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ABSTRACT

A core component of human intelligence is the ability to identify abstract pat-
terns inherent in complex, high-dimensional perceptual data, as exemplified by
visual reasoning tasks such as Raven’s Progressive Matrices (RPM). Motivated
by the goal of designing AI systems with this capacity, recent work has focused
on evaluating whether neural networks can learn to solve RPM-like problems.
Previous work has generally found that strong performance on these problems re-
quires the incorporation of inductive biases that are specific to the RPM problem
format, raising the question of whether such models might be more broadly use-
ful. Here, we investigated the extent to which a general-purpose mechanism for
processing visual scenes in terms of objects might help promote abstract visual
reasoning. We found that a simple model, consisting only of an object-centric
encoder and a transformer reasoning module, achieved state-of-the-art results on
both of two challenging RPM-like benchmarks (PGM and I-RAVEN), as well as
a novel benchmark with greater visual complexity (CLEVR-Matrices). These re-
sults suggest that an inductive bias for object-centric processing may be a key
component of abstract visual reasoning, obviating the need for problem-specific
inductive biases.

1 INTRODUCTION

Human reasoning is driven by a capacity to extract simple, low-dimensional abstractions from com-
plex, high-dimensional inputs. We perceive the world around us in terms of objects, relations, and
higher order patterns, allowing us to generalize beyond the sensory details of our experiences, and
make powerful inferences about novel situations Spearman (1923); Gick & Holyoak (1983); Lake
et al. (2017). This capacity for abstraction is particularly well captured by visual analogy problems,
in which the reasoner must abstract over the superficial details of visual inputs, in order to identify a
common higher order pattern (Gentner, 1983; Holyoak, 2012). A particularly challenging example
of these kinds of problems are the Raven’s Progressive Matrices (RPM) problem sets (Raven, 1938),
which have been found to be especially diagnostic of human reasoning abilities (Snow et al., 1984).

A growing body of recent work has aimed to build learning algorithms that capture this capacity for
abstract visual reasoning. Much of this previous work has revolved around two recently developed
benchmarks – the Procedurally Generated Matrices (PGM) (Barrett et al., 2018), and the RAVEN
dataset (Zhang et al., 2019a) – consisting of a large number of automatically generated RPM-like
problems. As in RPM, each problem consists of a 3× 3 matrix populated with geometric forms, in
which the bottom right cell is blank. The challenge is to infer the abstract pattern that governs the
relationship along the first two columns and/or rows of the matrix, and use that inferred pattern to
‘fill in the blank’, by selecting from a set of choices. As can be seen in Figure 1, these problems can
be quite complex, with potentially many objects per cell, and multiple rules per problem, yielding a
highly challenging visual reasoning task.
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Figure 1: Slot Transformer Scoring Network (STSN). STSN combines slot attention, an object-
centric encoding method, and a transformer reasoning module. Slot attention decomposes each
image panel into a set of K slots, which are randomly initialized and iteratively updated through
competitive attention over the image. STSN assigns a score to each of the 8 potential answers, by
independently evaluating the combination of each answer choice together with the 8 context panels.
For each answer choice, slots are extracted from that choice, and the context panels, and these slots
are concatenated to form a sequence that is passed to the transformer, which then generates a score.
The scores for all answer choices are passed through a softmax in order to compute the task loss
Ltask. Additionally, the slots for each image panel are passed through a slot decoder, yielding a
reconstruction of that image panel, from which the reconstruction loss Lrecon is computed.

There is substantial evidence that human visual reasoning is fundamentally organized around the
decomposition of visual scenes into objects (Duncan, 1984; Pylyshyn, 1989; Peters & Kriegeskorte,
2021). Objects offer a simple, yet powerful, low-dimensional abstraction that captures the inherent
compositionality underlying visual scenes. Despite the centrality of objects in visual reasoning,
previous works have so far not explored the use of object-centric representations in abstract visual
reasoning tasks such as RAVEN and PGM, or at best have employed an imprecise approximation to
object representations based on spatial location.

Recently, a number of methods have been proposed for the extraction of precise object-centric rep-
resentations directly from pixel-level inputs, without the need for veridical segmentation data (Greff
et al., 2019; Burgess et al., 2019; Locatello et al., 2020; Engelcke et al., 2021). While these meth-
ods have been shown to improve performance in some visual reasoning tasks, including question
answering from video (Ding et al., 2021) and prediction of physical interactions from video Wu
et al. (2022), previous work has not addressed whether this approach is useful in the domain of
abstract visual reasoning (i.e., visual analogy). To address this, we developed a model that com-
bines an object-centric encoding method, slot attention (Locatello et al., 2020), with a generic
transformer-based reasoning module (Vaswani et al., 2017). The combined system, termed the Slot
Transformer Scoring Network (STSN, Figure 1) achieves state-of-the-art performance on both PGM
and I-RAVEN (a more challenging variant of RAVEN), despite its general-purpose architecture, and
lack of task-specific augmentations. Furthermore, we developed a novel benchmark, the CLEVR-
Matrices (Figure 2), using a similar RPM-like problem structure, but with greater visual complexity,
and found that STSN also achieves state-of-the-art performance on this task. These results suggest
that object-centric encoding is an essential component for achieving strong abstract visual reasoning,
and indeed may be even more important than some task-specific inductive biases.
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2 RELATED WORK

Since the introduction of the PGM (Barrett et al., 2018) and RAVEN (Zhang et al., 2019a) datasets,
a number of methods have been proposed for learning to solve RPM-like problems Barrett et al.
(2018); Steenbrugge et al. (2018); Van Steenkiste et al. (2019); Zhang et al. (2019b); Zheng et al.
(2019); Spratley et al. (2020); Jahrens & Martinetz (2020); Wang et al. (2020); Wu et al. (2020);
Benny et al. (2021); Hu et al. (2021); Zhuo & Kankanhalli (2022). Though significant progress has
been made, the best performing methods generally rely on inductive biases that are specifically tai-
lored to the RPM problem format. For instance, the Scattering Compositional Learner (SCL) (Wu
et al., 2020), arguably the best current model (achieving strong performance on both PGM and
I-RAVEN), assumes that rules are independently applied in each feature dimension, with no interac-
tion between features. Similarly, the Multi-Scale Relation Network (MRNet) (Benny et al., 2021),
which achieves strong performance on PGM, explicitly builds the row-wise and column-wise struc-
ture of RPM problems into its architecture. These approaches raise the question of whether problem-
specific inductive biases are necessary to achieve strong performance on these problems.

Here, we explore the utility of a more general-purpose inductive bias – a mechanism for process-
ing visual scenes in terms of objects. In contrast, most previous approaches to solving RPM-like
problems have operated over embeddings of entire image panels, and thus likely fail to capture the
compositional structure of such multi-object visual inputs. Some work has attempted to approximate
object-centric representations, for instance by treating spatial location as a proxy for objects (Wu
et al., 2020), or by employing encodings at different spatial scales (Benny et al., 2021) (therefore
preferentially capturing larger vs. smaller objects), but it is not clear that these approximations ex-
tract precise object-centric representations, especially in problems with many overlapping objects,
such as PGM.

Recently, a number of methods have been proposed to address the challenging task of annotation-
free object segmentation (Greff et al., 2019; Burgess et al., 2019; Locatello et al., 2020; Engelcke
et al., 2021). In this approach, the decomposition of a visual scene into objects is treated as a latent
variable to be inferred in the service of a downstream objective, such as autoencoding, without
access to any explicit segmentation data. Here, we used the slot attention method (Locatello et al.,
2020), but our approach should be compatible with other object-centric encoding methods.

Our method employs a generic transformer (Vaswani et al., 2017) to perform reasoning over the
object-centric representations extracted by slot attention. This approach allows the natural permu-
tation invariance of objects to be preserved in the reasoning process. A few other recent efforts
have employed systems that provide object-centric representations as the input to a transformer
network (Ding et al., 2021; Wu et al., 2022), most notably ALOE (Attention over Learned Object
Embeddings (Ding et al., 2021)), which used a different object encoding method (MONet (Burgess
et al., 2019)). Such systems have exhibited strong visual reasoning performance in some tasks, such
as question answering from video, that require processing of relational information. Here, we go be-
yond this work, to test: a) the extent to which object-centric processing can subserve more abstract
visual reasoning, involving the processing of higher-order relations, as required for visual analogy
tasks such as PGM and I-RAVEN; and b) whether this approach obviates the need for problem-
specific inductive biases that have previously been proposed for these tasks.

3 APPROACH

3.1 PROBLEM DEFINITION

Each RPM problem consists of a 3× 3 matrix of panels in which each panel is an image consisting
of varying numbers of objects with attributes like size, shape, and color. The figures in each row or
column obey a common set of abstract rules. The last panel (in the third row and column), is missing
and must be filled from a set of eight candidate panels so as to best complete the matrix according
to the abstract rules. Formally, each RPM problem consists of 16 image panels X = {xi}16i=1,
in which the first 8 image panels are context images Xc = {xi}8i=1 (i.e., all panels in the 3 × 3
problem matrix except the final blank panel), and the last 8 image panels are candidate answer
images Xa = {xi}16i=9. The task is to select y, the index for the correct answer image.

3



Published as a conference paper at ICLR 2023

3.2 OBJECT-CENTRIC ENCODER

STSN employs slot attention (Locatello et al., 2020) to extract object-centric representations. Slot
attention first performs some initial processing of the images using a convolutional encoder, pro-
ducing a feature map, which is flattened to produce inputs ∈ RN×Dinputs , where N = H × W
(the height and width of the feature map), and Dinputs is the number of channels. Then, the slots
slots ∈ RK×Dslot are initialized, to form a set of K slot embeddings, each with dimensionality
Dslot. We set the value of K to be equal to the maximum number of objects possible in a given im-
age panel (based on the particular dataset). For each image, the slots are randomly initialized from
a distribution N (µ,diag(σ)) ∈ RK×Dslot with shared mean µ ∈ RDslot and variance σ ∈ RDslot

(each of which are learned). The slots are then iteratively updated based on a transformer-style
attention operation. Specifically, each slot emits a query q(slots) ∈ RK×Dslot through a linear
projection, and each location in the feature map emits a key k(inputs) ∈ RN×Dslot and value
v(inputs) ∈ RN×Dslot . A dot product query-key attention operation followed by softmax is then
used to generate the attention weights attn = softmax( 1√

Dslot
k(inputs) · q(slots)⊤), and a

weighted mean of the values updates = attn · v(inputs) is used to update the slot represen-
tations using a Gated Recurrent Unit (Cho et al., 2014), followed by a residual MLP with ReLU
activations. More details can be found in Locatello et al. (2020). After T iterations of slot attention,
the resulting slots are passed through a reasoning module, that we describe in the following section.

In order to encourage the model to make use of slot attention in an object-centric manner, we also
included a slot decoder to generate reconstructions of the original input images. To generate re-
constructions, we first used a spatial broadcast decoder (Watters et al., 2019) to generate both a
reconstructed image x̃k, and a mask mk, for each slot. We then generated a combined reconstruc-
tion, by normalizing the masks across slots using a softmax, and using the normalized masks to
compute a weighted average of the slot-specific reconstructions.

3.3 REASONING MODULE

After object representations are extracted by slot attention, they are then passed to a transformer
(Vaswani et al., 2017). For each candidate answer choice xa ∈ {xi}16i=9, the transformer operates
over the slots obtained from the 8 context images slotsx1..8

, and the image for that answer choice
slotsxa . We flattened the slots over the dimensions representing the number of slots and images,
such that, for each candidate answer, the transformer operated over flatten(slotsx1..8 , slotsxa) ∈
R9K×Dslot . We then applied Temporal Context Normalization (TCN) (Webb et al., 2020), which
has been shown to significantly improve out-of-distribution generalization in relational tasks, over
the flattened sequence of slots. To give the model knowledge about which slot representation corre-
sponded to which row and column of the matrix, we added a learnable linear projection R6 → RDslot

from one-hot encodings of the row and column indices (after applying TCN). We concatenated a
learned CLS token (analogous to CLS token in Devlin et al. (2018)) of dimension Dslot, before
passing it through a transformer with L layers and H self-attention heads. The transformed value of
the CLS token was passed through a linear output unit to generate a score for each candidate answer
image, and the scores for all answers were passed through a softmax to generate a prediction ŷ.

3.4 OPTIMIZATION

The entire model was trained end-to-end to optimize two objectives. First, we computed a recon-
struction loss Lrecon, the mean squared error between the 16 image panels and their reconstructed
outputs. Second, we computed a task loss Ltask, the cross entropy loss between the target answer
index and the softmax-normalized scores for each of the candidate answers. These two losses were
combined to form the final loss L = λ ∗ Lrecon + Ltask, where λ is a hyperparameter that controls
the relative strength of the reconstruction loss.
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Figure 2: Example problem from our proposed CLEVR-Matrices dataset. Problems are governed
by RPM-like problem structure, but with greater visual complexity (rendered using approach similar
to CLEVR dataset (Johnson et al., 2017)). This particular problem is an example of the ‘Location’
problem type. The reader is encouraged to identify the correct answer, and rule for each attribute.

4 EXPERIMENTS

4.1 DATASETS

PGM. The PGM dataset was introduced by Barrett et al. (2018), and consists of problems belonging
to eight different regimes with different generalization difficulty. Each matrix problem in PGM is
defined by the abstract structure S = {[r, o, a] : r ∈ R, o ∈ O, a ∈ A}, where R = {progression,
XOR, AND, OR, consistent union} are the set of rules (note that ‘consistent union’ is also referred to
as ‘distribution-of-3’), O = {shape, line} are the set of objects, and A = {size, type, position, color,
number} are the set of attributes. Each regime consists of 1.2M training problems, 20K validation
problems, and 200K testing problems. Due to the enormous size of the dataset we focused on the
neutral, interpolation, and extrapolation regimes. In the neutral regime, the training and test sets are
sampled from the same underlying distribution, whereas the interpolation and extrapolation regimes
both involve out-of-distribution generalization. Given the set of feature values for each attribute,
the interpolation regime involves training on all even-indexed feature values and testing on all odd-
indexed values, and the extrapolation regime involves training on the lower half of feature values
and testing on the upper half of feature values. More details can be found in Barrett et al. (2018).

I-RAVEN. The RAVEN dataset was introduced by Zhang et al. (2019a), with problems belonging to
seven different configurations. These configurations are defined by the spatial layout of the elements
in each panel, ranging from low visual complexity (e.g., the ‘Center’ configuration, in which each
panel contains just a single object in the center of the image), to high visual complexity (e.g., the ‘O-
IG’ configuration, in which each panel contains an outer object surrounding an inner grid of objects).
Some configurations have multiple components C to which separate rules can be bound. Thus, each
problem in RAVEN is defined by the abstract structure S = {[r, c, a] : r ∈ R, c ∈ C, a ∈ A},
where R = {constant, progression, arithmetic, distribution-of-3} are the set of rules, C are the set
of components (depending on the particular configuration), and A = {number, position, size, type,
color} are the set of attributes. There are a total of 42K training problems, 14K validation problems,
and 14K testing problems. We trained STSN jointly on all configurations in RAVEN.

It was subsequently discovered that the original RAVEN dataset employed a biased method for
generating candidate answers, that could be exploited so as to achieve near perfect performance
by only viewing these candidate answers (i.e., ignoring the problem itself) (Hu et al., 2021). To
address this, Hu et al. (2021) proposed the Impartial RAVEN (I-RAVEN) dataset, with an unbiased
procedure for generating candidate answers. As with most recent work in this domain, we performed
our evaluation on I-RAVEN.

CLEVR-Matrices. We created a novel dataset of RPM-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (John-
son et al., 2017). Problems were formed from objects of three shapes (cube, sphere, and cylinder),
three sizes (small, medium, and large), and eight colors (gray, red, blue, green, brown, purple, cyan,
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and yellow). Objects were placed on a 3 × 3 grid of locations (such that there was a maximum
of 9 objects in each panel), which was oriented randomly in each problem. Lighting was varied
randomly between each panel, and objects were randomly assigned one of two textures (metal or
rubber). Rules were independently sampled for shape, color, and size, from the set R = {null,
constant, distribution-of-3}. Location was determined based on three different problem types. In
the first problem type (‘Logic’), locations were determined based on a logical rule sampled from
R = {AND, OR, XOR}. In the second problem type (‘Location’), locations were determined based
on a rule sampled from R = {constant, distribution-of-3, progression}. In the third problem type
(‘Count’), the count of objects in each panel was determined based on a rule sampled from R =
{constant, distribution-of-3, progression}, and locations were randomly sampled to instantiate that
count. Example problems are shown in Figure 2 and Section A.5. Answer choices were generated
using the attribute bisection tree algorithm proposed by Hu et al. (2021), which was used to generate
answer choices for I-RAVEN. Our dataset thus does not contain the biases identified in the original
RAVEN dataset. We generated 20K problems for each type, including 16K for training, 2K for
validation, and 2K for testing. We trained STSN jointly on all three problems types.

4.2 BASELINES

We compared our model to several baselines, as detailed in Tables 1- 3. To the best of our knowledge,
these baselines include the current best performing models on the I-RAVEN and PGM benchmarks.
We didn’t use any auxiliary information (i.e., training to explicitly label the underlying rules), and
hence for fair comparison we only compared to baselines that didn’t use auxiliary loss.

There are too many baselines to describe them each in detail, but here we briefly describe the best
performing baselines. The baseline that achieved the best overall performance was the Scatter-
ing Compositional Learner (SCL) (Wu et al., 2020). SCL employs an approximate form of object
segmentation based on fixed spatial locations in a convolutional feature map, followed by a dual
parameter-sharing scheme, in which a shared MLP (shared across ‘objects’) is used to generate ob-
ject embeddings, and another shared MLP (shared across attributes) is used to classify rules for each
attribute. We also compare against the Multi-Layer Relation Network (MLRN) (Jahrens & Mar-
tinetz, 2020) and the Multi-scale Relation Network (MRNet) (Benny et al., 2021), both of which
achieved strong results on PGM. MLRN builds on the Relation Network (Santoro et al., 2017),
which uses a shared MLP to compute learned relation vectors for all pairwise comparisons of a set
(in this case, the set of embeddings for all image panels in a problem). MLRN passes the output of
one RN to another RN, thus allowing second-order relations to be modeled. MRNet creates image
embeddings at different spatial scales, allowing it to approximate segmentation of larger vs. smaller
objects, and then computes both row-wise and column-wise rule embeddings, which are aggregated
across both rows/columns and spatial scales.

4.3 EXPERIMENTAL DETAILS

We give a detailed characterization of all hyperparameters and training details for our models in
Section A.2. We employed both online image augmentations (random rotations, flips, and brightness
changes) and dropout (in the transformer), when training on I-RAVEN (details in Section A.2). We
also trained both SCL and MLRN on CLEVR-Matrices, and compared to two alternative versions of
SCL on I-RAVEN, one that employed the same image augmentations, TCN, and dropout employed
by our model, and another that combined SCL with slot attention (also with image augmentations,
TCN and dropout) referred to as ‘Slot-SCL’

For I-RAVEN, to be consistent with previous work (Wu et al., 2020), we report results from the
best out of 5 trained models. Similarly, for CLEVR-Matrices, we report results from the best out
of 3 trained models for STSN, SCL, and MLRN. For PGM, we only trained 1 model on the neutral
regime, 1 model on the interpolation regime, and 1 model on the extrapolation regime, due to the
computational cost of training models on such a large dataset.

For the PGM neutral regime, we pretrained the convolutional encoder, slot attention, and slot de-
coder on the reconstruction objective with the neutral training set, and fine-tuned while training on
the primary task. For the PGM interpolation regime, all model components were trained end-to-end
from scratch. For the the PGM extrapolation regime, we employed a simultaneous dual-training
scheme, in which the convolutional encoder, slot attention, and slot decoder were trained on recon-
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Table 1: Results on I-RAVEN.

Test Accuracy (%)
Model Average Center 2Grid 3Grid L-R U-D O-IC O-IG

LSTM (Hu et al., 2021) 18.9 26.2 16.7 15.1 14.6 16.5 21.9 21.1
WReN (Hu et al., 2021) 23.8 29.4 26.8 23.5 21.9 21.4 22.5 21.5

MLRN (Jahrens & Martinetz, 2020) 29.8 38.8 32.0 27.8 23.5 23.4 32.9 30.0
LEN (Zheng et al., 2019) 39.0 45.5 27.9 26.6 44.2 43.6 50.5 34.9
ResNet (Hu et al., 2021) 40.3 44.7 29.3 27.9 51.2 47.4 46.2 35.8

Wild ResNet (Hu et al., 2021) 44.3 50.9 33.1 30.8 53.1 52.6 50.9 38.7
CoPINet (Zhang et al., 2019b) 46.3 54.4 33.4 30.1 56.8 55.6 54.3 39.0

SRAN (Hu et al., 2021) 63.9 80.1 53.3 46.0 72.8 74.5 71.0 49.6
Slot-SCL 90.4 98.8 94.1 80.3 92.9 94.0 94.9 78.0

SCL (Wu et al., 2020) 95.0 99.0 96.2 89.5 97.9 97.1 97.6 87.7
SCL + dropout, augmentations, TCN 95.5 98.2 96.4 90.0 98.8 97.9 98.0 89.3

STSN (ours) 95.7 98.6 96.2 88.8 98.0 98.8 97.8 92.0

Table 2: Results on PGM.

Test Accuracy (%)
Model Neutral Interpolation Extrapolation

CNN+MLP (Barrett et al., 2018) 33.0 - -
CNN+LSTM (Barrett et al., 2018) 35.8 - -

ResNet-50 (Barrett et al., 2018) 42.0 - -
Wild-ResNet (Barrett et al., 2018) 48.0 - -

CoPINet (Zhang et al., 2019b) 56.4 - -
WReN (β = 0) (Barrett et al., 2018) 62.6 64.4 17.2

VAE-WReN (Steenbrugge et al., 2018) 64.2 - -
MXGNet (β = 0) (Wang et al., 2020) 66.7 65.4 18.9

LEN (β = 0) (Zheng et al., 2019) 68.1 - -
DCNet (Zhuo & Kankanhalli, 2022) 68.6 59.7 17.8
T-LEN (β = 0) (Zheng et al., 2019) 70.3 - -

SRAN (Hu et al., 2021) 71.3 - -
Rel-Base (Spratley et al., 2020) 85.5 - 22.1

SCL (Wu et al., 2020) 88.9 - -
MRNet (Benny et al., 2021) 93.4 68.1 19.2

MLRN (Jahrens & Martinetz, 2020) 98.0 57.8 14.9
STSN (ours) 98.2 78.5 20.4

struction for both the neutral and extrapolation training sets (thus giving these components of the
model exposure to a broader range of shapes and feature values), while the transformer reasoning
module was trained on the primary task using only the extrapolation training set.

4.4 RESULTS

Table 3: Results on CLEVR-Matrices.

Test Accuracy (%)
Model Average Logic Location Count

MLRN (Jahrens & Martinetz, 2020) 30.8 47.4 21.4 23.6
SCL (Wu et al., 2020) 70.5 80.9 65.8 64.9

STSN (ours) 99.6 99.2 100.0 99.6

Table 1 shows the results on the I-RAVEN dataset. STSN achieved state-of-the-art accuracy when
averaging across all configurations (95.7%), and on two out of seven configurations (‘U-D’ and ‘O-
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Table 4: Ablation study on the I-RAVEN dataset.

Test Accuracy (%)
Model Average Center 2Grid 3Grid L-R U-D O-IC O-IG
STSN 95.7 98.6 96.2 88.8 98.0 98.8 97.8 92.0

-dropout 93.4 97.8 92.5 84.7 96.4 96.7 96.5 89.6
-dropout, -slot attention 71.0 90.0 71.0 59.4 73.8 75.4 74.5 53.0

-dropout, -TCN 86.5 97.0 76.0 69.2 96.0 96.0 95.6 75.8
-dropout, L = 4 88.6 96.4 85.8 74.4 94.6 95.0 94.5 79.2

-dropout, -augmentations 90.3 96.1 88.3 80.8 93.2 93.7 94.8 85.2

IG’). The most notable improvement was on the ‘O-IG’ configuration (a large outer object surround-
ing an inner grid of smaller objects), probably due to the need for more flexible object-encoding
mechanisms in this configuration. For PGM (Table 2), STSN achieved state-of-the-art accuracy on
the neutral (98.2%) and interpolation (78.5%) regimes, and achieved the second-best performance
on the extrapolation regime (20.4% for STSN vs. 22.1% for Rel-Base). The next best model on
I-RAVEN, SCL (95%) performed worse on PGM (88.9%), perhaps due to its more limited object-
encoding methods (PGM includes a large number of spatially overlapping objects). We evaluated
the next best model on PGM, MLRN (98%), on I-RAVEN (using code from the authors’ publicly
available respository), and found that it displayed very poor performance (29.8%), suggesting that
some aspect of its architecture may be overfit to the PGM dataset. Thus, STSN achieved a ∼ 5% in-
crease in average performance across both of the two datasets relative to the next best overall model
(97.0% average performance on PGM Neutral and I-RAVEN for STSN vs. 92.0% for SCL), despite
incorporating fewer problem-specific inductive biases.

To further investigate the utility of STSN’s object-centric encoding mechanism, we evaluated STSN,
SCL, and MLRN on our newly developed CLEVR-Matrices dataset (Table 3). STSN displayed very
strong performance (99.6% average test accuracy), whereas both SCL (70.5% average test accuracy)
and MLRN (30.8% average test accuracy) performed considerably worse. This is likely due to the
fact that these models lack a precise object-centric encoding mechanism, and were not able to cope
with the increased visual complexity of this dataset.

Finally, we also evaluated both STSN and SCL on a dataset involving analogies between feature
dimensions (e.g., a progression rule applied to color in one row, and size in another row) (Hill
et al., 2019). STSN outperformed SCL on this dataset as well (Table 12), likely due to the fact that
SCL assumes that rules will be applied independently within each feature dimension. This result
highlights the limitation of employing inductive biases that are overly specific to certain datasets.

4.5 ABLATION STUDY

We analyzed the importance of the different components of STSN in ablation studies using the I-
RAVEN dataset (Table 4). For I-RAVEN, our primary STSN implementation employed dropout,
which we found yielded a modest improvement in generalization, but our ablation studies were
performed without dropout. Thus, the relevant baseline for evaluating the isolated effect of each
ablation is the version of STSN without dropout. First, we removed the slot attention module from
STSN, by averaging the value embeddings from the input feature vectors over the image space
(i.e., using only a single slot per panel). The average test accuracy decreased by more than 20%,
suggesting that object-centric representations play a critical role in the model’s performance. The
effect was particularly pronounced in the ‘O-IG’ (a large outer object surrounding an inner grid of
smaller objects) and ‘3Grid’ (a 3× 3 grid of objects) configurations, likely due to the large number
of objects per panel in these problems. Next, we performed an ablation on TCN, resulting in a
test accuracy decrease of around 7%, in line with previous findings demonstrating a role of TCN
in improved generalization (Webb et al., 2020). We also performed an ablation on the size of the
reasoning module, finding that a smaller transformer (L = 4 layers) did not perform as well. Finally,
we performed an ablation on the image augmentations performed during training, resulting in a
test accuracy decrease of more than 3%, suggesting that the augmentations also helped to improve
generalization. Overall, these results show that the use of object-centric representations was the
most important factor explaining STSN’s performance on this task.
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···

Figure 3: Slot-specific reconstructions generated by STSN. 3 problems were chosen at random
from the PGM neutral test set. The first two images for each problem show the original image
and the combined reconstruction. The following images show the slot-specific reconstruction for
each of the slots. In general, STSN’s slot attention module implemented a nearly perfect object-
based segmentation of its input images, despite receiving no veridical segmentation information
during training or test. STSN used 16 slots per image for this dataset, but generally left the slots not
assigned to objects unused. Only 8 slots are pictured for these example problems since the remaining
slot-specific reconstructions were completely blank.

4.6 VISUALIZATION OF OBJECT MASKS

We also visually inspected the attention behavior of STSN’s slot attention module (Figure 3). We
found that STSN’s slot-specific reconstructions conformed nearly perfectly to the individual objects
in the image panels of PGM, with the remaining slots left unused. This confirms that STSN was
engaged in object-centric processing. We also evaluated STSN on I-RAVEN with a range of values
for λ (the parameter that governs the relative emphasis placed on the reconstruction loss), and found
that with lower values of λ, STSN’s reconstructions were no longer object-centric. With a value of
λ = 100, STSN’s reconstructions were blurrier, and multiple objects tended to be combined into a
single slot (Figure 5 in Section A.4). With a value of λ = 1, STSN’s reconstructions completely
failed to capture the content of the original image (Figure 6). Interestingly, these changes in recon-
struction quality were mirrored by changes in performance on the reasoning task, with an average
test accuracy of 90.1% for λ = 100 and 74.2% for λ = 1 (relative to 95.7% for λ = 1000, Figure 4).
This is consistent with our hypothesis that encouraging high-quality reconstructions (through a suf-
ficiently high weight on Lrecon) would encourage object-centric encoding behavior, which would
in turn promote more generalizable visual reasoning strategies. Thus, for STSN to fully exploit its
object-centric encoding mechanisms, it is important to use a high enough value of λ so as to ensure
high-quality reconstructions.

5 CONCLUSION AND FUTURE DIRECTIONS

We have presented a simple, general-purpose visual reasoning model, organized around the principle
of object-centric processing. Our proposed model, STSN, displayed state-of-the-art performance on
both of two challenging visual reasoning benchmarks, PGM and I-RAVEN, as well a novel reasoning
benchmark with greater visual complexity, CLEVR-Matrices, despite the relative lack of problem-
specific inductive biases. These results suggest that object-centric processing is a powerful inductive
bias for abstract visual reasoning problems such as RPM.

Some previous work has proposed novel relational inductive biases for the purposes of achieving
strong out-of-distribution generalization in visual reasoning problems (Webb et al., 2021; Zhang
et al., 2021; Kerg et al., 2022). This work has often assumed (i.e., hand-coded) object-centric rep-
resentations. We view our approach as complementary with these previous approaches, and suggest
that a fruitful avenue for future work will be to pursue the integration of object-centric and relational
inductive biases.
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A APPENDIX

A.1 CODE AND DATA AVAILABILITY

All code can be downloaded from https://github.com/Shanka123/STSN. The CLEVR-Matrices
dataset can be downloaded from https://dataspace.princeton.edu/handle/88435/dsp01fq977z011.

A.2 HYPERPARAMETERS AND TRAINING DETAILS

Images were resized to 80×80 for I-RAVEN and PGM, and 128×128 for CLEVR-Matrices. Pixels
were normalized to the range [0, 1]. For I-RAVEN, we also applied random online augmentations
during training, including horizontal and vertical flips, rotations by multiples of 90◦, and brightness
changes by a factor in the range [0.5,1.5]. Note that we applied the same augmentations to all the
image panels in a given problem, so that the abstract rule remained the same.

Table 5 describes the hyperparameters for the convolutional encoder used on the I-RAVEN and
PGM datasets, and Table 6 describes the hyperparameters used on the CLEVR-Matrices dataset.
These encoders employed a positional embedding scheme consisting of 4 channels, each of which
coded for the position of a pixel along one of the 4 cardinal directions (top→bottom, bottom→top,
left→right, right→left), normalized to the range [0, 1]. These positional embeddings were projected
through a fully-connected layer to match the number of channels in the convolutional feature maps,
and then added to these feature maps. Feature maps were flattened along the spatial dimension,
followed by layer normalization (Ba et al., 2016), and two 1D convolutional layers.

Table 5: CNN Encoder for I-RAVEN and PGM.

Type Channels Activation Kernel Size Stride Padding
2D Conv 32 ReLU 5× 5 1 2
2D Conv 32 ReLU 5× 5 1 2
2D Conv 32 ReLU 5× 5 1 2
2D Conv 32 ReLU 5× 5 1 2

Position Embedding - - - - -
Flatten - - - - -

Layer Norm - - - - -
1D Conv 32 ReLU 1 1 0
1D Conv 32 - 1 1 0

Table 6: CNN Encoder for CLEVR-Matrices.

Type Channels Activation Kernel Size Stride Padding
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2

Position Embedding - - - - -
Flatten - - - - -

Layer Norm - - - - -
1D Conv 64 ReLU 1 1 0
1D Conv 64 - 1 1 0

For slot attention, we used K = 9 slots for I-RAVEN and CLEVR-Matrices, and K = 16 slots for
PGM. The number of slot attention iterations was set to T = 3, and the dimensionality of the slots
was set to Dslot = 32 for I-RAVEN and PGM, and Dslot = 64 for CLEVR-Matrices. The GRU had
a hidden layer of size Dslot. The residual MLP had a single hidden layer with a ReLU activation,
followed by a linear output layer, both of size Dslot.
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Table 7 describes the hyperparameters for the slot decoder used on the I-RAVEN and PGM datasets,
and Table 8 describes the hyperparameters used on the CLEVR-Matrices dataset. Each of the K slots
was passed through the decoder, yielding a slot-specific reconstructed image x̃k and mask mk. Each
slot was first converted to a feature map using a spatial broadcast operation Watters et al. (2019), in
which the slot was tiled to match the spatial dimensions of the original input image (80 × 80 for I-
RAVEN and PGM, 128×128 for CLEVR-Matrices). Positional embeddings were then added (using
the same positional embedding scheme as in the encoder), and the resulting feature map was passed
through a series of convolutional layers. The output of the decoder had 2 channels for I-RAVEN and
PGM, and 4 channels for CLEVR-Matrices. One of these channels corresponded to the mask mk,
and the other channels corresponded to the reconstructed image x̃k (grayscale for I-RAVEN and
PGM, RGB for CLEVR-Matrices). The slot-specific reconstructions were combined by applying a
softmax to the masks (over slots) and computing a weighted average of the reconstructions, weighted
by the masks.

Table 7: Slot Decoder for I-RAVEN and PGM.

Type Channels Activation Kernel Size Stride Padding
Spatial Broadcast - - - - -

Position Embedding - - - - -
2D Conv 32 ReLU 5× 5 1 2
2D Conv 32 ReLU 5× 5 1 2
2D Conv 32 ReLU 5× 5 1 2
2D Conv 2 - 3× 3 1 1

Table 8: Slot Decoder for CLEVR-Matrices.

Type Channels Activation Kernel Size Stride Padding
Spatial Broadcast - - - - -

Position Embedding - - - - -
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2
2D Conv 64 ReLU 5× 5 1 2
2D Conv 4 - 3× 3 1 1

Table 9 gives the hyperparameters for the transformer reasoning module, and Table 10 gives the
training details for all datasets. We used a reconstruction loss weight of λ = 1000 for all datasets.
We used the ADAM optimizer (Kingma & Ba, 2014) and all experiments were performed using the
Pytorch library (Paszke et al., 2017). Hardware specifications are described in Table 11.

Table 9: Hyperparameters for Transformer Reasoning Module. H is the number of heads, L is the
number of layers, Dhead is the dimensionality of each head, and DMLP is the dimensionality of the
MLP hidden layer.

I-RAVEN PGM CLEVR-Matrices
Neutral Interpolation Extrapolation

H 8 8 8 8 8
L 6 24 24 6 24

Dhead 32 32 32 32 32
DMLP 512 512 512 512 512
Dropout 0.1 0 0 0 0

To make the comparison between STSN and SCL as fair as possible, we trained a version of SCL
on I-RAVEN for 500 epochs using image augmentations (the same as used for STSN), TCN, and
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Table 10: Training details for all datasets.

I-RAVEN PGM CLEVR-Matrices
Neutral Interpolation Extrapolation

Batch size 16 96 96 96 64
Learning rate 4e− 4 8e− 5 8e− 5 8e− 5 8e− 5

LR warmup steps 75k 10k 10k 10k 10k
Epochs 500 161 83 71 200

Table 11: Hardware specifications for all datasets.

I-RAVEN 1 A100, 40GB RAM
PGM-Neutral 6 A100, 40GB RAM

PGM-Interpolation 6 A100, 40GB RAM
PGM-Extrapolation 6 A100, 40GB RAM
CLEVR-Matrices 8 A100, 80GB RAM

dropout. TCN was applied following the last feedforward residual block of the first scattering trans-
formation N a. Dropout with a probability of 0.1 was applied during training to all layers in the
second scattering transformation N r.

We also compared STSN to a hybrid model that combined SCL and slot attention, termed ‘Slot-
SCL’. For this model, we replaced SCL’s object and attribute transformations (N o and N a) with the
slot attention module, using the same hyperparameters as STSN. The outputs of slot attention were
concatenated and passed to SCL’s rule module (N r). This model also employed the same image
augmentations, dropout, and TCN as our model. The model was trained for 400 epochs. The results
for all comparisons with SCL on I-RAVEN reflect the best out of 5 trained models.

A.3 ANALOGIES BETWEEN FEATURE DIMENSIONS

Table 12: Results on dataset involving analogies between feature dimensions (Hill et al., 2019) for
LABC regime.

Test Accuracy (%)
Model Average Novel Domain Transfer Novel Attribute Values (Extrapolation)

SCL (Wu et al., 2020) 83.5 94.5 72.5
STSN (ours) 88 98.5 77.5

A.4 EFFECT OF λ

Figures 4-6 show the effect of λ (the hyperparameter governing the relative influence of the recon-
struction loss) on reconstruction quality and object-centric processing.

Image Recon. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9

Figure 4: Slot-specific reconstructions generated by STSN for λ = 1000 on I-RAVEN.
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Image Recon. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9

Figure 5: Slot-specific reconstructions generated by STSN for λ = 100 on I-RAVEN.

Image Recon. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9

Figure 6: Slot-specific reconstructions generated by STSN for λ = 1 on I-RAVEN.

A.5 CLEVR-MATRICES EXAMPLES

Figures 7-12 show some additional example problems from the CLEVR-Matrices dataset, along
with annotations describing their problem type and the rules for each attribute.
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Figure 7: Problem type: location. Rules: [color: constant], [shape: null], [size: distribution-of-3],
[location: distribution-of-3].
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Figure 8: Problem type: location. Rules: [color: constant], [shape: constant], [size: distribution-of-
3], [location: progression].
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Figure 9: Problem type: logic. Rules: [color: distribution-of-3], [shape: distribution-of-3], [size:
distribution-of-3], [location: AND].
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Figure 10: Problem type: logic. Rules: [color: distribution-of-3], [shape: null], [size: distribution-
of-3], [location: XOR].
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Figure 11: Problem type: count. Rules: [color: constant], [shape: constant], [size: constant], [count:
distribution-of-3].
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Figure 12: Problem type: count. Rules: [color: distribution-of-3], [shape: distribution-of-3], [size:
distribution-of-3], [count: progression].
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