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Abstract
We give an efficient algorithm for producing multi-
dimensional forecasts in an online adversarial en-
vironment that have low bias subject to any poly-
nomial number of conditioning events, that can
depend both on external context and on our pre-
dictions themselves. We demonstrate the use of
this algorithm with several applications. We show
how to make predictions that can be transparently
consumed by any polynomial number of down-
stream decision makers with different utility func-
tions, guaranteeing them diminishing swap regret
at optimal rates. We also give the first efficient
algorithms for guaranteeing diminishing condi-
tional regret in online combinatorial optimization
problems for an arbitrary polynomial number of
conditioning events — i.e. on an arbitrary number
of intersecting subsequences determined both by
context and our own predictions. Finally, we give
the first efficient algorithm for online multicali-
bration with O(T 2/3) rates in the ECE metric.

1. Introduction
Decision making in sequential settings is a challenging prob-
lem from both the theoretical and the applied perspective.
Tackling the nonstationarity inherent to sequential interac-
tive decision making settings is the subject of the online
learning, reinforcement learning, and bandits literatures (see
e.g. Slivkins et al. (2019)).

The dominant paradigm is regret minimization, which
places emphasis on optimizing various notions of regret for
decision-making agents, thus ensuring that these agents’ cu-
mulative rewards stay ahead of nontrivial benchmark classes
of strategies. The most basic and tractable notion of regret,
called external regret (with the qualifier “external” usually

1Department of Computer and Information Science, Univer-
sity of Pennsylvania 2Machine Learning Department, Carnegie
Mellon University. Correspondence to: Georgy Noarov
<gnoarov@seas.upenn.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

omitted), compares the utility of an agent’s play to that of
the best-in-hindsight fixed strategy. It is a marginal guar-
antee, in the sense that it forces the agent to do as well as
the benchmark cumulatively over all rounds t = 1 . . . T , but
does not imply locally optimal performance on any subset of
rounds. Thus, various extensions to more challenging bench-
mark classes have been developed, giving rise to notions
such as swap regret, adaptive regret, and beyond.

Typically, regret minimization algorithms directly optimize
the agent’s loss or reward function. This works well in
single-agent settings and for simple regret guarantees. How-
ever, this direct approach does not naturally address se-
quential environments which (a) involve multiple decision-
making agents with different utilities/rewards; or (b) de-
mand performance guarantees conditionally on the agents’
own actions. Motivated by these challenges, in this paper
we take a different route and shift from direct reward opti-
mization to a more subtle but flexible approach.

Recipe

1. Distill the decision-making-relevant aspects of
the sequential environment into a sequence of “suffi-
cient statistics”: vector-valued states of the environ-
ment, such that all agents could easily identify their
reward-maximizing actions if they perfectly knew
the next state.
2. Devise an efficient online adversarial algorithm
that predicts the upcoming state of the environment
with such granular accuracy guarantees that the
agents can treat our predictions as the true states for
the purposes of picking reward-maximizing actions.

Step 1 of this recipe will naturally always require insight
into the specific setting at hand, and identifying appropriate
sufficient statistics can often be an art. However — as we
will show in this paper — Step 2, which may appear just as
hard to execute, turns out to have a “silver-bullet” solution
that applies to a wide variety of complex decision-making
settings: our event-unbiased prediction framework.

1.1. Our Contributions

Our central contribution is a general and efficient algorith-
mic framework for event-unbiased prediction of vector quan-
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tities in the online adversarial setting. It accommodates
arbitrary finite collections of (unweighted or weighted) con-
ditioning events, which may depend on external contexts
or on the predictions themselves, and guarantees optimally
converging bias conditional on each of these events. We
introduce the framework, and formally derive the algorithm
and its guarantees, in Section 2.

We then show how our framework implements the above
recipe in complex environments shared by one or more
decision-making agents. In this context, as our Recipe pre-
scribes, we use it in a “Predict-then-Act” manner, which
allows us to bypass direct optimization of policy rewards for
any given agent, instead focusing on forecasting the evolv-
ing state of the environment, which the agents’ rewards
ultimately depend on. The main advantages this offers are:

(1) Strong conditional regret guarantees: By leveraging our
predictions, the agents can minimize their regret not just
marginally over the whole sequence of the interaction, but
also on arbitrary context- and action- defined subsequences
of the rounds. This is enabled by our framework’s ability
to de-bias its state predictions over arbitrary such subse-
quences of rounds, thus endowing the agents’ decisions with
corresponding regret guarantees on these subsequences.

(2) Coordination of multiple agents: Instead of letting all
agents take the burden of running their respective regret min-
imization algorithms locally, we are able to instead provide
a single public-knowledge state prediction, which all agents
can then use to inform their actions in a straightforward way:
They can just best-respond to the announced state.

We illustrate the power of our framework on the following
concrete examples:

Online Combinatorial Optimization We consider a gen-
eral online combinatorial optimization setting, which mod-
els a sequential interaction of multiple agents with combi-
natorially large action spaces corresponding to structured
subsets of some set of d base actions, and which encom-
passes a variety of classical problems such as online routing.
We show how to endow all agents with conditional regret
guarantees, letting the agents incur only sublinear regret
on any given finite collection of subsequences defined by
external contexts and even by their own actions.

An example instantiation is the online routing problem in
which multiple agents are trying to get from home to work
as fast as possible every day. We can issue trustworthy
daily road congestion forecasts, such that each agent who
always selects the fastest route according to our forecast is
guaranteed no regret conditional both on salient covariate
information (such as the weather) and on their own choice
of route (e.g. downtown route; interstate route; route visiting
their favorite coffee shop). Thus, each agent will then be
happy with their average travel time not just overall, but

also, e.g., over those days when it rained and they went to
get coffee on their way to work; or over those days when
their local football team was playing.

Our algorithm has an efficient dependence on the dimension
d of the combinatorial problem (e.g. d is the number of
edges in online routing): it runs using only poly(d) calls to
the offline oracle for the problem (e.g. a shortest-path algo-
rithm for routing) and has Õ(d) regret dependence. Prior
techniques for giving conditional regret guarantees by direct
regret minimization (e.g. the algorithm of Blum & Mansour
(2007)) have running time scaling with the number of ac-
tions (e.g. paths in online routing), which can be exponential
in d in online combinatorial optimization. See Section 4.

Swap Regret for Multiple Agents In the classical experts
setting but with multiple regret-minimizing agents, we show
how to use our framework to issue a single coordinating
prediction at all rounds that will guarantee swap regret at
optimal rates to all agents simultaneously. See Section 3.

Online Multicalibration In Section 2.2 we show that our
algorithm, when appropriately instantiated, gives the first ef-
ficient O(T 2/3) online multicalibration algorithm. Multical-
ibration (Hébert-Johnson et al., 2018) is a strengthening of
the classical statistical concept of calibration (Dawid, 1985),
and promises calibrated predictions on rich collections of
contextually defined groups in the data. The best-known
efficient algorithm for (vanilla) online calibration is due to
Abernethy et al. (2011), and we match its rate in the more
challenging multicalibration setting. The best-known multi-
calibration bound achieved in the ECE metric was O(T 3/4)
(Gupta et al., 2022).

1.2. Follow-up Work and Impact

Since the appearance of the preprint of this paper, our
methodology has been employed in several subsequent
works, showing the broad utility of our framework.

Collina et al. (2024b) apply our algorithms in a repeated
principal-agent setting defined by Camara et al. (2020) to
obtain exponentially improved bounds. Briefly, Camara
et al. (2020) gave a mechanism that replaced the standard
“common prior” assumptions that underlie principal-agent
models with calibrated forecasts of an underlying state, and
is applicable in adversarial settings. Camara et al. (2020) use
the traditional notion of calibration, and as a result inherit
exponential computational and statistical dependencies on
the cardinality of the state space. Collina et al. (2024b) show
how to apply our techniques to recover the same results
(under weaker assumptions) with an exponentially improved
dependence on the cardinality of the state space.

Roth & Shi (2024) apply our algorithms to produce fore-
casts that guarantee all downstream decision makersO(

√
T )

swap regret without the need to know their utilities in ad-
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vance, improving on the simultaneous no-external regret
guarantees of Kleinberg et al. (2023).

Hu & Wu (2024), using our algorithm, further remove any
dependence on the cardinality of the decision maker’s action
space in the 1-dimensional setting.

Collina et al. (2024a) use our algorithm as part of their
construction giving computationally tractable “agreement”
protocols generalizing Aumann’s agreement theorem.

Our original extended preprint contains another application
of our algorithm, to decision conditional “score-free” con-
formal prediction. By appropriately de-biasing the scores of
any online multiclass predictor, we can make them look like
correct class probability vectors to downstream prediction
set algorithms, letting prediction sets with valid conditional
coverage guarantees be simply “read off” from the multi-
class probability vectors.

1.3. Related Work

Our framework extends an array of recent prior works on
decision-focused prediction. Zhao et al. (2021) introduce
decision calibration: a calibration-based framework for the
offline (batch) setting. Decision calibration is less expressive
than our event-unbiasedness notion: e.g., unlike our frame-
work, it does not imply swap regret guarantees. Gopalan
et al. (2022a) introduce omniprediction: an approach for
making predictions that simultaneously can be used to opti-
mize multiple downstream loss functions. Omniprediction
is related to our Predict-then-Act approach to optimizing
utilities for multiple agents: the omni-predictions need to
be post-processed downstream to optimize each loss, but
can be treated as if they are real probabilities in that down-
stream optimization. Dwork et al. (2021) study outcome
indistinguishability: a complexity-theoretic perspective on
making predictions that appear indistinguishable from the
ground truth to a rich class of distinguishers. These works
have generated considerable follow-up research, which we
discuss in Appendix A. We extend these insights into a
broadly applicable, efficient online adversarial framework
with optimal-rate guarantees.

No-Regret Guarantees in Online Learning No-regret
learning has been studied at least since Hannan (1957);
see Hazan (2016) for a modern treatment of this literature.
Kalai & Vempala (2005) gave efficient no regret algorithms
in online linear and combinatorial optimization problems.
Internal regret, which corresponds to regret on the subse-
quences defined by the play of each action, was first defined
by Foster & Vohra (1999), who also showed it could be
obtained by best responding to calibrated forecasts.

The seminal contribution of Foster & Vohra (1999) has led
to a long list of works exploring the interplay of no-regret
and online calibration algorithms, discussed in more detail

in the Appendix. As one important precursor to our work,
Haghtalab et al. (2023a) develop a general online multiobjec-
tive learning framework based on a game between no-regret
and best-response algorithms, with the focus on deriving im-
proved multicalibration guarantees in the online and batch
settings. Their reduction to no-regret learning allows them,
in particular, to obtain small-loss group-calibration bounds,
mirroring our small-loss event-conditional bias bounds.

Lehrer (2003) defined a notion of “wide-range regret” which
is equivalent to conditional regret: that a player should have
no regret not just overall on the whole sequence of rounds,
but also conditional on various events — subsequences that
can be defined both as a function of time (“time selection
functions”) and as a function of the actions of the learner.
Blum & Mansour (2007) gave algorithms for obtaining this
kind of conditional regret guarantees (including, notably in-
ternal (or “swap”) regret as a special case). The algorithm of
Blum & Mansour (2007) is efficient when the action space
is polynomially sized: it requires computing eigenvectors
of a square matrix of dimension equal to the number of
actions in the game. Motivated by fairness concerns, Blum
& Lykouris (2020) give an algorithm for obtaining diminish-
ing “groupwise” regret, which is equivalent to regret with
respect to a collection of time selection functions. These
results do not accommodate events that can depend on the
actions of the learner, which are crucial for our applications.

2. General Framework and Algorithm
Unbiased Prediction Setting Let X be a context space
which can be arbitrary. Let the state space S be any convex
and compact subset of Rd and assume without loss of gener-
ality that maxs∈S ∥s∥∞ ≤ 1. Any element s ∈ S is called
a state. The space of distributions over S is denoted ∆S.

In this section, we consider the task of online adversar-
ial contextual prediction of the states over t ∈ [T ] :=
{1, . . . , T} time steps. The learner sequentially observes
contexts (xt)t∈[T ] ∈ (X )T , and makes randomized state
predictions (s̄t)t∈[T ] ∈ (∆S)T . The adversary sequentially
responds by generating the true states (st)t∈[T ] ∈ (S)T .

The learner aims to make predictions unbiased conditional
on a given collection E = (Ej)j∈[n] of n ≥ 1 events.

Definition 2.1 (Event; Event-Conditional Bias). An event
is a mapping E : X ×S → [0, 1]; the event’s value in round
t is E(xt, ŝt). If the range of E is {0, 1} then we call E a
binary event.
The cumulative E-conditional bias in coordinate i ∈ [d] of
the state predictions after T rounds is defined as:

BiasT (E, i) := E
ŝt∼s̄t∀t

[∣∣∣∣∣
T∑
t=1

E (xt, ŝt) · (ŝt,i − st,i)

∣∣∣∣∣
]
.
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The general protocol is as follows. In rounds t = 1 . . . T :

1. The learner observes context xt ∈ X , and receives
event functions E(xt, ·) : S → [0, 1] for E ∈ E .

2. The learner makes state prediction s̄t ∈ ∆S.

3. The adversary sees s̄t and generates true state st ∈ S.

4. The (realized) prediction ŝt ∈ S is sampled: ŝt ∼ s̄t.

Objective: The learner’s goal is to make predictions that
are unbiased in all coordinates i ∈ [d] conditional on all
events E ∈ E . In fact, we define our desideratum by requir-
ing the bias rate conditional on every event to diminish as
a function of the event’s frequency (rather than as a func-
tion of the time horizon T ); such strengthened bounds are
referred to as small-loss in online learning.

Definition 2.2 (Unbiased Prediction). Let nT (E) =

Eŝt∼s̄t∀t
[∑T

t=1 (E (xt, ŝt))
2
]

denote the incidence1 of
event E. Then we call the learner’s predictions unbiased
conditional on event collection E if for all events E ∈ E ,

max
i∈[d]

BiasT (E, i) = O
(
log(d|E|T ) +

√
nT (E) log(d|E|T )

)
.

We further denote BiasT (E) := maxi∈[d] BiasT (E, i).

2.1. General Algorithm with Bounds

OLO Primitives We now develop a general algorithm that
achieves the above bias bounds for any given finite event
collection. It will rely on online linear optimization (OLO)
methods. We briefly review the OLO protocol over any d′-
dimensional convex domain C ⊆ Rd′ . In rounds t = 1 . . . T ,
an OLO algorithm AOLO plays some ct ∈ C, the adversary
observes that and generates a loss vector ℓt ∈ Rd, and
AOLO observes ℓt and suffers loss ⟨ℓt, ct⟩ in that round.
The overall performance of AOLO is measured via OLO
regret to the best point in C that could have been played.
Letting the regret to any admissible point be defined as
RegT (AOLO, c) :=

∑T
t=1⟨ℓt, ct − c⟩, the OLO regret of

AOLO is defined as:

RegT (AOLO) := max
c∈C

RegT (AOLO, c),

Many OLO algorithms AOLO achieve the classic minimax
regret bound RegT (AOLO) = O(

√
T ) for all convex com-

pact domains C and bounded losses; the simplest one is
online gradient descent (OGD) of Zinkevich (2003).

However, for particular domains C, algorithms with even
stronger regret bounds have been developed. We will use

1Note: nT (E) is at most the expected count of E’s occurrences
(i.e., rounds where E(xt, ŝt) = 1), with equality for binary E.

one such method called MsMwC (Multiscale Multiplicative
Weights with Correction) due to Chen et al. (2021) whose
domain is the d′-dimensional simplex: C = ∆d′ . This
special setting is also called the experts setting, as each of
the vertices (ei)i∈[d′] of the simplex (ei ∈ Rd′ denoting
the ith standard basis vector) can be viewed as an expert.
Rather than only promisingO(

√
T ) regret to the best expert,

MsMwC obtains small-loss bounds simultaneously to each
expert, which scale with the losses of the expert:

Theorem 2.3 (Theorem 2 of Chen et al. (2021)). There
exists an experts OLO algorithm AMsMwC with per-round
time complexity poly(d′) for d′ experts, whose chosen points
wt ∈ ∆′

d, t ∈ [T ], achieve the following regret bound to
every expert ei ∈ [d′] provided all losses ℓt ∈ [−1, 1]d′ :

RegT (AMsMwC, ei) =O

(
log(d′T )+

√
log(d′T )·

T∑
t=1

ℓ2t,i

)

The General Unbiased Prediction Algorithm We now
apply the OLO tools described above to obtain an efficient
unbiased prediction algorithm that achieves the guarantee of
Definition 2.2 for any finite event collection E , state space
S and feature space X .

For notational convenience, we will represent any event
collection E = (Ej)j∈[n] as a single vector-valued event
function E⃗ : X × S → [0, 1]n. Definition 2.2 essen-
tially requires us to learn to make randomized state predic-
tions (ŝt)t∈[T ] to optimize the quantity: Ψ

(
(ŝt)

T
1, (st)

T
1

)
:=

maxi∈[d],j∈[n]

∣∣∣∑T
t=1E⃗j(xt, ŝt)·(ŝt,i−st,i)

∣∣∣.However, this
objective has a complex, and generally nonconvex and non-
differentiable, dependence on the predictions ŝt, so directly
optimizing it appears out of reach. Yet, we will now show
how to achieve this via a two-layer algorithmic technique:
first, a reduction to a surrogate minimax objective, followed
by a “simulated play” solution of that minimax problem.
For both layers, we will use OLO algorithms as subroutines.

First Step: We identify weights wt ∈ ∆2dn, t ∈
[T ], in an online fashion such that the following surro-
gate objective u =

∑T
t=1 ut closely approximates Ψ:

∑T
t=1

:=ut(ŝt,st)︷ ︸︸ ︷∑
i∈[d],j∈[n],
σ=±1

wt,(σ,i,j) · σ · E⃗j(xt, ŝt)·(ŝt,i−st,i) .

Second Step: While the surrogate function
∑
t ut usefully

separates the original objective across rounds t ∈ [T ], each
ut(ŝt, st) still depends on ŝt through the event mappings,
which need not be convex or differentiable. However, it
is linear in the adversary’s choice of st, and this can be
exploited due to the following observation: If the adversary
committed to st first, the learner could achieve value 0 in
the zero-sum game maxst minŝt ut(ŝt, st) by simply copy-
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ing the adversary, i.e., with ŝt = st. Therefore, simulating
the reverse playthrough of this game, with the adversary
going first and the learner copying, can give us a random-
ized saddle-point strategy s̄t for the learner: namely, the
empirical distribution of the learner’s simulated plays. This
will suffice so long as the adversary plays to optimize the
variable st using any no-regret OLO algorithm. Therefore,
by simulating sufficiently many rounds of this “no-regret
adversary vs. copycat learner” game, we can get as close as
we want to the value of the game.

Now we are ready to present our general Algorithm 1. For
the first step, it instantiates the Chen et al. (2021) MsMwC
algorithm for 2dn experts corresponding to signs σ = ±1,
coordinates i ∈ [d] and events j ∈ [n], to enable bias
bounds that depend on each event’s incidence count. For
the second step, it uses any no-regret OLO algorithm AS
that can optimize over the state space S; this could be OGD
or any other general-purpose O(

√
T )-regret algorithm.

Algorithm 1 Unbiased Prediction

Initialize ŝ0 = 0d, s0 = 0d, E⃗0(·) ≡ 0n, and AMsMwC.
for t = 1 . . . T do

Get context xt ∈ X , and define E⃗t(·) := E⃗(xt, ·).
Get new weights wt by updatingAMsMwC with losses:
ℓoutert−1 ←

(
σ · E⃗t−1

j (ŝt−1) · (st−1,i − ŝt−1,i)
)
σ,i,j

Initialize a new instance of AS and any stent0 ∈ S.
for τ = 1 . . . t2 do

Get simulated prediction stentτ by updating AS with:

ℓinnerτ−1 ←

( ∑
σ=±1

σ
∑
j∈[n]

wt,(σ,i,j)·E⃗tj
(
stentτ−1

))
i∈[d]

end for
Set s̄t ← Unif

(
{stent0 , stent1 , . . . , stentt2 }

)
.

Predict ŝt ∼ s̄t.
Observe true state st.

end for

Theorem 2.4 (Bias of Algorithm 1). For any time horizon
T , and instantiated with any O(

√
T )-regret OLO method

AS over domain S, Algorithm 1 produces (randomized)
predictions (s̄t)t∈[T ] whose realizations (ŝt)t∈[T ] achieve
the desired bias bounds for all i ∈ [d] and Ej , j ∈ [n]:

BiasT (E, i) ≤ O
(
log(d|E|T ) +

√
nT (E) log(d|E|T )

)
.

Proof. Step 1: We instantiate AMsMwC for 2dn experts,
corresponding to signs σ = ±1, coordinates i ∈ [d] and
events j ∈ [n]. Let the weights of MsMwC be (wt)t≥1,
and denote our loss vectors for MsMwC by (ℓoutert )t≥1, as
defined in Algorithm 1. Denote experts’ basis vectors by
eσ,i,j . For every σ∗ = ±1, i∗ ∈ [d], j∗ ∈ [n]:

RegT (AMsMwC, eσ∗,i∗,j∗) =
∑
t∈[T ]

⟨ℓoutert , wt − eσ∗,i∗,j∗⟩

=
∑
T,σ,i,j

wt,(σ,i,j) · σ · E⃗tj (ŝt)·(st,i−ŝt,i)

+ σ∗
T∑
t=1

E⃗tj∗(ŝt)·(ŝt,i∗−st,i∗)

Rearranging and taking a max over σ∗, we get for all i∗, j∗:

∣∣∣ T∑
t=1

E⃗tj∗ (ŝt)·(ŝt,i∗−st,i∗)
∣∣∣

≤ max
σ∗∈±1

RegT (AMsMwC, eσ∗,i∗,j∗)

+
∑
T,σ,i,j

wt,(σ,i,j) · σ · E⃗tj (ŝt)·(ŝt,i−st,i)

= O

(
log(dnT )+

√
log(dnT )nT

(
E⃗j∗
))

+

T∑
t=1

ut(ŝt, st),

where ut is as defined above, and the regret bound
follows from Theorem 2.3 since the total squared

loss of each expert (σ, i, j) is:
∑T
t=1

(
ℓoutert,(σ,i,j)

)2
=

O
(∑T

t=1(E⃗
t
j(xt, ŝt))

2
)
= O(nT (E⃗j)).

Step 2: By definition of regret for AS , we have for any t:

Regt2 (AS) = max
s∈S

∑
τ∈[t2]

⟨ℓinnerτ , stentτ − s⟩

= max
s∈S

∑
τ∈[t2]

∑
σ,i,j

wt,(σ,i,j) · σ · E⃗tj
(
stentτ

)
·
(
stentτ,i − si

)
= max

s∈S

∑
τ∈[t2]

ut
(
stentτ , s

)
= t2 ·max

s∈S
E

ŝt∼s̄t
[ut(ŝt, s)] .

The last line uses s̄t ← Unif
(
{stent0 , stent1 , . . . , stentt2 }

)
.

Thus, using that AS has regret O(
√
T ), we have

E
ŝt∼s̄t∀t

[∑T
t=1 ut(ŝt, st)

]
≤

∑T
t=1 t

−2Regt2 (AS) =

O(
∑T
t=1 t

−1) = O(log T ): a lower-order term. Taking the
expectation of the Step 1 bound thus gives the result.

2.2. Efficient O(T 2/3) Online Multicalibration: Sketch

We now sketch a simple application illustrating that our high-
dimensional prediction methodology can be useful even
for single-dimensional forecasting. This application also
showcases the utility of our per-event bias bounds scaling
optimally as O(

√
nT (E)) rather than as O(

√
T ).

Online Multicalibration In this setting (Gupta et al.,
2022; Hébert-Johnson et al., 2018), a learner, in each round
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t ∈ [T ], receives a context xt ∈ X , makes (randomized)
prediction pt ∈ [0, 1], and receives true adversarial label
yt ∈ [0, 1]. Upfront, a group collection G ⊆ 2X is specified,
and the learner’s goal is to minimize the expected calibra-
tion error (ECE) conditional on every group G ∈ G: i.e. to
minimize, for all groups G ∈ G, the expectation of:2

ECE(G) =
∑
p∈[0,1]

∣∣∣∣∣
T∑
t=1

1[xt ∈ G]1[pt = p](yt − p)

∣∣∣∣∣ .
Obtaining the O(T 2/3) Bound via Unbiased Prediction
We instantiate our framework by letting P = (Pi)i∈[m] be
the m-point uniform discretization of [0, 1], and defining
the following m · |G| group-calibration events:

EG,i = 1
[
xt ∈ G, pt ∈ (Pi − 1

2m , Pi +
1

2m ]
]
.

For each “bucket” (Pi± 1
2m ), imagine reassigning all predic-

tions pt that fell in this bucket to be Pi. For each group G,
let (ni,G)i,G be the incidences of all discretized predicted
values on G. We can then derive the bound:

ECE(G) = O(T/m) +
∑
i∈[m]

O(
√
ni,G),

where the first term is the discretization error, and the
rest are bias bounds. In the worst case, this is O(T/m +
m
√
T/m) = O(T/m+

√
Tm). By tuning m = T 1/3, we

thus obtain the first efficient O(T 2/3) online multicalibra-
tion method. This rate in particular matches the rate of the
algorithm of Abernethy et al. (2011) for vanilla calibration.

3. Unbiased Prediction for Decision Making
We now apply the unbiased framework to making predic-
tions in the service of online adversarial decision making.

Agents (Decision Makers) We study agents (decision
makers) who can choose amongst a set of actions A =
{1, . . . ,K}. They want to maximize utility as a function of
both the action they take and of the state s ∈ S ⊆ Rd.

Definition 3.1 (Agent’s Utility). A utility function u :
A × S → [0, 1] maps an action a ∈ A and a state s ∈ S
to u(a, s). We assume that for every action a ∈ A, u is
linear and L-Lipschitz in s, so that |u(a, s1)− u(a, s2)| ≤
L ∥s1 − s2∥∞ for all s1, s2 ∈ S and some L > 0.

Definition 3.2 (Best-Response). The best response func-
tion3 BRu: S→A for utility u is: BRu(s)=argmax

a∈A
u(a,s).

Suppose we make predictions ŝ1, . . . , ŝt. An agent with util-
ity umay use them to take corresponding actions a1, . . . , at.

2The summation over p ∈ [0, 1], despite looking uncountable,
only has T nonzero terms, corresponding to p ∈ {p1, . . . , pT }.

3We assume that all ties are broken lexicographically.

We call an agent straightforward if they trust the predictions
as correct (as if st = ŝt) and thus always best respond:

Definition 3.3 (Straightforward Agent). An agent with util-
ity u who treats predictions as correct and on every round t
chooses at = BRu(ŝt) is called straightforward.

Regret Since our predictions need not be correct, a straight-
forward agent may regret not having taken some other se-
quence of actions in hindsight (i.e. with knowledge of the
true states s1, . . . , st). We study several regret notions.

Definition 3.4 (External regret). The external regret of a
utility-u agent is defined as:

RegT (u) := max
a∈A

T∑
t=1

u(a, st)− u(at, st).

Definition 3.5 (Swap regret). A mapping ϕ : A → A is
called a strategy modification mapping. Let Φ be the set of
all such mappings. The swap regret of a utility-u agent is:

SwapRegT (u) := max
ϕ∈Φ

T∑
t=1

u(ϕ(at), st)− u(at, st).

External regret compares the agent’s play to the best fixed ac-
tion. Swap regret (Blum & Mansour, 2007) is strictly more
challenging (indeed, external regret is equivalent to compet-
ing against the K constant strategy modification functions
(ϕa)a∈A, where ϕa : A → A is given by ϕa(a

′) = a
for a′ ∈ A), and allows the agent to compete against all
re-mappings of their actions into other actions.

We now introduce the strong notion of conditional regret,
parameterized by collections of events that may depend on
the contexts and on the agent’s actions. It requires the agent
to have no external regret conditional on every event.

Definition 3.6 (Conditional Regret (Lehrer, 2003; Blum &
Mansour, 2007; Lee et al., 2022)). Fix Ξ, a finite collection
of covariate-dependent and action-dependent subsequences
of rounds: each member ξ ∈ Ξ is a mappingX×A → [0, 1].
The Ξ-conditional regret of a utility-u agent is:

CRegT (Ξ, u)

= max
ξ∈Ξ,a∈A

T∑
t=1

ξ(xt, at) (u(a, st)− u(at, st)) .

3.1. Swap Regret Guarantees for Many Agents

Environment Consider any convex compact state space
S ⊆ Rd. Suppose there are n agents, each with K dis-
crete actions and with utility functions (ui)i∈[n] that are
linear and L-Lipschitz in the state variable s ∈ S. We
will now show how to make predictions (ŝt)t∈[T ] to simul-
taneously guarantee no swap regret to every agent, given

6
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that all agents are straightforward, i.e. they all best-respond:
at,i = BRui(ŝt) for i ∈ [n]. We will do it by applying the
unbiased prediction framework with the following natural
collection of nK events.

Best-Response Events We write Eu,a(s) = 1[BRu(s) =
a] to denote the binary event that a is a best response to s for
utility u. These events are essentially level-set events of the
agent’s best-response correspondence. We will now see that
producing E-conditionally unbiased predictions (ŝt)t∈[T ]

for the nK-sized event collection E = (Eui,a)i∈[n],a∈[K]

will suffice to guarantee no swap regret to all agents.

Informally, the reason these events give no swap regret to
each agent ui is the following. Fix any strategy modification
function ϕ ∈ Φ. Then each event Eui,a will ensure that on
those rounds t where ui played a ∈ [K], the predictions
ŝt are sufficiently unbiased that a = BRui

(ŝt), the best
response that assumes the predictions are correct, is in fact
the (approximately) best action to play over those rounds;
in particular, a will have no regret to the re-mapped action
ϕ(a) ∈ [K] on those rounds. Since this argument applies to
all re-mappings ϕ ∈ Φ and all actions a ∈ [K], it will by
definition ensure no swap regret to agent ui.

Formally, fix any ui and swap ϕ : A → A. We express the
agent’s regret to swap ϕ in terms of (Eui,a)a∈[K] as:

T∑
t=1

ui(ϕ(at,i), st)− ui(at,i, st)

=
∑
a∈A

∑
t:BRui

(ŝt)=a

ui(ϕ(a), st)− ui(a, st)

=
∑
a∈A

T∑
t=1

Eui,a(ŝt) (ui(ϕ(a), st)− ui(a, st)) .

By linearity of ui in st, we combine terms to get:

∑
a∈A

ui

(
ϕ(a),

T∑
t=1

Eui,a(ŝt)st

)

−
∑
a∈A

ui

(
a,

T∑
t=1

Eui,a(ŝt)st

)
.

Now, by L-Lipschitzness of ui, for a′ ∈ {a, ϕ(a)} we have

E

∣∣∣∣∣ui
(
a′,

T∑
t=1

Eui,a(ŝt)ŝt

)
− ui

(
a′,

T∑
t=1

Eui,a(ŝt)st

)∣∣∣∣∣
≤ L · E

∥∥∥∥∥
T∑
t=1

Eui,a(ŝt) · (ŝt − st)

∥∥∥∥∥
∞

= L · BiasT (Eui,a).

Applying this to both terms in the above ϕ-
regret expression, we have that it is only an ex-

pected L
∑
a∈[K] BiasT (Eui,a) error away from:∑

a∈A

(
ui

(
ϕ(a),

T∑
t=1

Eui,a(ŝt)ŝt

)
−ui

(
a,

T∑
t=1

Eui,a(ŝt)ŝt

))
.

However, this last expression can be rewritten as∑T
t=1 ui(ϕ(at,i), ŝt) − ui(at,i, ŝt), which is nonpositive

since actions at,i = BRui
(ŝt) obtain the best utility when

evaluated on predicted states ŝt. This means that we have
shown a L

∑
a∈[K] BiasT (Eui,a) expected regret bound

for any agent to any swap function ϕ : A → A, which
implies that each agent has expected swap regret at most
L
∑
a∈[K] BiasT (Eui,a).

Note that exactly one event from {Eui,a}a∈A occurs
at each time t. Thus,

∑
a∈A nT (Eu,a) ≤ T , so that

L
∑
a∈[K] BiasT (Eui,a) = O(L

∑
a∈[K]

√
nT (Eui,a)) ≤

O(LK
√
T/K) = O(L

√
KT ). Therefore, we have shown:

Theorem 3.7 (No Swap Regret for Multiple Agents). In the
above setting with n agents, all withK actions and Lipschitz
utilities, if all agents best-respond to our forecasts (ŝt)t∈[T ],
then by making these forecasts via E-unbiased prediction for
E = (Eui,a)i∈[n],a∈[K], the we efficiently obtain O(

√
KT )

swap regret bounds for all agents simultaneously.

In the context of experts learning for a single decision maker,
similar observations about the relevance of best-response
partitions have been previously made by Perchet (2011) and
Haghtalab et al. (2023b).

4. Conditional Regret Guarantees for Online
Combinatorial Optimization

The regret guarantees that we just obtained for n agents
with size-K action sets required unbiased predictions con-
ditional on O(nK) events, resulting in poly(nK) runtime.
This method applies to any finite action sets, and will be
efficient where agents’ action sets are modestly sized. How-
ever, when the agents’ action sets are combinatorially large,
this runtime is prohibitive. Below we identify an impor-
tant setting in which an exponentially improved (oracle-)
complexity poly(n logK) can be obtained.

4.1. Setting: Online Combinatorial Optimization

In a combinatorial optimization setting (as studied by Kalai
& Vempala (2005)), there are d ≥ 1 base elements, or base
actions, e ∈ B := {1, . . . , d}, each offering an associated
reward re ∈ [−1, 1]. In this setting, an agent has action
space A ⊆ 2B — an arbitrarily structured collection of
subsets of the base action set — and their utility u : A×S →
[−d, d] is defined as the sum of the rewards of the base
actions in the chosen action:

u(a, r) :=
∑
e∈a

re for a ∈ A, r ∈ S := [−1, 1]d.

7
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Thus, given a vector r = (re)e∈[d] of d base rewards, the
agent’s optimization task is to identify, from among their
actions a ∈ A, the highest-reward subset of the base action
set. An offline oracle for this problem is any algorithm that,
given r, computes the agent’s best action in A.

Now, we define a contextual online n-agent setting in which
base rewards vectors rt are generated by an adversary in
rounds t ∈ [T ]. In this setting, each agent i’s goal will
be to learn to play actions (at,i)t∈[T ] that will minimize
an appropriate notion of regret to the hindsight-best policy
from some benchmark policy class.

Formally, consider an arbitrary context space X , and n ≥ 1
combinatorial agents with action sets (Ai)i∈[n] repeatedly
playing the following game in rounds t ∈ [T ]. In round t:

1. Agents i ∈ [n] observe context xt ∈ X , and commit to
their actions at,i ∈ Ai;

2. Adversary produces base rewards vector rt ∈ [−1, 1]d;

3. Agents see rt and get utilities ui(at,i, rt) :=
∑

e∈at,i
rt,e.

Examples Suppose the base elements B correspond to
the roads in a road network, the feasible subsetsAi for each
agent i ∈ [n] correspond to collections of roads that form
source-to-sink paths for that agent in the network, and the
reward for each road (edge) e ∈ B in the network is the
(negative) latency on this edge. This classic instance of
online combinatorial optimization is called online routing
or online shortest paths (Takimoto & Warmuth, 2003; Kalai
& Vempala, 2005). More generally, the action spaces Ai
could represent any combinatorial structure; other well-
studied examples include spanning trees, Hamiltonian paths,
and fixed-size subsets of the base set. For many of these
classical examples, there exist efficient offline oracles, such
as Bellman-Ford for shortest paths or Prim or Kruskal for
spanning trees.

Regret Guarantees The FTPL algorithm of Kalai & Vem-
pala (2005) reduces the problem of obtaining efficient exter-
nal regret bounds for combinatorial optimization problems
to the offline problem of linear optimization over the ac-
tion spaces Ai. Here we show for the first time how to
efficiently obtain much stronger and more granular regret
bounds: namely, Ξ-conditional regret bounds for any poly-
nomially large collection of events Ξ. Moreover, unlike
prior results, our result will provide these guarantees si-
multaneously for any finite collection of agents, letting us
publish a concise forecast that is simultaneously useful for
many downstream consumers.

Some existing general-purpose online algorithms (Blum &
Mansour, 2007; Lee et al., 2022; Haghtalab et al., 2023a)
could be used to obtain conditional regret bounds sublinear

in T , by directly optimizing over the entire action set Ai of
each agent. However, their runtime will then scale polyno-
mially in |Ai| which can be as large as Ω(2d), thus making
the runtime exponentially large in the problem size.

Our framework, by contrast, will let us give the agents con-
ditional regret guarantees simply by unbiasedly predicting
the d-dimensional base reward vectors (conditionally on
appropriate events). Our general algorithm will thus run
in time poly(d), giving us an efficient algorithm with an
exponential runtime improvement compared to prior work.

4.2. Conditional Regret via Unbiased Prediction

To derive conditional regret guarantees via unbiased predic-
tion, we will use the same Predict-then-Act approach as in
Section 3. At the beginning of each round t, we will (ap-
propriately unbiasedly) predict the rewards vector r̂t ∈ S.
Every agent i ∈ [n] will then best-respond to our prediction
and select action at,i = BRui(r̂t).

However, to make this approach efficient, we must now
design our event collection differently than before. Indeed,
consider the simplest case where we ask for no external
regret to downstream agents. The collection of “level set”
events {Eui,ai}i∈[n],ai∈Ai

studied in Section 3 will imply
sublinear regret as before — but will be too big as it scales
with |Ai|, which can be exponential in d.

To overcome this, we will take advantage of the special
structure of the payoffs, which are all linear in the base
element rewards. The idea is to condition on events defined
by the base elements e ∈ B = [d]. Again starting with
no external regret, it turns out that for each agent i ∈ [n]
it suffices to condition on the always-on event, and on d
events (Ee)e∈[d]: for each base element e, Ee will be the
event that the agent’s chosen action at,i contains e, i.e.,
Ee(s) = 1[e ∈ BRui(s)]. This requires just nd events over
all agents. From here, if we now desire Ξ-conditional regret
guarantees, it will suffice to expand this event collection to
O(|Ξ|·d) events per agent: for each ξ ∈ Ξ, the intersectional
events Ee,ξ(x, s) = ξ(x, s) · Ee(s) for e ∈ [d] (that both
ξ is active and Ee is active), as well as the event that is
active whenever ξ is active, will imply no external regret
conditional on ξ.

Importantly, observe that all these events can be evaluated
via direct calls to the offline optimization oracle for the
problem (e.g., Bellman-Ford for routing); therefore, the
unbiased prediction algorithm will be oracle efficient. We
now state and prove our conditional regret bound.

Theorem 4.1. Consider online combinatorial optimization
over context space X with d base actions and n agents with
action sets Ai ⊆ 2[d]. Suppose each agent i is straightfor-
ward, and wants to obtain no Ξi-conditional regret for some

8
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events Ξi. Define the following set of events:

E =
⋃
i∈[n]

⋃
ξ∈Ξi

{{
Eie,ξ

}
e∈[d]

∪
{
Eiξ
}}

.

Here, Eie,ξ(xt, r̂t) := 1[e ∈ BRui(r̂t)] · ξ(xt,BRui(r̂t));
and Eiξ(xt, r̂t) := ξ(xt,BRui(r̂t)), for all e, i, ξ ∈ Ξi.

Then, running Unbiased Prediction on state space S =
[−1, 1]d with event collection E will produce a sequence
of predictions (r̂t)t∈[T ] such that each agent i ∈ [n], by
playing their best-response actions at,i = BRui(r̂t) at all
rounds, will obtain Õ(d

√
T ) expected Ξi-conditional regret.

The runtime will consist of poly (dT
∑n
i=1 |Ξi|) oracle calls

to the offline optimization oracle for the setting.

Proof. It suffices to fix any agent i ∈ [n] and event ξ ∈ Ξi
and show that best-responding to the E-unbiased predictions
(r̂t)t∈[T ] gets i no external regret on subsequence ξ. Denote
the agent’s external regret on the subsequence ξ by:

CRegT (ξ, i)

= max
a∗∈Ai

T∑
t=1

ξ(xt, at,i)·(ui(a∗, rt)− ui(at,i, rt)).

Now, consider the hypothetical “ideal” scenario in which our
predictions are exactly correct on every round, i.e., r̂t = rt
for all t. Then, our “ideal” regret would be nonpositive:

IdRegT (ξ, i)

= max
a∗∈Ai

T∑
t=1

ξ(xt, at,i) · (ui(a∗, r̂t)− ui(at,i, r̂t)) ≤ 0

since for each t, at,i = BRui
(r̂t) and thus ui(at,i, r̂t) =

maxa∈Ai
ui(a, r̂t) ≥ ui(a∗, r̂t). Therefore,

CRegT (ξ, i) ≤ CRegT (ξ, i)− IdRegT (ξ, i).

This difference in regrets can be expressed as:

max
a∗∈Ai

T∑
t=1

ξ(xt, at,i) · ui(a∗, rt)

− max
a∗∈Ai

T∑
t=1

ξ(xt, at,i) · ui(a∗, r̂t)

+

T∑
t=1

ξ(xt, at,i) · (ui(at,i, r̂t)− ui(at,i, rt)).

It is easy to check that the first line’s expectation is at
most BiasT (Eiξ). Similarly, by decomposing the second
line’s expression across the d coordinates, it can be seen
that its expectation is at most

∑
e∈[d] BiasT (E

i
e,ξ). Hence,

the expected regret of agent i conditional on ξ is at most∑
e∈[d] BiasT (E

i
e,ξ) + BiasT (E

i
ξ) = Õ(d

√
T ).
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A. Additional Related Work
Calibration The study of sequential calibration goes back to (Dawid, 1985) who viewed it as a way to define the
foundations of probability, and algorithms for producing calibrated forecasts in an adversarial setting were first given by
(Foster & Vohra, 1998). (Foster & Vohra, 1999) were the first to connect sequential calibration to sequential decision making,
showing that a decision maker who best responds to (fully) calibrated forecasts obtains diminishing internal regret (and that
when all agents in a game do so, empirical play converges to correlated equilibrium). (Kakade & Foster, 2008) and (Foster
& Hart, 2018) make a similar connection between “smooth calibration” (which in contrast to classical calibration can be
obtained with deterministic algorithms) and Nash equilibrium.

Much of the calibration literature has focused on the binary prediction and one dimensional regression settings, where
labels are in {0, 1} or in [0, 1], and predictions are in [0, 1]. Comparatively few works, including (Zadrozny & Elkan, 2002;
Kuleshov & Liang, 2015; Gupta & Ramdas, 2021), have addressed higher dimensional predictions, which, as discussed,
are challenging because of the curse of dimensionality; many of these works have sought to reduce multiclass calibration
problems to binary calibration. In this context, our work in particular proposes tractable notions of online multiclass
calibration for cases when there is a specific downstream task that the forecasts will be used for.

Multicalibration In the recent computer science literature, there has been interest in constructive calibration guarantees
(obtained by efficient algorithms and obtaining good rates) that hold conditional on context in various ways, called multi-
calibration (Hébert-Johnson et al., 2018). Multicalibration has been studied both in the batch setting (Hébert-Johnson et al.,
2018; Kim et al., 2019; Globus-Harris et al., 2023; Haghtalab et al., 2023a) and in the online sequential setting (Foster &
Kakade, 2006; Foster et al., 2011; Gupta et al., 2022; Garg et al., 2024). For the most part (with a few notable exceptions
(Gopalan et al., 2022b; Zhao et al., 2021)) multicalibration has been studied in the 1-dimensional setting in which the
outcome being predicted is boolean. This has been extended to predicting real-valued outcomes, with notions of calibration
tailored to variances (Jung et al., 2021), quantiles (Bastani et al., 2022; Jung et al., 2023), and other distributional properties
(Noarov & Roth, 2023). See (Roth, 2022) for an introductory exposition of this literature. Our algorithm can be used
to recover many of the above online multicalibration guarantees by plugging in appropriate events, but it goes beyond
multicalibration constraints.

Omniprediction A growing line of work (Gopalan et al., 2022a; 2023a;b; 2024) aims to use (multi)calibration as a tool
for a one-dimensional form of downstream decision making, called omniprediction. The goal of omniprediction is to make
probabilistic predictions of a binary outcome as a function of contextual information that are useful for simultaneously
optimizing a variety of downstream loss functions. E.g., (Gopalan et al., 2022a) show that a predictor that is multicalibrated
with respect to a benchmark class of functionsH and of a binary label can be used to optimize any convex, Lipschitz loss
function of an action and a binary label. Also related is the outcome indistinguishability strand of research (Dwork et al.,
2021; 2022), which studies producing decisions that are indistinguishable from the ground truth according to a collection of
tests.

Conceptually, our motivation is slightly different than for omniprediction: while omniprediction aims to produce forecasts
that are good enough to optimize for a large (typically infinitely large) family of possible downstream tasks characterized
by their associated losses — such that we may not know ahead of time which task will present itself — our framework is
developed to handle finitely many arbitrary but specific (i.e., known-in-advance) downstream tasks. The above mentioned
results are in the batch setting.

In the online setting, (Kleinberg et al., 2023) defined “U-calibration”, which can be viewed as a non-contextual version of
omniprediction where the goal is to make predictions that guarantee an arbitrary downstream decision maker no external
regret. In comparison to (Kleinberg et al., 2023), our goal is to give both stronger guarantees than external regret, and to be
able to do so even when the state space is very large.

Calibration for Decision Making The most closely related work is (Zhao et al., 2021), who define and study “decision
calibration” in the batch setting in the context of predicting a probability distribution over k discrete outcomes. Decision
calibration is a slightly weaker requirement than what we study, also defined in terms of the best-response correspondence of
a decision maker’s utility function. Decision calibration asks, informally, that a decision maker be able to correctly estimate
the expected reward of their best response policy; we ask for a slightly stronger condition that requires them to also be able
to estimate the utility of deviations as a function of their play. This kind of unbiased estimation (based on the best-response
correspondence of a decision maker) has also been previously observed to be related to swap regret in (Perchet, 2011) and
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(Haghtalab et al., 2023b). The algorithmic portion of our work can be viewed as extending (Zhao et al., 2021) from the
batch to the online adversarial setting; Our applications hinge crucially on both the online aspect of our algorithm and on the
more general setting we consider, beyond predicting distributions on k outcomes.

Subsequently to (Zhao et al., 2021), decision calibration has been extended to, or applied in, several specific downstream
tasks in the batch setting. For instance, (Fisch et al., 2022; Wang et al., 2022) applied decision calibration in the presence of
downstream selection or screening processes. These and omniprediction ideas were also used to obtain new performative
prediction algorithms in (Kim & Perdomo, 2023). In the opposite direction, (Rothblum & Yona, 2022) study how downstream
decision policies can be modified in response to miscalibrated forecasts.

Predict then Optimize An expansive recent literature has focused on the similarly named predict-then-optimize prob-
lem (Elmachtoub & Grigas, 2022; El Balghiti et al., 2019; Liu & Grigas, 2021). This line of work investigates a setup
in which predictions made from data are to be used in a linear optimization problem downstream in the pipeline. This
is similar in motivation to our framework, but with two important differences: (1) the predict-then-optimize framework
aims to optimize for a single downstream problem, whereas we aim to simultaneously provide guarantees to an arbitrary
finite collection of downstream decision makers; and (2) the surrogate loss approach studied in this literature is naturally
embedded in a batch/distributional setting, where the goal is to exactly optimize for the Bayes optimal downstream decision
policy, up to generalization/risk bounds; meanwhile, our framework naturally lives in the online adversarial setting, and
aims for different notions of optimality defined in terms of regret bounds, as well as omniprediction-type ‘best-in-class’
optimality. Both frameworks can be used to solve downstream combinatorial optimization problems (Mandi et al., 2020;
Demirović et al., 2019); but our framework appears to have a broader set of applications — as a consequence of its strong
calibration properties, we are able to apply our framework to derive strong uncertainty quantification guarantees, which
do not appear to naturally fit within the predict-then-optimize framework. There also exist other approaches for learning
in batch decision making pipelines, that are different from the predict-then-optimize method; see e.g. (Donti et al., 2017;
Khalil et al., 2017; Wilder et al., 2019; Vanderschueren et al., 2022).

B. Calibration and Decision Making
The notion of calibration (Dawid, 1985) requires that predictors make forecasts that are consistent with the ground truth
conditional on the predicted values themselves. For instance, for a binary predictor f : X → [0, 1], it enforces, roughly
speaking, that E(x,y)[y|f(x) ≈ v] ≈ v, for all v ∈ [0, 1].

Calibration has very strong decision-theoretic properties. When making predictions about a payoff-relevant state, in a very
general setting it is a dominant strategy amongst all prediction-to-action policies for every downstream decision maker to
best-respond to calibrated predictions as if they were correct. This has strong semantics as “trustworthiness” — as one
can do no better than to trust calibrated predictions and act accordingly. It also implies strong performance guarantees for
the downstream decision makers. Here are two examples: First, decision makers who best respond to calibrated forecasts
are guaranteed to have no swap regret — meaning that they obtain utility that is as high as the best action they could have
played in hindsight, not just marginally, but also conditionally on each action that they played (Foster & Vohra, 1999). The
second example concerns multi-class prediction, where a decision-maker observes features and predicts an unknown label
from some large set. Standard machine learning methods for multi-class classification will, given features, predict “scores”
for each label that look like probabilities in that they are non-negative and sum to 1. These scores are not probabilities;
nevertheless, decision makers who produce “prediction sets” of labels by treating calibrated scores as if they were real
probabilities will find that their prediction sets cover the true label with the same frequency that they would if the scores
really were conditional label probabilities. So sequential calibration offers very strong guarantees — and it has been known
since (Foster & Vohra, 1998) that it is possible to produce calibrated forecasts even in adversarial environments.

But calibration is in different senses both too strong and too weak. On the one hand, calibration is too weak in that it provides
only a marginal guarantee; calibrated forecasts will in general fail to be calibrated conditional on external information.
Thus, the property that downstream agents can do no better than to treat calibrated forecasts as correct will fail to hold
if the downstream agents have access to external context. In one-dimensional prediction settings (such as real-valued
regression), multicalibration (Hébert-Johnson et al., 2018) mitigates this weakness: it allows one to enforce calibration not
just marginally, but also conditionally on any collection of context-dependent groups or subpopulations in the data.

On the other hand, calibration is too strong in that (because it is agnostic to downstream decisions) it conditions on fine
distinctions in its predictions that may be irrelevant to the downstream task at hand. As a result, calibration is intractable in
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high-dimensional settings. Since calibrated predictions must be statistically unbiased conditional on their own values, then
for d-dimensional prediction problems — in which, up to discretization, there are Ω(2d) possible values we may predict —
we, naively, need to respect Ω(2d) possible conditioning events to stay calibrated. Given this intuition, it should come as no
surprise that the best known calibration algorithms have exponential computational and statistical complexity in dimension d
of the outcome space; there exist some lower bounds in the literature that confirm this hardness, see e.g. the PPAD-hardness
result of (Hazan & Kakade, 2012)). In fact, even in 1 dimension, it is known that achieving adversarial calibration at a rate
of O(

√
T ) is impossible (Qiao & Valiant, 2021) — even though it is possible to obtain swap regret at this rate (Blum &

Mansour, 2007). Thus, despite its remarkable guarantees, calibration has been of little utility in designing online algorithms
for high-dimensional problems.

C. Connecting Prediction and Decision Making
We next make connections between our ability to make unbiased predictions and the quality of decisions that are made
downstream as a function of our predictions in a general setting. The form of the argument will proceed in the same way
that it will in our main applications, and so is instructive.

Specifically, we will show that a straightforward decision maker who simply best responds to our predictions can be
guaranteed no swap regret — if we just make our predictions unbiased conditional on the events defined by the decision
maker’s best-response correspondence.

The Predict-then-Act Paradigm These results, whose formal statements are given below, suggest a natural design
paradigm for sequential decision algorithms, which we call predict-then-act. The idea is simple: first we make a prediction
ŝt for an unknown payoff-relevant parameter st, and then we choose an action as if our prediction were correct — i.e. we
best respond to ŝt. We can parameterize the predict-then-act algorithm with various events E , such that our predictions will
be unbiased with respect to events in E . Whenever E is a collection of polynomially many events that can each be evaluated
in polynomial time, the predict-then-act algorithm can be implemented in polynomial time per step. While Predict-Then-Act
is quite simple, its flexibility in a variety of settings lies in the design of the event set E and prediction space S . By choosing
the events E to be appropriately tailored to the task at hand, we can arrange that Predict-Then-Act has guarantees of various
sorts.

Algorithm 2 Predict-Then-Act(T,U , E ,S,A)
for t in 1 . . . T do

Compute ψt ←UnbiasedPrediction(E , t)
Predict ŝt ∼ ψt
for ui ∈ U do

Decision maker i selects action at,i = BRui
(ŝt) = argmaxa∈A ui(a, ŝt)

end for
Observe outcome st ∈ S

end for

We now develop, and use, our machinery based on the Predict-then-Act approach powered by our Unbiased Prediction
algorithm’s guarantees, to give algorithms with strong no-regret guarantees in a variety of sequential settings. In all cases,
the scenario we analyze is that in rounds t, a predictor makes state predictions ŝt, after which one or more decision makers
choose actions that are best responses to ŝt (i.e. they function as straightforward decision makers). When we are designing
an algorithm for a single decision maker, we always use the predict-then-act paradigm (Algorithm 2). When we are
designing a coordination mechanism, we imagine that our predictions are simultaneously issued, on every round, to multiple
decision makers, who each independently act. We show how guaranteeing that our predictions are unbiased subject to
appropriately chosen events gives desirable guarantees for downstream decision makers of various sorts.

C.1. Transparent Policy Evaluation and Its Downstream Benefits

In this subsection, we introduce the main benefit of calibration that underlies, in one form or another, all our following
applications. Namely, calibrated (or, as we will see, sufficiently unbiased) predictions result in what we call a transparent
policy evaluation property, whereby downstream agents’ prediction-to-action policies will in hindsight (once the true states
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are revealed) bring as much utility to the agents as they would get had the predictions been exactly correct. In that sense,
the predicted states are indistinguishable from true states for the purposes of policy evaluation. In a nutshell, this enables
straightforward downstream optimization of the next action to play while only having access to predicted, rather than
realized, quantities — and is the main vehicle that drives our Predict-then-Act approach where agents simply best-respond
to the predictions. This general “transparency” property of calibration is also what underlies outcome indistinguishability
(Dwork et al., 2021) and omniprediction (Gopalan et al., 2023a) in 1-dimensional batch settings, and (Zhao et al., 2021)
gave similar transparency guarantees in multi-dimensional batch settings — but as we will see, will be especially useful for
us in problems arising in high-dimensional online settings.

In this and the next subsection, we begin by deriving this transparency property (and its downstream consequences) in the
idealized scenario where the predictions ŝ are exactly calibrated (i.e., there is no error term). This, of course, is a statistically
unachievable goal in high dimensions, and so these results won’t yet be implementable. However, this presents no issue
for our algorithmic results — which do have error rates — because given access to approximately calibrated or unbiased
predictions (which we will generally obtain by invoking our Unbiased Prediction algorithm), bias error propagation through
our idealized proof templates is quite easy. Meanwhile, these idealized statements and their proofs provide the core statistical
intuition about why our approach works.

We begin by formally defining how we want to evaluate the long-term success of any prediction-to-action policy in our
online setting.

Definition C.1 (Policy Evaluation Function). A policy evaluation function is a mapping U : (S → A)× S∗ × S∗ → R.
The interpretation is that for any prediction-to-action policy f : S → A and any two sequences of states s, ŝ ∈ S∗ with
len(s) = len(ŝ) < ∞, U(f, ŝ, s) will give the total utility of the policy f evaluated on the ground truth state sequence s
when actions are taken according to the predicted state sequence ŝ.

We will usually instantiate this definition as follows. Fixing any time horizon T and any decision maker with utility function
u : A × S → R, we will let the evaluation function U be defined as the decision maker’s cumulative (total) utility of
employing the policy f applied to predictions ŝ across rounds 1, . . . , T , namely,

Uu(f, ŝ, s) =

T∑
t=1

u(f(ŝt), st),

where s = (s1, . . . , sT ) are the ground truth states and ŝ = (ŝ1, . . . , ŝT ) are the predicted states. Note that due to our
assumption that the decision maker’s utility u is linear and Lipschitz in its second argument, the policy evaluation function
Uu will be linear and Lipschitz in its last (ground-truth) argument s.

Our main results will all follow from appropriately instantiating our event collection such that it guarantees the following
property of our sequence of predicted states, relative to (relevant) prediction-to-action policies.

Definition C.2 (Transparent Policy Evaluation). Fix a prediction-to-action policy f : S → A and a policy evaluation
function U : (S → A)× S∗ × S∗ → R. Consider any two sequences of states s, ŝ ∈ S∗ with len(s) = len(ŝ) <∞. We
interpret s as the ground truth state sequence, and ŝ as a predicted state sequence.

Then, the predictions ŝ are (f, U, s)-transparent if:

U(f, ŝ, s) = U(f, ŝ, ŝ).

Henceforth, we will keep the ground truth sequence s implicit and refer to predictions ŝ as (f, U)-transparent.

This notion of transparency it at the core of our proposal for how to define trustworthy predictions in decision pipelines: If
the predictions are (f, Uu)-transparent, then a decision maker with utility u who employs prediction-to-action policy f can
safely view the predictions ŝ as exactly coinciding with the ground truth states s — in the sense that she can measure the
performance of f (using U ) against the predictions rather than against the true states. This is often a useful property on its
own — but when it holds for multiple prediction-to-action policies f , then optimizing amongst these policies on the basis of
the predicted outcomes implies performance guarantees corresponding to optimality within this benchmark set.

Enforcing Transparency via (Full) Calibration We now see how full calibration lends transparency to all prediction-to-
action policies with respect to all evaluation functions Uu as defined above.
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Theorem C.3 (Calibration Lends Transparency to All Prediction-to-Action Policies). Fix any time horizon T . Consider any
ground truth sequence of states s = (s1, . . . , sT ) and any fully calibrated sequence of predictions ŝ = (ŝ1, . . . , ŝT ), meaning
that for all v ∈ {s1, . . . , sT }, it holds that

∑
t∈[T ]:ŝt=v

st = v ·#{t ∈ [T ] : ŝt = v}. Then, ŝ is (f, Uu)-transparent for all
f : S → A and every u : A× S → R that is linear in its second argument.

Proof. The proof follows directly by definition of (full) calibration (equality (2)) and by linearity of u in the state (equalities
(1) and (3)). Letting nv := #{t ∈ [T ] : ŝt = v} for any value v ∈ R, we get:

Uu(f, ŝ, s) =

T∑
t=1

u(f(ŝt), st) =
∑
v∈R

∑
t∈[T ]:ŝt=v

u(f(v), st)
(1)
=
∑
v∈R

u

f(v), ∑
t∈[T ]:ŝt=v

st


(2)
=
∑
v∈R

u (f(v), v · nv)
(3)
=
∑
v∈R

nv · u(f(v), v) =
T∑
t=1

u(f(ŝt), ŝt) = Uu(f, ŝ, ŝ).

Using Transparency for Downstream Optimization Transparency on its own is valuable insofar as it means that a
decision maker can follow a prediction-to-action policy f with respect to predicted outcomes without being surprised about
her long-run utility. But as we will now observe, it is also directly useful to decision makers for the purposes of optimizing
their prediction-to-action policy. In fact, we will now see that enforcing the transparency property over all policies f in any
prediction-to-action policy class F that includes the best-response policy fBR

u (·) := BRu(·) lets the decision maker obtain
no regret to any other policy in that class F by simply playing fBR

u in all rounds (i.e., trusting the predictions and acting
accordingly).

Theorem C.4 (Transparency over Policy Class F Implies Best-Response Optimality over F). Consider a decision maker
with utility function u : A×S → R. Consider any collection of prediction-to-action policies F ⊆ SA such that the decision
maker’s best response policy is included in it: fBR

u ∈ F .

Suppose the sequence of predictions ŝ is (f, Uu)-transparent for all f ∈ F . Then, committing to fBR
u gives the decision

maker no regret with respect to the policy class F:

Uu(f
BR
u , ŝ, s) = max

f∈F
Uu(f, ŝ, s).

Proof. Fix any policy f ∈ F . By the definition of transparency (noting that fBR
u ∈ F) and the definition of the best

response policy:

Uu(f
BR
u , ŝ, s)− Uu(f, ŝ, s) = Uu(f

BR
u , ŝ, ŝ)− Uu(f, ŝ, ŝ) = max

f ′:S→A
Uu(f

′, ŝ, ŝ)− Uu(f, ŝ, ŝ) ≥ 0,

implying the desired statement.

As an immediate corollary, we see that full calibration implies that the best response policy is simultaniously optimal for all
downstream decision makers, amongst all prediction-to-action policies.

Corollary C.5 (Calibration Implies Global Optimality of Best-Response Policy to All Decision-Makers). Suppose the
predictions ŝ are fully calibrated. Then, simultaneously for all downstream decision makers (i.e., for all utilities u : A×S →
R), playing the best-response policy fBR

u gives the decision maker no regret to all prediction-to-action policies:

Uu(f
BR
u , ŝ, s) = max

f :S→A
Uu(f, ŝ, s) for all decision makers’ utilities u : A× S → R.

Proof. As established, full calibration gives transparency to every decision maker (with any utility u) with respect to the
entire class of all prediction-to-action policies Ffull := SA. Thus, by the preceding theorem, playing the best-response
policy gives no regret to all f : S → A.
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C.2. Transparency via Level-Set Unbiasedness and Swap Regret

Let us re-examine what properties our predictors should have in order to achieve transparency for various prediction-to-action
policies. Fix any such policy f : S → A, and suppose for a moment that we only need (f, Uu) transparency for this specific
f and for all u : A× S → R.

We already know that calibration — which demands unbiasedness from our predictions conditional on every possible
prediction value v ∈ S — is sufficient for this purpose (Foster & Vohra, 1999). But it is not necessary. Intuitively, this is
because the total utility Uu of policy f does not require such granular predictions for estimation. In particular, consider the
collection of level sets of policy f , defined as LS(f) := {f−1(a)}a∈A. These level sets form a partition of the state space
S , but unless the mapping f : S → A is injective (which would necessitate the action space A being at least as complex as
the space of predictions S), this partition will be (likely much) less granular than the partition of S into single points as
required by full calibration. To determine which action to play, policy f only requires knowledge of the level set that the
prediction belongs to, not the exact predicted value — and in this sense, LS(f) provides the right level of granularity over
the state space S for us to confidently estimate the total utility of f . We formalize this as follows.
Theorem C.6 (Transparent Policy Evaluation via Level-Set Unbiasedness). Consider any policy f : S → A. Suppose the
predictions ŝ are unbiased on the level sets of f , in the sense that for each level set V ∈ LS(f) (note that V ⊆ S) it holds
that

∑
t∈[T ]:ŝt∈V ŝt − st = 0. Then, the predictions ŝ are (f, Uu)-transparent for all possible decision makers’ utilities

u : A× S → R.

Proof. For each level set V ∈ LS(f), let f(V ) ∈ A denote the action to which f maps every prediction in V .

Uu(f, ŝ, s) =

T∑
t=1

u(f(ŝt), st) =
∑

V ∈LSf

∑
t∈[T ]:ŝt∈V

u(f(ŝt), st) =
∑

V ∈LSf

∑
t∈[T ]:ŝt∈V

u(f(V ), st)

=
∑

V ∈LSf

u

f(V ),
∑

t∈[T ]:ŝt∈V

st

 =
∑

V ∈LSf

u

f(V ),
∑

t∈[T ]:ŝt∈V

ŝt

 =
∑

V ∈LSf

∑
t∈[T ]:ŝt∈V

u(f(V ), ŝt)

=
∑

V ∈LSf

∑
t∈[T ]:ŝt∈V

u(f(ŝt), ŝt) =

T∑
t=1

u(f(ŝt), ŝt) = Uu(f, ŝ, ŝ).

But in fact, this result can be significantly strengthened at no cost. Consider the set ΦA = {ϕ : A → A} of all self-maps of
the action set A. For reasons that will become clear very soon, we will also refer to a self-map ϕ ∈ ΦA as a swap. As it
turns out, predictions that are unbiased on the level sets LS(f) of a policy f lend transparency not just to the f itself but also
to each prediction-to-action policy fϕ that is a post-processing of the map f by a swap ϕ ∈ A, that is, fϕ = ϕ ◦ f .
Theorem C.7 (Level-Set Unbiasedness Gives Transparency under All Swaps). Consider any policy f : S → A. As
in the above theorem, suppose the state predictions ŝ are unbiased on all level sets V ∈ LS(f) of f . Then, they are
(ϕ ◦ f, Uu)-transparent for all swaps ϕ : A → A and for all decision makers’ utilities u : A× S → R.

Proof. Fix any swap ϕ : A → A. Then, the level sets of ϕ ◦ f either coincide with, or are strictly coarser than, the level sets
of f . Indeed, viewing LS(f) and LS(ϕ ◦ f) as partitions of S, it is easy to see that LS(f) is a refinement of LS(ϕ ◦ f), in
the sense that for any V ∈ LS(f) there exists some V ′ ∈ LS(ϕ ◦ f) with V ⊆ V ′. As a result, each level set of ϕ ◦ f is a
disjoint union of one or more level sets of f . Thus, since the predictions ŝ are unbiased on the level sets LS(f) of f , they
are also unbiased on the level sets LS(ϕ ◦ f) of ϕ ◦ f , implying by the above theorem that they are (ϕ ◦ f, Uu)-transparent
for all decision maker’s utilities u.

This strengthened result is very useful because it implies no swap regret guarantees for decision makers when the predictions
ŝ are unbiased on the level sets of the decision maker’s best-response policy.
Theorem C.8 (No Swap Regret via Unbiasedness on Best-Response Level Sets). Fix any decision maker with utility function
u : A× S → R. Consider her best-response policy fBR

u : S → A. Then, if the predictions ŝ are unbiased on the level sets
LS(fBR

u ) of the best-response policy, the decision maker will obtain no swap regret by employing the best-response policy:

Uu
(
fBR
u , ŝ, s

)
= max
ϕ:A→A

Uu
(
ϕ ◦ fBR

u , ŝ, s
)
.

18



High-Dimensional Prediction for Sequential Decision Making

Proof. Since the predictions ŝ are (ϕ ◦ fBR
u , Uu)-transparent for all swaps ϕ : A → A, by the definition of the best-response

policy, we get:

Uu
(
fBR
u , ŝ, s

)
− max
ϕ:A→A

Uu
(
ϕ ◦ fBR

u , ŝ, s
)
= Uu

(
fBR
u , ŝ, ŝ

)
− max
ϕ:A→A

Uu
(
ϕ ◦ fBR

u , ŝ, ŝ
)
= 0.

D. Faster Unbiased Prediction for Disjoint Events
In this section we show how to find an ϵ-approximate solution to the minimax problems minmaxut at all rounds t ∈ [T ],
defined in Section 2, with running time that is polynomial in d, |E|, and log(1/ϵ) in the case in which the events E ∈ E are
binary valued and disjoint: for all x, ŝ:

∑
E∈E E(x, ŝ) ≤ 1. We will also assume that for every history π and context x, the

predictions ŝ that satisfy E(π, x, ŝ) = 1 form a convex set for which we have a polynomial time separation oracle.

Throughout this appendix, we refer to weights wt from Section 2 as qt, and to the randomized strategies s̄t from
Section 2 as ψt.

Our goal is to solve for the learner’s equilibrium strategy ψt ∈ ∆(S) in the game with utility function

ut(ŝ, s) =

d∑
i=1

∑
σ∈{−1,1}

∑
E∈E

qt,(i,σ,E) · σ · E(πt−1, xt, ŝ) · (ŝi − si)

corresponding to the per-round gain of MsMwC. In other words, we need to approximately solve:

ψ∗
t = argmin

ψ∈∆(S)

max
s∈S

E
ŝ∼ψ

[ut(ŝ, s)]. (1)

By relaxing the minimization player’s domain from S to ∆(S), the set of distributions over predictions, we have made the
objective linear (and hence convex/concave), but we have continuously many optimization variables — both primal variables
(for the minimization player) and dual variables (for the maximization player). Our strategy for solving this problem in
polynomial time will be to argue that it has a solution in which only |E| many primal variables take non-zero values, that
we can efficiently identify those variables, and that we can implement a separation oracle for the dual “constraints” in
polynomial time. This will allow us to construct a reduced but equivalent linear program that we can efficiently solve with
the Ellipsoid algorithm.

We first observe that in the utility function ut(ŝ, s), the learner’s predictions ŝ “interact” with the outcomes s only through
the activation of the events E(πt−1, xt, ŝ). This implies that conditional on the values of the events E(πt−1, xt, ŝ), there is
a unique ŝ that minimizes ut(·, s) simultaneously for all s. In general, the collection of events E(πt−1, xt, ŝ) could take on
many different combinations of values — but our assumption in this section that the events are disjoint and binary means
that there are in fact only |E| different candidate values of ŝ for us to consider — namely, those defined by the following
efficiently solvable convex programs:

Definition D.1. For E ∈ E , let ŝ∗,Et be a solution to the following convex program (selecting arbitrarily if there are multiple
optimal solutions):

minimizeŝ∈S

d∑
i=1

∑
σ∈{−1,1}

qt,(i,σ,E) · σ · ŝi

subject to
E(πt−1, xt, ŝ) = 1.

Let Pt = {ŝ∗,Et }E∈E be a collection of |E| vectors in S constituting solutions to the above programs.

Remark D.2. As we have assumed in this section, the set of ŝ such that E(πt−1, xt, ŝ) = 1 is a convex region endowed with
a separation oracle, and so these are indeed convex programs that we can efficiently solve with the Ellipsoid algorithm. This
is often the case: for example, if we have a decision maker with a utility function u over K actions, the disjoint binary events
Eu,a (for each action a ∈ [K]) are defined by K linear inequalities, and so form a convex polytope with a small number of
explicitly defined constraints; this collection of events is relevant for obtaining diminishing swap regret for downstream
decision makers.

We next verify that the prediction values defined in Definition D.1 are best responses for the minimization player against all
possible realizations st that the maximization player might choose, conditional on a positive value of a particular event:
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Lemma D.3. Simultaneously for all s ∈ S, we have:

ŝ∗,Et ∈ argmin
ŝ:E(πt−1,xt,ŝ)=1

ut(ŝ, s).

A consequence of this is that solutions to the following reduced minimax problem (which now has only |E| variables for
the minimization player — the weights defining a distribution over the |E| points ŝ∗,Et ) are also solutions to our original
minimax problem 1:

ψ∗
t = argmin

ψ∈∆(Pt)

max
s∈S

E
ŝ∼ψ

[ut(ŝ, s)]. (2)

Lemma D.4. Fix any optimal solution ψ∗
t to minimax problem 2. Then ψ∗

t is also an optimal solution to minimax problem 1.

Thus, to find a solution to minimax problem 1, it suffices to find a solution to minimax problem 2. Minimax problem 2 can
be expressed as a linear program with |E|+ 1 variables but with continuously many constraints, one for each s ∈ S:

minimizeψ∈∆(Pt) γ
subject to

Eŝ∼ψ[ut(ŝ, s)] ≤ γ ∀s ∈ S.
(3)

We can find an ϵ-approximate solution to a polynomial-variable linear program using the Ellipsoid algorithm in time
polynomial in the number of variables and log(1/ϵ) so long as we have an efficient separation oracle — i.e., an algorithm to
find an ϵ-violated constraint whenever one exists, given a candidate solution. In this case, implementing a separation oracle
corresponds to computing a best response for the adversary (the maximization player) in our game—and since the utility
function in our game is linear in the adversary’s chosen action s, implementing a separation oracle corresponds to solving a
linear maximization problem over the convex feasible region S—a problem that we can solve efficiently assuming we have
a separation oracle for S. There are a number of technical details involved in making this rigorous, which can be found in
Appendix D. Here we state the final algorithm and guarantee.

Algorithm 3 Get-Approx-Equilibrium-LP(t, ϵ, E)
for E ∈ E do

Solve the convex program from Definition D.1 to obtain ŝ∗,Et .
end for
Let Pt = {ŝ∗,Et }E∈E .
Solve linear program 3 over Pt using the weak Ellipsoid algorithm to obtain solution ψ′

t.
Let ψ∗

t be the Euclidean projection of ψ′
t onto ∆(Pt) returned by the simplex projection algorithm.

Return ψ∗
t .

Theorem D.5. Given a polynomial-time separation oracle for S , for any ϵ > 0, there exists an algorithm (Algorithm 3) that
returns an ϵ-approximately optimal solution ψ∗

t to minimax problem 1 and runs in time polynomial in d, |E|, log( 1ϵ ).

We solve for an ϵ-approximate solution of linear program 3 using a weak separation oracle, using an approximate version of
the Ellipsoid algorithm.

Definition D.6. For any ϵ > 0 and any convex set S, let

S+ϵ = {s : ||s− s̃||2 ≤ ϵ for some s̃ ∈ S} S−ϵ = {s : B2(s, ϵ) ⊆ S}

be the positive and negative ϵ-approximate sets of S, where B2(x, r) is a ball of radius r under the ℓ2 norm.

Definition D.7. A weak separation oracle for a convex set S is an algorithm that, when given input ψ ∈ Qd and
positive ϵ ∈ Q, confirms that ψ ∈ S+ϵ if true, and otherwise returns a hyperplane a ∈ Qd such that ||a||∞ = 1 and
⟨a, ψ⟩ ≤ ⟨a, ψ′⟩+ ϵ for all ψ′ ∈ S−ϵ.

We express a separation oracle for linear program 3 as the convex program that solves for the most violated constraint given
a candidate solution ψ, which is simply the best response problem for the maximization player in minimax problem 2. This
is the problem of maximizing a d-variable linear function over the convex set S. To make sure that we can control the bit
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complexity of the constraint returned by the separation oracle we round the coordinates of the constraint a ∈ Rd output by
the separation oracle to a rational-valued vector within ± ϵ

2 of the exact solution by truncating each coordinate of a to log( 1ϵ )
bits.
Definition D.8. A solution ψ ∈ S+ϵ is ϵ-weakly optimal if, given ϵ > 0, Eŝ∼ψ[u(ŝ, s)] ≤ Eŝ∼ψ′ [u(ŝ, s)] + ϵ for all
ψ′ ∈ S−ϵ and for all s.

For an ϵ-approximate solution to minimax problem 2, it suffices to find an ϵ-weakly optimal solution to linear program
3, which we can do using the Ellipsoid method. However, the solution to the weak optimization may not even be a valid
probability distribution (since it only approximately satisfies the constraints) – in this case, we can project our infeasible
solution back to feasibility. We use the simplex Euclidean projection algorithm given by (Condat, 2016) to project the
candidate solution back to a feasible region and show that this projected feasible solution is still ϵ-approximately optimal.
Theorem D.5. Given a polynomial-time separation oracle for S , for any ϵ > 0, there exists an algorithm (Algorithm 3) that
returns an ϵ-approximately optimal solution ψ∗

t to minimax problem 1 and runs in time polynomial in d, |E|, log( 1ϵ ).

Proof. Linear program 3 encodes minimax problem 2. To solve LP 3, we use the Ellipsoid algorithm, which gives an
approximate solution in polynomial time under the following conditions:

Theorem D.9 ((Grötschel et al., 1988), Theorem 4.4.7). Given a weak separation oracle over convex constraint set S and
ϵ > 0, the Ellipsoid algorithm finds a ϵ-weakly optimal solution over S in time polynomial in the bit complexity of the
constraints returned by the separation oracle, the bit complexity of the objective function, and the bit complexity of ϵ.

Fix some ϵ > 0. Let S be the constraint set, which are a set of linear constraints over a convex compact set (i.e. s ∈ S) and
constraints enforcing a probability simplex (i.e. ψ ∈ ∆(P)), implying that S is a convex set. Let ϵ′ = ϵ

2C
√

|E|
. Given an

exact separation oracle over S, preserving log( 1
ϵ′ ) bits of the most violated constraint given by the separation oracle and

rounding to a rational number yields an rational ϵ′-approximate most violated constraint, which satisfies the conditions for a
weak separation oracle. Thus, we can find an ϵ′-weakly optimal solution (γ′, ψ′) to minimax problem 2, where ψ′ ∈ S+ϵ.
In the case that ψ′ is a valid probability distribution, we have found an ϵ-approximate optimal solution ψ∗

t = ψ′.

Otherwise, ψ′ may violate conditions for a valid probability distribution if the linear constraints do not constrain the feasible
set (i.e. S = ∆(P )). Since ψ′ ∈ S+ϵ, there exists some ψϵ ∈ S such that ||ψϵ − ψ′|| ≤ ϵ′. We find this point ψϵ via the
simplex projection algorithm in (Condat, 2016).

We show that this projection back to a feasible probability distribution still leaves us with an ϵ-approximately optimal
solution. Let ut(ŝ∗t , s) be the |E|-dimensional vector such that each coordinate E has entry ut(ŝ

∗,E
t , s). First, we show that

|ut(ŝ∗,Et , s)| is bounded by C = 2maxs∈S ||s||∞ for E ∈ E :

|u(ŝ∗,Et , s)| ≤
d∑
i=1

∑
σ∈{−1,1}

∑
E∈E

qt,(i,σ,E) · |σ| · E(xt, ŝ
∗,E
t ) · |ŝ∗,Et,i − si|

≤
d∑
i=1

∑
σ∈{−1,1}

∑
E∈E

qt,(i,σ,E) · |ŝ∗,Et,i − si| ≤
d∑
i=1

∑
σ∈{−1,1}

∑
E∈E

qt,(i,σ,E) · C = C,

where we used that E(xt, ŝ
∗,E
t ) ≤ 1 and |σ| = 1, and that q ∈ ∆(2d|E|), implying it must sum to 1. From this, we find that

||ut(ŝ∗t , s)||2 ≤
√
C2

1 + . . .+ C2
|E| ≤ C

√
|E|.

Next, by continuity of inner product, given ϵ > 0, s ∈ S, there exists δ > 0 such that ||ψϵ − ψ′|| ≤ δ implies that
||Eŝ∼ψϵ [ut(ŝ, s)]− Eŝ∼ψ′ [ut(ŝ, s)]|| ≤ ϵ. By Cauchy-Schwarz, we can bound the difference between the expectations as
follows: ∥∥∥∥ E

ŝ∼ψϵ
[ut(ŝ, s)]− E

ŝ∼ψ′
[ut(ŝ, s)]

∥∥∥∥
2

= ⟨ψϵ − ψ∗, ut(ŝ
∗
t , s)⟩ ≤ ||ψϵt − ψ′||2 · ||ut(ŝ∗t , s)||2 ≤ δ · C

√
|E|.

Thus, using ψ∗
t = ψϵ as the solution and setting δ = ϵ′ gives us an ϵ′ ·C

√
|E|+ ϵ′ = ϵ

2 +
ϵ

2C
√

|E|
≤ ϵ approximate solution.

By Lemma D.4, any optimal solution to minimax problem 2 is an optimal solution to minimax problem 1, so we must have
that ψ∗

t is an ϵ-approximate solution to minimax problem 1.

21



High-Dimensional Prediction for Sequential Decision Making

Now we consider the runtime of the algorithm. In order for LP 3 to be well-formulated, we first solve |E| convex programs
(one for each ŝ∗,E), which takes time polynomial in d. Now, consider the bit complexity of the constraints. For the
inequality constraints, the bit complexity of each constraint bounding the objective function is given by the bit complexity of
Eŝ∼ψ[u(ŝ, s)]. Each coefficient of ψ(ŝ∗,Et ) is ut(ŝ

∗,E
t , s), which is bounded by C from above. Since there are |E| variables

in this constraint, the maximum bit complexity of any constraint is bounded by O(log(C|E|)). Similarly, the objective
function has polynomial bit complexity on the scale of O(log(C|E|)). Finally, ϵ has a bit complexity of log( 1ϵ ). The simplex
projection algorithm has quadratic runtime in the dimension of the vector, which takes O(|E|2) time. Thus, the runtime of
the algorithm is polynomial in d, |E|, log(C|E|), and log( 1ϵ ).

Lemma D.3. Simultaneously for all s ∈ S, we have:

ŝ∗,Et ∈ argmin
ŝ:E(πt−1,xt,ŝ)=1

ut(ŝ, s).

Proof. The constraint that E(πt−1, xt, ŝ) = 1 together with the fact that the set of events E is disjoint and binary implies
that for all other events E′ ∈ E , E′(πt−1, xt, ŝ) = 0. For any ŝ such that E(πt−1, xt, ŝ) = 1, we therefore have that ut(ŝ, s)
reduces to:

ut(ŝ, s) =

d∑
i=1

∑
σ∈{−1,1}

qt,(i,σ,E) · σ · ŝi − qt,(i,σ,E) · σ · si.

But in this expression, the ŝ terms have no interaction with the s terms, and hence we have that for any s:

argmin
ŝ:E(πt−1,xt,ŝ)=1

ut(ŝ, s) = argmin
ŝ:E(πt−1,xt,ŝ)=1

 d∑
i=1

∑
σ∈{−1,1}

qt,(i,σ,E) · σ · ŝi

 = ŝ∗,Et .

Lemma D.4. Fix any optimal solution ψ∗
t to minimax problem 2. Then ψ∗

t is also an optimal solution to minimax problem 1.

Proof. We first observe that minimax problem 2 is only a more constrained problem for the minimization player than
minimax problem 1, as Pt ⊂ S . Thus it suffices to show that given a solution ψ̂t for minimax problem 1, we can transform
it into a new solution ψt such that:

1. ψt has support only over points in Pt, and

2. For all s ∈ S, Eŝt∼ψt
[u(ŝt, s)] ≥ Eŝt∼ψ̂t

[u(ŝt, s)].

Given ψ̂t, we construct ψt as follows: for each event E, we take all of the weight that ψ̂t places on points ŝ such that
E(πt−1, xt, ŝ) = 1, and place that weight on ŝ∗,Et ∈ Pt:

ψt(ŝ
∗,E
t ) = ψ̂t({ŝ : E(πt−1, xt, ŝ) = 1}).

By construction ψt has support over points in Pt. It remains to show that ψt has objective value that is at least as high as ψ̂t
for every s ∈ S:

E
ŝt∼ψ̂t

[u(ŝt, s)] =
∑
E∈E

Pr
ŝt∼ψ̂t

[E(πt−1, xt, ŝt) = 1] E
ŝt∼ψ̂t

[u(ŝt, s)|E(πt−1, xt, ŝt) = 1]

≤
∑
E∈E

Pr
ŝt∼ψ̂t

[E(πt−1, xt, ŝt) = 1]u(ŝ∗,Et , s)

= E
ŝt∼ψt

[u(ŝt, s)]

The inequality follows from Lemma D.3.
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