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ABSTRACT

Multi-view clustering improves clustering performance by integrating complemen-
tary information from multiple views. However, existing methods often suffer
from two limitations: i) the neglect of preserving sample neighborhood structures,
which weakens the consistency of inter-sample relationships across views; and
ii) inability to adaptively utilize inter-view similarity, resulting in representation
conflicts and semantic degradation. To address these issues, we propose a novel
framework named Relationship Alignment for View-aware Multi-view Cluster-
ing (RAV). Our approach first constructs a sample relation matrix for each view
using deep features and aligns it with a global relation matrix to enhance neighbor-
hood consistency across views. Furthermore, we introduce a view-aware adaptive
weighting mechanism for label contrastive learning. This mechanism dynamically
adjusts the contrastive intensity between view pairs based on the similarity of their
deep features: higher similarity leads to stronger label alignment, while lower
similarity reduces the weighting to prevent forcing inconsistent views into agree-
ment. This strategy effectively promotes cluster-level semantic consistency while
preserving natural inter-view relationships. Extensive experiments demonstrate
that our method consistently outperforms state-of-the-art approaches on multiple
benchmark datasets.

1 INTRODUCTION

In recent years, with the rapid development of big data and multi-modal data, multi-view clustering
(MVC) Chen et al. (2023b); Dong et al. (2023); Eisenberg et al. (2025); Trosten et al. (2023); Wan
et al. (2024) has emerged as a significant research direction and has been widely applied across
various domains, including computer vision Xie et al. (2020), natural language processing Ke
et al. (2024); Nadkarni et al. (2011), and social network analysis Fang et al. (2023b); Banez et al.
(2022). Unlike traditional clustering methods that rely on single data representations, MVC methods
can more comprehensively capture intrinsic data relationships and latent structures by effectively
integrating complementary information from different views, thereby achieving more accurate sample
partitioning. Existing MVC approaches can be broadly categorized into two types: traditional MVC
methods and deep MVC methods.

With the continuous advancement of deep learning across various domains, deep MVC Xu et al.
(2021); Trosten et al. (2021); Chen et al. (2025a); Xiao et al. (2025) has gradually become mainstream.
Compared to traditional MVC, deep MVC leverages the powerful representation learning capabilities
of deep neural networks and has demonstrated promising clustering performance. For instance,
Lin et al. (2021) learns view-specific representations through intra-view reconstruction loss while
maintaining cross-view consistency using mutual information-based contrastive learning. Xu et al.
(2022b) proposes a multi-level feature learning framework that alleviates the conflict between learning
consistent representations and reconstructing inconsistent features by learning low-level features,
high-level features, and semantic labels. Yan et al. (2023) achieves consistent representation learning
through inter-sample structural relationships and employs similarity structures to guide contrastive
learning. These approaches effectively capture complex nonlinear relationships across views, thereby
significantly improving both feature representation quality and clustering efficiency.

Meanwhile, contrastive learning Chen et al. (2025c; 2020; 2024; 2025b) plays a significant role
in representation learning. Current contrastive learning-based deep MVC approaches primarily
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focus on two levels: sample-level and cluster-level. At the sample level, these methods enhance
feature consistency by pulling similar samples closer and pushing dissimilar ones apart. At the
cluster level, they aim to achieve consistency in multi-view cluster distributions. For example, Li
et al. (2021) introduces both sample-level and cluster-level contrastive objectives to jointly optimize
feature representations and clustering assignments. Chen et al. (2023a) proposes cross-view cluster
assignment contrastive learning to achieve consistent cluster distributions. Cui et al. (2024) develops
a dual contrastive mechanism that systematically constructs positive and negative pairs for learning
consistent representations. These research contributions provide novel insights for multi-view
clustering tasks, while establishing a solid foundation for subsequent contrastive learning-based deep
MVC methodologies.

Despite considerable advances in deep multi-view clustering (MVC), several challenges remain.
Many existing methods do not adequately preserve sample neighborhood structures across views.
Furthermore, when views exhibit substantial discrepancies, naively applying contrastive learning
can cause representation conflicts and distort semantic information, ultimately degrading clustering
performance. Although recent works Xu et al. (2023); Wu et al. (2024) have introduced adaptive
view weighting for feature-level contrastive learning, such approaches often neglect the alignment
of inter-view sample relations and fail to harness view similarity to guide label-level contrastive
learning—without disrupting inherent view relationships. These limitations hinder the learning
of consistent and discriminative representations. To overcome these issues, we propose a novel
framework that combines sample relationship alignment with view-aware adaptive label contrastive
learning. Our method begins by extracting deep features from each view using view-specific encoders.
We then construct a relation matrix per view—as well as a global relation matrix—using a Gaussian
kernel to capture sample affinities. By aligning each view’s relation matrix with the global matrix,
we enforce cross-view consistency while preserving local neighborhood structures. Additionally,
cluster assignment matrices are generated via a shared MLP. A view-aware weighting strategy
is introduced to modulate the strength of label contrastive learning between view pairs based on
their feature similarity. Pairs with higher similarity receive greater emphasis to strengthen label
consistency, while those with lower similarity are down-weighted to avoid harmful forcing. This
approach effectively reduces representation degradation caused by view discrepancies and maintains
the natural relationships between views.

The main contributions of this paper are summarized as follows:

• We introduce a global-guide-local sample relation alignment module that preserves neigh-
borhood structures and enhances cross-view consistency by aligning view-specific relation
matrices with a global relation matrix.

• We propose a view-aware adaptive weighting mechanism for label contrastive learning,
which dynamically emphasizes high-similarity view pairs to strengthen semantic consistency,
while reducing the influence of low-similarity pairs to prevent representation degradation.

• Extensive experiments on multiple benchmarks show that our method achieves state-of-
the-art performance across standard clustering metrics, demonstrating its effectiveness and
generalizability.

2 RELATED WORK

2.1 DEEP MULTI-VIEW CLUSTERING

The advancement of deep learning has greatly propelled the development of deep MVC. Modern
deep MVC methods capitalize on the strong nonlinear representation ability of neural networks to
learn shared latent representations from multi-view data effectively. These approaches can be broadly
categorized into several lines of research. Graph-based methods, such as the graph structure-aware
contrastive clustering proposed by Fei et al. (2025), enhance representation learning by incorporating
sample-level topological relationships alongside attribute features. Subspace-based methods focus
on deriving consistent representations across views; for example, Yu et al. (2025) introduces a
pseudo-label-guided bidirectional discriminative subspace clustering framework that uses pseudo-
label-driven contrastive learning and a dual-attention mechanism to maintain structural coherence
in sample affinity matrices. Reconstruction-based methods learn representations by recovering
view-specific features or structures. Xu et al. (2022a); Yan et al. (2025), for instance, applies a
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self-supervised strategy that reconstructs view features to generate pseudo-labels, which in turn guide
the learning of discriminative multi-view features through a unified target distribution.

2.2 CONTRASTIVE LEARNING

Contrastive learning has emerged as a powerful unsupervised paradigm for handling data hetero-
geneity. By constructing positive and negative sample pairs, it learns discriminative and consistent
representations, showing particular strength in cross-view alignment tasks. Dong et al. (2025) presents
a view-graph-based progressive fusion method with dual contrastive learning within and across views,
enabling consistent multi-view representation learning. Cui et al. (2024) designs a dual contrastive
loss that combines a dynamic clustering diffusion term to separate clusters and a neighbor-guided
alignment term to improve within-cluster compactness. Tang et al. (2020) further proposes a decou-
pled contrastive MVC approach based on higher-order graph walks, which learns reliable cluster
representations through concurrent intra-view and inter-view contrastive learning.

Despite these advances, existing methods often overlook the alignment of sample-level relational
structures and do not adaptively utilize view similarity to guide label-aware contrastive learning.
As a result, they struggle to preserve neighborhood consistency across views and are susceptible to
representation degradation when view discrepancies are large. In contrast, our approach explicitly
aligns the relational structures of individual views with a global relation matrix to maintain cross-view
neighborhood consistency. Moreover, we introduce a view-aware adaptive weighting strategy that
modulates the contribution of view pairs in label contrastive learning based on their feature similarity,
thereby enhancing semantic consistency without distorting inherent view relationships.

3 METHOD

3.1 PRELIMINARIES

This section introduces our multi-view clustering framework, as depicted in Figure 1. The architecture
consists of three core components: View-Specific Autoencoder Modules, a Cross-View Relation
Alignment Module, and a View-aware Label Contrastive Learning Module. Given a multi-view
dataset with V views denoted as X = {X1,X2, . . . ,XV }, where the data from the v-th view is
represented as Xv = [xv

1;x
v
2; . . . ;x

v
N ] ∈ RN×dv , with N being the number of samples and dv the

feature dimension of view v, the framework is designed to jointly optimize these modules. This
integrated approach effectively handles disparities in view similarity while promoting consistency in
cross-view representations.

3.2 VIEW-SPECIFIC AUTOENCODER

In multi-view clustering, the quality of feature representations is critical to clustering performance.
To extract robust latent features from raw multi-view data, which often contain noise and redundancy,
we employ view-specific autoencoders for each view. Formally, for the v-th view, we define an
encoder fv and a decoder gv . The latent representation of the i-th sample in view v is obtained as::

zvi = fv(xv
i ; θ

v), (1)

where θv denotes the learnable parameters of the encoder for the v-th view, and d is the dimensionality
of the resulting latent feature. The latent representation zvi is then passed to the corresponding decoder
gv to reconstruct the original input, formulated as:

x̂v
i = gv(zvi ;ϕ

v) = gv(fv(xv
i ; θ

v);ϕv), (2)

where x̂v
i denotes the reconstructed version of the i-th sample from the v-th view, and ϕv represents

the trainable parameters of its decoder. The overall reconstruction loss for training all autoencoders is
defined as:

LREC =

V∑
v=1

N∑
i=1

∥xv
i − x̂v

i ∥22. (3)
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Figure 1: An illustration of the proposed RAV framework. The model crucially incorporates
two modules: cross-view relation alignment to maintain neighborhood structures, and view-aware
adaptive weighting in label contrastive learning to counteract representation degradation from view
dissimilarity, thereby achieving robust multi-view clustering.

3.3 CROSS-VIEW RELATIONSHIP ALIGNMENT

To enhance the consistency of sample relationships across views while preserving local neighborhood
structures, we introduce a cross-view relation alignment module. First, deep features Zv for each
view are obtained using the view-specific encoders. The pairwise similarity between samples within
a view is then computed via a Gaussian kernel. Specifically, the similarity between the i-th and k-th
samples in the v-th view is given by:

svik = exp

(
−∥zvi − zvk∥2

σ

)
, (4)

where svik denotes the similarity between the i-th and k-th samples in the v-th view. A smaller
feature distance corresponds to higher similarity, and vice versa. Based on equation (4), we compute
the pairwise similarities for each view and store them in a view-specific relation matrix {Sv =
[sv1; s

v
2; , , , ; s

v
N ]}Vv=1 ∈ RN×N . To construct a global relation matrix that integrates information from

all views, we first concatenate the deep features as follows:

Z = Concat(Z1,Z2, . . . ,Zv), (5)

where Z ∈ RN×(V d) represents the concatenated global features. The global relation matrix S =
[s1; s2; , , , ; sN ] ∈ RN×N is then computed using the same similarity measure defined in equation
(4). We align each view-specific relation matrix with this global matrix via a global-supervise-local
contrastive learning objective, which pulls positive pairs closer while pushing negative pairs apart.
The resulting cross-view relation alignment loss is formulated as:

LS = − 1

N

V∑
v=1

N∑
i=1

log
ed(s

v
i ,si)/τF∑N

k=1 e
d(svi ,sk)/τF − e1/τL

, (6)
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where τF is a temperature hyperparameter, and d(svi , sk) denotes the cosine similarity function,
defined as:

d(svi , sk) =
⟨svi , sk⟩
∥svi ∥∥sk∥

. (7)

The alignment loss improves cross-view relational consistency by preserving sample neighborhood
structures, ensuring that neighboring samples remain close while distant ones are separated. Con-
sequently, it enhances both feature discriminability within views and semantic consistency across
views.

3.4 VIEW-AWARE LABEL CONTRASTIVE LEARNING

After obtaining the view-specific representations, we project the features of each view through a
shared MLP to generate the cluster assignment matrices {Qv ∈ RN×K}Vv=1. Each entry qv

ij denotes
the probability that the i-th sample is assigned to the j-th cluster in the v-th view, obtained by applying
the Softmax function along the cluster dimension. To promote clustering consistency across views,
we apply contrastive learning at the cluster-assignment level. For the j-th cluster assignment vector
qv
:,j (i.e., the j-th column of Qv), we consider all possible assignment pairs across views and clusters,

totaling (V K − 1) pairs. Among these, pairs originating from the same cluster index j but different
views (u ̸= v) are treated as positive pairs, amounting to (V − 1) positives. The remaining V (K − 1)
pairs are considered negatives. The contrastive loss between view v and view u is defined as:

ℓ(v,u)c = − 1

K

K∑
j=1

log
ed(q

v
:,j ,q

u
:,j)/τL∑K

k=1

∑
m=v,u e

d(qv
:,j ,q

m
:,k)/τL − e1/τL

, (8)

where τL is the temperature parameter of label contrastive learning. Afterward, the total label
contrastive loss is give by:

LQ =
1

2

V∑
v=1

∑
u̸=v

ℓ(v,u)c +

V∑
v=1

K∑
j=1

rvj log r
v
j , (9)

where rvj = 1
N

∑N
i=1 q

v
ij . The first term enhances cross-view clustering consistency, while the second

acts as a regularization term that prevents all samples from being assigned to a single cluster, thereby
avoiding trivial solutions.

However, this approach does not account for inherent feature distribution discrepancies across views.
When contrastive learning forcibly aligns view pairs with substantial differences, it may distort
genuine semantic structures and cause representation degradation. To address this issue, we propose a
view-aware adaptive weighting strategy for label contrastive learning, which dynamically modulates
the influence of each view pair based on their deep feature similarity. Specifically, we first employ
the Wasserstein Distance (WD) Shen et al. (2018) to quantify the discrepancy between the feature
distributions of two views. The WD between view v and view u is defined as:

WD(Zv,Zu) =
1

N2

N∑
i=1

N∑
k=1

|zvi − zuk |, (10)

where zvi and zuk denote the deep features of the i-th sample in view v and the k-th sample in view u,
respectively. The adaptive weight between views v and u is then calculated based on their Wasserstein
Distance as follows:

w(v,u) =
e−WD(Zv,Zu)

V∑
v=1

e−WD(Zv,Zu)

, (11)

where w(v,u) denotes the adaptive weight between the representations Zv and Zu. All pairwise
weights are organized into a V × V matrix W. This matrix enables a dynamic weighting strategy:
view pairs with high feature similarity (i.e., small WD values) are assigned larger weights to strengthen
their contribution during contrastive learning, while pairs with large representation discrepancies (i.e.,
high WD values) are assigned smaller weights to reduce potential negative effects. Integrating this
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weighting mechanism into the label contrastive learning objective, we obtain the final view-aware
adaptive weighting loss:

LQ =
1

2

V∑
v=1

∑
u̸=v

1

2
(w(v,u) + w(u,v))ℓ

(v,u)
c +

V∑
v=1

K∑
j=1

rvj log r
v
j . (12)

3.5 THE OVERALL LOSS FUNCTION

Based on the foregoing formulation, the overall objective function integrates the three key components
as follows:

Ltotal = LREC + λ1LQ + λ2LS, (13)

where λ1 and λ2 are balancing coefficients, LREC denotes the reconstruction loss, LQ represents the
view-aware adaptive label contrastive loss, and LS corresponds to the cross-view relation alignment
loss.

Once the model converges, the clustering labels can be obtained as follows:

yj = argmax
j

(
1

V

V∑
v=1

qv
i,j

)
. (14)

The full process of our RAV is summarized in Algorithm 1.

Algorithm 1 : The optimization of RAV.

1: Input: Multi-view dataset {Xv}Vv=1; The number of samples is N ; The number of max epochs
is T ; The number of clusters is K; The parameters λ1, λ2.

2: Initialization: Initialize autoencoder parameters by minimizing LREC in Eq. (3).
3: for t = 1 to T do
4: Obtain the weight matrix W by Eq. (11).
5: Optimize {θv, ϕv}Vv=1 by minimizing Ltotal in Eq. (13) .
6: end for
7: Calculate the predicted labels by Eq. (14).
8: Output: Y = [y1, y2, . . . , yN ].

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENTAL SETTING

Datasets. We evaluate our model on nine benchmark datasets. Table 1 summarizes their key
characteristics, including sample size, number of views, number of clusters, and feature dimensions
for each view. NGs Yan et al. (2025): This dataset consists of 500 documents, which have been
preprocessed using three different methods to obtain three distinct views. Digit-Product Xu et al.
(2021): This dataset is derived from MNIST and Fashion Handwritten digits, containing 30,000
samples and two views. ALOI Cui et al. (2024): This dataset contains 10,800 samples and 10
clusters, with four views extracted from each image, representing color similarity, Haralick, HSV, and
RGB features. Cora Fang et al. (2023a): This dataset contains 2,708 documents, with four features
selected as the four views: content, inbound, outbound, and citations. It is categorized into seven
clusters. NUSWIDE Chua et al. (2009): This dataset consists of 5,000 images, classified into 5
categories. Caltech-5V Xu et al. (2022b): This dataset is an RGB image dataset containing 1,400
images, covering WM, CENTRIST, LBP, GIST, and HOG features. NoisyMNIST Wang et al. (2015):
This dataset comprises 50,000 samples, organized into 10 clusters. YoutubeVideo Madani et al.
(2012): This dataset consists of 101,499 samples, divided into 31 classes. 3Sources1: This dataset
contains 169 samples, 3 views, and 6 classes.

1http://mlg.ucd.ie/datasets/3sources.html
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Table 1: Description of the used multi-view datasets.

Dataset Samples Views Clusters Dimensionality

NGs 500 3 5 2000/2000/2000
Digit-Product 30,000 2 10 1024/1024

ALOI 10,800 4 100 77/13/64/125
Cora 2,708 4 7 2708/1433/2708/2708

NUSWIDE 5,000 5 5 65/226/145/74/129
Caltech-5V 1,400 5 7 40/254/928/512/1984

NoisyMNIST 50,000 2 10 784/784
YoutubeVideo 101,499 3 31 512/647/838

3Sources 169 3 6 3560/3631/3068

Implementation Details. All experiments are conducted using PyTorch 1.12.1 on an NVIDIA RTX
4090 D GPU. The model is optimized with the Adam optimizer, employing a fixed learning rate
of 0.0003 and a batch size of 256. Both pretraining and fine-tuning phases are fixed at 200 epochs.
We introduce two hyperparameters: λ1 and λ2, where λ1 ranges from [0.00001, 0.0001, . . . , 1000]
and λ2 ranges from [0.00001, 0.0001, . . . , 1]. All baseline methods were evaluated under identical
experimental conditions.

4.2 COMPARED METHODS AND RESULTS

We compare seven representative multi-view clustering methods across nine benchmark datasets to
evaluate our approach. MFLVC Xu et al. (2022b): This method is primarily used for multi-level
feature learning in multi-view clustering. GCFAgg Yan et al. (2023): This method mainly utilizes
sample similarity structures to guide contrastive learning. SEM Xu et al. (2023): This method
mostly guides contrastive learning by adjusting view weights. MVCAN Xu et al. (2024): This
method alleviates the negative impact of noisy views and optimizes the learning of individual image
representations. DDMVC Xu et al. (2025): This method considers diversity and discriminative
feature learning. SSLNMVC Yan et al. (2025): This method introduces the UProjection module,
which enhances the expressiveness of consistent features by feature resampling and concatenating the
fused features before and after resampling. AICN-MLM Shu et al. (2025): This method proposes a
fuzzy instance-aware multi-level matching contrastive network for multi-view document clustering.

We evaluate our method using three widely recognized clustering evaluation metrics: Accuracy
(ACC), Normalized Mutual Information (NMI), and Purity (PUR), as shown in Tables 2, 3, and 4.
Based on these results, we can draw the following conclusions:

Our method achieves superior performance over baseline approaches on most datasets, confirming its
effectiveness. Notably, on the NGs, YoutubeVideo, and 3Sources datasets, it improves ACC by 4.4%,
7.8%, and 1.2%, respectively, over the second-best results. These gains stem from the proposed view-
aware adaptive contrastive learning and relation alignment mechanism, which mitigates representation
conflicts from view discrepancies, emphasizes high-similarity view pairs in label learning, and
maintains neighborhood consistency—collectively enhancing clustering accuracy.

On ALOI and Caltech-5V, our method performs slightly below MVCAN, which may be due to the
latter’s non-use of standard contrastive learning, reducing its sensitivity to view variations. On the
Fashion dataset, our results are comparable to MFLVC, SEM, AICN-MLM, and SSLNMVC, likely
because of the dataset’s limited inter-view variability, diminishing the need for adaptive weighting.

Compared to SEM, which also uses view similarity in feature contrastive learning, our method
performs better on all datasets except Fashion. This highlights the stronger generalizability of our
deep feature similarity mechanism in guiding label contrastive learning. Our approach not only
enhances the contribution of high-similarity views but also preserves natural inter-view relationships,
leading to improved robustness and generalization.

4.3 MODEL ANALYSES

Parameter Sensitivity: To evaluate the impact of λ1 and λ2 on the model, we con-
duct a parameter sensitivity analysis as illustrated in Figure 2. The experiments set

7
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Table 2: Clustering results of all methods on the NGs, Digit-Product, and ALOI datasets.

Datasets NGs Digit-Product ALOI

Evaluation Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR

MFLVC (22 CVPR) 0.932 0.825 0.932 0.991 0.976 0.991 0.435 0.786 0.435
GCFAgg (23 CVPR) 0.894 0.742 0.894 0.988 0.968 0.988 0.790 0.917 0.809
SEM (24 NeurIPS) 0.856 0.673 0.856 0.991 0.976 0.991 0.771 0.899 0.787
MVCAN (24 CVPR) 0.470 0.271 0.470 0.989 0.967 0.989 0.849 0.929 0.864
DDMVC (25 PR) – – – 0.968 0.931 0.968 0.796 0.907 0.813
SSLNMVC (25 TMM) 0.936 0.842 0.936 0.990 0.973 0.990 0.541 0.814 0.558
AICN-MLM (25 AAAI) 0.912 0.774 0.912 0.991 0.976 0.991 0.788 0.906 0.800
ours 0.980 0.934 0.980 0.998 0.993 0.998 0.826 0.912 0.830

Table 3: Clustering results of all methods on the Cora, NUSWIDE, and Caltech-5V datasets.

Datasets Cora NUSWIDE Caltech-5V

Evaluation metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR

MFLVC (22 CVPR) 0.268 0.111 0.377 0.624 0.338 0.624 0.867 0.781 0.867
GCFAgg (23 CVPR) 0.220 0.051 0.304 0.596 0.336 0.596 0.799 0.697 0.799
SEM (24 NeurIPS) 0.220 0.028 0.313 0.588 0.317 0.588 0.901 0.834 0.901
MVCAN (24 CVPR) 0.567 0.385 0.640 0.572 0.290 0.572 0.919 0.856 0.919
DDMVC (25 PR) 0.323 0.141 0.407 0.607 0.312 0.636 0.771 0.695 0.779
SSLNMVC (25 TMM) 0.277 0.102 0.364 0.637 0.367 0.637 0.881 0.789 0.881
AICN-MLM (25 AAAI) 0.331 0.171 0.418 0.612 0.337 0.612 0.898 0.828 0.898
ours 0.592 0.404 0.598 0.647 0.371 0.647 0.901 0.839 0.901

Table 4: Clustering results of all methods on the NoisyMNIST, YoutubeVideo, 3Sources, and Fashion
datasets.

Datasets NoisyMNIST YoutubeVideo 3Sources Fashion

Evaluation metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

MFLVC (22 CVPR) 0.988 0.965 0.988 0.238 0.224 0.324 0.521 0.477 0.669 0.994 0.985 0.994
GCFAgg (23 CVPR) 0.781 0.847 0.836 0.275 0.263 0.361 0.521 0.429 0.615 0.990 0.974 0.990
SEM (24 NeurIPS) 0.995 0.984 0.995 0.318 0.309 0.404 0.533 0.584 0.716 0.994 0.983 0.994
MVCAN (24 CVPR) 0.933 0.861 0.933 0.244 0.244 0.341 0.562 0.478 0.663 0.856 0.840 0.856
DDMVC (25 PR) 0.957 0.893 0.957 – – – 0.456 0.346 0.592 0.931 0.892 0.931
SSLNMVC (25 TMM) 0.995 0.985 0.995 0.235 0.244 0.430 0.521 0.510 0.686 0.994 0.984 0.994
AICN-MLM (25 AAAI) 0.990 0.971 0.990 – – – 0.538 0.472 0.675 0.994 0.985 0.994
ours 0.996 0.986 0.996 0.356 0.332 0.445 0.574 0.599 0.775 0.994 0.984 0.994

Table 5: Ablation studies on different loss components on the Caltech-5V, NUSWIDE, ALOI, and
3Sources datasets.

Components Caltech-5V NUSWIDE ALOI 3Sources

LREC LQ LS ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

✓ ✓ × 0.899 0.830 0.899 0.644 0.362 0.644 0.780 0.887 0.789 0.562 0.464 0.686
✓ × ✓ 0.424 0.309 0.439 0.298 0.037 0.311 0.264 0.656 0.264 0.396 0.135 0.408
✓ ✓ ✓ 0.901 0.839 0.901 0.647 0.371 0.647 0.826 0.912 0.830 0.574 0.599 0.775

λ1 within the range [10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103] and λ2 within the range
[10−5, 10−4, 10−3, 10−2, 10−1, 1]. The results demonstrate that when these hyperparameters vary
within the specified ranges, the clustering performance on all four datasets exhibits only minor
fluctuations. This relatively small variation in performance proves that our method is highly robust to
hyperparameter selection.

Convergence: We observe the changes in training loss and evaluation metrics (ACC/NMI) across
four benchmark datasets to analyze the convergence characteristics of the proposed method. Figure 3
shows the convergence curves for the Fashion, Hdigit, NUSWIDE, and YTF-10 datasets. The main
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(a) NUSWIDE (b) Caltech-5V (c) NoisyMNIST (d) 3Sources

Figure 2: Parameter sensitivity analysis of λ1 and λ2 on the NUSWIDE, Caltech-5V, NoisyMNIST,
and 3Sources datasets.

(a) Caltech-5V (b) Digit-Product (c) NGs (d) NoisyMNIST

Figure 3: Convergence analysis of ours on Caltech-5V, Digit-Product, NGs, and NoisyMNIST
datasets, where each subgraph displays the total loss and both evaluation metrics (ACC/NMI) over
training epochs.

observations are as follows: First, the loss function decreases rapidly in the initial training phase
and then gradually stabilizes until convergence. Second, the clustering evaluation metrics ACC and
NMI continuously increase during training and eventually stabilize. Finally, this convergence trend
indicates that our loss function effectively regularizes the model and drives parameter optimization.
These results not only demonstrate the convergence stability of our method but also validate its
effectiveness in improving clustering performance.

Table 6: Ablation study on the view-aware adaptive weighting mechanism for NGs, Digit-Product,
ALOI and Cora datasets.

Datasets NGs Digit-Product ALOI Cora

Evaluation metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

ours w/o W 0.966 0.895 0.966 0.998 0.993 0.998 0.801 0.903 0.807 0.585 0.393 0.585
ours 0.980 0.934 0.980 0.998 0.993 0.998 0.826 0.912 0.830 0.592 0.404 0.598

Ablation Studies: To systematically evaluate the contribution of each component, we conduct a
comprehensive ablation study. As summarized in Table 5, LREC, LQ, and LS represent the reconstruc-
tion loss, the view-aware adaptive weighting contrastive loss, and the cross-view relation alignment
loss, respectively. Experiments on four benchmark datasets—Caltech-5V, NUSWIDE, ALOI, and
3Sources—show that the full model outperforms variants that remove either the relation alignment
module or the view-aware weighting mechanism. These results confirm that relation alignment
helps capture semantic structures across views, while adaptive weighting enhances robustness by
dynamically moderating the influence of view pairs.

We further examine the specific contribution of the view-aware weighting strategy in Table 6. On
the NGs, ALOI, and Cora datasets, the full model achieves ACC gains of 1.4%, 2.5%, and 0.7%,
respectively, compared to the variant without weighting (Ours w/o W). These improvements indicate
that the weighting strategy effectively alleviates representation degradation resulting from view
discrepancy. On the Digit-Product dataset, however, performance remains unchanged—likely due
to its inherently small inter-view differences, which diminish the need for adaptive weighting.
This outcome underscores the particular usefulness of our weighting mechanism in scenarios with
pronounced view disparities.
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5 CONCLUSION

This paper presents a multi-view clustering framework that integrates sample relation alignment
with view-aware adaptive weighting for contrastive learning, leading to significant performance
improvements. The framework begins by constructing relation matrices for each view and a global
matrix using a Gaussian kernel. It then enforces cross-view consistency and preserves neighborhood
structures by aligning each view-specific relation matrix with the global one. Moreover, a view-aware
adaptive weighting mechanism based on Wasserstein Distance is introduced to reduce the negative
effects of view similarity discrepancies. Extensive experiments show that the proposed method
effectively mitigates the impact of view disparity and outperforms existing approaches on multiple
benchmarks. In future work, we will explore more generalizable view similarity measurements to
develop a universal evaluation standard adaptable to diverse data characteristics, further enhancing
the method’s applicability and stability in real-world scenarios.
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