly sampled orders. (b) Trained cost map of the example from Fig-
ure 1(f). There are two larger cost values (the yellow grids) in the cost map, which will give out a
large cost if the path chooses to go through here. As a result, the first pair ((S1, E1)) will not take
its shortest path which will block the second pair((S2, E2)). It shows that cost maps can capture the
global information and guide routers to approach global optimal. (c) An example of routing results
of our algorithm on maps with size of 150 × 150 and with 15 pairs, which implies that our method
could be adapted to larger scales of applications.

success rate by increasing the order sample number, but it is hard to further improve the performance
by linearly increasing the sample number as the order complexity is O(k!), where k is the number
of pairs (or nets). However, our learned ranking order can achieve much better performance than
randomly sampled orders.

5.2.2 IMPACT OF COST MAPS

To study the impact of cost maps, we fix the ranking order and only train the cost-map parameter,
and we use the example map showed in Figure 1(f). We fixed the ranking order as R = (1, 2) and
train its cost maps. Because the ranking order is fixed and there are only two cost maps, only the
second cost map will be used when routing the first pair (i.e., (S1, E1)). Finally, we visualize the
trained cost maps as showed in Figure 2(b). There are two larger cost values (the yellow grids) in the
cost map, which will give out a large cost if the path chooses to go through here. As a result, the first
pair ((S1, E1)) will take the path as showed in Figure 1(f) instead of taking its shortest path which
will block the second pair((S2, E2)). It shows that our cost maps can capture the global information
and guide routers to approach global optimal.

5.2.3 SCALABILITY OF RANKING COST ALGORITHM

In Liao et al. (2020), their algorithm is only evaluated on the maps with size of 8× 8. In He & Bao
(2020), their algorithm is evaluated on the maps with size of 30 × 30 and with only 5 pairs. The
search space is huge in their methods, which prevent them from applying to larger maps. To test the
scalability of our algorithm, we apply our algorithm on larger maps with size of 150× 150 and with
15 pairs. Figure 2(c) shows the routing result of our algorithm, which implies that our method could
be adapted to larger scales of applications.

6 DISCUSSION

In this paper, we propose a novel algorithm, called Ranking Cost, to solve the historically chal-
lenging circuit routing problem. In our method, we combine search-based algorithms (i.e., A*) and
learning-based algorithms (i.e., evolution strategies) to form a new powerful algorithm which could
take advantage of both sides. Our method is a one-stage circuit routing algorithm which can opti-
mize the global objective function directly, and it is easy to implement and flexible for new design
rules and constraints. Experimental results show that our method is powerful and scalable to more
complex tasks. In the future, we will extend Ranking Cost to broader applications, such as pedestrian
path prediction, multi-agent path finding and robot navigation.
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A RANKING COST TRAINING

Algorithm 1 Ranking Cost Training

Initialize: Graph G = (V,E), vertex number m = |V |, nets {N1, ..., Nk}, ranking parameter
θr ∈ Rk, cost-map parameter θc ∈ Rk×m, learning rate, α, noise standard deviation σr and σc,
evaluator number n.
for t = 1, 2, ... do

for i = 1, ..., n do
Sample εi ∼ N(0, I).
Get sampled ranking parameter θ̂r and cost maps parameter θ̂c with:

θ̂r = θr + σrεi,

θ̂c = θc + σcεi
(13)

Construct ranking order R and cost maps C from θ̂r and θ̂c.
Route nets on graph G with the ranking order and cost maps.
Compute rewards ri = F (θ̂r, θ̂c) from routing results.

end for
Collect all scalar reward {r1, ..., rn} from each evaluator.
Compute normalized rewards {r1, ..., rn} via Equation 12.
Update ranking parameter θr and cost map parameter θc with:

θr ← θr + α
1

nσr

n∑
j=1

rjεj

θc ← θc + α
1

nσc

n∑
j=1

rjεj

(14)

end for

B ENVIRONMENT SETUP

To evaluate our algorithm, we build a grid map simulator as the test environment. Algorithms are
evaluated on randomly generated grid maps. In the experiment, we take use of three different maps
sizes: 16 × 16, 32 × 32 and 64 × 64. We construct two types of maps, i.e., a simple one without
obstacles and a more complex one with obstacles. All the start vertices and end vertices are also
randomly generated in both simple maps and complex maps. Each map with size of 16× 16 contain
4 start-end pairs, and 6 pairs for 32 × 32 and 10 pairs for 64 × 64. We randomly generate 50
maps for each size and each type and there are total 300 random maps. We report the success rate
and the common average of total length of each algorithm. The success rate is the proportion of
successfully connected maps to all random maps. Because different algorithm will have different
connected maps, it is not fair to compare the average length over each algorithm’s own successful
maps. A algorithm with only one successful case may have lower average length than a algorithm
with 100% success rate. Thus we only report the average length over common successful maps of
all algorithms. All the maps can be found in the supplementary material.

C DETAILS OF HYPER-PARAMETERS

For both Cost-Map Learning and Ranking Cost, the maximum training episode is 1000, learning
rate is 0.001, the number of evaluators is 40, the noise standard deviation σr is 0.1 and σc is 0.1.
All the rewards returned from evaluators will be scaled to [−1, 0]. When there is not a successful
connection, a reward of −1 will be given. Our code can be found in the supplementary material.
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D RESULT OF RANKING ORDERS

Sample Number 5 10 15 20 25 30 35 40 45 50 100 200 Ranking Learning
Success Rate 0.08 0.12 0.16 0.16 0.22 0.16 0.22 0.20 0.20 0.22 0.22 0.24 0.30

Table 2: The changes of success rates with different order sample numbers. The result shows that it
is hard to improve the performance by linearly increasing the sample number. The learned ranking
order can achieve much better performance than randomly sampled orders.

E OTHER ROUTING TASKS

There are also some other routing problems, such as routing of hydraulic systems (Chambon
& Tollenaere, 1991), routing of ship pipes (Kang et al., 1999), routing of urban water sys-
tems (Christodoulou & Ellinas, 2010; Grayman et al., 1988), and routing of city logistics (Barceló
et al., 2007; Ehmke et al., 2012). Multi-agent path finding, a task similar to circuit routing, has been
exhaustively studied in robotics and video games (Silver, 2005; Sturtevant, 2014; Babayan et al.,
2018; Atzmon et al., 2020). But in a multi-agent path finding task, paths are allowed to intersect
as long as the agents do not appear in the same place at the same time. To a certain degree, circuit
routing is more difficult than multi-agent path finding tasks.
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