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Abstract
Time-series Generation (TSG) is a prominent
research area with broad applications in simu-
lations, data augmentation, and counterfactual
analysis. While existing methods have shown
promise in unconditional single-domain TSG,
real-world applications demand for cross-domain
approaches capable of controlled generation tai-
lored to domain-specific constraints and instance-
level requirements. In this paper, we argue that
text can provide semantic insights, domain infor-
mation and instance-specific temporal patterns,
to guide and improve TSG. We introduce “Text-
Controlled TSG”, a task focused on generating re-
alistic time series by incorporating textual descrip-
tions. To address data scarcity in this setting, we
propose a novel LLM-based Multi-Agent frame-
work that synthesizes diverse, realistic text-to-TS
datasets. Furthermore, we introduce BRIDGE, a
hybrid text-controlled TSG framework that inte-
grates semantic prototypes with text description
for supporting domain-level guidance. This ap-
proach achieves state-of-the-art generation fidelity
on 11 of 12 datasets, and improves controllability
by up to 12% on MSE and 6% MAE compared to
no text input generation, highlighting its potential
for generating tailored time-series data. Our code
is available at: Microsoft/TimeCraft1.

1. Introduction
High-quality Time Series Generation (TSG) is an impor-
tant task in various domains, including finance (Sezer et al.,
2020), healthcare (Li et al., 2023) and environmental science
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(Hasnain et al., 2022). For example, realistic synthetic med-
ical electrocardiogram (ECG) patterns can be used to train
medical residents (Pöhl et al., 2025; Hong & Chun, 2023),
while simulating regional electricity usage can be used to
stress test the power grid (Westgaard et al., 2021). Although
some remarkable works (Huang & Deng, 2023; Bao et al.,
2024) have been done for TSG, showing promising results
in generating realistic and coherent time series (TS), most
of them focus on the basic setting—unconditional single
domain generation. However, in real application scenarios,
there are specific constraints or requirements for the gener-
ated TS to be met, such as specifying domain-specific char-
acteristics, incorporating prior knowledge (Yuan & Qiao,
2024), or satisfying operational constraints (Coletta et al.,
2023). For instance, it may be necessary to generate ECG
patterns that respect individual patient profiles or capture
specific disease conditions (Schlegel et al., 2023). There-
fore, the current status in TSG, while demonstrating strong
foundational performance, leaves a significant gap for ad-
dressing more complex, constrained generation tasks that
are crucial for real-world applications.

Some prior work on cross-domain TSG has explored var-
ious ways to meet specific generation needs, with most
focusing on leveraging domain information to control the
generation process. Some approaches rely on explicit do-
main labels during training (Huang et al., 2024; Kollovieh
et al., 2024), treating the task as a conditional generation
problem. This allows users to specify the domain during
inference. However, this method is limited as it struggles
with unseen domains and becomes inefficient when the num-
ber of domains is large. Other methods incorporate specific
information through natural language (Zhou et al., 2024;
Liu et al., 2024d), but they operate at the domain level, thus
failing to provide detailed fine-grained and instance-specific
control, which is essential for more accurate and tailored
TSG, highlighting a significant gap in the field.

In this work, we investigate the challenging yet practical re-
search problem of achieving instance-level controlled TSG
capable of generalising to unseen domains. Inspired by the
recent success of controlled content generation in images
(Zheng et al., 2023) and videos (Liu et al., 2024e), where
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texts are used as a source of control which facilitates captur-
ing complex patterns and semantic relationships, we argue
that using text to provide semantic insights—such as domain
information and instance-specific temporal patterns—could
enhance and guide TSG. However, using text for controlled
TSG presents two key challenges that need to be addressed
in order to fully leverage its potential.

(i) Limited availability of high-quality text-TS pairs: To
train a TSG model that can be controlled by text, we re-
quire paired data, where each time series is associated with
a detailed text description. However, most available text
data only provides high-level domain descriptions, lacking
granular, instance-specific information such as trends, fluc-
tuations, or the behavior of individual data points (Liang
et al., 2024). The first challenge, therefore, is determining
what specific text information is useful for controlling gen-
eration and how to obtain such detailed text. We explored
rule-based methods to generate individual-level text descrip-
tions (Harris & Zaki, 2022), but it did not lead to significant
performance improvements (as shown in Appendix A.8),
suggesting that a more sophisticated approach is needed.

(ii) Bridging discrepancy between text and time-series
data for controlled TSG: Text and time-series (TS) data
exhibit significant differences in both modality and granu-
larity. Text conveys information via a fixed vocabulary of
discrete tokens, while time series data is continuous, which
leads to inherent mismatches. This disparity may render
text too coarse to fully capture domain-specific patterns
and characteristics, posing challenges in achieving precise
domain-level control due to its incomplete or oversimpli-
fied representations. Meanwhile, text can provide detailed,
instance-specific descriptions that are crucial for nuanced
control, requiring careful and dedicated design to align text
with TS features effectively.

To address the first challenge, we propose a role-based
collaborative multi-agent framework designed to generate
high-quality datasets for text controlled TSG. We argue that
the process of automatically identifying textual descriptions
for TS parallels prompt optimization for large language mod-
els (LLMs), where variations in prompt design significantly
affect performance (T et al., 2024). Inspired by the success
of prior work (Zhou et al., 2023b; Liu et al., 2024c; Guo
et al., 2024), our framework consists of three key compo-
nents: Text Template Generation, Automatic Evaluation, and
Feedback-driven Refinement. This process ensures continu-
ous improvement through feedback and synthesis, achieving
a holistic optimization of the generated text tailored to the
TS at hand. Experimental evaluations reveal the effective-
ness of the proposed framework, achieving at least a 15%
performance improvement in MAE compare to the unre-
fined text, while producing outputs that are notably more
comprehensive than those generated through traditional text-

generation methods.

To address the second challenge, we adopt a hybrid text-
enhanced time-series generation strategy. This approach
incorporates semantic prototypes (Huang et al., 2025) to
extract implicit domain features from TS, complementing
text-based conditioning that provides explicit domain in-
formation for diffusion model. As a result, the proposed
model achieves SOTA performance across multiple datasets
on fidelity of the generation results and demonstrates con-
trollability in both in-domain and out-of-domain settings.

To summarize, this paper presents the following novel con-
tributions: First, we introduce a multi-agent framework
for creating a text-controlled TSG dataset. Our numerical
experiments show that textual descriptions provide valu-
able information for time-series models. Second, using this
dataset, we analyze the impact of different types of time-
series descriptions, advancing the understanding of how
LLMs can assist in time-series prediction and generation.
Third, we propose BRIDGE, a novel framework for text con-
trolled TSG through diffusion models. Our approach excels
in generating highly controllable time-series, outperforming
baseline models across 11 out of 12 datasets, and highlights
its potential for tackling complex, real-world tasks, with
promising applications in healthcare, finance, and beyond.

2. Related work
Using Text for Time Series Modeling: Text-based ap-
proaches have shown promise in enhancing various time
series tasks, including forecasting (Jin et al., 2023; Gru-
ver et al., 2023; Chen et al., 2023; Xue & Salim, 2024;
Zhang et al., 2024b), classification (Xie et al., 2023; Lopez-
Lira & Tang, 2023), and event prediction (Gunjal & Dur-
rett, 2023; Shi et al., 2024). While these studies primar-
ily focus on leveraging text to guide or interpret existing
time series, text-to-time series generation remains under-
explored. GenG (Zhou et al., 2024) initiates this direc-
tion with a two-stage pipeline, but is limited to specific
domains and lacks instance-level control. Time-MMD (Liu
et al., 2024a) presents a large-scale paired dataset for multi-
domain text–time series forecasting. However, its step-level
annotations focus on local transitions, limiting its applica-
bility to modeling or evaluating alignment over extended
temporal sequences.

Conditional Time Series Generation: Diffusion-based
models have emerged as a powerful paradigm for condi-
tional time series generation. A number of recent works
employ denoising score matching and continuous-time dif-
fusion to enable flexible, probabilistic generation (Tashiro
et al., 2021; Shen & Kwok, 2023; Narasimhan et al., 2024;
Huang et al., 2024; Kollovieh et al., 2024; Shen et al., 2024;
Fan et al., 2024; Deng et al., 2025; Hou et al., 2024) These
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methods explore a range of network backbones, including
score-based transformers (Yuan & Qiao, 2024), structured
state space models (Alcaraz & Strodthoff, 2023), and con-
strained denoising objectives (Coletta et al., 2023). Some
also incorporate seasonality and trend decomposition as ex-
plicit inductive biases (Yuan & Qiao, 2024). Despite their
expressiveness, most models operate within single-domain
scenarios and rely on fixed conditioning formats. One of
the works with cross-domain focus is TimeDP (Huang et al.,
2025), which introduces the use of prototypes to build ‘soft
prompts” for guiding cross-domain generation. However,
its coarse-grained control makes it challenging to achieve
personalized text-controlled TSG.

3. Problem Formulation
Time series often span multiple domains, each with unique
temporal dynamics. Let D = {D1, D2, . . . , Dk} denote a
set of domains, where each domain Di is associated with a
collection of time series Xi = {xt | t = 1, 2, . . . , T}, and
xt ∈ Rd represents a d-dimensional vector at timestamp t.
Our aim is to generate realistic time series while capturing
domain-specific patterns and adhering to constraints speci-
fied by textual descriptions. Formally, the goal is to learn a
generative function: fθ : (D, l, z) → x̂, where l represents
a textual prompt describing characteristics such as trends or
periodicity, and z is a latent variable sampled from a prior
distribution. The output x̂ is a time series that aligns with
both domain-specific patterns and textual conditions.

Adhering to the channel-independent setting (Nie et al.,
2023) that is widely accepted by recent researches, we for-
mulate the problem studied in this paper in a uni-variate
time series generation manner to handle the heterogeneity
of time series in terms of dimension (Woo et al., 2024).

4. Methodology
We propose a unified framework for text-controlled time
series generation, which consists of two main stages: text-
to-time series data preparation and text-to-time series data
generation. The overall architecture is illustrated in Figure
1, where both stages are tightly coupled to facilitate high-
quality, controlled time series synthesis.

4.1. Text-to-Time Series Data Preparation

To address the scarcity of high-quality text-to-time series
paired datasets, we investigate how to generate effective
textual descriptions of time series data to create high-quality
TS-text-paired datasets. Initially, we explored some straight-
forward methods, such as rule-based approaches that relied
on simple trend-related terms (e.g., “increasing”, “decreas-
ing”) and degree modifiers (e.g., “significant”, “slight”).
Additionally, we tried to leverage GPT-4o and incorporated

Seasonal-Trend Decomposition using Loess (STL) (Cleve-
land et al., 1990) to preprocess time-series data by decom-
posing it into trend, seasonal, and residual components,
making the TS data easier for the model to interpret. How-
ever, the resulting texts were overly simplistic and failed
to capture the complex patterns and domain-specific nu-
ances inherent in time-series data (results in Appendix A.8).
Therefore, we further explore leveraging more diverse and
enriched sources to generate text capable of effectively as-
sisting time-series tasks.

To this end, We propose a multi-agent system to automat-
ically generate and iteratively refine TS textual descrip-
tions. As shown in Figure 1, the proposed framework
comprises three key components: Step 1: Text Template
Generation, which focuses on collecting and extracting text
templates to construct initial textual descriptions; Step 2:
Automated Evaluation, designed to assess the effectiveness
of the descriptions in supporting downstream tasks; and Step
3:Feedback-Driven Refinement, which improves the textual
descriptions based on evaluation metrics. Steps 2 and 3 will
alternate and iterate until the agent system determines the
output is sufficiently refined or a predefined iteration limit
is reached. Throughout the iterations, the agents refine a set
of general-purpose text templates, which are designed to be
dataset-agnostic and easily adaptable to new domains and
datasets. Subsequently, these refined templates are utilized
to generate textual descriptions for TSG tasks.

Step 1 Text Template Collection: As noted in previous
work (Merrill et al., 2024), generating fine-grained text de-
scriptions remains a challenging task due to the limited
availability of extensive data resources, while also avoiding
the potential information leakage that could occur when
interacting with external sources while generating text de-
scriptions for a single data. To address this limitation, we
adopt a template-based approach that standardizes the narra-
tive of key TS information. Starting with a variety of initial
queries, we first collect articles, news, and reports that de-
scribe TS data. Inspired by ReAct (Yao et al., 2023), we
propose a single-agent framework, which prompts LLMs to
generate dynamic reasoning traces for collecting candidates
and actions to interact with external environments (e.g.,
Google, Wikipedia) in an interleaved manner (Madaan et al.,
2023) (Framework pipeline can be find in Appendix A.3).
The agent decomposes the query into sub-questions, using
external tools to answer each sub-question iteratively until
all are addressed. Afterwards, another LLM extracts general
TS templates from the collected documents, thus curating a
set of 50 general-purpose templates. To ensure broad appli-
cability across domains, dataset-specific details are carefully
excluded through a combination of prompting techniques
and human verification. During the dataset construction
phase, an LLM is employed to fill these templates with
domain-specific and time-series-related details, resulting in
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Figure 1: Overview of the proposed BRIDGE framework, which consists of two main stages: text-to-time series data
preparation and text-to-time series data generation. The former consists of three steps: (1) collecting initial text templates
from online sources, (2) performing automatic evaluation to assess the quality of generated descriptions, and (3) employing
a feedback-driven refinement process via a multi-agent system to iteratively improve the textual outputs. The latter, i.e., the
diffusion-based generation model, we adopt a hybrid strategy where (i) a textual description is used as input. Meanwhile, (ii)
we utilize the target domain’s time series and extract its corresponding domain prototypes and their weights using Prototype
Assignment Module. These prototypes and weights are also used as inputs and are fused with the textual description. This
fusion serves as the conditioning input for the diffusion model, which is applied to perform text-controlled TSG.

initial textual descriptions tailored to the target domain. The
detailed example can be viewed in Appendix A.6.

Step 2 Automatic Evaluation: Our goal is to equip the sys-
tem with the ability to evaluate generated text and provide
iterative feedback, aligning with the broader objective of
leveraging text to guide TSG. This is achieved by incorpo-
rating a ts task conditioned on accompanying text, based on
the premise that higher-quality text improves performance.
While a straightforward approach might involve pre-training
or fine-tuning existing models specifically for TSG, this
would demand substantial computational resources. Such
an approach would be highly resource-intensive, as it would
require training or fine-tuning at every iteration.

Because recent advancements in prompting strategies have
demonstrated the potential of LLMs for zero-shot Time
Series Forecasting (TSF) (Gruver et al., 2023), we use LST-
Prompt (Liu et al., 2024b) and LLMTime (Gruver et al.,
2023) as our evaluation backbone for a more compute-
efficient alternative to model training. Specifically, we
prompt off-the-shelf LLMs with chain-of-thought (CoT)

reasoning (Wei et al., 2022), which enables the integration
of text as an additional input modality (Liu et al., 2024b).
For the detailed automatic evaluation pipeline, initial evalu-
ation criteria and definitions, refer to Appendix A.4 and A.5.
Additionally, we conducted evaluations on the impact of
different text types on TSG—results shown in Appendix J
demonstrate that generated texts that improve LSTPrompt
performance in TSF, also enhances TSG performance.

Step 3 Feedback-driven Refinement: Based on the ini-
tial text templates and the automatic evaluation system, we
further propose a multi-agent collaboration system that sim-
ulates the iterative refinement process of a team of human
prompt engineers, leveraging the demonstrated capability of
LLMs to improve their own outputs (Zhang et al., 2024a).
As illustrated in Figure 1, the system operates through three
stages: Stage 1 Task Planning (assigning tasks and mon-
itoring progress), a manager agent orchestrates the work-
flow, laying the groundwork for all subsequent stages. This
agent assigns specific tasks to independent teams, monitors
progress, and ensures alignment across iterations. Stage
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2 Intra-group Discussion (independent teams iteratively
refining outputs), two independent teams work iteratively
to refine the text. Each team includes agents with specific
roles: a planner who coordinates tasks, a scientist who ana-
lyzes and identifies improvements, an engineer who imple-
ments changes, and an observer who critiques the outputs.
The teams refine their work through cycles until a satisfac-
tory output is produced. Stage 3 Inter-group Discussion
(collaborative consensus building), the two teams’ leaders,
moderated by the manager, engage in a structured dialogue
to compare and integrate their results. This collaborative
process continues until a consensus is reached, producing a
unified output. Once all initial templates are refined, the sys-
tem extracts them into a new set of templates in Stage 4 Post
Processing. These final templates are filtered to remove du-
plicates and ensure they do not contain any dataset-specific
or time-series-specific information, resulting in a general-
ized template library. This library is fixed and remains
unaltered during subsequent dataset construction, ensuring
consistency and reusability. Further details about the system
structure, processing pipeline, and output examples can be
found in Appendices A.1, A.2 and A.7.

Dataset Synthesis: Excluding domain- or dataset-specific
information during template construction ensures their gen-
eralizability to unseen domains. To demonstrate this, tem-
plates generated with the methodology described in the
previous subsection used only two datasets and are applied
to 12 additional, entirely disjoint datasets in our TSG exper-
iments (seen Section 5.2). During the dataset construction
process, information specific to individual time series is ex-
tracted, while domain-specific details, which are pre-defined
in the dataset, remain consistent across all instances. Specif-
ically, a standalone LLM, separate from the multi-agent
framework, is responsible for extracting statistical infor-
mation from the time series and populating the templates
accordingly. This process is entirely offline, with no reliance
on external networks or the LLM’s pre-trained knowledge.
Once populated, the dataset remain static and unchanged
throughout the TSG phase.

4.2. Text Controlled Time Series Generation

Although text provides explicit details on trends, statistical
properties, and domain-specific information, its discrete na-
ture contrasts with the continuous structure of time-series
data, posing challenges for using text as a control mecha-
nism. To address this, we present our framework for text-
controlled TSG. As shown in Figure 1, the framework em-
ploys a hybrid prompt that integrates semantic prototypes
which supplement coarse-grained domain descriptions pro-
vided by text, along with textual descriptions. This design
captures shared patterns across domains and improves the
model’s generalization ability in unseen domains. We se-
lected diffusion models (Ho et al., 2020; Lin et al., 2024)

as the backbone of our framework due to their proven abil-
ity to generate diverse, high-quality data while effectively
capturing complex data distributions. Recent successes of
diffusion models in time-series forecasting (Rasul et al.,
2021) and generation (Qian et al., 2024) further underscore
their suitability for this task. The specific design of our
architecture is detailed in Appendix B.2.

4.2.1. DOMAIN-SPECIFIC PROTOTYPE MATCHING

Relying solely on text descriptions often leads to insuf-
ficient representation of domain-specific patterns due to
their coarse-grained and abstract nature. To address this,
we draw inspiration from TimeDP (Huang et al., 2025),
which introduces an automated approach to extracting TS
domain features. We propose a hybrid representation strat-
egy that complements domain information using semantic
prototypes. Semantic prototypes serve as “bases”, represent-
ing elementary features of time series such as trends and
seasonality. These bases act as a shared “dictionary” across
different domains, with each prototype vector serving as a
“word” that encodes specific semantic features of TS data.

Specifically, we introduce a set of vectors as time series
prototypes P ∈ RNp×d for representing cross-domain time
series common knowledge, where each prototype vector
p ∈ R1×d serves as the representation of a time series basis
and Np is the number of prototypes. Each time series sam-
ple corresponds to a distinct allocation of these bases. The
mapping from time-series samples to their respective alloca-
tions highlights the importance of prototypes for individual
instances and distinguishes among domains. We propose
Prototype Assignment Module to extract domain-specific
prototype weights m, with domain characteristics expressed
through the selection and weighting of these bases. Then,
the extracted prototypes P and their corresponding weights
m, denoted as (P ,m), are leveraged as supplementary
information to enhance the text domain representation, en-
riching its semantic understanding and cross-domain adapt-
ability. During inference, samples from the target domain
are used to extract prototypes and compute weights.

4.2.2. MODEL TRAINING

We integrate the semantic prototypes p with weights m
and the embeddings of textual descriptions l to construct
a hybrid prompt. This prompt is then fed into the cross-
attention layers of diffusion-based generation model, en-
hancing the expressiveness of textual inputs. This enables
precise and effective controlled generation. With the condi-
tional denoising mechanism, the denoising objective using
ϵ-parameterization (Ho et al., 2020) can be written and sim-
plified as:
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L = E[∥ϵ− ϵ̂∥2]
= Ex0∈DT ,ϵ∼N (0,I),n[∥ϵ− ϵθ,P (xn, n,m, l)∥2] (1)

where n denotes the denoising step. Please refer to Section 3
for symbol definitions. For implementation details, see
Appendix B.1.

5. Experiment Setup and Result Analysis
Our experiments are designed to investigate the key claims
of this paper: The feasibility of using text for TSG with
BRIDGE, its generalisability to unseen domains (Sec-
tion 5.2), and its capability to provide instance-level control
in both in-domain and out-of-domain scenarios (Section 5.3).
We also conduct a comprehensive analysis of textual descrip-
tion types and agent strategies (Section 5.4 and 5.5), as well
as investigate the impact of BRIDGE’s parameter choices
and configuration settings (Section 5.6).

5.1. Experimental Setup

5.1.1. BASELINES

We select SOTA methods for both TS generation and fore-
casting tasks as baselines. For generation, we explore
the performance of BRIDGE by comparing with condi-
tional (TimeVQVAE, Lee et al. 2023) and unconditional
approaches (TimegGAN, Yoon et al. 2019; GT-GAN, Jeon
et al. 2022; TimeVAE, Desai et al. 2021). For forecast-
ing, our goal is to establish the realism of synthetic data.
Here, we compare the performance of Time-LLM (Jin et al.,
2023), LLM4TS (Chang et al., 2023) and TEMPO (Cao et al.,
2024), GPT4TS (Zhou et al., 2023a). Detailed descriptions
can be found in Appendix C.2. More details about Experi-
ment Setup and Implementation can be found at Appendix D
and Appendix E.

5.1.2. DATASETS

We employ AirPassenger and Sunspots as benchmark
datasets for multi-agent system assessing the text types
impact. We evaluate the effectiveness of BRIDGE on 12
in-domain datasets including Electricity, Solar, Wind, Traf-
fic, Taxi, Pedestrian, Air, Temperature, Rain, NN5, Fred-
MD, Exchange. These datasets have been widely used as
benchmark datasets for TSG tasks and obtain from GluonTS
(Alexandrov et al., 2020) and Monash Time Series Forecast-
ing Repository (Godahewa et al., 2021). For the evaluation
of unknown domains, we selected the stock and web dataset.
Finally, We use ILI and M4 (Makridakis et al., 2018) as
additional datasets for Time Series Forecasting task.(Details
shown in Appendix F.2.)

5.1.3. EVALUATION METRICS

Assessing Fidelity of TSG: To evaluate the impact of text
types, we use the Mean Absolute Error (MAE). For TC-
TSG, we measure the Marginal Distribution Discrepancy
(MDD) and Kullback-Leibler (K-L) divergence to quantify
the realism of the synthesized data, with further details
provided in Appendix G.

Assessing Controllability of TSG: To evaluate con-
trollability in text-to-time series generation (TSG), we
adopt the Joint Fréchet Time Series Distance (J-FTSD)
(Narasimhan et al., 2024), which captures both local shape
and global distributional similarity between the generated
and reference sequences. This metric offers a more faithful
measure of alignment than traditional point-wise metrics
such as MSE or MAE, especially in cases where semantic
similarity does not require exact numerical overlap. How-
ever, quantitative metrics alone may overlook perceptual
or contextual alignment. To complement this, we conduct
a Human Evaluation, where outputs are ranked based on
how well they reflect the intended text descriptions. Annota-
tors either evaluate samples independently (HE) or compare
them among mixed distractors (HE@3), allowing for both
absolute and relative quality assessment. This setup captures
cases where generated outputs differ slightly (e.g., a con-
stant shift) yet remain faithful in trend or pattern. Results
are reported as average ranks across multiple evaluations.
See Appendix H for details.

Time Series Forecasting: Following previous work (Wu
et al., 2023), we measure the MSE and MAE for long-
term forecasting. For short-term forecasting on the M4
benchmark, we adopt Symmetric Mean Absolute Percentage
Error (SMAPE), Mean Absolute Scaled Error (MASE), and
Overall Weighted Average (OWA) as evaluation metrics
(Oreshkin et al., 2020).

5.2. Overall Generation Performance on Fidelity

5.2.1. PERFORMANCE ON IN-DOMAIN SETTING

Objective: We evaluated the overall fidelity of BRIDGE
using 12 in-domain datasets. During inference, the text
from the test set served as prompts, where the prototypes
are generated by the training set.

As shown in Table 1, BRIDGE consistently outperforms
existing baselines across a variety of datasets, demon-
strating its robustness and versatility. In terms of MDD,
BRIDGE (w/o Text) achieves the best performance on most
datasets, ranking second only on the Air dataset. For in-
stance, on the Wind dataset, BRIDGE achieves an MDD
of 0.316± 0.031, significantly outperforming models like
TimeVAE (0.943± 0.008) and TimeGAN (1.115± 0.159).
The KL divergence results further underscore BRIDGE’s
capabilities. BRIDGE achieves the lowest KL divergence on
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Dataset BRIDGE BRIDGE w/o Text BRIDGE w/o Prototype TimeVQVAE TimeGAN GT-GAN TimeVAE
M

ar
gi

na
lD

is
tr

ib
ut

io
n

D
is

ta
nc

e

Electricity 0.220± 0.070 0.202± 0.066 0.277± 0.068 1.763± 0.088 2.443± 0.765 2.026± 0.280 3.306± 0.044
Solar 375.531± 0.001 375.908± 10.230 376.111± 5.506 466.174± 0.145 460.810± 14.078 476.196± 17.041 365.906± 6.365
Wind 0.316± 0.031 0.319± 0.046 0.362± 0.050 0.777± 0.028 1.115± 0.159 0.706± 0.106 0.943± 0.008
Traffic 0.254± 0.034 0.261± 0.038 0.316± 0.006 1.170± 0.028 1.733± 0.137 1.311± 0.032 0.984± 0.012
Taxi 0.386± 0.057 0.391± 0.057 0.491± 0.133 0.534± 0.032 1.278± 0.168 1.118± 0.157 0.697± 0.007
Pedestrian 0.621± 0.124 0.624± 0.116 0.800± 0.111 1.225± 0.060 1.574± 0.290 1.559± 0.117 0.777± 0.012
Air 0.447± 0.112 0.410± 0.129 0.508± 0.091 0.338± 0.012 2.089± 0.618 2.828± 0.172 1.369± 0.040
Temperature 0.342± 0.010 0.345± 0.019 0.408± 0.053 0.943± 0.035 1.164± 0.110 1.165± 0.072 2.044± 0.024
Rain 5.340± 0.421 5.597± 0.409 6.678± 2.045 9.243± 0.122 10.937± 4.039 6.473± 1.207 9.134± 0.477
NN5 0.591± 0.029 0.628± 0.021 0.748± 0.134 1.424± 0.043 2.758± 0.142 2.121± 0.094 2.871± 0.045
Fred-MD 0.258± 0.045 0.271± 0.056 0.359± 0.097 2.932± 0.133 4.028± 0.130 4.026± 0.087 2.902± 0.215
Exchange 0.374± 0.053 0.376± 0.058 0.382± 0.041 0.993± 0.058 1.553± 0.122 1.355± 0.072 1.331± 0.042

K
-L

D
iv

er
ge

nc
e

Electricity 0.011± 0.010 0.014± 0.013 0.013± 0.005 0.185± 0.018 0.395± 0.121 0.415± 0.040 0.580± 0.005
Solar 0.007± 0.002 0.007± 0.003 0.015± 0.012 0.726± 0.043 0.889± 0.288 0.102± 0.045 0.201± 0.008
Wind 0.067± 0.030 0.061± 0.042 0.069± 0.030 0.493± 0.081 4.528± 1.743 0.511± 0.129 0.553± 0.014
Traffic 0.013± 0.004 0.013± 0.005 0.017± 0.004 0.145± 0.015 2.134± 0.952 1.108± 0.171 0.212± 0.006
Taxi 0.013± 0.009 0.013± 0.010 0.039± 0.031 0.100± 0.014 1.160± 0.651 0.663± 0.127 0.120± 0.005
Pedestrian 0.011± 0.009 0.011± 0.009 0.020± 0.005 0.275± 0.021 0.881± 0.436 0.347± 0.085 0.052± 0.010
Air 0.022± 0.017 0.018± 0.014 0.019± 0.011 0.017± 0.004 0.588± 0.369 0.506± 0.091 0.176± 0.016
Temperature 0.023± 0.013 0.024± 0.010 0.039± 0.033 0.980± 0.190 8.775± 2.511 2.177± 0.323 1.910± 0.076
Rain 0.006± 0.001 0.007± 0.001 0.009± 0.003 0.008± 0.002 0.383± 0.089 0.462± 0.056 0.175± 0.011
NN5 0.010± 0.008 0.013± 0.008 0.016± 0.007 0.603± 0.107 4.054± 1.592 1.372± 0.180 1.284± 0.058
Fred-MD 0.024± 0.019 0.028± 0.029 0.033± 0.029 0.712± 0.054 5.371± 1.455 3.509± 0.299 0.376± 0.025
Exchange 0.083± 0.056 0.088± 0.065 0.088± 0.077 1.984± 0.836 4.376± 0.664 1.583± 0.932 2.011± 0.433

Table 1: Generation results on various univariate datasets, evaluated using Marginal Distribution Distance (MDD) and K-L
divergence (K-L). Lower values indicate better performance. Best results are in red, and second best in blue.

almost all datasets, ranking second only on the Wind and
Air datasets. On the Electricity dataset, BRIDGE achieves a
KL divergence of 0.011± 0.010, substantially better than
BRIDGE (w/o Text) at 0.014± 0.013, and significantly out-
performing baselines such as TimeVQVAE (0.185± 0.018)
and TimeGAN (0.395± 0.121). Notably, even without text
conditioning, BRIDGE often secures the second-best per-
formance, highlighting the strength of its core architecture.
For example, on the Pedestrian dataset, BRIDGE (w/o Text)
achieves the second-best KL divergence of 0.011± 0.009,
only slightly behind the top-performing model. We also
show that BRIDGE can generate realistic synthetic data for
forecasting downstream tasks in Appendix I.

5.2.2. PERFORMANCE ON UNSEEN DOMAIN SETTINGS

Objective: We evaluated the performance of BRIDGE in
unseen domains, training on 12 in-domain datasets and
testing on two out-of-domain datasets. In this setting, the
few-shot scenario established the prototypes, while the text
functioned as the control condition for generation .

Our model demonstrates superior robustness in both MDD
and K-L metrics, outperforming the baseline models in
most cases (Shown in Table 2). Specifically, it achieves
the best results for general MDD and K-L scores at both
5-shot and 10-shot settings. Furthermore, the performance
improvement with additional examples suggests that the
model effectively leverages learned semantic prototypes
to recall more accurate domain and pattern information,
enhancing its generalization capability.

Methods MDD K-L

5-shots 10-shots 5-shots 10-shots

St
oc

k

TimeVQVAE 3.502 3.514 1.487 3.785
TimeGAN 3.834 3.765 14.347 13.823
GT-GAN 3.653 3.474 10.971 8.855
TimeVAE 3.738 3.338 6.048 4.479
BRIDGE 3.477 3.112 3.249 2.827

W
eb

TimeVQVAE 9.630 10.012 1.665 1.213
TimeGAN 8.304 8.122 4.343 3.236
GT-GAN 8.018 8.936 10.037 10.915
TimeVAE 10.106 10.211 3.332 1.845
BRIDGE 8.085 7.995 0.905 0.876

Table 2: Few-shot Performance of Unseen domain. We
compare the proposed methods and baseline on 5,10-shots.
Best results are highlighted in bold face.

5.3. Controlling Generation Performance

5.3.1. PERFORMANCE ON IN-DOMAIN SETTINGS

Objective: We evaluated the controllability of BRIDGE
on 12 in-domain datasets using J-FTSD (Narasimhan et al.,
2024) and human evaluation, while keeping all other settings
consistent with Subsection 5.2.1.

As shown in Table 3, the proposed BRIDGE consistently
outperforms the two ablated variants in most of datasets,
according to both the J-FTSD score and human evaluation
metrics (HE and HE@3). The removal of textual input
leads to the most severe performance drop, particularly in
human assessments—demonstrating that text is essential
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Electricity Solar Wind Traffic
J-FTSD HE HE@3 J-FTSD HE HE@3 J-FTSD HE HE@3 J-FTSD HE HE@3

BRIDGE 0.538 2.3 2.4 0.295 2.6 2.8 5.011 1.8 1.8 0.570 1.4 1.4
w/o Prototype 1.164 3.3 3.4 0.322 3.2 3.3 6.843 3.1 3.2 0.597 2.1 2.1
w/o Text 1.821 3.4 3.5 0.330 3.2 3.4 6.935 4.1 4.2 0.611 5.2 5.4

Taxi Pedestrian Air Temperature
J-FTSD HE HE@3 J-FTSD HE HE@3 J-FTSD HE HE@3 J-FTSD HE HE@3

BRIDGE 0.974 1.4 1.4 0.488 2.2 2.6 0.654 2.7 2.8 3.977 2.4 2.4
w/o Prototype 1.037 3.4 3.6 0.662 2.6 3.1 0.817 3.0 3.1 4.613 2.6 3.1
w/o Text 1.312 4.2 4.4 0.550 3.3 5.0 0.677 3.3 3.4 4.708 3.6 3.9

Rain NN5 Fred-MD Exchange
J-FTSD HE HE@3 J-FTSD HE HE@3 J-FTSD HE HE@3 J-FTSD HE HE@3

BRIDGE 0.147 1.9 1.9 0.972 2.5 2.8 0.260 2.5 2.8 1.581 1.9 1.9
w/o Prototype 0.141 3.2 3.2 1.115 3.1 3.5 0.341 2.7 3.0 1.846 3.1 3.1
w/o Text 0.151 3.7 3.7 1.192 3.4 3.8 0.423 3.8 4.2 1.738 3.7 3.7

Table 3: Text control performance of in-domain settings. Measured by J-FTSD and human evaluation.

for producing outputs that align with intended semantics.
Without textual guidance, the model tends to generate less
coherent and less interpretable sequences. For example,
on the Traffic and Pedestrian datasets, HE scores increase
by over 3 points without text, indicating poor alignment.
The “w/o Prototype” setting shows moderate degradation,
suggesting that while prototype representations enhance
fine-grained alignment and structure, they are less critical
than textual descriptions. Notably, the gap is especially
visible on datasets with high temporal variability such as
Wind and Temperature. These results confirm that both
components—text and prototypes—play complementary
roles in generating realistic and controllable time series.

5.3.2. PERFORMANCE ON UNSEEN DOMAIN SETTINGS

Objective: Same to the in-domain setting, we evaluated the
controllability of BRIDGE on 2 unseen domain datasets.

Table 4 highlights the structural contributions of text and
prototype components in unseen domains. The full BRIDGE
model achieves the lowest J-FTSD and most favorable hu-
man evaluation scores across both Stock and Web datasets,
indicating strong generalization beyond the training distri-
bution. Removing text input causes the most notable perfor-
mance drop, especially in J-FTSD and HE@3, confirming
that textual guidance is critical for semantic alignment and
coherent generation. In comparison, the “w/o Prototype”
variant shows only moderate degradation, particularly in
HE but not in J-FTSD, suggesting that prototypes help en-
force structural consistency but are less essential than text
for global control. These results support a complementary
division of labor: text governs high-level semantics, while
prototypes refine local dynamics.

Stock Web
J-FTSD HE HE@3 J-FTSD HE HE@3

BRIDGE 7.483 2.8 2.8 5.529 2.7 3.2
w/o Prototype 7.687 2.8 3.5 5.752 3.1 3.5
w/o Text 8.178 3.4 4.0 6.302 3.2 3.4

Table 4: Comparison of text control performance of different
settings on unseen domains. Measured by J-FTSD and
human evaluation.

5.4. Performance Analysis on Controlling Text

Objective: We conducted a comprehensive analysis of the
influence of text types. Specifically, we performed TSF
experiments on two benchmark datasets to assess the impact
of different text types.

Conciseness leads to better performance. Table 5 shows
that concise text inputs outperform overly detailed ones,
which can mislead the model. This is particularly evident
in the case of w/o instance context”, where the MAE im-
proves by 1.6 (compared to Initial text”) on the AirPassen-
ger dataset, indicating that generating text that fully aligns
with human preferences remains a challenging task. No-
tably, when it comes to longer sequence length, the con-
text provides more useful information (48.64 vs 59.91 on
Sunspots). Clearly specifying the length of the predic-
tion/generation can make the model’s performance more
stable. This can be seen from the performance of “w/o statis-
tics”. After providing a clear sequence length and statistical
values, the model’s performance improves. Background in-
formation helps the model. Similar to the findings of other
works (Jin et al., 2023; Merrill et al., 2024), background
information can significantly improve the model’s perfor-
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Text Types AirPassenger Sunspots

LLMTime LSTPrompt LLMTime LSTPrompt

Rule-based Text 52.41 20.08 63.92 51.61
Initial Text 49.36 15.12 59.88 49.71
Refined Text(Ours) 40.94 12.39 48.64 42.37
w/o Instance Context 41.96 13.54 54.33 44.23
w/o Background 44.63 14.77 56.81 46.07
w/o Statistical Context 44.01 13.41 54.24 47.12
w/o Pattern 44.36 14.52 55.16 46.84
w/o Pattern+Statistic 44.30 14.27 56.89 45.65
Baseline (Liu et al., 2024b) 45.75 15.00 59.91 47.59

Table 5: Zero-shot time-series forecasting performance
(Mean Absolute Error, lower is better) using different tex-
tual descriptions across two datasets: AirPassenger and
Sunspots.

mance. This is likely because retrieving the pre-trained
knowledge from the LLMs can offer additional contextual
information as support. Direct pattern descriptions are
more effective than detailed trend descriptions. As men-
tioned in Appendix A.8, when attempting to decompose
the TS into seasonal, trend, and residual components, the
model’s performance did not show significant improvement.
After multiple iterations, the most effective method was to
provide the overall upward/downward trends and explicitly
identify the top k extreme points. In addition, we further
investigated the impact of revised text types on generation
performance. These results support our findings in the TSF
task, such as rule-based contextual information may bring
more confusion, as detailed in the Appendix J.

5.5. Performance Analysis on Individual Components of
Multi-Agent System

Objective: We further evaluated different agent strategies
on refined text. In the strategy experiments, the Macro
approach involves a single team making high-level infor-
mation adjustments, while the Micro approach emphasizes
fine-grained details. The Multiple Teams strategy represents
a collaborative setting where two teams work together to
accomplish the task.

As shown in Table 6, the multi-agent team strategy consis-
tently achieves lower MAE than both micro- and macro-
level single-agent approaches across datasets and text
types. This suggests that collaborative generation captures
a broader range of relevant patterns, leading to more effec-
tive forecasting guidance. Between single-agent strategies,
macro-level descriptions outperform micro-level ones, in-
dicating that concise, high-level summaries are easier for
models to utilize than overly detailed inputs. Notably, all
strategies perform better under the LSTPrompt setting, high-
lighting its stronger alignment with model input expecta-
tions. These findings underscore the importance of struc-
tured, semantically aligned textual inputs in enabling robust
zero-shot forecasting performance.

Text Types AirPassenger Sunspots

LLMTime LSTPrompt LLMTime LSTPrompt

Agent Strategies
Multi-Agent Teams 40.94 12.39 48.64 42.37
Single (Micro) 44.27 14.22 56.80 45.70
Single (Macro) 42.57 13.83 54.51 45.01

Table 6: Zero-shot TS forecasting performance under dif-
ferent multi-agent strategies. MAE is reported for each
configuration; lower values indicate better performance.

5.6. Ablation Study

Objective: We further conducted ablation experiments to
explore the impact of different components in the multi-
agent system, as well as the performance of different set-
tings, varying prototype quantities, and using different lan-
guage models as the text encoder in BRIDGE.

As shown in Table 1, the BRIDGE outperforms other vari-
ants on most datasets, as shown by its superior MDD and
K-L divergence scores. Removing text input (BRIDGE w/o
Text) leads to higher MDD and K-L divergence in nearly
all datasets, highlighting the importance of text for improv-
ing generation quality. In the NN5 dataset, MDD increases
from 0.591 to 0.628, and in the Exchange dataset, K-L diver-
gence rises from 0.083 to 0.088. The removal of prototypes
(BRIDGE w/o Prototypes) causes the most significant per-
formance decline. As shown in Table 10 in Appendix K,
the number of prototypes significantly influences perfor-
mance: more prototypes provide richer reference patterns
that enhance generation quality. However, we also observe
that increasing the number of prototypes beyond 16 brings
only marginal improvement. Therefore, we adopt 16 pro-
totypes as a practical trade-off between performance and
computational efficiency. Moreover, we explored the im-
pact of pre-training knowledge from LLMs (Dubey et al.,
2024). The results show that the larger models have a slight
change in performance, but it is not significant, indicating
that the pre-training knowledge has a minor influence on
performance (shown in Appendix L). For visualization of se-
mantics on various datasets, please refer to the Appendix N.

6. Conclusion
In this work, we explore the potential of using text to guide
TSG. We propose a multi-agent system for refining tex-
tual descriptions and a text-controlled TSG model. Experi-
ments show that concise text improves text-controlled per-
formance, with our model surpassing baselines, especially
in few-shot learning, demonstrating strong generalization.
Additionally, results indicate that the designed semantic
prototypes effectively complemented domain information.
These findings lay the groundwork for advancing human-
preferred text-controlled TSG.
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Impact Statement
This paper presents work aimed at advancing the field of
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able research datasets that have already undergone ethical
review.
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N

Figure 2: Detail workflow of proposed multi-agent collaborative framework

A. Text Preparation
A.1. Multi-Agent Collaboration Framework Details

A.1.1. FRAMEWORK WORKFLOW

We propose a structured, multi-agent collaboration framework designed to iteratively optimize text generation through
systematic refinement. While the system is capable of operating with a single team employing distinct strategies, our
experimental results demonstrate that employing two independent teams yields superior outcomes in terms of both quality
and diversity of generated outputs. As can be seen from Figure 2, the framework comprises three primary stages:

In Stage 1: Task Planning, a manager agent assumes responsibility for overseeing the workflow. This agent coordinates
all subsequent activities by distributing tasks and results from prior iterations to ensure seamless progress and alignment
among team members. The manager also defines the objectives for the teams, thereby establishing a structured foundation
for collaboration. Stage 2: Intra-group Collaboration constitutes the core of the system, wherein two independent teams of
agents work concurrently to refine the given text. Each team is composed of four roles: a planner, a scientist, an engineer,
and an observer. The planner serves as the team leader, formulating strategies and supervising operations. The scientist
analyzes the input data and formulates detailed optimization plans. The engineer executes these plans, generating improved
text outputs. The observer critically evaluates the plans and outputs, raising questions to identify shortcomings and potential
improvements. Teams operate in iterative cycles, guided by the observer’s critiques. This self-refining loop continues until
the observer ceases to raise objections or a predefined maximum number of iterations is reached. Through this iterative
process, each team independently produces a refined output. In Stage 3: Inter-group Discussion, the leaders of the two
teams engage in a structured dialogue moderated by the manager. This stage facilitates the integration of insights from both
teams, encouraging comparative evaluation and collaborative refinement of their outputs. The discussion continues until a
consensus is reached, resulting in a unified solution that incorporates the strengths of both teams.

The finalized output is then subjected to Post-Processing. This phase includes a validation step, where the text is evaluated
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against a predefined model to ensure its quality and adherence to target metrics. Approved outputs are incorporated into a
formal dataset, expanding the training resources available for future tasks. Additionally, any templates developed during
the process are added to a general template library, enabling reusability and continuous improvement in subsequent data
generation efforts.

A.1.2. STAGES OF COLLABORATION

Stage 1: Task Planning
Role Focus: Manager

• The manager initiates the workflow and assigns responsibilities to the team leaders.

Stage 2: Intra-group Collaboration
Role Focus: Planner, Scientist, Engineer, and Observer

• Teams execute their tasks, with internal cycles involving:

– The scientist proposing plans.
– The engineer implementing them.
– The observer providing feedback until quality is satisfactory.

Stage 3: Inter-group Discussion
Role Focus: Manager and Team Leaders

• Leaders from each team present their refined outputs to the manager.

• Discussions between leaders and the manager lead to a unified, optimized output.

A.2. Example of Initial and refined text

Initial Text: This task focuses on predicting future values of a given time series based on historical data. The historical
data shows periodic spikes in values, followed by declines, indicating a strong seasonal pattern. Notable fluctuations are
observed at time points when values exceed 400, suggesting external influences. The average value of the historical data
is approximately 239.95, with a variance of 8271.86, indicating significant fluctuations around the mean. Future Data
Projections indicate that expected values for the time series range between a minimum of 310 and a maximum of 622, with
a mean of 0.49 and a standard deviation of 92.75, suggesting increased variability compared to the historical period. The
median value is projected to be around 453.34. Anticipated peaks are likely to occur at steps 5, 15, 25, and so on, while
predicted dips are expected at steps 8, 18, 28, and similar intervals. Statistical Summary for the future time series reveals the
following quartiles: the first quartile (Q1) is **, the median is **, and the third quartile (Q3) is **. Periodicity and Pattern
Alignment show consistent high values expected every 10 steps, with auto-correlation anticipated around these intervals,
reflecting the cyclical nature observed in the historical data.

Iteration 1: This dataset provides monthly totals of US airline passengers from 1949 to 1960. The prediction length is 29
time steps. **Future Data Description:** Future data projections indicate that expected values for the time series range
between a **minimum of 310** and a **maximum of 622**, with a **mean of approximately 440.31** and a **standard
deviation of about 79.52**, suggesting variability similar to the historical period. The **median value** is projected to be
around **419**. The **first quartile (Q1)** is approximately **390.5**, and the **third quartile (Q3)** is approximately
**488.5**. Anticipated **peaks** are likely to occur at **steps 5, 15, and 25**, while predicted **dips** are expected at
**steps 8, 18, and 28**, reflecting the cyclical patterns observed in the historical data. **Periodicity and pattern alignment**
indicate consistent high values expected every **10 steps**, with **auto-correlation** anticipated around these intervals,
continuing the cyclical nature observed previously.

Iteration 2: Future Data Projections indicate that expected values for the time series range between a minimum of 0.004
and a maximum of 0.98, with a mean of 0.49 and a standard deviation of 0.29, suggesting increased variability compared
to the historical period. The median value is projected to be around 0.45. Anticipated peaks are likely to occur at steps 5,
15, 25, and so on, while predicted dips are expected at steps 8, 18, 28, and similar intervals. Statistical Summary for the
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future time series reveals the following quartiles: the first quartile (Q1) is 0.21, the median is 0.45, and the third quartile
(Q3) is 0.70. Periodicity and Pattern Alignment show consistent high values expected every 10 steps, with auto-correlation
anticipated around these intervals, reflecting the cyclical nature observed in the historical data.

Iteration 3: The air passengers dataset provides monthly totals of US airline passengers from 1949 to 1960. Data Projections
indicate that expected values for the time series range between a minimum of 310 and a maximum of 622, with a mean of
453.34 and a standard deviation of 92.75, suggesting increased variability compared to the historical period. Anticipated
peaks are likely to occur at steps 5, 15, 25, and so on, while predicted dips are expected at steps 8, 18, 28, and similar
intervals.

Refined Text: The air passengers dataset provides monthly totals of US airline passengers from 1949 to 1960. The prediction
length is 29 time steps. Data Projections indicate that expected values for the time series range between a minimum of 310
and a maximum of 622, with a mean of 453.34 and a standard deviation of 92.75, suggesting increased variability compared
to the historical period. Anticipated peaks are likely to occur at steps 5, 15, 25, and so on, while predicted dips are expected
at steps 8, 18, 28, and similar intervals.

A.3. Pipeline for Collect the text candidate

Figure 3 shows how the single agent framework is proposed how to collect templates. While direct search for relevant
content is feasible, it is constrained by a maximum of K titles relevant to the query keyword. To overcome this, we aim to
gather relevant candidates based on content similarity. For instance, a simple search for “time series generation” might
return its definition, but a reasoning-enabled agent can plan what types of articles are more likely to contain relevant content,
thereby diversifying the search results.

Step 1: Single Agent Text Collection

 Initial Query
Reasoning

Tools

❓Sub-Query 
Observation

LLM

Unsatisfactory collection of documents
💡 Continue Iteration

Action
❗ Search

Web

❓Threshold 
Checking

Reaching the iteration
limit or good enough

Collect
 Documents

Figure 3: The pipeline of collect the document for extract template. Leverage the ReAct to inspire agent collect human-craft
text about time series description. The framework stopped when collect enough document or reach the max iteration
limitation.

A.4. Detail of Automatic Evaluation

The system takes as input a historical TS alongside its textual description, using these as conditions to predict future TS
values. This design leverages the intuition that historical TS serves as supplementary contextual information, simplifying
the generation process while constraining the model’s output space. This framework isolates the text’s impact on forecasting
accuracy, minimizing the influence of the TS data itself to better assess the quality of the textual input. To validate this
approach, we conduct evaluations on two widely studied datasets: the Air Passenger and Sunspots datasets, which offer
diverse temporal patterns and domain characteristics. The key to our refined framework lies in the definition of the evaluation
dimension, which directly influences the agent’s ability to correct text-time series pair errors and provide high-quality
feedback. On one hand, we define evaluation criteria that align with the modal characteristics of both text and TS, allowing
the agent to consider both simultaneously in order to correct the data. On the other hand, we also allow the agent to propose
more suitable evaluation metrics.
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A.5. Evaluation Dimensions

In this section, we detail the initial evaluation criteria and definitions used to assess the generated text and its impact on
TS forecasting. These criteria are designed to align with the modal characteristics of both text and time series, enabling
the agent to evaluate and correct the input-output pairs effectively. We consider both text and TS metrics. Specifically, we
consider following dimensions for text:

• Accuracy of trend description: The description accurately identifies the steady increase in the time series.

• Mention of seasonality: The description correctly notes the absence of seasonality in the data.

• Completeness of information: The description covers the main aspects of the time series but could mention the exact
rate of increase.

• Clarity of description: The description is clear and easy to understand.

we consider following for time series: Specifically, we consider Mean Squared Error (MSE) (Hurvich, 1988), Kolmogorov-
Smirnov Test (K-S Test) (Berger & Zhou, 2014) and Wasserstein Distance (WD) (Panaretos & Zemel, 2019) for measuring
the difference between the generated and target time series, and building a 5-point Likert scale for evaluate the text quality
with 5 dimension (i.e. Accuracy of trend description; Mention of seasonality; Reference to external factors; Clarity of
description; Completeness of information).

A.6. Initial Template Exact from Collect Template

The time series templates extracted from the collected corpus typically contain descriptions of key patterns such as trends,
seasonalities, and changes over time. For example, a typical template could be structured as:

Overall, {entity}, {describe general trend}. At the beginning, {detail initial}. As time progressed, {change description}, culminating
in {end description} by {end time}
Additionally, the templates may include other relevant information, such as statistical metrics (e.g., minimum, maximum,
standard deviation), dataset information, degree words (e.g., dramatically, slightly) that describe the intensity of changes,
and the time series length.”

A.7. Example of Refined Text Template
1.The dataset name dataset provides frequency totals of data description from start date to end date. The prediction length is predic-
tion length time steps. Data statistics indicate that expected values for the time series range between a minimum of min value and a
maximum of max value, with a mean of mean value and a standard deviation of std value, suggesting variability summary compared to
the beginning period. Anticipated peaks are likely to occur at steps peak steps, while predicted dips are expected at steps dip steps.
2.The dataset name dataset captures frequency measurements of data description collected between start date and end date. Each series
spans prediction length steps. Statistical indicators show values ranging from min value to max value, with an average of mean value
and a variability (standard deviation) of std value. Notable shifts in the data occur around steps peak steps (highs) and dip steps (lows),
illustrating variability summary trends.
3.With a focus on data description, the dataset name dataset provides frequency records from start date to end date. Analysis shows
values peaking at max value and dipping to a minimum of min value, while maintaining an average of mean value. The standard deviation
of std value highlights variability summary. Prediction spans of prediction length time steps reveal anticipated peaks at peak steps and
dips at dip steps.
4.Designed for generation/forecasting, the dataset name dataset offers frequency intervals of data description over a timeline from
start date to end date. Prediction windows of prediction length steps enable users to observe patterns such as peak values at peak steps
and dips around dip steps. Ranges from min value to max value suggest considerable variability, with a mean of mean value and standard
deviation of std value, illustrating variability summary across the dataset.
5.The dataset name dataset, spanning start date to end date, provides frequency observations of data description. Its prediction horizon
is set at prediction length steps. Statistical analysis reveals that the data ranges from a low of min value to a high of max value, with
a mean of mean value and a variability of std value. Peaks are observed at peak steps, while dips are noticeable around dip steps,
demonstrating variability summary throughout the series.
6.Spanning from start date to end date, the dataset name dataset includes frequency records of data description. Predictions are made
for horizons of prediction length time steps. The series ranges between min value and max value, averaging mean value with variability
marked by a standard deviation of std value. Anticipated patterns show higher values near peak steps and lower ones around dip steps,
reflecting variability summary over time.
7.The dataset name dataset includes domain time series with frequency frequency, spanning from start date to end date. The time series
contain total steps time points, with predictions required for prediction length steps ahead. The dataset’s range of values varies between
min value and max value, with a mean of mean value and a standard deviation of std value. The series shows notable fluctuations, with
potential peaks observed at peak steps and troughs around dip steps.
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8.The dataset name dataset’s subdataset includes domain time series data collected at frequency intervals, spanning from start date to
end date. The total number of time steps is total steps, and the forecast horizon is prediction length. Data statistics reveal that the values
range from a minimum of min value to a maximum of max value, with an average of mean value and a standard deviation of std value,
indicating variability summary. Notable peaks are anticipated at time steps peak steps, while predicted dips are expected at dip steps.
9.The subdataset from the dataset name dataset contains domain time series recorded at frequency intervals, ranging from start date
to end date. The series consist of total steps time points, and the forecast length is prediction length. The time series data spans a
range of values from min value to max value, with an average of mean value and a standard deviation of std value. The data exhibits
variability summary, with potential peaks at peak steps and troughs at dip steps.

A.8. Using LLM directly for Time Series Forecasting

We first explored whether rule-based text could work here as it sample and easy to implement. But its results show
fluctuations within a certain range, which confuses the model.

Example rule-based template like ”The air passengers dataset provides monthly totals of US airline passengers from 1949
to 1960. The data can be described as small consolidation small consolidation small consolidation small consolidation
small breakout rebound small consolidation small rounded bottom small consolidation small downtrend small consolidation
small false breakout rebound small breakout small downtrend slight breakout small downtrend rebound small breakout
moderate downtrend small breakout moderate downtrend small false breakout small breakout moderate downtrend pullback
small breakout small false breakout small double bottom small breakout significant downtrend.”

We further leverage LLM to optimize it, aiming to make it more narrative-like. For example

The input time series illustrates a market with frequent minor fluctuations and distinct pattern formations. It begins with a
small consolidation, followed by a false breakout and a rounded bottom. After another phase of consolidation, the market
experiences a slight rebound, then consolidates again before another rebound. This is followed by a small breakout and the
formation of a double bottom pattern. A rounded bottom and descending triangle emerge, succeeded by a pullback. The
market then forms another double bottom and rounded bottom, followed by a period of consolidation. Two more rounded
bottoms appear before a small breakout and a subsequent rebound. The series concludes with a final phase of consolidation
and the formation of a double bottom.

The input time series illustrates a market with frequent minor fluctuations and distinct pattern formations. It begins with a
pullback, followed by a small false breakout and a rebound. After a brief period of consolidation, the market experiences
another pullback and forms a small rounded bottom. This is followed by another phase of consolidation and a second small
rounded bottom, leading to a rebound. The market then forms a small rectangle pattern, rebounds again, and creates a small
wedge before pulling back once more. Another small rounded bottom forms, followed by a rebound and two consecutive
small false breakouts. The series then undergoes another pullback, experiences a small breakout, forms a small rectangle,
and pulls back again. Finally, the market rebounds and concludes with a small breakout.

Directly employed In-context learning (ICL) to activate LLMs for text generation is also considered. In this setup, the time
series first adopts Seasonal-Trend decomposition using Loess (STL) (Cleveland et al., 1990), which is a robust method
to decompose time series into long-term trend, seasonal, and residual components. Then, descriptions are generated
separately for the initial, intermediate, final, and overall trends. It is important to note that this textual description is based on
periodicity rather than time, as the time series is more nuanced. Descriptions segmented by time showed erroneous outputs
in experiments, particularly in the form of regular fluctuations within specific intervals. For detailed prompt design consult.
Example like:

**Initial Phase (roughly first 30-35 points)**: The series starts with relatively low values, mostly fluctuating between 4 and
6. There’s a slight downward trend initially, followed by a period of relative stability. A few short-lived spikes occur (e.g.,
around points 7-8), but quickly return to the baseline.

**Transition Phase (around points 35-40)**: There’s a sudden and significant level shift upwards. Values jump from the 4-6
range to the 8-10 range. This marks the most dramatic change in the entire series.

**Middle Phase (roughly points 40-70)**: The series settles into a new, higher range, mostly between 9 and 11. There’s
increased volatility compared to the initial phase. A slight upward trend is visible within this phase. Several cycles of rises
and falls occur, but each cycle tends to peak higher than the last.

**Late Phase (final 30-35 points)**: The upward trend becomes more pronounced. Volatility increases further, with larger
swings between highs and lows. The series reaches its highest points in this phase, with peaks above 12. Despite the higher
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Figure 4: STL Visualization

peaks, there are still significant drops, creating a saw-tooth pattern.

**Overall Trend**: The series shows a clear overall upward trend from start to finish. This trend is not linear but rather
step-like, with a major shift in the middle and then a more gradual increase. The trend is accompanied by increasing
volatility over time.

A.9. Evaluation

To further ensure the neutrality and safety of the text templates, we conducted the verifications by both automatic and human
evaluation: We used GPT-4 to assess whether the templates could be linked to specific TS. Results confirmed that no such
linkage existed. Independent human reviewers examined the templates and concluded that they did not reveal any specific
details about the TS.

B. Diffusion-based Time Series Generation
B.1. Semantic Prototype Assignment and Alignment

Semantic Prototype Assignment. Although the same set of prototypes is used across different instances, the degree to
which each prototype explains different instances varies. To address this, we assign prototypes to each time series and text
description pair, which serves as a condition for the generation model. For each input sequence x (comprising both the time
series and text embeddings), a weight vector is generated, the dimension of which corresponds to the number of prototypes.
This is achieved via a feature extractor ϕ. Each element of the vector ϕ(x)i reflects the contribution of each prototype unit pi
in the prototype set P , and these weights modify the attention mechanism used during generation. As a result, the model is
conditioned on the assigned weighted prototypes. The weights are applied through an attention mask m, which operates on
the attention weights for prototypes. To ensure sparsity, we discard prototype units that are assigned with negative weights
by setting their attention weights to zero. Formally, the prototype assignments are transformed into attention mask m as
follows:

m = ϕ(x0, t0)− Iϕ(x0,t0)≤0 · ∞ (2)

where ϕ(x, t) ∈ RN×d is the output from the feature extraction layer that processes both time series and text embeddings.
Iϕ(x,t)≤0 is an indicator function that zeroes out negative weights, ensuring that only retains non-negative values. In this
work, we use randomly orthogonal vectors as prototypes (Huang et al., 2025). In future work, we will consider methods
such as fine-tuning.
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Algorithm 1 Bridge Training

Require: Time series-text dataset {X , T }
Ensure: Network parameters ϕ and θ, prototypes P

1: Initialize prototypes P
2: repeat
3: Sample x0, s from {X , T }
4: Extract prototype assignments m = ϕ(x0, P )
5: Randomly set P as unconditional identifier pu
6: Randomly sample time step n ∼ U(1, N)
7: Randomly sample noise ϵ ∼ N (0, I)
8: Encode text description: l = TextEncoder(s)
9: Corrupt data xn =

√
αnx0 +

√
1− αnϵ

10: Predict step noise with ϵ̃ = ϵ̃θ,P (xn, n,m, l)
11: Compute loss and take gradient step
12: until maximum training step
13: Output: Network parameters ϕ, θ and prototypes P

Algorithm 2 Bridge Inference

Require: Prototypes P , time series prompts x from train set or few-shot demonstration set, and text description s from test
set

Ensure: Generated time series samples x̂
1: Extract prototype prompts m = ϕ(x, P )
2: Encode text description l = TextEncoder(s)
3: Randomly sample noise x̂N ∼ N (0, I)
4: for n from N to 1 do
5: Predict step noise with ϵ̃n = ϵ̃θ,P (x̂n, n,m, l)

6: Denoise x̂n−1 = x̂n−
√
1−ᾱn ϵ̃n√
αn

7: end for
8: x̂ = x̂0

9: Output: Generated samples x̂

Semantic Prototype Alignment. To condition the denoising diffusion process, we adapt the denoising objective using c as
a condition, influencing the model’s intermediate layers through cross-attention. This ensures that the generated time series
aligns with the specified conditional instruction. To achieve this, we aim to align the condition and semantic prototypes
during the training phase. A set number of query embeddings are allocated to both the text and time series as input. These
queries interact with each semantic prototype through cross-attention layers (inserted every other transformer block z).
We initialise the weights of the cross-attention layers randomly and update them during training. Specifically, we apply
cross-attention to the feature representations using the following equations:

Q = WQ · cz, K = WK ·P, V = WV ·P (3)

where

z = FF
(

softmax
(
Q(K)T√

d
+m

)
· V

)
(4)

Here, z ∈ RN×d denotes the output from the attention block. WQ,WK ,WV ∈ Rd×d are learnable projection matrices
applied on the sequence dimension. The attention output zfinal is passed to another feedforward network to produce the final
output ϵ̂ = FF(zfinal).

B.2. Algorithm for Generation

Algorithm 1 and Algorithm 2 shown the diffusion process of generate new sample with text guide.
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B.3. The form of Input and Output

Input of Diffusion Model including a time series and corresponding text description. The two of them will be processed by
the encoder and LLama respectively, and the obtained embedding will be fused through a single-layer MLP as conditional
input. The output of the diffusion model is a synthetic time series.

C. Baseline Model
C.1. Time Series Generation Model

TimeVQVAE(Lee et al., 2023) is a generative model designed for sequential data. It combines the strengths of a variational
autoencoder (VAE) with vector quantisation to discretise latent space representations, making it effective for time series data.
The model consists of an encoder that compresses the input data into a discrete latent space and a decoder that reconstructs
the time series. TimeVQVAE is particularly useful for generating realistic time series samples while maintaining key
temporal dependencies. The quantisation step helps in learning discrete representations that can be reused for efficient time
series modelling and generation.

TimeGAN (Yoon et al., 2019) is a variant of the GAN framework specifically tailored for time series data. It combines
both supervised and unsupervised learning approaches, using a generator to create synthetic time series and a discriminator
to differentiate between real and generated data. Additionally, it integrates an embedding network to capture temporal
dependencies and preserve temporal correlations between generated samples. The model ensures that the generated time
series not only closely mimic the statistical properties of the original data but also maintain the correct temporal ordering and
dynamics. TimegGAN is particularly useful in applications requiring realistic synthetic data generation, such as forecasting
and anomaly detection.

GT-GAN (Jeon et al., 2022) introduces a novel architecture for time series generation by incorporating both global and local
perspectives. The model features two generators: one focuses on capturing the global trends across the entire time series,
while the other focuses on local variations. The two components work together to ensure that the generated time series
exhibit realistic patterns on both macro and micro levels. GT-GAN uses a two-stream discriminator that evaluates both the
global and local outputs, ensuring high fidelity in the generated data. This model is effective for generating complex time
series where both long-term trends and short-term fluctuations are important.

TimeVAE (Desai et al., 2021) extends the traditional VAE architecture to model time series data. It uses an encoder to map
time series data into a continuous latent space, from which the decoder reconstructs the original time series. The model
captures uncertainty and variation in the data through the latent space’s probabilistic structure, making it well-suited for
applications where capturing latent factors and generating multiple plausible future scenarios is important. TimeVAE can
be applied to various tasks, such as anomaly detection, forecasting, and data augmentation, by learning complex temporal
dependencies and generating realistic time series that adhere to the original data’s statistical properties.

C.2. Time Series Forecasting Model

Time-LLM (Jin et al., 2023) is a powerful TS LLM that outperforms specialized forecasting models, which repurposes
LLMs for time series forecasting by reprogramming input data and employing the Prompt-as-Prefix (PaP) technique for
enhanced context alignment.

GPT4TS (Zhou et al., 2023a) takes advantage of pre-trained language and vision models for general time series analysis.
By demonstrating that supervised fine-tuning (SFT) can successfully extend LLM capabilities to time series tasks, GPT4TS
bridges the gap between natural language processing models and temporal data analysis. The model’s architecture shows the
feasibility of applying large pre-trained models to time series, leading to significant performance improvements in various
time series applications.

LLM4TS (Chang et al., 2023) is an innovative framework that repurposes pre-trained LLMs for time-series forecasting,
employing a two-stage fine-tuning strategy and a two-level aggregation method to align with and enhance the model’s ability
to process multi-scale temporal data, outperforming state-of-the-art models in both fune-tuing and few-shot scenarios.

TEMPO (Cao et al., 2024) proposed using prompts to adapt to different time series distributions. It demonstrates superior
performance in zero-shot settings across diverse benchmark datasets, showcasing its potential as a foundational model-
building framework for capturing dynamic temporal phenomena.
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D. Experiment Setup
The time series length T for generation is set to 168 in a form of non-overlap sequence slices for all the datasets. For
forecasting, we assessed performance over four different prediction horizons H ∈ {24, 36, 48, 60} for ILI and H ∈ {6, 48}
for M4. The dataset is divided into training, validation, and test sets in a ratio of 8:1:1. All models are tested with the same
dataset size, as adding text descriptions to time series sliding is resource-intensive, prompting a reduction in the number of
sliding windows.

E. Implementation Detail
We implemented all the model and conduct all experiments on single NVIDIA Tesla A100 80GB GPUs. For LLM used in
proposed model is LLama3-8B (Dubey et al., 2024). For generation task, we keep all model’s sequence length is 168 which
is the max length of Pedestrian, Rain, Temperature datasets. For evaluation of the synthesis data quality task, we
keep the sequence length of 256. The dataset is divided into training, validation, and test sets in a ratio of 8:1:1.

The reported result are all under following training settings. The number of prototypes are set to 16 for all the main
evaluations. Models for each sequence length are trained for 50, 000 steps using a batch size of 128 and a learning rate of
5 ∗ 10−5 with 1, 000 warm-up steps.

F. Dataset Analysis
F.1. Details of Datasets

In this section, we provide a detailed overview of the datasets used for model training in this paper:

Electricity: This dataset captures hourly electricity consumption for 321 clients between 2012 and 2014, measured in
kilowatts (kW). It was originally sourced from the UCI repository.

Solar: Comprising 137 time series, this dataset records hourly solar power production in the state of Alabama throughout
2006.

Wind: Wind: This dataset includes a single, extensive daily time series that tracks wind power production (in megawatts) at
4-second intervals, starting from August 1, 2019. It was obtained from the Australian Energy Market Operator (AEMO)
platform.

Traffic: Covering 15 months of daily data (440 records), this dataset represents the occupancy rate (ranging from 0 to 1) of
various car lanes on the San Francisco Bay Area freeways over time.

Taxi This dataset contains spatio-temporal traffic time series of New York City taxi rides, recorded every 30 minutes at
1,214 locations during January 2015 and January 2016.

Pedestrian: Featuring hourly pedestrian counts from 66 sensors in Melbourne, this dataset spans from May 2009 to April
30, 2020, and is regularly updated as new data becomes available.

Air Quality: Used in the KDD Cup 2018 forecasting competition, this dataset includes hourly air quality measurements
from 59 stations in Beijing (35 stations) and London (24 stations) between January 1, 2017, and March 31, 2018. The data
includes various air quality metrics such as PM2.5, PM10, NO2, CO, O3, and SO2. Missing values were imputed using
leading zeros or the Last Observation Carried Forward (LOCF) method.

Temperature: This dataset consists of 32,072 daily time series with temperature observations and rain forecasts from 422
weather stations across Australia, collected between May 2, 2015, and April 26, 2017. Missing values were replaced with
zeros, and the mean temperature column was extracted for use.

Rain: Dataset focuses on rain data extracted from the same source as temperature.

NN5: This dataset contains 111 time series from the banking sector, with the goal of predicting daily cash withdrawals from
ATMs in the UK.

Fred-MD: This dataset contains 107 monthly time series reflecting various macroeconomic indicators, sourced from the
factuality Reserve Bank’s FRED-MD database. The series have been differenced and log-transformed following established
practices in the literature.
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Domain Tasks Datasets Dim. Series Length Dataset Size Frequency

Long-Term ILI 7 24, 36, 48, 60 (617, 74, 170) 1 week Illness

Short-term
Forecasting

M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance
M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry
M4-Weekly 1 13 (359, 0, 359) Weekly Macro
M4-Daily 1 14 (4227, 0, 4227) Daily Micro

M4-Hourly 1 48 (414, 0, 414) Hourly Other

Table 7: Comparison of datasets for long-term and short-term forecasting tasks

Exchange: This dataset records daily exchange rates for eight currencies.

Stock: This dataset consists of daily stock prices for the symbol GOOG, which is listed on NASDAQ.

F.2. Dataset Statistics

To test the quality of the synthetic data generated by our proposed model, we conducted tests on two additional datasets.
In the experiments, we trained the synthetic data to be the same as the original data and tested it on the real datasets. The
statistics of the datasets are in Table 7:

G. Evaluation Metrics
The calculations of these metrics are as follows:

MSE =
1

H

H∑
h=1

(Yh − Ŷh)
2, MAE =

1

H

H∑
h=1

|Yh − Ŷh|,

SMAPE =
200

H

H∑
h=1

|Yh − Ŷh|
|Yh|+ |Ŷh|

, MAPE =
100

H

H∑
h=1

|Yh − Ŷh|
|Yh|

,

MASE =
1

H

H∑
h=1

|Yh − Ŷh|
1

H−s

∑H
j=s+1 |Yj − Yj−s|

, OWA =
1

2

(
SMAPE

SMAPENaı̈ve2
+

MASE
MASENaı̈ve2

)
,

where s is the periodicity of the time series data, H denotes the number of data points (i.e., prediction horizon in our cases),
and Yh and Ŷh are the h-th ground truth and prediction, where h ∈ {1, . . . ,H}.

For generation, we consider Marginal Distribution Difference (MDD):

MDD(P,Q) =
∑
x∈X

|P (x)−Q(x)|

where P and Q represent the marginal distributions of the real and synthetic data, and X denotes the set of possible values
for the variable being analyzed.

Also Kullback-Leibler divergence (K-L)

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
where P and Q are the two probability distributions being compared, and X represents the set of possible values.

H. Human Evaluation
In addition to the quantitative metrics, we conducted a human evaluation to assess the quality of the generated time series
descriptions.
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Dataset Random LLM4TS TEMPO Time-LLM GPT4TS
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI
Bridge

8.12 2.14
1.98 0.89 1.21 1.02 2.20 1.44 2.19 1.02

Real 1.86 0.86 0.96 0.82 2.00 1.20 1.90 0.90
KernelSynth 4.35 1.50 1.64 1.07 1.43 1.01 3.80 1.42

SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

M4
Bridge

26.46 4.43 1.92
13.10 1.99 0.93 12.25 1.73 0.87 12.85 1.90 0.96 13.10 1.99 0.93

Real 12.33 1.80 0.88 12.09 1.72 0.85 12.50 1.77 0.89 12.70 1.94 0.91
KernelSynth 14.39 2.09 1.02 13.94 2.00 0.99 12.594 1.735 0.918 14.56 2.08 1.02

Table 8: Comparison of MSE and MAE for TS forecasting across methods, with results for four forecasting horizons: H ∈
{24, 36, 48, 60} for ILI and H ∈ {6, 48} for M4. Average results are reported.

H.1. Evaluation Process:

The human evaluation involved a team of trained annotators who were tasked with reviewing the generated time series in
relation to the given text descriptions and ranking the candidate. The process was organized into two primary stages:

Preliminary Setup Annotators were provided with one generated text description with different number of time series.
Each description was assessed independently, with annotators reviewing how well the time series represented the trends,
patterns, and anomalies observed in the corresponding text descriptions, providing a ranking of time series. We provide
two different settings: HE represent only ranking the 3 different settings output with ground truth time series and HE@3
represent ranking 3 different settings’ time series, ground truth time series and 3 random select time series from test set.

Evaluation Criteria To help annotators better understand and standardize the evaluation process, we provide a set of
reference dimensions.

• Relevance to given text descriptions: Whether the time series description accurately reflects the patterns, trends, and
anomalies observed in the text.

• Semantic Alignment: Whether the time series properly conveys the underlying meaning of the texr, such as identifying
upward and downward trends, spikes, and seasonal behaviors.

• Plausibility: Whether the time series makes sense within the domain context (e.g., finance, healthcare), and offers a
reasonable interpretation of the data.

• Coherence: Whether the time series is logically consistent within itself, avoiding contradictions and ensuring that the
time series aligns with the observed trends or patterns throughout the text.

Reliability of Evaluation To ensure consistency and minimize evaluator bias, multiple annotators assessed each time series.
The final score for each description was calculated as the average score from all annotators. Annotators were trained on a
common set of guidelines to ensure that the evaluation criteria were applied consistently across all descriptions.

I. Performance of downstream tasks
Table 8 shows the quality of generated data for the purposes of training models for downstream tasks. We generated
synthetic data on two additional datasets to assist existing SOTA models in TS forecasting. All models were trained either
using only real data or synthetic data and then tested on real test sets. The results indicate that training with only synthetic
data can achieve comparable performance to real data across all models, as performance differences between real and
synthetic data are less visible than differences in performance between architectures. This suggests that the generated data
is sufficiently realistic, potentially allowing to share synthesised surrogates of otherwise sensitive data. For comparison,
we also employed KernelSynth (Ansari et al., 2024) methods. Both methods effectively provided valuable synthetic data
(compared to completely random data), but our proposed approach produced data that more closely resembles real data.
This underscores its potential for generating meaningful synthetic data across domains.

J. Ablation Experiment on the Influence of Text Types on Diffusion Models
Table 9 show the performance of different text types. Overall, the inclusion of text descriptions in time series modeling
demonstrates consistent benefits across most datasets, with specific nuances depending on the approach and dataset
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characteristics. Across most datasets, the inclusion of textual descriptions significantly improves alignment metrics,
with the Bridge (w/o Background) approach often demonstrating superior performance compared to both Bridge (w/o
Pattern+Statistic) and Bridge (w/o Text).

For MDD, Bridge (w/o Background) consistently outperforms or matches other methods in several datasets. For instance, in
the “Rain” dataset, Bridge (w/o Background) achieves the lowest score (5.477), outperforming Bridge (w/o Pattern+Statistic)
(5.499) and Bridge (w/o Text) (6.002). Similarly, in the “Pedestrian” dataset, Bridge (w/o Background) achieves the
best score (0.560), indicating its ability to capture intricate patterns better than the other methods. While Bridge (w/o
Pattern+Statistic) occasionally achieves slightly better results (e.g., in the “Electricity” dataset with 0.110 compared to 0.139
for Bridge (w/o Background)), Bridge (w/o Background) demonstrates more consistent performance across diverse domains.

The K-L Divergence results further highlight the strengths of Bridge (w/o Background). In the “Wind” dataset, for example,
Bridge (w/o Background) achieves the lowest divergence (0.048), outperforming both Bridge (w/o Pattern+Statistic) (0.052)
and Bridge (w/o Text) (0.056). Similar trends are observed in the “NN5” and “Temperature” datasets, where Bridge
(w/o Background) consistently produces the lowest K-L scores, indicating its capability to effectively encode temporal
patterns with textual assistance. Notably, in datasets like “Air”, Bridge (w/o Background) achieves significant improvements
compared to Bridge (w/o Text) , further emphasizing its advantage in handling complex and noisy time series data.

Dataset w/o Pattern+Statistic w/o Background w/o Text Rule-based
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e

Electricity 0.110 0.139 0.135 0.256
Solar 375.531 375.530 375.531 377.232
Wind 0.344 0.316 0.304 0.422
Traffic 0.324 0.309 0.315 1.178
Taxi 0.328 0.325 0.338 0.641
Pedestrian 0.584 0.560 0.576 1.277
Air 0.472 0.440 0.418 0.665
Temperature 0.332 0.331 0.356 0.572
Rain 5.499 5.477 6.002 9.533
NN5 0.591 0.570 0.613 1.377
Fred-MD 0.239 0.226 0.228 0.460
Exchange 0.315 0.316 0.376 0.430

K
-L

D
iv
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ge

nc
e

Electricity 0.002 0.003 0.001 0.008
Solar 0.008 0.006 0.005 0.033
Wind 0.052 0.048 0.056 0.144
Traffic 0.013 0.012 0.016 0.027
Taxi 0.020 0.014 0.020 0.093
Pedestrian 0.006 0.009 0.009 0.079
Air 0.006 0.005 0.021 0.042
Temperature 0.023 0.016 0.020 0.904
Rain 0.006 0.006 0.008 0.016
NN5 0.008 0.004 0.004 0.101
Fred-MD 0.005 0.004 0.023 0.108
Exchange 0.062 0.057 0.067 0.350

Table 9: The performance of different text type. Marginal distribution distance scores (MDD) and K-L divergence (K-L) are
reported.

K. The Impact of Prototype
The results in Table 10 demonstrate the influence of prototype quantity on marginal distribution distance and K-L divergence
across multiple datasets. Increasing the number of prototypes generally leads to improved performance, as observed in the
Electricity dataset, where the marginal distribution distance decreases from 0.615 (4 prototypes) to 0.135 (16 prototypes).
Similar trends are evident in datasets such as Traffic (1.211 to 0.315) and NN5 (1.550 to 0.613).
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For K-L divergence, a higher number of prototypes often results in lower divergence values, indicating better alignment
with the target distribution. For example, in the Taxi dataset, K-L divergence drops from 0.154 (4 prototypes) to 0.003 (16
prototypes). However, certain datasets, such as Wind and Exchange, exhibit less consistent trends, suggesting potential
variations in data characteristics affecting prototype effectiveness.

Prototypes 4 8 16 32 64 4 8 16 32 64

M
ar

gi
na

lD
is

tr
ib

ut
io

n
D

is
ta

nc
e

Electricity 0.615 0.368 0.135 0.117 0.236
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0.006 0.027 0.001 0.001 0.020
Solar 375.536 375.531 375.531 375.532 375.556 0.025 0.016 0.005 0.008 0.017
Wind 0.271 0.299 0.304 0.314 0.309 0.059 0.074 0.056 0.075 0.093
Traffic 1.211 0.287 0.315 0.349 0.411 0.200 0.018 0.021 0.022 0.027
Taxi 1.008 0.433 0.338 0.371 0.384 0.154 0.013 0.003 0.020 0.019
Pedestrian 1.599 0.921 0.576 0.554 0.552 0.075 0.022 0.009 0.003 0.002
Air 0.611 0.393 0.418 0.515 0.544 0.010 0.009 0.005 0.006 0.009
Temperature 0.487 0.317 0.356 0.330 0.307 0.113 0.025 0.020 0.017 0.042
Rain 5.763 4.981 6.002 5.548 6.420 0.014 0.009 0.010 0.008 0.018
NN5 1.550 0.796 0.613 0.616 0.573 0.130 0.118 0.004 0.005 0.009
Fred-MD 0.407 0.241 0.228 0.245 0.346 0.012 0.015 0.006 0.009 0.030
Exchange 0.365 0.359 0.376 0.309 0.330 0.062 0.063 0.067 0.083 0.046

Table 10: Ablation experiment on the impact of the number of prototypes.

L. The Impact of LLms on the diffusion model performance
The Table 11 compares the performance of Llama and GPT2 as encoders in our diffusion model across various time series
domains. Both models show similar performance in most domains, with slight differences in specific cases. For example,
Llama performs slightly better in the “Electricity” (0.139 vs 0.174) and “NN5” (0.570 vs 0.887) domains, suggesting a
better ability to capture fluctuations in these time series. In contrast, GPT2 outperforms Llama in “Pedestrian” (0.578 vs
0.483) and “Fred-MD” (0.226 vs 0.225), indicating its strength in encoding gradual trends. Overall, both models show
strong performance across multiple domains, with only minor variations. These results highlight that while Llama and GPT2
differ slightly in their handling of specific time series patterns, both are effective encoders for our diffusion model, capable
of capturing both domain-specific and general temporal features.

Model Electricity Solar Wind Traffic Taxi Pedestrian

Llama 0.139 375.531 0.316 0.309 0.325 0.578
GPT2 0.174 375.538 0.325 0.331 0.361 0.483

Air Temperature Rain NN5 Fred-MD Exchange

Llama 0.440 0.331 5.932 0.570 0.226 0.374
GPT2 0.645 0.349 5.994 0.887 0.225 0.414

Table 11: Model performance across different domains. Result measured by MDD

M. Data Augmentation Results
For long-term forecasting (Table 12), we find that the LLM4TS trained via the synthetic data produces relatively low MSE
and MAE values, such as ILI-24 Synthesis with an MSE of 1.84 and an MAE of 0.85, which are competitive with the
performance on real-world datasets. In fact, for length like 24 and 36, LLM4TS consistently performs well, showing
competitive results in both MSE and MAE, even when compared to training on real data. GPT4TS and Time-LLM, on the
other hand, exhibit a slight drop in performance when trained on synthetic data, but considerable accepted. In the short-term
forecasting scenario (Table 13), the results show similar trends. This suggests that synthetic data can effectively simulate
real data patterns, making it a viable option for model training when real-world data is limited or unavailable.

We also compare the quality of our synthetic data generation with the Kernel Synth method employed by Chronos (Ansari
et al., 2024). While on the long-term ILI forecasting task models trained on our data clearly outperform models trained on
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KernelSynth, the picture is slightly more nuanced for shorty-term M4 forecasting. Since the forecast horizons are shorter
in M4, the overall difference is less nuanced. Table 14 details for which sub-datasets and models trained on our data are
performing better and for which sub-datasets and models KernelSynth is more suitable. These comparisons are further
contextualised by statistical analysis - for SMAPE and MASE metrics, we conduct t-test on the individual scores directly.
For OWA, since it involves averages of SMAPE and MASE, we use the bootstrapping technique by sampling 1000 times
with replacement to obtain the distributions of scores and conduct the t-test on this subset. Overall our method performs
better on half model/subset combinations, of which all but two results are statistically significant.

Methods LLM4TS TEMPO Time-LLM GPT4TS

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ILI-24 KernelSynth 4.36 1.49 1.48 1.02 1.21 0.93 3.92 1.45
ILI-36 KernelSynth 4.32 1.49 1.37 0.96 1.31 0.94 3.87 1.43
ILI-48 KernelSynth 4.15 1.48 1.69 1.09 1.49 1.04 3.77 1.40
ILI-60 KernelSynth 4.35 1.50 2.01 1.22 1.71 1.11 3.62 1.39

ILI-24 Ours 1.84 0.85 1.00 0.87 2.05 1.29 2.23 0.99
ILI-36 Ours 1.86 0.86 1.22 0.99 2.13 1.34 2.13 0.97
ILI-48 Ours 1.88 0.88 1.34 1.08 2.35 1.60 2.28 1.05
ILI-60 Ours 2.37 0.99 1.49 1.14 2.30 1.55 2.35 1.09

ILI-24 Real 1.78 0.81 0.66 0.63 1.83 1.15 1.99 0.88
ILI-36 Real 1.75 0.82 0.92 0.80 1.90 1.17 1.90 0.90
ILI-48 Real 1.72 0.84 1.33 1.02 2.16 1.26 1.81 0.88
ILI-60 Real 2.20 0.95 0.91 0.80 2.11 1.23 1.87 0.92

Table 12: Comparison of MSE and MAE across various methods on Long-term forecasting. The results are for four different
forecasting horizons: H ∈ {24, 36, 48, 60}. Red values indicate the best score, and blue values represent the second best.

Methods Random LLM4TS TEMPO Time-LLM GPT4TS

SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

M4-Monthly KernelSynth - - - 14.477 1.077 1.008 13.991 1.066 0.986 13.475 1.051 0.961 14.695 1.095 1.024
M4-Quarterly KernelSynth - - - 12.063 1.457 1.079 11.784 1.422 1.053 11.13 1.311 0.984 11.971 1.414 1.059
M4-Yearly KernelSynth - - - 16.619 3.743 0.979 16.051 3.513 0.933 13.743 3.027 0.801 17.008 3.733 0.990

M4-Monthly Ours - - - 13.157 0.981 0.917 12.975 0.96 0.901 13.877 1.111 1.017 13.157 0.981 0.917
M4-Quarterly Ours - - - 10.608 1.253 0.939 10.318 1.207 0.909 10.877 1.342 1.022 10.608 1.253 0.939
M4-Yearly Ours - - - 15.547 3.72 0.944 13.466 3.036 0.794 13.788 3.255 0.843 15.547 3.72 0.944
Average - - - 13.104 1.985 0.933 12.253 1.734 0.868 12.847 1.903 0.961 13.104 1.985 0.933

M4-Monthly Real 22.756 1.959 1.71 12.817 0.947 0.890 12.698 0.934 0.879 13.327 1.023 0.943 12.916 0.958 0.898
M4-Quarterly Real 19.216 2.587 1.816 10.301 1.207 0.908 10.077 1.177 0.887 10.672 1.266 0.946 10.386 1.230 0.920
M4-Yearly Real 37.396 8.755 2.246 13.885 3.240 0.833 13.493 3.052 0.797 13.498 3.013 0.792 14.801 3.633 0.910
Average 26.456 4.434 1.924 12.334 1.798 0.877 12.089 1.721 0.854 12.499 1.767 0.894 12.701 1.940 0.909

Table 13: Time series forecasting results on unseen time series dataset. The forecasting horizons are in [6, 48] and report
value is the average. A lower value indicates better performance. Red: the best, Blue: the second best.

N. Prototypes Sample Result
Figure 5 shows 16 semantic prototypes used in our TSG models. Each prototype represents a distinct pattern in time series
data, enabling the generation of diverse, domain-specific series. For example, prototypes {0,6,15} capture cyclical patterns
useful for seasonal trends. Prototypes {3,12} represent trend patterns, including gradual changes and sharp transitions.
Prototypes {1,2,7} show high-frequency fluctuations, representing volatility. By combining these prototypes, the model can
generate rich, domain-specific time series data through translating text into time series data with specific semantic concepts.
Figure 6 to Figure 17 shows the distribution of prototypes across various domains. Some prototypes, like Prototype 0 in
”temperature” and ”electricity,” are widely relevant, while others, like Prototype 15 in ”traffic,” are domain-specific. The
sparsity of the heatmaps shows that not all prototypes are equally important within a domain. For example, ”solar” primarily
uses prototypes {0,6,10,13}. This demonstrates the flexibility of the prototype-based approach, capturing both general and
domain-specific patterns.
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Figure 5: Visualization of semantic prototypes. Each prototype represents a different pattern or characteristic commonly
found in time series data.
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Figure 6: Prototype distribution for the electricity domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 7: Prototype distribution for the solar domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 8: Prototype distribution for the wind (4 seconds) domain. Each heatmap shows prototype indices (x-axis, 0–15) and
their frequency or importance (color intensity).

Figure 9: Prototype distribution for the traffic domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).
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Figure 10: Prototype distribution for the taxi domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 11: Prototype distribution for the pedestrian domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 12: Prototype distribution for the kddcup domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 13: Prototype distribution for the temperature domain. Each heatmap shows prototype indices (x-axis, 0–15) and
their frequency or importance (color intensity).
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Figure 14: Prototype distribution for the rain domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 15: Prototype distribution for the nn5 domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 16: Prototype distribution for the fred md domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).

Figure 17: Prototype distribution for the exchange domain. Each heatmap shows prototype indices (x-axis, 0–15) and their
frequency or importance (color intensity).
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Frequency LLM4TS TEMPO GPT4TS

SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Monthly True True True True True True True True True
Quarterly True True True True True True True True True
Yearly True False True True True True True False True

Table 14: Statistical significance test results (p < 0.05) for differences in SMAPE, MASE and OWA metrics between model
trained on our and KernelSynth data based on scores reported in Table 13. Results where our method is better are highlighted
in bold.
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