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Abstract

Diffusion models have revolutionized image generation, yet

several challenges restrict their application to large-image

domains, such as digital pathology and satellite imagery.

Given that it is infeasible to directly train a model on

’whole’ images from domains with potential gigapixel sizes,

diffusion-based generative methods have focused on synthe-

sizing small, fixed-size patches extracted from these images.

However, generating small patches has limited applicability

since patch-based models fail to capture the global struc-

tures and wider context of large images, which can be cru-

cial for synthesizing (semantically) accurate samples. To

overcome this limitation, we present ZoomLDM, a diffu-

sion model tailored for generating images across multiple

scales. Central to our approach is a novel magnification-

aware conditioning mechanism that utilizes self-supervised

learning (SSL) embeddings and allows the diffusion model

to synthesize images at different ’zoom’ levels, i.e., fixed-

size patches extracted from large images at varying scales.

ZoomLDM synthesizes coherent histopathology images that

remain contextually accurate and detailed at different zoom

levels, achieving state-of-the-art image generation qual-

ity across all scales and excelling in the data-scarce set-

ting of generating thumbnails of entire large images. The

multi-scale nature of ZoomLDM unlocks additional capa-

bilities in large image generation, enabling computation-

ally tractable and globally coherent image synthesis up to

4096 × 4096 pixels and 4× super-resolution. Additionally,

multi-scale features extracted from ZoomLDM are highly

effective in multiple instance learning experiments. 1
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Figure 1. ZoomLDM can generate synthetic image patches at mul-

tiple scales (left). It can generate large images that preserve spatial

context (center) and perform super-resolution (right), without any

additional training. Large images from prior work [17, 26] suffer

from blurriness and lack of global context.

Diffusion models have achieved remarkable success in

photorealistic image synthesis [3], benefiting from the avail-

ability of vast multi-modal datasets [5, 41] and sophisticated

conditioning techniques [20, 36]. Latent Diffusion mod-

els (LDMs) [39] have further advanced high-resolution im-

age generation by introducing a two-step process that first

compresses the images with a learned encoder and then

trains the generative diffusion model in that encoder’s la-

tent space. In the natural image domain, LDMs like Sta-

ble Diffusion XL [36], which generates 1024 × 1024 im-

ages, have made high-resolution generation fast and cheap.

Although such models demonstrate the potential of further

scaling image diffusion to larger sizes, large-image domains

such as digital histopathology and satellite imagery are be-

yond their feasible scope as images there are typically in the

gigapixel scale (e.g. 32, 000× 32, 000 pixels).

Apart from scale, large-image domains also lack paired

image-annotation data with sufficient detail, which has been
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key to the success of text-to-image diffusion models. With-

out access to a conditioning signal during training and in-

ference, the performance of diffusion models degrades sig-

nificantly [32]. At the same time, obtaining annotations for

large images can be complex as it is both a laborious pro-

cess for specialized fields, such as medical images, and of-

ten ambiguous since annotators can describe different fea-

tures at different scales. A satellite image text caption cor-

responding to ‘water’, when viewed from up close, can turn

into both the ‘a lake’ and ‘a river’ when viewed from fur-

ther away, making it necessary to annotate at both levels.

Previous works have tried to address the issues of large

image sizes and conditioning but are limited in applicability.

Harb et al. [18] introduced a pixel-level diffusion model that

can accommodate multiple scales (named magnifications)

in medical images but lacked conditioning - a crucial ele-

ment for achieving better image quality and enabling down-

stream tasks [11, 31, 49]. Graikos et al. [17] utilized embed-

dings from self-supervised learning (SSL) models to miti-

gate the need for costly annotations in large-image domains,

but only trained a model to generate small patches. Recog-

nizing that none of these methods can tackle the important

problem of controllable high-quality large-image synthesis,

we propose a unified solution, ZoomLDM.

To address large image sizes, we propose training a

scale-conditioned diffusion model that learns to generate

images at different ‘zoom’ levels, which correspond to mag-

nifications in histopathology images (Fig. 1 (a)). By condi-

tioning the model on the scale, we control the level of detail

contained within each generated pixel. To control genera-

tion, we also incorporate a conditioning signal from a self-

supervised learning (SSL) encoder. While SSL encoders

are great at producing meaningful representations for im-

ages, using them in this multi-scale setting is nontrivial as

they are usually trained to extract information from patches

at a single scale. To share information across scales, we

introduce the idea of a cross-magnification latent space; a

shared latent space where the embeddings of all scales lie.

We implement this with a trainable summarizer module that

processes the array of SSL embeddings that describe an im-

age, projecting them to the shared latent space that captures

dependencies across all magnifications.

We train ZoomLDM on multi-scale histopathology us-

ing SSL embeddings from state-of-the-art image encoders

as guidance. We find that sharing model weights across all

scales significantly boosts the generation quality for scales

where data is limited. To eliminate our model’s reliance on

SSL embeddings when sampling new images, we also train

a Conditioning Diffusion Model (CDM) that generates con-

ditions given a scale. This combined approach enables us to

synthesize novel high-quality images at all scales.

With a multi-scale model, we hypothesize that jointly

sampling images across scales would be beneficial for cre-

ating coherent images at multiple scales. However, this

is challenging because each scale requires its own level

of detail, and these details must be aligned across scales.

To that end, we propose a novel joint multi-scale sam-

pling approach that exploits ZoomLDM’s multi-scale na-

ture. Our cross-magnification latent space provides the nec-

essary detail across scales, enabling large image genera-

tion and super-resolution without additional training. This

approach effectively constructs a coherent image pyramid,

making super-resolution and high-quality large image gen-

eration feasible. Our method surpasses previous approaches

[17, 26], which struggled in generating either local de-

tails or global structure, and presents the first practical

4096× 4096 image generation paradigm in histopathology

(see supplementary for a comprehensive evaluation).

Finally, we probe ZoomLDM to show that features ex-

tracted from our model are highly expressive and suit-

able for multiple instance learning (MIL) tasks in digi-

tal histopathology. Prior work [7, 27] has demonstrated

the effectiveness of multi-scale features for MIL, but these

methods required training separate encoders for each scale.

In contrast, ZoomLDM offers an efficient solution by en-

abling seamless multi-scale feature extraction using a sin-

gle model. We condition ZoomLDM with UNI[9], a SoTA

SSL model, and extract intermediate features from the de-

noiser at multiple magnifications for MIL. As expected, fus-

ing ZoomLDM features from multiple scales outperforms

using SoTA encoders in our MIL experiments, displaying

the efficacy of its multi-scale representations. Surprisingly,

our features from just the 20× magnification alone surpass

UNI features. We hypothesize that by learning to generate

at multiple scales, ZoomLDM has learned to produce more

informative features.

Our contributions are the following:

• We present ZoomLDM, the first multi-scale conditional

latent diffusion model that generates images at multiple

scales, achieving state-of-the-art synthetic image quality.

• We introduce a cross-magnification latent space, imple-

mented with a trainable summarizer module, which pro-

vides conditioning across scales, allowing ZoomLDM to

capture dependencies across magnifications.

• We propose a novel joint multi-scale sampling approach

for generating large images that retain both global context

and local fidelity, making us the first to efficiently synthe-

size good quality histopathology image samples of up to

4096× 4096 pixels.

• We probe the learned multi-scale representations of

ZoomLDM and demonstrate their usefulness by surpass-

ing SoTA encoders on multiple instance learning tasks.

2. Related Work

Diffusion models: Since their initial introduction to im-

age generation in Ho et al. [21], diffusion models have be-

2



2
5

6

2
5

6
2

5
6

...

Cross-magnification

Latent Space

512

S
u

m
m

ar
iz

er

E
m

b
ed

d
in

g
s

V
A

E

E
n

c.

U
N

et

E
n

c.

U
N

et

D
ec

.

V
A

E

D
ec

.

Latent

Diffusion Model

SSL

Enc

128 1024

6
5

Multi-scale Image -

SSL Embedding Pairs

Dataset Extraction

Large Image

Model Training

32

SSL Embeddings

...

1024

1024

6
5

6
5

20x
20x

0.625x

{
{ {

{

3
2

0
0

0

1024
1

1024

ZoomLDM

,

,

Padding

SSL

...

1024

6
5

0.625x

SSL

Padding

Latent

Figure 2. Overview of our approach. Left: We extract 256 × 256 patches from large images at the initial scale (20× for pathology)

and generate SSL embedding matrices using pretrained encoders. The large image is then progressively downsampled by a factor of 2,

with patches at each scale paired with the SSL embeddings of all overlapping initial-scale patches. Right: The SSL embeddings and

magnification level are fed to the Summarizer, which projects them into the cross-magnification Latent space. The diffusion model is

trained to generate 256× 256 patches conditioned on the Summarizer’s output.

come the dominant generative models for images. Several

works have been pivotal; notably class conditioning [31]

which highlighted the importance of guidance during train-

ing and sampling and its extensions with classifier [11]

and classifier-free guidance [20]. Latent Diffusion Models

(LDMs) [39] proposed a training the diffusion model in a

Variational Autoencoder (VAE) latent space, compressing

the input images by a factor of up to ×8 and enabling high-

resolution and computationally practical image generation.

Denoising Diffusion Implicit Models (DDIM) [44] acceler-

ated the sampling process further, making diffusion models

the preferred alternative over all previous generative model

approaches (GANs, Normalizing Flows).

Diffusion Models in Large-Image Domains: Despite

advances in the domain of natural images, training genera-

tive models directly at the gigapixel resolution of large im-

age domains remains infeasible. Proposed alternatives gen-

erate images in a coarse-to-fine process by chaining models

in a cascading manner [35, 40]. This has led to synthe-

sizing images of up to 1024 × 1024 resolution at the cost

of increased parameter count and slower inference speed.

Recently, PixArt-Σ [6] introduced an efficient transformer

architecture that enables image generation of up to 4k using

a weak-to-strong training strategy.

In the context of histopathology, previous works have fo-

cused on training fixed-size, patch diffusion models [29, 30,

48, 49], with similar approaches in satellite data [13, 42].

Patch models were used to extrapolate to large images in

[2], where a pre-generated segmentation mask guides the

patch model over the large image, and [17] where a patch

model is conditioned on SSL embeddings that smoothly

vary across the large image, synthesizing appearance lo-

cally. Both methods fail to understand global structures and

rely on external sources of information for guidance.

More closely related to our work, [18] trains a pathol-

ogy diffusion model conditioned on image scales. However,

limited evaluations and the absence of a conditioning mech-

anism restrict its applicability. A different approach by Le

et al. [26] utilized an infinite-dimensional diffusion model

that is resolution-free, meaning that it can be trained on ar-

bitrarily large images. Their model can be scaled for up

to 4096 × 4096 generation, but the final results are usually

blurry and lack details.

3. Method

3.1. Unified MultiScale Training

We train ZoomLDM to generate fixed-size 256 × 256
patches extracted at different scales of large images. To

guide generation, we introduce a novel conditioning mecha-

nism allowing the model to learn multi-scale dependencies.

Figure 2 provides an overview of our multi-scale training.

We begin by extracting 256× 256 image patches from a

large image at full resolution. Since there are no descriptive

patch-level annotations in large-image domains, we resort

to pre-trained SSL encoders to provide detailed descriptors

in place of human labels, as in [17]. The SSL encoders

in these domains are usually trained on patches from these

large images – for histopathology, we utilize UNI [7], an

image encoder trained on 224 × 224 px 20× patches. Af-
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ter extracting patches I1 at the initial scale (=1) and SSL

embeddings e, we end up with a dataset of {I1
i , ei} pairs.

We downsample the large image by a factor of 2 and

repeat the patch extraction process, getting a new set of

patches at the next zoom level. But, as previously men-

tioned, we cannot directly use the SSL encoder on images

from different scales – e.g., UNI is only trained on 20× im-

ages. Therefore, for scales above the first, we utilize the

embeddings corresponding to the region contained within

the context of the current-scale patch as conditioning. This

means that we pair I2 patches with the embeddings of

all the I1 images that they contain, giving us a dataset of

{I2
i

(

e1 e2

e3 e4

)

i
} pairs.

By repeating this process, we construct a dataset of (im-

age, embeddings) pairs for all scales, which we want to uti-

lize as our training data for a latent diffusion model. The

issue is that the number of SSL embeddings for an image

size increases exponentially as we increase scale. This leads

to significant computational overhead, primarily due to the

quadratic complexity of cross-attention mechanisms used to

condition diffusion models. Additionally, conditioning the

generation of 256 × 256 images with a massive number of

embeddings is redundant, given that if we have a total of 8

scales then we will be using a 128 × 128 ×D condition to

generate a single 256× 256× 3 patch.

To address this issue, we introduce the idea of a learned

cross-magnification latent space, shared across embeddings

of all scales. To implement this, we train a “Summarizer”

transformer, jointly with the diffusion denoiser, that pro-

cesses the SSL embeddings extracted alongside every im-

age. The information contained in the embeddings is “sum-

marized” in conjunction with an embedding of the image

scale, extracting the essential information needed by the

LDM to synthesize patches accurately.

The variable number of tokens (embeddings) in the sum-

marizer input is transformed into a fixed-sized set of con-

ditioning tokens. We utilize padding and pooling to pro-

vide a fixed-size output with which we train the LDM. The

magnification embedding added to the input makes the sum-

marizer scale-aware, allowing it to adapt to the appropriate

level of detail required at different scales. The output of the

Summarizer then serves as conditioning input for the LDM,

enabling the model to generate high-quality patches with

scale-adaptive conditioning.

Conditioning Diffusion Model. Our image synthesis

pipeline requires a set of SSL embeddings and the desired

magnification level, which involves extracting the condi-

tioning information from reference real large-images. This

becomes impractical when direct access to training data is

unavailable. To address this, we train a second diffusion

model, the Conditioning Diffusion Model (CDM), which

learns to sample from the distribution of the learned cross-

magnification latent space after training the LDM.

Rather than training a diffusion model to model the dis-

tribution of the SSL embeddings, which is as complex as

learning the distribution of images, we learn the output

of the Summarizer, as it captures the most relevant infor-

mation for synthesizing an image at a given magnifica-

tion. This approach allows the CDM to model a more re-

fined, task-specific latent space. By also conditioning the

CDM on scale, we enable magnification-aware novel image

synthesis, which we show can generate high-quality, non-

memorized images at the highest scale, even if the amount

of data is incredibly scarce (2500 images at 0.15625×mag-

nification).

3.2. Joint MultiScale Sampling

One of the biggest challenges in large-image domains is

synthesizing images that contain local details and exhibit

global consistency. Due to their immense sizes, we can-

not directly train a model on the full gigapixel images, and

training on individual scales will either lead to loss of detail

or contextually incoherent results.

We propose a multi-scale training pipeline intrinsically

motivated by the need to sample images from multiple

scales jointly. By drawing samples jointly, we can balance

the computational demands of generating large images by

separating the global context generation, which is offset by

synthesizing an image at a coarser scale, and the synthesis

of fine local details, which is done at the lowest level.

We develop a joint multi-scale sampling approach that

builds upon ZoomLDM’s multi-scale nature and enables

us to generate large images of up to 4096 × 4096 pixels.

The key to our approach is providing ’self-guidance’ to the

model by guiding the generation of the lowest scales us-

ing the so-far-generated global context. To implement this

guidance we build upon a recent diffusion inference algo-

rithm [16], which enables fast conditional inference.

Inference Algorithm An image at scale s+ 1 corresponds

to four images at the previous scale s since, during training,

we downsample the large images by a factor of 2 at every

scale. We want to jointly generate the four patches at the

smaller scale xs
i , i = 1, . . . , 3 and the single image at the

next level xs+1. The relationship between these images is

known; we can recover xs+1 by multiplying with a linear

downsampling operator A:

xs+1 = A

(

xs
1 xs

2

xs
3 xs

4

)

. (1)

We use the above matrix notation to denote the spatial ar-

rangement of images. The algorithm proposed in [16] intro-

duces a method to sample an image from a diffusion model

given a linear constraint. Given that our multi-scale images

are related by a linear constraint, we use a modified version
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of this algorithm to perform joint sampling across magnifi-

cations. We first provide a brief overview and then present

the modifications necessary for joint multi-scale sampling.

Since we use an LDM, we perform the denoising in the

VAE latent space and require the Dec and Enc networks to

map from latents z to images x and back. The algorithm

requires a linear operator A (and its transpose AT ) and a

pixel-space measurement y that we want our final sample

z0 to match, minimizing C = ||ADec(z0)− y||22. In every

step t of the diffusion process, the current noisy latent zt is

used to estimate the final ’clean’ latent ẑ0(zt), by applying

the denoiser model ϵθ(zt) and Tweedie’s formula [12]. In

the typical DDIM [44] sampling process, the next diffusion

step is predicted as

zt−1 =
√
ᾱtẑ0(zt)

√
1− ᾱtϵθ(zt) + β̃tϵt. (2)

The algorithm of [16] proposes minimizing the C(zt) =
||ADec(ẑ0(zt)) − y||22 w.r.t. zt at every timestep t before

performing the DDIM step. To do that it first computes an

error direction as

e = ∇ẑ0||ADec(ẑ0(zt))− y||22. (3)

This error direction and the current noisy sample zt are used

to compute the gradient g = ∇zt
C(zt) = ∇zt

||Aẑ0(zt)−
y||22 using a finite difference approximation and the current

noisy sample zt is updated:

g ≈ [ẑ0(zt + δe)− ẑ0(zt)] /δ, (4)

zt ← zt + λg. (5)

Efficient Joint Sampling We make two significant modi-

fications to this algorithm to perform the joint multi-scale

sampling. First, since we do not have access to a real mea-

surement y, which corresponds to the higher scale image

xs+1, we use the estimate of the image Dec(ẑs+1) to guide

the generation of zs. Second, we propose a more efficient

way of computing error direction (Eq. 3), which does not

require memory and time-intensive backpropagations. To

jointly sample images from scales s + 4 and s we need to

generate 16×16+1 total images, which would be infeasible

with the previous error computation.

To avoid the backpropagation during (Eq. 3) we propose

computing a numerical approximation of e. Similar to Eq. 5

we utilize finite differences and compute

e ≈ [Enc(Dec(ẑ0) + ζeimg)− Enc(Dec(ẑ0))] /ζ (6)

where eimg = AT (ADec(x̂0(xt)) − y). This eliminates

the need to backpropagate through the decoder without sig-

nificantly sacrificing the quality of the images generated.

We provide a detailed background of the conditional infer-

ence algorithm and how our approximation reduces compu-

tation in the supplementary material.

4. Experiments

In this section, we showcase the experiments conducted

to validate the effectiveness of our method. We train

the unified latent diffusion model, ZoomLDM, on patches

from eight different magnifications in histopathology. We

evaluate the quality of synthetic samples using both real

and CDM-sampled conditions. Further, we exploit the

multi-scale nature of ZoomLDM to demonstrate its strength

in generating good quality high-resolution images across

scales, and its utility in super-resolution (SR) and multiple

instance learning (MIL) tasks.

4.1. Setup

4.1.1. Implementation details

We train the LDMs on 3 NVIDIA H100 GPUs, with a batch

size 200 per GPU. We use the training code and check-

points provided by [39]. Our LDM configuration consists

of a VQ-f4 autoencoder and a U-Net model pre-trained on

ImageNet. We set the learning rate at 10−4 with a warmup

of 10,000 steps. The Summarizer is implemented as a 12-

layer Transformer, modeled after ViT-Base. For the CDM,

we train a Diffusion Transformer [34] on the outputs of the

summarizer. We utilize DDIM sampling [44] with 50 steps

for both models and apply classifier-free guidance [20] sam-

pling with a scale of 2.0 to create synthetic images. See sup-

plemental for more details on the Summarizer and CDM.

4.1.2. Dataset

We select 1,136 whole slide images (WSI) from TCGA-

BRCA [4]. Using the code from DSMIL[27], we extract

256 × 256 patches at eight different magnifications: 20×,

10×, 5×, 2.5×, 1.25×, 0.625×, 0.3125×, and 0.15625×.

Each patch is paired with its corresponding base resolution

(20×) region—for instance, a 256 × 256 pixel patch at 5x

magnification is paired with a 1024 × 1024 pixel region at

20×. We then process the 20× regions through the UNI en-

coder [8] to produce an embedding matrix for each patch.

The dimensions of this embedding matrix vary based on

the patch’s magnification level. For example, a 5× patch

corresponding to a 20× region of size 1024 × 1024 results

in an embedding matrix of dimensions 4×4×1024. As dis-

cussed previously, to avoid redundancy in large embedding

matrices, we average pool embeddings larger than 8 × 8 to

8× 8 (magnifications 1.25 × and lower).

In the supplementary, we also provide results for training

ZoomLDM on satellite images. We use a similar training

setting, replacing the WSIs from pathology with NAIP [45]

tiles and the SSL encoder with DINO-v2 [33], showing the

wider applicability of the proposed model.

4.2. Image quality

For every histopathology magnification, we generate 10,000

256 × 256 px patches using ZoomLDM and evaluate their
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Table 1. FID of patches generated from ZoomLDM across different magnifications, compared with single magnification models.

ZoomLDM achieved better FID scores than SoTA, with particularly significant improvements at lower scales.

Magnification 20× 10× 5× 2.5× 1.25× 0.625× 0.3125× 0.15625×
# Training patches 12 Mil 3 Mil 750k 186k 57k 20k 7k 2.5k

ZoomLDM 6.77 7.60 7.98 10.73 8.74 7.99 8.34 13.42

SoTA 6.98 [17] 7.64 [49] 9.74 [17] 20.45 39.72 58.98 66.28 106.14

CDM 9.04 10.05 14.36 19.68 14.06 13.46 14.40 26.09

Figure 3. Large Images (4096 × 4096) generated from ZoomLDM. Our large image generation framework is the first to generate 4k

pathology images with local details and global consistency, all within reasonable inference time. We provide more 4k examples and

comparisons in the supplementary.

quality using the Fréchet Inception Distance (FID) [19].

For 20×, 10× and 5× magnifications, we compare against

the state-of-the-art (SoTA) works of [17, 49]. For lower

magnifications, we train standalone models specifically for

patches from those magnifications, keeping the architecture

consistent with ZoomLDM.

As indicated in Table 1, ZoomLDM achieves supe-

rior performance across all magnifications compared to the

SoTA models. We see larger improvements for magnifica-

tions below 2.5×, where the data scarcity severely impacts

the model’s ability to synthesize diverse, high-quality im-

ages. This highlights the advantage of our unified archi-

tecture and conditioning approach. By leveraging data and

conditioning across all magnifications, we allow the low-

density data regions to benefit from the insights that the

model gains from the entire dataset, improving both model

performance and efficiency.

Novel image synthesis: For FID comparisons above, im-

ages were generated by randomly sampling SSL embed-

dings for different magnifications from the dataset. How-

ever, this approach is not always practical as it requires ac-

cess to the dataset of embeddings at all times. To address

this, we use the Conditioning Diffusion Model to draw sam-

ples from the shared cross-magnification latent space and

generate new images conditioned on these latents (CDM

row in Table 1). Despite the slight increase in FID – an ex-

pected outcome since the CDM cannot perfectly capture the

true learned conditioning latent space, we still observe that

the generated samples outperform the baselines in the data-

scarce settings. We believe that this further emphasizes the

importance of our shared cross-magnification latent space,

by showing that we can model its distribution and capture

all scales effectively. In supplementary we show synthetic

images at 0.15625× and with their closest neighbors in the

dataset to demonstrate the absence of memorization.

Table 2. CLIP and Crop FID values (lower is better) for our large

image generation experiments. ZoomLDM outperforms previous

works on 1024× 1024 generation. While we lack in 4096× 4096

FIDs, we provide qualitative examples in the supplementary that

highlight the fundamental differences that emerge when scaling

up the three methods. Inference time for a single image shows that

our method is the only practical approach for 4k image generation.

Method
1024× 1024 4096× 4096

Time

/ img

CLIP

FID

Crop

FID

Time

/ img

CLIP

FID

Crop

FID

Graikos et al. [17] 60 s 7.43 15.51 4 h 2.75 11.30

∞-Brush [26] 30 s 3.74 17.87 12 h 2.63 14.76

ZoomLDM 28 s 1.23 14.94 8 m 6.75 18.90

4.3. Large image generation

In Section 3.2, we presented an algorithm for jointly sam-

pling images at multiple scales. We perform experiments

6



LR image HR image CompVis ZoomLDMControlNet

Figure 4. We showcase 4× super-resolution results (256 × 256 → 1024 × 1024). Samples generated by other methods [39, 52] exhibit

artifacts, inconsistencies, and blurriness that are not present in our outputs. Specifically, in blue boxes, we can observe that CompVis[39]

generates fine scale artifacts, while ControlNet[52] produces generally blurry outputs. ZoomLDM produces a sharp output, generating

details generally consistent with the ground truth image.

Table 3. Super-resolution results on TCGA-BRCA [4] and BACH [1] using ZoomLDM and other diffusion-based baselines. Using

ZoomLDM with the proposed condition inference achieves the best performance.

Method Conditioning
TCGA BRCA BACH

SSIM ↑ PSNR ↑ LPIPS↓ CONCH ↑ UNI ↑ SSIM ↑ PSNR ↑ LPIPS↓ CONCH ↑ UNI ↑

Bicubic - 0.653 24.370 0.486 0.871 0.524 0.895 34.690 0.180 0.969 0.810

CompVis [39] LR image 0.563 21.926 0.247 0.946 0.565 0.723 27.278 0.206 0.954 0.576

ControlNet [52] LR image 0.543 21.980 0.252 0.874 0.563 0.780 27.339 0.276 0.926 0.721

ZoomLDM

Uncond 0.591 23.217 0.260 0.936 0.680 0.739 29.822 0.235 0.965 0.741

GT emb 0.599 23.273 0.250 0.946 0.672 0.732 29.236 0.245 0.974 0.753

Infer emb 0.609 23.407 0.229 0.957 0.719 0.779 30.443 0.173 0.974 0.808

on generating 20× histopathology images jointly with other

magnifications in two settings: Sampling 20× with 5×,

generating 1024 × 1024 images and sampling 20× with

1.25×, giving 4096×4096 samples. We employ bicubic in-

terpolation as the downsampling operator A, where for 5×
and 1.25×, we downsample by 4× and 16×, respectively.

In Table 2, we showcase CLIP FID and Crop FID values,

adopted from [26], and compare our large-image generation

method against existing state-of-the-art approaches. CLIP

FID downsamples the full image and extracts features from

a CLIP [37] model, whereas Crop FID extracts 256 × 256
crops from the large images and computes FID using the

conventional Inception features [43].

On 1024 × 1024 generation we easily outperform ex-

isting approaches with similar or smaller sampling times.

While, on 4096× 4096 generation, we find that our method

lags in two quality metrics but offers a reasonable infer-

ence time per image (8min vs > 4hrs). However, regarding

the 4096 × 4096 results, we find fundamental differences

between our synthesized images (Figure 3) and those of

[17, 26] (see supplementary). We particularly find that the

local patch-based model of Graikos et al. [17] completely

fails to capture the global context in the generated images.

While it generates great quality patches and stitches them

together over the 4096 × 4096 canvas, the overall image

does not resemble a realistic pathology image. On the other

hand, ∞-Brush [26] captures the global image structures

but produces blurry results. In contrast, ZoomLDM bal-

ances local details and global structure, producing images

that not only exhibit high fidelity but also maintain overall

realism across the entire 4096 × 4096 canvas. We are the

first to generate 4k pathology images with both detail and

global coherency under a tractable computational budget.

4.4. Superresolution

Our joint multi-scale sampling allows us to sample mul-

tiple images from different magnifications simultaneously.

However, a question arises of whether we could also use

ZoomLDM in super-resolution, where the higher-scale im-

age is given and the details need to be inferred. We pro-

vide a solution for super-resolution with ZoomLDM using

a straightforward extension of our joint sampling algorithm.
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The main challenge we need to overcome is the absence

of conditioning. Given only an image at a magnification

other than 20×, we cannot obtain SSL embeddings, which

are extracted from a 20×-specific encoder. Nevertheless,

we discover an interesting inversion property of our model,

which allows us to infer the conditioning given an image

and its magnification. Similar to textual inversion [15], and

more recently prompt tuning [10], we can optimize the SSL

input to the summarizer to obtain a set of embeddings that

generate images that resemble the one provided. We dis-

cuss the inversion approach in the supplementary material

in more detail, along with inversion examples.

Once we have obtained a set of plausible conditioning

embeddings, we can run our joint multi-scale sampling al-

gorithm, fixing the measurement y to the real image we

want to super-resolve. To test ZoomLDM’s capabilities,

we construct a simple testbed of 4× super-resolution on

in-distribution and out-of-distribution images from TCGA-

BRCA and BACH [1] respectively. As baselines, we

use bicubic interpolation, a naive super-resolution-specific

LDM trained on OpenImages [25] (CompVis), and a Con-

trolNet [52] trained on top of ZoomLDM.

In Table 3 and Figure 4, we present the results of our ex-

periments. We find that SSIM and PSNR are slightly mis-

leading as they favor the blurry bicubic images, but also

point out some significant inconsistencies in the LDM and

the ControlNet outputs. For better comparisons, we also

compute LPIPS [53] and CONCH [28] similarity, which

downsamples the image to 224 × 224 as well as UNI sim-

ilarity, which we consider on a per 256 × 256 patch-level.

In most perceptual metrics, we find ZoomLDM inference to

be the best-performing while remaining faithful to the input

image. Interestingly, we discover that using the embedding

inversion that infers the conditions from the low-res given

image performs better than providing the real embeddings.

Table 4. AUC for BRCA subtyping and HRD prediction. Features

extracted from ZoomLDM outperform SoTA vision encoders.

Features Mag Subtyping HRD

Phikon [14] 20× 93.81 76.88

UNI [8] 20× 94.09 81.79

CTransPath [47] 5× 93.11 85.37

ZoomLDM

20× 94.49 85.25

5× 94.09 86.26

Multi-scale

(20× + 5×)
94.91 88.03

4.5. Multiple Instance Learning

Multiple instance learning (MIL) tasks benefit from multi-

scale information, as different magnifications reveal dis-

tinct and complementary features. Prior work [7, 27] that

demonstrated this behavior required training separate en-

coders for each scale. We hypothesize that ZoomLDM of-

fers an efficient solution by enabling seamless multi-scale

feature extraction.

To validate this hypothesis, we utilize ZoomLDM as a

feature extractor and apply a MIL approach for slide-level

classification tasks of Breast cancer subtyping and Homolo-

gous Recombination Deficiency (HRD) prediction - both of

which are binary classification tasks. For each patch in the

WSI, we extract features from ZoomLDM’s U-Net output

block 3 at a fixed timestep t = 100, conditioned on UNI

embeddings. We employ a 10-fold cross-validation strategy

for subtyping, consistent with the data splits from HIPT [7],

and a 5-fold cross-validation for HRD prediction, report-

ing performance on a held-out test split as per SI-MIL [24].

We compare ZoomLDM’s features to those from SoTA en-

coders—Phikon [14], CTransPath [47], and UNI [8], using

the ABMIL method [22, 23].

As expected, the results in Table 4 show that

ZoomLDM’s multi-scale features (fusing 20× and 5× out-

perform SoTA encoders in both tasks. This improve-

ment highlights the effectiveness of ZoomLDM’s cross-

magnification latent space in capturing multi-scale depen-

dencies. Surprisingly, even in a single magnification set-

ting, ZoomLDM outperforms all SoTA encoders. This re-

sult suggests that by learning to generate across scales,

ZoomLDM learns to produce features that can be aware

of the cross-magnification long-range dependencies, and

therefore exceed the capabilities of those produced by SSL

encoders for downstream MIL tasks.

5. Conclusion

We presented ZoomLDM, the first conditional diffusion

model capable of generating images across multiple scales

with state-of-the-art synthetic image quality. By intro-

ducing a cross-magnification latent space, implemented

with a trainable summarizer module, ZoomLDM effectively

captures dependencies across magnifications. Our novel

joint multi-scale sampling approach allows for efficient

generation of large, high-quality and structurally coherent

histopathology images up-to 4096× 4096 pixels while pre-

serving both global structure and fine details.

In addition to synthesis, ZoomLDM demonstrates its

utility as a powerful feature extractor in multiple instance

learning experiments. The multi-scale representations

learned by our model outperform SoTA SSL encoders in

slide-level classification tasks, enabling more accurate sub-

typing, prognosis prediction, and biomarker identification.

Furthermore, our Condition Diffusion Model demonstrates

the potential to integrate diverse input sources such as text

or RNA sequences, paving the way for realistic synthetic

datasets for training and evaluating pathologists as well as

controlled datasets for quality assurance. ZoomLDM is

8



a step toward achieving foundation generative models in

histopathology, with the potential to shed light on tumor

heterogeneity, refine cancer gradings, and enrich our under-

standing of cancer’s various manifestations.
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ZoomLDM: Latent Diffusion Model for multi-scale image generation

Supplementary Material

We organize the supplementary as follows:

6 ZoomLDM on satellite images

7 Ablation on SSL encoder and Summarizer

8 Experiment details:

8.1 Summerizer-CDM training details

8.2 Joint sampling

8.3 Image inversion

9 Additional Details

9.1 More super-resolution baselines

9.2 Data efficiency and memorization

9.3 Patches from all scales

9.4 Generated large images

9.5 Comparison to previous works

6. ZoomLDM on satellite images

In the main text, we focused on the digital histopathology domain and how our multi-scale diffusion model can prove useful

in generation and downstream tasks. However, gigapixel images also concern the remote sensing domain, where satellite

images regularly are in the range of 10000 × 10000 pixels. To show the wide applicability of our multi-scale approach, we

trained ZoomLDM on satellite images from the NAIP dataset [45], specifically using NAIP images from the Chesapeake

subset of [38]. NAIP images are at 1m resolution – the distance between pixel centers is 1m. We follow the same dataset

preparation approach and extract 256 × 256 patches at four different scales with pixels corresponding to 1m, 2m, 4m, and

8m resolutions. For the SSL encoder, we resort to a pre-trained DINOv2 model [33], which has been known to perform well

across many modalities, including satellite.

In Table 5, we provide the per-resolution FID numbers our model achieves. Similarly to histopathology, we observe that

training a cross-scale model benefits the scales where there is not enough data to train a single-scale model on (8m resolution

in this case). We also showcase patches generated by ZoomLDM at all four resolutions in Figure 13. We present examples

from the satellite ZoomLDM variant in 8.2 and 9.3.

In Table 6, we provide the FID numbers for large satellite image generation (1024×1024). Our satellite ZoomLDM model

achieves significantly better results on crop FID while achieving similar CLIP FID; this showcases our ability to synthesize

high-quality images that simultaneously maintain global consistency.

Resolution 1m 2m 4m 8m

# Training patches 365 k 94 k 25 k 8.7 k

ZoomLDM 10.93 7.77 7.34 8.46

SoTA model 11.5 [17] 23.61 37.52 65.45

Table 5. NAIP FID values obtained by ZoomLDM versus training a state-of-the-

art diffusion model on a single resolution. Having a shared model across multiple

scales improves the generation quality for the data-scarce scales. For resolutions

>1m we retrain the model of [17] on the samples from that resolution only.

Method
CLIP Crop

FID FID

Graikos et al. [17] 6.86 43.76

∞-Brush [26] 6.32 48.65

ZoomLDM 7.90 13.25

Table 6. CLIP and Crop FID values (lower is

better) for large (1024× 1024) satellite images.

ZoomLDM outperforms previous works while

also maintaining a reasonable inference time.

7. Ablation on SSL encoder and Summarizer

We retrain ZoomLDM with (i) a weaker SSL encoder (HIPT [7]) and (ii) both a weaker SSL encoder and a simpler summa-

rizer network (CNN vs ViT). Table 7 shows that replacing UNI with HIPT degrades performance and further replacing the

ViT summarizer network with a simple 4-layer CNN leads to a greater decline.

When comparing the downstream performance of the denoiser features on a multiple-instance learning task (MIL) we

also see a decrease in performance when using a ’weaker’ conditioning encoder. We believe that training a diffusion model

12



SSL Summarizer
FID across magnifications ↓ MIL (AUC) ↑

20× 10× 5× 2.5× 1.25× 0.625× 0.3125× 0.15625× Subtyping HRD

HIPT [7] CNN 18.88 16.75 19.31 16.01 14.45 14.21 15.44 18.47 86.20 72.44

HIPT [7] ViT 13.49 14.42 15.84 13.32 14.32 12.31 16.25 19.90 87.26 75.92

UNI [9] ViT 6.77 7.60 7.98 10.73 8.74 7.99 8.34 13.42 94.49 85.25

Table 7. Ablation on SSL encoder and summarizer network architecture. Using a weaker SSL encoder or summarizer leads to worse

performance in both generation and downstream discriminative tasks.

conditioned on SSL representations complements the discriminative SSL pre-training with the newly learned generative

features. In all our experiments, improved image quality leads to better downstream task performance. Additionally, the SSL

encoders used in MIL are usually trained on a single magnification, making our approach a potential way to fuse features

across different scales effectively.

8. Experiment details

8.1. SummarizerCDM training details

Summarizer: We train the Summarizer jointly with the LDM. The Summarizer processes the SSL embeddings extracted

alongside the image patches and projects them to a latent space that is shared across all scales (cross-magnification latent

space). By training jointly with the LDM the Summarizer learns to compress the SSL embeddings into a representation

useful for making images.

We pre-process the SSL embedding matrices via element-wise normalization. The Summarizer receives 64 SSL em-

beddings (or fewer SSL embeddings with appropriate padding to 64 tokens) concatenated with a learned magnification

embedding as input. The network consists of a 12-layer Transformer encoder with a hidden dimension of 512, followed by

a LayerNorm operation to normalize the output. The 65 × 512 dimensional output is then fed to the U-Net denoiser via

cross-attention.

CDM: To avoid reliance on real images to extract the SSL embeddings required for sampling, we train a Conditioning

Diffusion Model (CDM). The CDM is trained to draw samples from the learned cross-magnification latent space. After

training the LDM and Summarizer jointly, we train the CDM with the denoising objective to sample from the 65 × 512
output. See Figure 5 for an overview of the Summarizer and CDM.

We implement the CDM as a Diffusion Transformer [34]. We use the DiT-Base architecture, consisting of 12 layers and a

hidden size of 768. We use an MLP to project the output back to the exact channel dimensions as the input. We use a constant

learning rate of 10−4, following the implementation of [34]. We present samples generated by the CDM in Figure 12.
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8.2. Joint Sampling

In this section, we present an overview of the joint sampling algorithm. By jointly generating an image that depicts the global

context and images that produce local details we are able to synthesize large images at the highest resolution that maintain

global coherency. We achieve that by simultaneously generating patches i with high-resolution details xi = Dec(zi) and a

lower-resolution context xL = Dec(zL) that globally guides the structure of the patches.

Our joint sampling method is based on a recent fast sampling algorithm for diffusion models under linear constraints,

presented in [16]. The full algorithm is shown in Algorithm 1. We make two key changes to the inference algorithm

to perform joint multi-scale sampling: (i) We replace the constraint y with the current estimate of the lower-scale image

Dec(ẑL
0 ) and (ii) we replace the expensive backpropagation step required in computing the error e with a less memory-

intensive approximation using forward passes through the encoder and the decoder.

Utilizing intermediate steps Instead of having access to a measurement y we only have access to the current estimate of

the context image. That image is in practice a subsampled version of the spatially arranged patches xi. To relate the two, we

rearrange xi and apply a linear subsampling operator A, such as bicubic interpolation. This operator is used to compute the

difference between the current synthesized patches and the current context and will be used to update the content of the patch

images.

Avoiding backpropagation For latent diffusion models, the original algorithm relies on computing the difference between

the context and the patches which it then backpropagates through the decoder to get the direction towards which this error

is minimized. However, when we synthesize 4k images, we end up with 256 high-resolution patches, and backpropagating

becomes prohibitively memory-intensive. To that end, we propose a modification to the sampling algorithm that replaces the

backpropagation step with forward passes through the encoder and decoder.

To produce the high-resolution images, we want to sample zt under the guidance of the lower-scale image, minimizing a

constraint C(zt) = ||ADec(ẑ0(zt))−Dec(ẑL
0 )||22. Algorithm 1 requires us to compute the direction e of ẑ0 towards which

the constraint C is minimized and uses it to update the current diffusion latent as

g =
ẑ0(zt + δe)− ẑ0(zt)

δ
(7)

z′t = zt + λg. (8)

However, to calculate g we need e = ∂C
∂ẑ0

which we can calculate by backpropagating through the decoder model. Since this

is computationally burdensome, we apply the chain rule to get

e =
∂C

∂ẑ0
=

(

∂Dec(ẑ0)

∂ẑ0

)T
∂C

∂Dec(ẑ0)
=

(

∂Dec(ẑ0)

∂ẑ0

)T

eimg, eimg = AT (ADec(ẑ0(zt))−Dec(ẑL
0 )) (9)

The LDM VAEs that we use (VQ-VAE or KL-VAE) are trained in a way that forces the Jacobian of the Decoder to be

approximately orthogonal, through vector quantization or minimizing the KL divergence between the predicted posterior and

an isotropic Gaussian. For orthogonal Jacobians Eq. 9 can be simplified into:

e =

(

∂Dec(ẑ0)

∂ẑ0

)T

eimg ≈
∂ẑ0

∂Dec(ẑ0)
eimg (10)

and assuming that the VAE has learned to reconstruct images perfectly, it can be written as:

e ≈ ∂ẑ0
∂Dec(ẑ0)

eimg ≈
∂Enc(Dec(ẑ0))

∂Dec(ẑ0)
eimg. (11)

We can now approximate e using finite differences:

e ≈ ∂Enc(Dec(ẑ0))

∂Dec(ẑ0)
eimg ≈

Enc(Dec(ẑ0) + ζeimg)− Enc(Dec(ẑ0))

ζ
(12)

which completely erases the need to perform memory-heavy backpropagation through the decoder model.

A step-by-step description of our joint sampling method can be found in Algorithm 2. We use 50 DDIM steps for our

experiments, bicubic upsampling/downsampling for A, δ = ζ = 0.005, K = 1, λ = 0.5. Upon observing noticeable

discontinuities along the borders of the high-resolution patches, we apply a simple post-processing step by adding noise and

14



denoising the patches between, similar to [17]. We provide some results of the joint sampling, visualized in Figures 6,7 for

the histopathology and satellite domains.

Algorithm 1 The algorithm for linear inverse

problem solving proposed in [16].

Input: Diffusion model ẑ0(zt), Enc, Dec,
schedule T0,...,M , subsampling operator A,

measurement y, step size δ, # iterations K,

learning rate λ
zT ∼ N(0, I)
for t ∈ {T0, T1, . . . , TM} do

for i ∈ {1, 2, . . . ,K} do

e = ∇z0
||ADec(ẑ0(zt))− y||22

g = [ẑ0(zt + δe)− ẑ0(zt)] /δ
zt = zt + λg

end for

zt = DDIM(zt, x̂0, s)
end for

Return: x0

Algorithm 2 The proposed modification to Algorithm 1.

Input: Diffusion model ẑ0(zt), Enc, Dec, schedule T0,...,M ,

subsampling operator A, detail scale s, context scale sL, step sizes

δ, ζ, # iterations K, learning rate λ
zT ∼ N(0, I)
zL
T ∼ N(0, I)

for t ∈ {T0, T1, . . . , TM} do

for i ∈ {1, 2, . . . ,K} do

eimg = AT (ADec(ẑ0(zt))−Dec(ẑL
0 ))

e = [Enc(Dec(ẑ0) + ζeimg)− Enc(Dec(ẑ0))] /ζ
g = [ẑ0(zt + δe)− ẑ0(zt)] /δ
zt = zt + λg

end for

zt = DDIM(zt, x̂0, s)
zL
t = DDIM(zL

t , x̂0, sL)
end for

Return: x0

8.3. Image Inversion

In this section, we present our image inversion algorithm, which is crucial for performing the super-resolution task described

in the main text. The conditioning we provide to the model is a set of SSL embeddings extracted at the highest resolution

available. For instance, in histopathology, the SSL conditions are extracted at 20×. Thus, when we are given a single image

at any magnification that we want to super-resolve we do not have access to this conditioning and are limited to using the

model in an unconditional manner. The unconditional model is available since we randomly drop the conditioning during

training, to implement classifier-free guidance [20] during sampling. However, recent works have argued that when using the

diffusion model to sample with linear constraints, like super-resolution, conditioning helps in achieving better-fidelity results

[10].

Inspired by those findings, we propose a simple algorithm to first invert the model and get conditioning for a single image,

before super-resolving it. The algorithm is an adaptation of the textual inversion technique of Gal et al. [15], which has seen

wide success in text-to-image diffusion models. An overview of the approach is provided in Figure 8.

Given an image I at scale s, we have access to a pre-trained latent denoiser model ϵθ(zt, t, f(e, s)) where z = Enc(I),
g is the summarizer model and e are the SSL embeddings that describe the image. We want to draw a sample e, that when

provided as conditioning to the diffusion model will generate images similar to I . From the latent variable perspective of

diffusion models, described by Ho et al. [21], we obtain the following lower bound for the log probability of z given a

condition e

log p(z | e) ≥ −
T
∑

t=1

wt(α)Eϵ∼N (0,I)

[

||ϵθ(zt, t, g(e, s))− ϵ||22
]

, zt =
√
αtz +

√
1− αϵ. (13)

We then employ variational inference to fit an approximate posterior q(e) to p(e | z) from which we want to sample

conditions given an input image. We start by defining a lower bound for log p(z)

log p(z) = log

∫

e

p(z, e)de = log

∫

e

q(e)
p(z, e)

q(e)
de

= logEq(e)

[

p(z, e)

q(e)

]

≥ Eq(e)

[

log
p(z, e)

q(e)

]

= Eq(e)

[

log
p(z | e)p(e)

q(e)

]

= L. (14)
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By maximizing the bound L w.r.t. the parameters of q we minimize the KL-Divergence between the approximate posterior

q(e) and the real p(e | z). We choose a simple Dirac delta q(e) = δ(e − u) as our approximation, which allows us to use

the bound from Eq. 13 to simplify the objective

L = Eq(e) [log p(z | e) + log p(e)− log q(e)] = log p(z | e = u) + log p(e = u)

= −
T
∑

t=1

wt(α)Eϵ∼N (0,I)

[

||ϵθ(zt, t, g(u, s))− ϵ||22
]

+ log p(e = u). (15)

Therefore, to draw a sample from the posterior p(e | z) we optimize Eq. 15 w.r.t. u. The result is a single point u that seeks

a local mode of p(e | z).
For the prior term log p(e), we use a simple heuristic, implementing a penalty that maximizes the similarity between the

different vectors in the SSL embeddings e. This heuristic encourages the model to find embeddings that generate similar

patches when used independently. For the denoising terms, we must add random Gaussian noise to the image latent z and

denoise at multiple timesteps t. Instead of evaluating multiple timesteps simultaneously, we utilize an annealing schedule

that starts from t = 950 and linearly decreases to t = 50 over the n = 200 optimization steps we perform. Overall, the

proposed algorithm is similar to textual inversion [15], which utilizes the denoising loss to optimize text tokens t.

In Figure 9, we provide qualitative results for our inversion approach. We present two cases, inferring the condition for

5× and 2.5× images. We observe that for 5×, which is also the scale used in our super-resolution experiments, our approach

can provide conditions that faithfully reconstruct both the 5× image and also give us plausible 20× patches. As we increase
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Figure 6. Joint sampling process across two different magnifications for the TCGA-BRCA ZoomLDM model. We jointly generate a

256× 256 image at 1.25× and a 4096× 4096 image at 20×. The 1.25× generation guides the structure of the 20× image by providing

the necessary global context that each 20× patch is unaware of. The generated large 20× image has a realistic global arrangement of cells

and tissue. Best viewed zoomed-in.
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Figure 7. Joint sampling process across two different resolutions for the Satellite ZoomLDM model. We jointly generate a 256 × 256

image at 8m resolution and a 2048 × 2048 image at 1m. The 8m generation guides the structure of the 1m image by providing global

coherence, which, otherwise, each 1m would be unaware of. The generated large 1m image has realistic global structures, with roads and

forests neatly arranged across the 2048× 2048 canvas. Best viewed zoomed-in.
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Figure 8. Figure illustrating our pipeline for the image inversion used in the super-resolution task. For a given image we first use the denois-

ing loss to optimize the input, conditioning embeddings. We can then generate variations of the given image and high-resolution patches

from it. We use those per-patch embeddings to perform super-resolution, obtaining better results than unconditional super-resolution.

the number of conditions to infer, the 2.5× result remains convincing at the lower scale but struggles to provide reasonable

20× patches. Future work focusing on this inversion approach could provide useful insights into the SSL embeddings used

as conditioning, helping understand what they encode and the topology of the latent space created by the SSL encoder.

Real

Generated

Patches Real

Generated

5x 2.5x

Patches Real

Generated

Patches

Figure 9. Examples of the image inversion algorithm. Given a real image at any magnification, we infer the SSL embeddings that generated

it. We then generate a new, similar-looking image at the same magnification using those embeddings as conditioning. Using the inferred

embeddings to generate single patches from the given image yields convincing results at magnifications > 5×.

9. Additional results

9.1. More superresolution baselines

In Tables 8 and 9 we provide additional baselines for the super-resolution task. We use ResShift [50, 51] and StableSR [46]

to super-resolve pathology images and compare them to the zero-shot performance of ZoomLDM. Using ZoomLDM in a

training-free manner (with condition inference 8.3) remains the best approach for histopathology image super-resolution.

9.2. Data efficiency and memorization

One of the arguments for training a single model for all scales is that we can learn to generate novel images even at scales

with too few samples to learn from. To further demonstrate this, we use our histopathology diffusion model and sample

conditions from the Conditioning Diffusion Model (CDM) to generate novel images at 0.15625× magnification. At this

scale, both our models have only seen∼ 2500 images and we would expect them to either generate low-quality samples or to
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Table 8. Super-resolution results on TCGA-BRCA

Method SSIM ↑ PSNR ↑ LPIPS↓ CONCH ↑ UNI ↑
ResShift v2 (15 steps) [51] 0.415 19.716 0.431 0.847 0.299

ResShift v3 (4 steps) [50] 0.525 21.528 0.314 0.866 0.311

StableSR no tiling [46] 0.515 21.644 0.315 0.862 0.390

StableSR w/ tiling [46] 0.514 21.618 0.316 0.863 0.388

ZoomLDM (Uncond) 0.591 23.217 0.260 0.936 0.680

ZoomLDM (GT Emb) 0.599 23.273 0.250 0.946 0.672

ZoomLDM (Infer Emb) 0.609 23.407 0.229 0.957 0.719

Table 9. Super-resolution results on BACH

Method SSIM ↑ PSNR ↑ LPIPS↓ CONCH ↑ UNI ↑
ResShift v2 (15 steps) [51] 0.584 23.256 0.421 0.898 0.621

ResShift v3 (4 steps) [50] 0.751 26.283 0.257 0.898 0.623

StableSR no tiling [46] 0.729 26.203 0.291 0.846 0.547

StableSR w/ tiling [46] 0.729 26.200 0.293 0.845 0.538

ZoomLDM (Uncond) 0.739 29.822 0.235 0.965 0.741

ZoomLDM (GT Emb) 0.732 29.236 0.245 0.974 0.753

ZoomLDM (Infer Emb) 0.779 30.443 0.173 0.974 0.808

have memorized the training data when using a 400M parameter model in training. Contrary to that, in Figure 10, we show

that the generated images are realistic and different from the ones found in the training set. For each generated image, we

identify its nearest neighbor in the training data using the patch-level UNI embeddings [9], and show that they differ in shape

and content. ZoomLDM can produce high-quality and unique samples for data-scarce magnifications, essentially avoiding

memorization, by learning to synthesize images at all scales.

G
en

er
at

ed

C
lo

se
st

  
re

al

 s
am

p
le

G
en

er
at

ed

C
lo

se
st

  
re

al

 s
am

p
le

Figure 10. We present 0.15625× images generated from our model and their nearest neighbors in the training dataset. Although only

trained on ∼ 2500 images, our 400M parameter model did not memorize the training samples and successfully synthesized novel images

at that magnification.
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9.3. Patches from all scales

In Figures 11 and 13, we showcase synthetic samples from ZoomLDM and the real images used to extract embeddings in

histopathology and satellite. Samples from our model are realistic and preserve semantic features found in the reference

patches. In data-scarce scenarios, such as 0.15625x magnification, achieving comparable image quality would be infeasible

for a standalone model trained solely on that magnification (as indicated by the FIDs in Table 1 of the main text).

Interestingly, for magnifications below 5× we find that the model can almost perfectly replicate the source image since the

SSL embeddings used as conditioning contain enough information to reconstruct the patch at that scale perfectly. Although

this may seem like a memorization issue, our experiments with the CDM in 9.2 show that our model has not just memorized

the SSL embedding and image pairs. We believe that for these domains, this faithfulness to the conditions is advantageous as

it can limit the hallucinations of the model, which are mostly unwanted in domains such as medical images.

9.4. Large images

In Figures 14,15 we present 4096 × 4096 px images generated from our histopathology and satellite ZoomLDM model.

Readers can find more examples on histodiffusion.github.io/docs/projects/zoomldm.
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Figure 11. Synthetic patches (256 × 256 pixel) generated by ZoomLDM juxtaposed with the corresponding real images from TCGA-

BRCA. Across all magnifications, ZoomLDM preserves the semantic features of the reference patches.

9.5. Comparison to previous works

In Figure 16, we compare our method and previous works on a single example image. We extract SSL embeddings from

the 4k to replicate this image as closely as possible. We highlight our two main differences with previous methods. The

method of∞−Brush [26] retains some global structures but fails to produce any high-resolution details in the image. On the

other hand, the patch-based model of [17] produces high-quality details but fails to capture large-scale structures that span

more than a single patch. Our method solves both issues at the same time while maintaining a reasonable inference time,

as discussed in the main text. We provide further comparisons to∞− Brush in Figure 17. Our generated images contain

noticeably better detail.
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Figure 12. Images synthesized by ZoomLDM using conditions sampled from our Conditioning Diffusion model (CDM).
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Figure 13. Synthetic patches (256× 256 pixel) generated by ZoomLDM juxtaposed with the corresponding real images from NAIP
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Figure 14. We present 4096×4096 images generated from our histopathology model. Our results exhibit correct global structures in terms

of the arrangement of cells and tissue while also maintaining high-resolution details. We point out two weaknesses: The local model fails

to maintain coherency for structures where the lower-scale image does not provide guidance, such as the thin structures in the bottom-right

image. In addition, for large uniform areas, such as the background in the bottom left image, the ’stitching’ of the generated 20× patches

is visible with noticeable discontinuities along their edges.
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Figure 15. We present 4096 × 4096 images generated from our satellite model. The results demonstrate images with reasonable global

structures that also maintain high-resolution features. A similar weakness to the pathology images is visible, with slight discontinuities

among the high-resolution patch borders.
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Figure 16. We compare with two recent previous methods that also generated large histopathology images. In this example, we compare

a 2048 × 2048 image from ∞ − Brush and [17] to the same image generated from our model. We exceed both previous methods, with

∞− Brush producing realistic global context but blurry details and [17] completely failing to capture larger scale structures.
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Figure 17. Comparison between ∞− Brush [26] and our method.
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