Under review as submission to TMLR

Approaching Deep Learning through the
Spectral Dynamics of Weights

Anonymous authors
Paper under double-blind review

Abstract

We study the spectral dynamics of weights—the behavior of singular values and vectors
during optimization—showing that they clarify and link many phenomena in deep learn-
ing. Through extensive experiments, covering small-scale “grokking” to large-scale tasks
like image classification with ConvNets, image generation with UNets, speech recognition
with LSTMs, and language modeling with Transformers, we identify a consistent bias with
three key ingredients. First, singular values evolve unequally leading to rank minimization.
As a result, top singular vectors stabilize well before the end of training, and lastly this
happens without displaying alignment between neighboring layers used in several theoreti-
cal results. We show how this bias tracks the transition to generalization in grokking. We
demonstrate more generally that weight decay enhances rank minimization beyond its role
as a norm regularizer in practical systems. Moreover, we show that these spectral dynam-
ics distinguish random label training from true labels, offering a novel perspective on this
longstanding conundrum. Additionally, these dynamics reveal structure in well-performing
sparse subnetworks (lottery tickets) and the shape of the loss surface through linear mode
connectivity. Our findings suggest that spectral dynamics provide a coherent view that links
the behavior of neural networks across diverse settings.

1 Introduction

Use of neural networks has exploded in the past decade. Capabilities are rapidly improving, and deployment
is ever-increasing. Yet, although issues with these technologies now have social repercussions (Bender et al.)
2021; Bommasani et al., 2021]), many fundamental questions remain unanswered.

For instance, despite extensive research, we still lack a complete understanding of the implicit biases of
neural networks trained via stochastic optimization (Neyshabur et al.| |2014). Even basic questions on the
role of regularization like weight decay (Hanson & Pratt} [1988; [Krogh & Hertz, [1991; |Zhang et al., |2018a)
have only partial answers (Van Laarhoven) 2017; [Andriushchenko et al.l |2023; [Yaras et al.; |2023b). Perhaps
most vexing, we lack a complete explanation for how neural networks generalize, despite having the capacity
to perfectly memorize the training data (Zhang et al.l |2021). Such an explanation may allow us to design
better algorithms, however a lack of understanding makes the deployment of neural networks vulnerable to
uninterpretable errors (Szegedy et al., |2013; llyas et al.l 2019; Hendrycks et al., 2021; Zou et al., [2023)).

Although theoretical explanations have been presented, these studies are often limited to special settings like
deep linear networks (Arora et al., |2018;2019)) or infinite-width systems (Jacot et al.,|2018), and arguments
rely on unsubstantiated or impractical assumptions like near-zero initialization. On the empirical side, a
growing body of work in interpretability has attempted to reverse-engineer neural networks (Rahaman et al.)
2019; Barak et al., |2022; Nanda et al.;|2023), but given the difficulty of the task, researchers have started at
small scale and the methodology for analysis is quite bespoke and challenging to scale. A third category of
work aims to understand empirical behavior on larger networks (Zhang et all 2021; Huh et al.; [2022; |[Yu &
Wu, [2023), and compromises by focusing on more abstract objects like the gram matrix (Huh et al.l 2022)
or the Neural tangent kernel (NTK) (Fort et al. 2020). Thus the connection between the results of this
category and the previous two is often hard to make.

Under review as submission to TMLR

7.5]
7 i Layer 2
E yrad'(j:,v,’) Ve \ 50 Layer 1
& yu\ 3
. 2.51
P 4]
g Lo\ "= 1
s
® Training Steps = = = = = = > Epoch Training Steps == == = @ -— — = = = = =
(a) SV Schematic (b) SVs (c¢) Alignment Schematic

Figure 1: I@l Schematic for the spectral dynamics of a weight matrix. As training proceeds, top singular
vectors become stable and top singular values grow disproportionately large. @ Singular value evolution
for a single intermediate matrix parameter in a Transformer, where each line is a single singular value.
Darker colors correspond to larger singular values while lighter ones corresponds to smaller values. We see
a disproportionate trend where large singular values grow larger faster. Previous works use SV basis
alignment between layers to prove similar theoretical results, however actual alignment between consecutive
layers is weak, which we describe in Section [d] We explore these spectral dynamics of weights and connect
them to generalization, regularization, and seemingly unrelated phenomena like linear mode connectivity.

To bridge these gaps, we find a task- and architecture-agnostic view to link many disparate phenomena in
deep learning, simultaneously studying image classification with ConvNets, image generation with UNets,
speech recognition with LSTMs and language modeling with Transformers. Through extensive experiments,
we examine the dynamics (i.e., evolution over training) of singular values and singular vectors of weight
matrices—the spectral dynamics of weights. We observe a few key properties: singular values evolve un-
equally, with larger ones evolving faster. As a result, top singular vectors stabilize much faster. Finally, for
top ranks we see alignment between neighboring layers’ singular vectors, though this varies somewhat with
the setting. We preview these phenomena in Figure[I] We are motivated to study these dynamics specifically
as optimization is the fundamental process driving deep learning (Nagarajan & Kolter, [2019; |Zhang et al.|
, neural networks at their core are chained matrices and nonlinearities, and the SVD is fundamental
to every matrix. The following paragraphs detail how these properties connect to generalization and many
other phenomena.

Sketch of the paper: As a test bed for understanding generalization, [Power et al.| (2022)) introduce the
“grokking” phenomenon, where a small-scale model applied to arithmetic tasks initially achieves essentially
zero training loss but performs poorly on validation data, then with much more training suddenly minimizes
the validation loss (see Figure [2). In particular, Nanda et al| (2023) showed that in modular arithmetic,
the feature learning that occurs during grokking could be reverse-engineered entirely from the final weight
matrices. Although this description is precise, it is limited to arithmetic tasks. In Section [3] we notice a
task-agnostic view of grokking, observing that the drop in validation loss during grokking coincides with
the simultaneous discovery of low-rank solutions across all weight matrices in the network, whether it be
modular arithmetic or image-classification. We also find that this transition relies on weight decay, echoing
existing works (Lyu et all 2023; [Liu et al., [2023) as neither grokking nor low-rank weights occur without
sufficient weight decay.

Though the common tie between low-rank weights and generalization in grokking suggests an intriguing
explanation for generalization, grokking is typically studied on synthetic tasks with very small-scale models
like single-layer Transformers or small MLPs and requires very particular hyperparameter settings
let al., 2022; Nanda et al., 2023; |Gromov}, [2023} | Kumar et all [2023)). If our perspective is to be useful,
we should obtain similar results in larger systems. Thus, we turn to common empirical tasks drawn from
the literature like image classification, image generation, speech recognition and language modeling as well
as varied and larger networks like VGG (Simonyan & Zisserman) 2014)), UNet (Ronneberger et al., 2015]),
LSTM (Hochreiter & Schmidhuber} [1997b) and multi-layer Transformers (Vaswani et al. [2017)).

Under review as submission to TMLR

In Section [} we demonstrate that spectral dynamics are biased toward effective rank minimization across
various practical neural networks in complex settings. Although this behavior echoes theoretical predictions
in the deep linear setting, we find that the behavior of networks disagrees with a common theoretical
assumption about low-rank dynamics: the alignment of singular vectors in consecutive layers (Saxe et al.
2014; |Arora et al.| 2018; 12019; Milanesi et al., 2021). Thus, the rank minimization mechanism differs from
what the theory describes. Our hyperparameters are drawn from existing literature, thus the trend toward
rank minimization coincides with well-generalizing networks across settings, echoing the observations in
grokking.

One particularly notable ingredient for grokking was an extreme level of weight decay. In Section [5] we
empirically connect rank minimization to weight decay, showing that weight decay promotes rank mini-
mization across architectures and tasks, echoing findings in Section In addition, in some cases, weight
decay also appears to promote singular vector alignment in consecutive weight matrices despite the non-
linearities between layers. Although weight decay explicitly penalizes norm, studying spectral dynamics
allows us to observe these effects on rank and alignment. Such effects may lead to better generalization
bounds by understanding the reason weight decay is useful, as the most obvious norm-based explanations
are insufficient (Andriushchenko et al., |2023).

To further probe the rank-generalization connection, we turn to the classic memorization experiments of
Zhang et al| (2021), who demonstrated that even small networks can memorize random labels, thus any
arguments about generalization cannot be capacity-based alone. In Section [6] and Appendix [A] we show
that training with random labels leads to high-rank solutions, while rank with true labels is much lower.
We also find that while random labels do not align consecutive layers, true labels do, which is surprising
given the non-linearities between layers. This echoes prior discussion on rank and generalization. Through
spectral dynamics, we see a clear distinction between generalizing and memorizing networks, which provides
a foothold toward better theoretical understanding.

Our results suggest that viewing neural networks through the lens of spectral dynamics can shed light on
several generalization-related phenomena, but we suspect there are broader connections. In the literature,
many curious and unexplained phenomena regarding neural networks exist. We take two as case studies.
First, the lottery ticket hypothesis (LTH) (Frankle & Carbin, [2018) and second, linear mode connectivity
(LMC) (Nagarajan & Kolter, 2019; [Frankle et al.l |2020; [Neyshabur et al., |2020). We find that global
magnitude pruning, a standard procedure for finding lottery tickets, preserves top singular vectors and acts
like low-rank pruning. We also see that the ability to interpolate between models in LMC strongly correlates
with sharing top singular vectors. With these results, we note that the two phenomena can be seen as
aspects of the spectral dynamics of weights, bringing them under the umbrella of prior sections. For detailed
discussions, see Section [6] and Appendix

To summarize the discussion above, by studying the spectral dynamics of weights, we find:

o Grokking is intimately linked to rank minimization (Section [3]);
o Rank minimization is a general phenomenon in more complex tasks and architectures (Section ;
o Weight decay, norm regularization, enhances the rank minimization behavior (Section [5));

e Random-label training yields high-rank, unaligned parameters compared to true-label training (Sec-
tion [} and

« Top singular vectors are preserved when performing magnitude pruning and while linearly interpolating
between connected modes (Section @

All of these phenomena and effects have previously been studied in isolation to varying degrees. By ap-
proaching deep learning through spectral dynamics, we aim to inform existing small-scale theoretical and
experimental results, and link them to a much broader literature. Our hope is that this will provide a deeper
footing for further theory and practice. Code for all experiments will be released.

Under review as submission to TMLR

2 Related Work

2.1 Singular Value Dynamics

Prior work on deep linear networks (Arora et al.,|2019; Milanesi et al., [2021)) suggests that rank minimization
may better describe implicit regularization in deep matrix factorization than simple matrix norms. See[Arora
(Appendix A) for a detailed argument. However, a critical assumption in these works is “balanced
initialization.” This means that for consecutive matrices W; and W1 in the product matrix] ; Wj, we have

Wi11Wz‘+1 = WiWZT at initialization. Decomposing these matrices with SVDs and leveraging orthogonality
leads to matching left and right singular vectors between consecutive matrices. See Appendix [C] for a
detailed explanation. Consequently, the product of the diagonals will evolve in a closed-form manner, with
larger singular values growing faster than smaller ones. As shown by |Arora et al| (2019), this translates to
rank-minimizing behavior with increasing depth in the matrix products. This formula is also empirically
validated for linear matrix factorization problems. Similar results have been derived for tensor products and
other structured settings (Saxe et all [2014; [Yaras et al.,|[2023al). (Ji & Telgarsky} [2019) show that alignment
between layers will happen specifically for deep linear networks with infinite training. Still, there is no reason
to believe standard networks obey this balancedness condition under practical initialization procedures. In
Section [d] we explore how these conclusions and assumptions hold for much larger, practical neural networks
that are far from linear.

2.2 Low-Rank Properties

Another line of research focuses on more general low-rank biases. Early work explored norms as an implicit
bias (Gunasekar et all 2017). Theoretical analyses reveal that norms or closed-form functions of weights
might be insufficient to explain implicit regularization, but they do not necessarily contradict the possibility
of rank minimization (Razin & Cohen) [2020; |[Vardi & Shamir| 2021). Numerous studies investigate low-rank
biases in various matrices, including the Jacobian (Pennington et all |2018]), weight matrices (Le & Jegelka
2021} [Martin & Mahoneyl, [2020; 2021} [Frei et al., [2022; |Ongie & Willett), [2022)), Gram matrix (Huh et al.
2022), and features (Yu & Wu, [2023; Feng et al., 2022). Additionally, research suggests that dynamics
influence the decay of rank (Li et al., 2020; |Chen et al., [2023; Wang & Jacot} 2023). Orthogonally, weight
decay has a long history as a regularizer explicitly penalizing parameter norm, which can be used for norm-
based generalization bounds (Bartlett,[1996]), but these bounds do not seem to explain the success of practical
systems (Nagarajan & Kolter| [2019} [Jiang et all 2019). Some works establish connections between weight
decay and rank minimization in idealized settings (Ziyin et al., 2022; (Galanti et al. [2022} |Zangrando et al.l
[2024; [Ergen & Pilanci, [2023} [Parhi & Nowak| 2023; |Shenouda et al., 2023), which may be connected to
generalization (Razin & Cohen| 2020). We are particularly interested in how far these connections extend
beyond ideal settings to practice.

Though these prior results are interesting in their own right, our goal is to link them together on a much
broader suite of experiments and show further unexplored consequences.

3 Grokking and Rank Minimization

[Power et al.| (2022) first noticed a surprising phenomenon they called “grokking” where models quickly fit
the training data on toy tasks, then after a long period of training, very quickly generalize on the validation
data (see Figure. Later, others found that this phenomenon can occur on a logarithmic timescale (Thilak|
et al), on simpler models and different datasets (Liu et al., |2022} |Gromov, 2023} [Kumar et al., [2023
Xu et al., [2023). In addition, weight decay seems to be a critical ingredient (Lyu et al. 2023} Liu et al.
2023} |Tan & Huang] [2023)).

Motivated by experimental results that show the importance of weight decay for grokking
12022; [Lyu et al.,|2023; |Liu et al.,|2023), and theoretical work that connects low-rank weights, generalization
and weight decay (Razin & Cohen| 2020; |Galanti et all 2022; |Timor et all 2023} [Yaras et all 2023b}
[Zangrando et al.,[2024)), we evaluate the potential connection between parameter rank and grokking in neural
networks. Low-rank weights would naturally complement other descriptions such as Fourier decomposition

Under review as submission to TMLR

1.0 = train/err 15.0 1.0 0 o
val/err X
0.8 12.5
08 20
0.6 10.0 & 0 0.6
£ > 9 06 ®©
o4 7 g §160 0.4
©
0.2 04 B
l 80 0.2
0.0 =
02 0.0
1 20000 40000 1 20000 40000 20000 40000 ’
Epoch Epoch Epoch
—train/err 1 00 0
0.8 = val/err 0.5
0.95 20
0.6 é 0.4
= 0.90 =40
504 2 g 0.3
- 0.85 260 0.2
0.2 a
80
0.80 0.1
0.0
0.0
1 5000 10000 1 5000 10000 5000 10000 5000 10000
Epoch Epoch Epoch Epoch
(a) Error (b) SV Evolution (c) Effective Rank (d) Alignment

Figure 2: Grokking and Spectral Dynamics. Top row: Grokking for Transformers on modular ad-
dition (Nanda et al., 2023). Bottom row: Grokking for a 12-layer MLP on MNIST (Fan et al., |2024).
1st column: Training and validation error. Shaded regions correspond to standard deviation, where large
deviations are due to different seeds converging at different times. 2nd column: A visualization of singular
value evolution for the first attention parameter and the second MLP layer, where each line represents a
single singular value and the color represents the rank. 3rd column: Effective rank of all layers (matrix
parameters) over time (Eqn. . 4th column: A visualization of the alignment (Eqn. [3)) between the embed-
ding and the first attention parameter, and the first and second MLP layers, where the y-axis corresponds to
index i of the diagonal. We see that grokking co-occurs with a transition to low-rank weights. In addition,
there is an alignment that begins early in training that evolves up the diagonal. In the image classification
case, we see a similar rank transition, though alignment appears seemingly out of nowhere.

(Nanda et al.| [2023)), the simplification of linear decision boundaries (Humayun et al.l [2024)), the connection
to double descent (Davies et all [2022)), and the discovery of a sparse solution (Merrill et al.l [2023)).

We replicate grokking in two settings: a single-layer Transformer for modular addition (Nanda et al., 2023),
and a 12-layer MLP for MNIST image classification (Fan et al., (see Appendix@l for details). Inspired
by work in the deep linear case (Saxe et al.| [2014;[Arora et al.,[2019; Milanesi et al., 2021} [Yaras et al.| [2023b),
we track the evolution of singular values for individual weight matrices. To gain a high-level overview of all
matrix parameters, we compute the (normalized) effective rank of a matrix W (Roy & Vetterlil [2007) with
rank R as

EffRank(WW Z Z P ZC:U]‘ (1)
NormEffRank(W) := EHR%T?I{() , (2)

where 0;’s are the singular values of matrix W and EffRank (V) is the entropy of the normalized singular value
distribution. As the probability mass concentrates, the effective rank decreases. We plot NormEffRank(W)
to compare across layers and time.

In addition, inspired by the assumptions of balancedness made by prior work (Arora et al., 2018} 2019), we
examine the alignment of consecutive weight matrices in the Transformer. To examine and quantify this

Under review as submission to TMLR

alignment between SVDs of consecutive matrices in a network at training time ¢, i.e.,
R R
U SO OO N S SEACTACTAGI
Jj=1 k=1

we compute the inner products between neighboring singular vectors,

At)jr = [{u;(8), v ()] (3)

where the absolute value is taken to ignore sign flips in the SVD computation. We then plot the diagonal
of this matrix A(t);; V ¢ < 100 over time, which we focus on because we observed the most signal here.
See Appendix [F.4] for more details. These plots give us a sense as to whether simultaneous diagonalization
occurs at least in the top ranks. For exact details on how alignment is computed for different architectures
and layers more complex than the fully connected case, see Appendix

In Figure [2] we see a tight connection: the sudden drop in validation loss coincides precisely with the onset
of low-rank behavior in the singular values. Examining inter-layer alignment during training, we observe
that the final low-rank solution gradually emerges from the model’s middle ranks. As we show later, in the
absence of weight decay no low-rank solution seems to develop (Figure . Additionally, when using 90% of
the data and no weight decay, generalization still coincides with effective rank minimization. |Fan et al.| (2024))
noted that in deep MLPs, grokking coincided with a feature rank decrease, which agrees with the parameter
rank decrease that we see here. The familiar reader will also note that [Nanda et al.| (2023) previously
showed that the particular solution found in modular addition is a low-rank Fourier decomposition, so our
observations on low-rank weights will follow, yet the same structure also applies to the MLP where such
reverse-engineering is difficult. In the following sections, we argue that rank minimization is a perspective
that can be applied in more complex settings when one does not know what to look for in the weights. It
may thus be possible to interpret the neural network via the top ranks (Praggastis et al., 2022). Specifically,
we will show in Section [f] that large amounts of weight decay have a strong rank-regularizing effect, so one
way to understand grokking is that the network first memorizes the training data, and with further training
the rank regularization of weight decay pushes toward generalization.

4 Spectral Dynamics Across Tasks

Inspired by the results on grokking and prior work on deep linear networks that studies the evolution of the
SVD of the weight matrices (Saxe et al.| 2014; |Arora et al., [2018; |2019; Milanesi et al., |2021; [Yaras et al.,
2023al), we apply the same analysis to larger, more practical systems. We show that the trends we saw in the
analysis of grokking mostly hold true across networks and tasks at a much larger scale, though our findings
do deviate from theoretical settings.

4.1 Methodology

Our experiments aim to examine reasonably sized neural networks across a variety of tasks. We select models
and tasks that are representative of current applications. Specifically, we consider:

o Image classification with CNNs (VGG-16 (Simonyan & Zisserman, [2014)) on CIFAR10 (Krizhevsky,
2009);

o Image generation through diffusion with UNets (Ronneberger et al.,[2015) on MNIST (LeCunl, [1998));

e Speech recognition with LSTMs (Hochreiter & Schmidhuber, [1997b) on LibriSpeech (Panayotov
et al., |2015)); and

o Language modeling with Transformers (Vaswani et al.l [2017)) on Wikitext-103 (Merity et al., [2016).
Training hundreds of runs for each of the settings above is computationally expensive, limiting the scale of

models we can explore. We primarily adopt hyperparameters from existing literature, with minor modifica-
tions for simplicity. This ensures that any correlations observed are likely a reflection of common practices,

Under review as submission to TMLR

and not bias introduced on our part. We also provide evidence with larger language models (up to 3B
parameters) in Appendix from the Pythia suite (Biderman et al.| [2023).

The primary evidence in this section comes from computing the SVDs of weight matrices within the models;
we disregard 1D bias and normalization parameters in our analysis. Previous research suggests that these
parameters are not always crucial for performance (Zhang et al.l |2018b; Mohan et al 2019; Karras et al
2023)), and many large models do not use them (Raffel et al.l 2020; |Grattafiori et al., 2024)). As the matrices
are the vast majority of the parameters, we believe they are the primary object of interest and it is worthwhile
focusing on them. Due to the large number of matrices in these models, we present plots of individual
layers’ matrix parameters and statistics that summarize behavior across layers for conciseness. We generated
hundreds of thousands of plots were as part of this study, making it impossible to include them all. Full
experimental details, including the choice of hyperparameters, are available in Appendix

4.2 Effective Rank Minimization

Building on theoretical (Saxe et al., 20145 Arora et al.,|2019; Milanesi et al., 2021} Boix-Adsera et al., 2023
Yaras et al., 2023al) and empirical (Dittmer et al. 2019; Martin & Mahoney, |2020; [2021} Boix-Adsera et al.
2023) findings, we investigate effective rank minimization across larger models and a more diverse array
of tasks. Figure 3] reveals a consistent trend: the effective rank of network parameters generally decreases
throughout training, regardless of the specific parameter or network architecture. This suggests a progressive
“simplification” of the network as training progresses.

We further conduct a singular-value pruning experiment to explore the relationship between low-rank be-
havior and model performance. We prune either the top or bottom half of the singular values for each weight
matrix in the network and then evaluate the pruned model at each training step. Given their importance
in £? space, we expect the top singular values to capture the information most critical to the network’s
function. Figure [4] confirms this, demonstrating that the pruned parameters, without further training, can
closely approximate the full model’s performance. It is not necessarily obvious that pruning would have this
effect. In particular, simultaneously pruning lower components across all layers may lead to losing some
critical signal that must be passed between layers, or it could be that small-magnitude singular values may
provide some important regularizing noise. This result is reminiscent of prior work that uses low-rank ap-
proximations for efficiency or performance (Yu et all[2017}; [Sharma et al.,[2023; |Chen et al.| 2024), or work
that explicitly optimizes for low-rank networks (Wang et al.| [2021} [Schotthofer et al., 2022). Here we point
out that the reason this is possible is due to the dynamics of the singular values themselves. In later sections,
we will rely on this observation that large singular values are more critical to the function of the network.

4.3 Alignment of Singular Vectors Between Layers

Similar to the analysis of grokking, we investigate the alignment between consecutive layers in the larger
neural networks considered in this section. We not only employ the alignment matrix defined in Eqn. |3 but
also derive and plot a scalar measure. We focus on the top diagonal entries since, as we saw previously, they

had the most structure:
ML

a(t) = 15 - Al @)
i=1
For specific details on calculating this measure in diverse architectures and complex layers (beyond fully
connected layers), please see Appendix @

Figure [f| reveals a key finding: the theoretical assumption of balanced initialization, which posits aligned
singular value decompositions (SVDs) between weight matrices (Arora et all |2018} [Saxe et al., [2014), does
not hold true at the start of training in these larger networks. Additionally, unlike in the linear case discussed
in , the alignment does not appear to remain static throughout training. However, a weak
signal of alignment in the top ranks develops and disappears. We are very far from the theoretical settings
of prior work (Du et al., |2018} |Arora et al.) |2019} [Mulayoff & Michaeli, |2020)) that use balanced or near-zero
initialization, and the strange trends mean that existing theoretical models do not capture the complexities
of neural network training.

Under review as submission to TMLR

1 50 100

Epoch
. 1 1.0
. 0.8
5 5 08
> > >
3 06 3 s
0.6
4 04 16 17
1 82 164 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 3: Top row: Singular value evolution for a single matrix in the middle of each model. Each line
represents a singular value, darker colors are larger values, while lighter colors are smaller values. Notice
the unequal evolution where top singular values grow at a disproportionate rate. Bottom row: Normalized
effective rank (Eqn. [1)) evolution visualized in color for all matrix parameters across architectures and time.
As we move down the y-axis, the depth of the parameters in the model increases, while the z-axis tracks
training time. The axis label "Layer" is shorthand for "matrix parameter', e.g. in the Transformer we visualize
each of the Wy, Wy, W,,, MLP,, MLP, parameters for each block. Notice decreasing effective rank with
training time across nearly all parameters, though the magnitude differs across layers (indicated by absolute
color). The block-like patterns for VGG are likely due to different channel dimension sizes. The banding in
the UNet, LSTM, and Transformer is due to the differences between convolutional and linear layers, residual
block connections, and attention and fully connected layers, respectively. The sharp transitions through
training in VGG are due to 10x learning rate decays.

— loss — loss

joss joss
v o 15— pruned bot loss 15 pruned bot_joss " " —— pruned_bot_loss —— pruned_bot_loss
g _ 0 o ~—— pruned_top_loss | ¥ ~—— pruned_top_loss a w . 9 (| — pruned_top_loss | 2 20| — pruned_top_loss
o loss a <] a 8 04 loss] a2
é — pruned_botJoss | 3 ||— pruned_bot_loss é 10 S0 —c‘ S —— pruned_bot_loss é S
51 |— pruned top_loss | T | |— pruned_top_loss | 3 K £ K5 —— pruned_top_loss | ‘5 B
= >q \ E 5 > 5 g =5 = 10 >10
0. A 0 0 0
1 82 164 1 82 164 1 50 100 1 50 100 1 25 50 1 5 10 1 5 10
Epoch Epoch Epoch Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 4: Left plot: Training loss. Right plot: Validation loss. Red is the full model. Blue is post-training
pruning the bottom half of the SVD for every matrix in the model that is not the final layer. Green is post-
training pruning the top half of the SVD. Notice that for all models, keeping the top half of the SVD is close
to the full model performance, supporting the idea that the top directions provide a good approximation to
the function. We specifically avoid pruning the final layer as for some tasks it is so low-rank that pruning
further affects performance in an anomalous way (Frankle et al., |2020)).

5 The Effect of Weight Decay

In light of the previously observed evolution of singular values, we investigate a proposed effect of weight
decay. Though weight decay explicitly penalizes the norm of weights, there is evidence that complicates the
connection between the norm and generalization for neural networks (Razin & Cohen, [2020; [Andriushchenko|
2023), meaning that we do not have a full understanding as to why weight decay may be useful.

Under review as submission to TMLR

o

o

o

0

1 1 0.4
~ X X X~
5§25 0.15 £ 0.4 o5 015 o 006 525 045 010 B25 025
—_ Q —_ o - Q N - o
S50 010 5 S50 010 004 Tso 5 S50 5 02
3 ? 02§)) 02 & 0.05 S 01
875 0.05 3 75 0.05 8 0.02 §7s5 8 v 875 8
e 13 e 17 e 2 °

1 82 164 200 1 g2 164 00 1 50 100 %00 7750 100 200 1 25 50 00 1 25 50 0% 15 10 %0 0.0

Epoch Epoch Epoch Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 5: Neighboring layer alignment of singular vectors. Left plot: The diagonal of the alignment matrix
A(t)i (Eqn. [3) vs. training time for a single pair of matrices in the middle of each model. We see a small
amount of alignment in the top ranks between layers shortly after training begins, but this becomes more
diffuse over time. Right plot: Alignment metric (Eqn. @) for pairs of matrices for depth vs. training time.
It is hard to make out a global trend across models, though the LSTM shows a weak signal around Epoch
1 when the initial alignment occurs, and the Transformer case has a banding pattern with depth due to

alignment between the query and key matrices that have no nonlinearity in between.

(1.0 1 glo 15 75
. 0.9 . 0.8 . 5.0 .
— — — 2.5 =
0.8 0.6
16 [—
1 50 100 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
71.00 1 n1.0 glo0 75
- 0.75 . 0.8 . 09 _50 =
g 0.50 g g z g
5 ’ 8 06 5 0g 25 8
0.25 ’ ’
16 7 [
1 82 164 1 50 100 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch Epoch
11.00 1 1.0 A
0.75 1.0 0.8
9] > o o (7]
2 050 & 7 06 7 5 o8
0.25 0.4
0.0 16
1 82 164 1 50 100 1 50 100 1 25 50
Epoch Epoch Epoch Epoch Epoch
A 1.0 1.00 1 1.00
0.75 1 075 1 10 4
0.50 v 08 150 _ 0.75 _ _ 0.75
% EY & £ % s E 050 &2 g 050
0.25 i 06 o5 3 0.50 3 5
’ 0.25 0.25
0.00!. 141 04 000 16 025 ¢ 17 0 50
1 82 164 1 82 164 1 50 100 1 50 100 1 25 50 1 25 50 1 5 10 1510
Epoch Epoch Epoch Epoch Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 6: Singular value evolution for a single matrix and normalized effective rank (Eqn. [1)) across matrices
over time, where the rows use differing amounts of weight decay. From top to bottom, for VGG we use
coefficients {0,0.001,0.01,0.1}, while for other networks we use coefficients {0,0.1,1,10}. Higher weight
decay coefficients promote more aggressive rank minimization. VGG uses SGD with momentum, while the

rest use AdamW (Loshchilov & Hutter} 2017), which may explain the earlier norm collapse.

Alternatively, some theoretical (Boix-Adsera et al., 2023; Razin & Cohen| [2020; |Yaras et al., 2023a

[Timor

et al.

2023

et al.

2022

(Ongie & Willett} 2022; |Galanti et al., 2022; |Zangrando et al. 2024) and empirical works
[Boix-Adsera et al.l 2023)) propose a connection between weight decay, generalization and the rank

Galanti

of matrices in constrained settings. Still, comprehensive evidence for larger empirical networks is missing.

We speculate on the intuition behind the mechanism in more practical settings. In its simplest form, weight
decay involves the optimization: arg miny, £(W) + A|W||%, where |W|% = Zil o2, where o; are the
singular values of weight matrix W with rank R. We saw previously that larger singular values of neural
networks grow faster (Fig. [3] top row) and that the top singular vectors are much more useful for minimizing
task loss than the bottom ones (Fig. @) Thus, with minor weight decay regularization, one straightforward
solution for the network may be to minimize the rank of a given weight matrix while preserving the top

Under review as submission to TMLR

3.0 r71.00

25
2.0

—err —_—err
—— pruned_bot_err . —— pruned_bot_err 215
~—— pruned_top_err ~—— pruned_top_err

Train Err
Layer

1.0

o

©

vl
Diagonal rank

0.5

0.0
1 150 300 1 150 300 1 150 300 1 150 300
Epoch Epoch Epoch Epoch

0.905 < .
s 090 % 0.6
o0 —_—err =4 o =
< = pruned_bot_err Y 0.900 [085 © 04
© 0.4 —— pruned_top_err g T S -
[080 9
0.895 2
0.2 —r 075 0.2
= pruned_bot_err 4 .
0.0 0.890 = pruned_top_err 0.70
: : 0.0
1 150 300 1 150 300 1 150 300 1 150 300 1 150 300
Epoch Epoch Epoch Epoch Epoch

(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 7: Top row: results with true labels. Bottom row: results with random labels. We see that the
middle layers have a lower effective rank (Eqn. [when using true labels and that alignment (Eqn. |3 in the
middle layers persists throughout training, unlike in the random label case. We emphasize this alignment
occurs despite the nonlinearities.

singular values to minimize £(W). [Timor et al.| (2023) argue a similar effect for simple systems: if all singular
values are less than one, the norm of activations will shrink with depth, so as depth grows very large, any
input signal will converge to zero, making it impossible to learn. Thus, it is better for a few singular values
to be sufficiently large while the rest can be very small.

Figure [6] shows that adding weight decay produces this exact low-rank behavior, while too much weight
decay leads to complete norm collapse. The exact choice of “too much” varies across architectures and tasks.
Despite the low-rank regularization, we do not see particularly tight alignment (Eqn. [3]) in the top singular
vectors, except in the highest weight decay Transformer (see Figure|17in the Appendix). The alignment in
this case is reminiscent of the balancedness condition (Arora et al.l 2018} [2019; [Du et al.| [2018)), though the
Transformer considered here has nonlinearities and a much more complex structure.

Orthogonally, we provide additional evidence in Appendix [D} where Figure [I8shows that the solutions with
moderate weight decay can perform better than without, while with very high weight decay models still
generalize, even though they are much lower rank. It is difficult to argue such a simple trend as “lower
rank equals better generalization” because one does not know the minimal rank necessary for a given task.
Language modeling may require some form of memorization for long-tail words and thus a low-rank solution
may be impossible, while 10-class image classification may not have this property. Still, we note that the role
of weight decay in improving generalization is tied up with its function as a rank regularizer. In addition,
although we lack precise tools to interpret complex models entirely, when there are only a few ranks per
matrix, it may become possible to extend analysis efforts (Nanda et all 2023} [Praggastis et all [2022) to
more complex domains.

6 Additional Connections

Here we briefly preview some connections between spectral dynamics and additional phenomena.

Memorization vs. Generalization: In Figure[7] we replicate the core memorization experiment of
, which highlighted the ability of modern neural networks to memorize even random labels per-
fectly. We find that when training with random labels, we obtain networks with higher-rank final parameters
as opposed to when training with true labels. Thus, the spectral dynamics can distinguish between mem-
orization (of random labels) and generalization. We also see an alignment (Eqn. [3|) structure between the
middle layers that disappears with random labels, perhaps as it is necessary in order for the network to pass

10

Under review as submission to TMLR

L5 0.06 4 0.6
$1.0 5004 Ez 504
Sos £0.02 @ 8 0.2
0.0 0.00 0 0.0
0 1 2 5 0 1 25 0 1 2 5 0 1 2 5
Split epoch Split epoch Split epoch Split epoch
0 Opumme.
v v v v
G 25 4 82 0.75 §2 0.75 §25 0.75
50 50 0.50 €50 0.50 €50 0.50
S 2 § S S
875 & 75 0.25 ©75 0.25 ®©75 0.25
&)) a a
125 0. 0 1250'00 125Ooo 125000
Sp|lt epoch Split epoch Spllt epoch Spllt epoch
1 1
0.75 0.75 0.75
5 0.50 & = -
4 2 0.50 > 050 % 0.50
8 8 8 S
0.25 0.25 ~ §0.25
17
i35 O 135 0.00 0 125 0.00 500 1258 0.00
Spl|t epoch Spl|t epoch Split epoch Split epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 8: Top row: Barrier size (Eqn. @) vs. split step. Middle row: singular vector agreement for a
single matrix parameter between branch endpoints that share a common trunk. Bottom row: summary
statistic for singular vector agreement across layers vs. split step. We see that as models exhibit LMC, they
also share a small number of top singular vectors. We only show agreement for 100 dimensions as the rest
are near zero.

signals from input to output. This echoes the pattern of grokking in Section [3] where generalization came
with a transition to low-rank and alignment in middle layers. We expand this experiment to more settings
in Appendix [A] with additional figures.

Lottery Tickets: On very small networks, [Frankle & Carbin| (2018) found the existence of sparse sub-
networks via magnitude pruning, keeping only the top p% of weights globally by magnitude, that could train
to similar performance as the full network. For larger image classification networks, Frankle et al.| (2020)
observed that in order to find such sparse subnetworks, it was necessary to train till the end in order to
acquire the pruning mask that could be used retroactively in training. This curious observation still lacks
a compelling explanation. We show that such global magnitude pruning functions similarly to low-rank
pruning, thus the lottery ticket masks found by rewinding (Frankle et al., |2020) are effectively low-rank
masks for the singular components that will become important at the end of training. Training the masked
network leads to similar dynamics in these components. However, taking masks from too early in training
leads to poor approximation of these final components and simultaneously stunts training. We provide detail
on this discussion in Appendix

Linear Mode Connectivity (LMC): Linear Mode Connectivity (Nagarajan & Kolter} 2019; [Frankle
et al., 2020) refers to the property that models that share a portion of the training trajectory can be

11

Under review as submission to TMLR

averaged in weight-space to yield a stronger model (Wortsman et al., 2022; Ramesh et al., |2022)). This
phenomenon indicates that, after some training, the loss surface is quite convex in a subspace, even though
the optimization problem is theoretically highly non-convex. As prior work has found fine-tuning from pre-
trained models stays in this convex space (Neyshabur et al.l |2020; |Li et al., 2022; [Sadrtdinov et al., 2023)),
an explanation for what underlies LMC could help to clarify the role of pre-training, and may lead to faster
fine-tuning. We show that LMC is tied with singular vector sharing. In particular, when models display
LMC, they share top singular vectors between weights (see Figure 7 and when they do not they also do not
share parameters (Appendix . We argue this is an outcome of the early stability of top singular vectors,
which arises due to the unequal evolution of singular values. It is also straightforward to explain the large
Euclidean distance between checkpoints (Frankle et al., |2020; [Yunis et al.} [2022)) that can be averaged, as
they only share a very small portion of the parameter space. Thus, LMC, and by extension, model-averaging,
is deeply intertwined with the dynamics of singular values that we explore in Section [4] The full discussion
is deferred to Appendix [B]

7 Discussion

We provide an empirical perspective to understand deep learning through SVD dynamics. We first note a
tendency toward rank minimization on a small scale in grokking, then expand these findings to practical
networks and tasks. In addition, we find that weight decay, though it explicitly penalizes norm, implicitly
promotes this low-rank bias. We also show that training with random and true labels differ in the rank and
alignment of solutions found by optimization, echoing the rank-generalization connection during grokking.
We go beyond remarks on generalization and show that magnitude pruning for lottery tickets acts similarly
to low-rank pruning, and LMC coincides with the sharing of top singular vectors between checkpoints.

A comprehensive theory for all these results remains elusive. Our goal in this work is to provide these obser-
vations as a platform for a deeper understanding of deep learning. Notably, the observed spectral dynamics
appear consistent across diverse settings, even without restrictive assumptions like balanced initialization,
linearity, or small weight scales. This suggests a common underlying mechanism that further theoretical
work may be able to model. One limitation our study is the focus on linear alignment between neighboring
layers. In linear systems, this alignment is a proxy for the network’s ability to pass signals from input to
output, but once nonlinearities are introduced, it is unclear how this proxy applies. We would guess there is
still alignment in larger systems, but it may need to be viewed post-activation for particular examples. This
is a promising direction for future exploration.

On the empirical side, several interesting problems present themselves. Interpretability of neural networks is
a growing area of research (Nanda et al., |2023)), and there already exist efforts to interpret singular vectors
of convolutional weights (Praggastis et al 2022)). There may also be connections to other unexplained phe-
nomena such as double descent (Belkin et all|2019; Nakkiran et al., 2021} |[Davies et al.,|2022)) or adversarial
examples (Szegedy et al.l [2013; Ilyas et al., 2019 [Hendrycks et all |2021)). For example, is it actually the
case that low-rank models are more robust? The answers to these questions may help design better opti-
mizers or diagnose deployment risks in the wild. There are also concerns of safety (Bai et al.| [2022; [Mazeika,
et al., 2024)) that a better understanding of neural networks can alleviate (Burns et al., [2023; [Park et al.,
2024). In particular with low-rank models, interpretability may become easier as there is much less model
to study. We present this large empirical exploration in an effort to deepen scientific understanding, provide
fertile ground for new theoretical assumptions, and offer inspiration for better engineering. We believe the
developed perspective will be useful in bridging gaps between many different attempts to explain neural
networks.

12

Under review as submission to TMLR

References

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In Proceedings of the International Conference on Learning Representations
(ICLR), 2022.

Maksym Andriushchenko, Francesco D’Angelo, Aditya Varre, and Nicolas Flammarion. Why do we need
weight decay in modern deep learning? arXiv preprint arXiv:2310.04415, 2023.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In Proceedings of the International Conference on Machine Learning (ICML),
2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher
Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie
Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt,
Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby,
Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera
Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac
Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared
Kaplan. Constitutional Al: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden progress
in deep learning: SGD learns parities near the computational limit. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Peter Bartlett. For valid generalization the size of the weights is more important than the size of the network.
Advances in neural information processing systems, 9, 1996.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849—
15854, 2019.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings ACM Conference on Fairness,
Accountability, and Transparency (FAccT), pp. 610-623, 2021.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for
analyzing large language models across training and scaling. In Proceedings of the International Conference
on Machine Learning (ICML), 2023.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Soft-
ware available from wandb.com.

Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua M Susskind. Transformers
learn through gradual rank increase. In Advances in Neural Information Processing Systems (NeurIPS),
2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep networks
gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape. arXiv preprint
arXiv:1907.02911, 2019.

13

https://www.wandb.com/

Under review as submission to TMLR

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language

models without supervision. In Proceedings of the International Conference on Learning Representations
(ICLR), 2023.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gradient noise
attracts SGD dynamics towards simpler subnetworks. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Lei Chen, Joan Bruna, and Alberto Bietti. How truncating weights improves reasoning in language models.
In ICML 2024 Workshop on Mechanistic Interpretability, 2024.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. In NeurIPS
ML Safety Workshop, 2022.

Soéren Dittmer, Emily J King, and Peter Maass. Singular values for ReLLU layers. IEEE Transactions on
Neural Networks and Learning Systems, 31(9):3594-3605, 2019.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in
linear mode connectivity of neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021.

Tolga Ergen and Mert Pilanci. Path regularization: A convexity and sparsity inducing regularization for
parallel relu networks. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Simin Fan, Razvan Pascanu, and Martin Jaggi. Deep grokking: Would deep neural networks generalize
better? arXiv preprint arXiv:2405.19454, 2024.

Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha. Rank diminishing
in deep neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, and Aymeric Dieuleveut. Proving linear mode connec-
tivity of neural networks via optimal transport. arXiv preprint arXiv:2310.19103, 2023.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy, and Surya
Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time
evolution of the neural tangent kernel. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In Proceedings of the International Conference on Learning Representations (ICLR), 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In Proceedings of the International Conference on Machine Learning
(ICML), 2020.

Spencer Frei, Gal Vardi, Peter Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky ReLLU networks
trained on high-dimensional data. In Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2022.

Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. SGD and weight decay provably
induce a low-rank bias in neural networks. arXiv preprint arXiv:2206.05794, 2022.

Avrajit Ghosh, Soo Min Kwon, Rongrong Wang, Saiprasad Ravishankar, and Qing Qu. Learning dynamics
of deep linear networks beyond the edge of stability. arXiv preprint arXiv:2502.20531, 2025.

14

Under review as submission to TMLR

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit
regularization in matrix factorization. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

Stephen Hanson and Lorien Pratt. Comparing biases for minimal network construction with back-
propagation. In Advances in Neural Information Processing Systems (NeurIPS), 1988.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Courna-
peau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):
357-362, September 2020.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial exam-
ples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural Computation, 9(1):1-42, 1997a.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997b.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola. The
low-rank simplicity bias in deep networks. Transactions on Machine Learning Research, 2022.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok and here
is why. arXiv preprint arXiv:2402.15555, 2024.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):90-95,
2007.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. Editing models with task arithmetic. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML),
2015.

Akira Ito, Masanori Yamada, and Atsutoshi Kumagai. Analysis of linear mode connectivity via permutation-
based weight matching. arXiv preprint arXiv:2402.04051, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

15

Under review as submission to TMLR

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic general-
ization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR: REnormal-
izing Permuted Activations for Interpolation Repair. In Proceedings of the International Conference on
Learning Representations (ICLR), 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and
improving the training dynamics of diffusion models. arXiv preprint arXiv:2312.02696, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. In Advances in Neural
Information Processing Systems (NeurIPS), 1991.

Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, and Sanjeev Arora.
Explaining landscape connectivity of low-cost solutions for multilayer nets. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2019.

Tanishq Kumar, Blake Bordelon, Samuel J Gershman, and Cengiz Pehlevan. Grokking as the transition
from lazy to rich training dynamics. arXiv preprint arXiv:2310.06110, 2023.

Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond linear networks.
In Proceedings of the International Conference on Learning Representations (ICLR), 2021.

Yann LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Sagko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussiére,
Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, Francois Lagunas,
Alexander M. Rush, and Thomas Wolf. Datasets: A community library for natural language processing.
arXiv preprint arXiv:2109.02846, 2021.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke Zettle-
moyer. Branch-train-merge: Embarrassingly parallel training of expert language models. arXiv preprint
arXiv:2208.03306, 2022.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent for matrix
factorization: Greedy low-rank learning. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. Towards
understanding grokking: An effective theory of representation learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2023.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in Adam. arXiv preprint
arXiw:1711.05101, 2017.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D Lee, and Wei Hu. Dichotomy of early and
late phase implicit biases can provably induce grokking. In Proceedings of the International Conference
on Learning Representations (ICLR), 2023.

16

http://yann. lecun. com/exdb/mnist/

Under review as submission to TMLR

Charles H Martin and Michael W Mahoney. Heavy-tailed universality predicts trends in test accuracies for
very large pre-trained deep neural networks. In Proceedings of the SIAM International Conference on
Data Mining (ICDM), 2020.

Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks: Evidence
from random matrix theory and implications for learning. Journal of Machine Learning Research, 22(165):
1-73, 2021.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, et al. HarmBench: A standardized evaluation framework for automated red
teaming and robust refusal. In Proceedings of the International Conference on Machine Learning (ICML),
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
Proceedings of the International Conference on Learning Representations (ICLR), 2016.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition of
sparse and dense subnetworks. In ICLR 2023 Workshop on Mathematical and Empirical Understanding
of Foundation Models, 2023.

Paolo Milanesi, Hachem Kadri, Stéphane Ayache, and Thierry Artiéres. Implicit regularization in deep tensor
factorization. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2021.

Sreyas Mohan, Zahra Kadkhodaie, FEero P Simoncelli, and Carlos Fernandez-Granda. Robust and
interpretable blind image denoising via bias-free convolutional neural networks. arXiv preprint
arXiv:1906.05478, 2019.

Rotem Mulayoff and Tomer Michaeli. Unique properties of flat minima in deep networks. In Proceedings of
the International Conference on Machine Learning (ICML), 2020.

Vaishnavh Nagarajan and J Zico Kolter. Uniform convergence may be unable to explain generalization in
deep learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Ezperiment, 2021(12), 2021.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role
of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning? In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Greg Ongie and Rebecca Willett. The role of linear layers in nonlinear interpolating networks. arXiv preprint
arXiv:2202.00856, 2022.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus based
on public domain audio books. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015.

Rahul Parhi and Robert D Nowak. Deep learning meets sparse regularization: A signal processing perspec-
tive. IEEE Signal Processing Magazine, 40(6):63-74, 2023.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry of
large language models. In Proceedings of the International Conference on Machine Learning (ICML),
2024.

17

Under review as submission to TMLR

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Mansheej Paul, Feng Chen, Brett W Larsen, Jonathan Frankle, Surya Ganguli, and Gintare Karolina Dziu-
gaite. Unmasking the lottery ticket hypothesis: What’s encoded in a winning ticket’s mask? In Proceedings
of the International Conference on Learning Representations (ICLR), 2022.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral universality in

deep networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2018.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

Brenda Praggastis, Davis Brown, Carlos Ortiz Marrero, Emilie Purvine, Madelyn Shapiro, and Bei Wang.
The SVD of convolutional weights: a CNN interpretability framework. arXiv preprint arXiv:2208.06894,
2022.

Xingyu Qu and Samuel Horvath. Rethink model re-basin and the linear mode connectivity. arXiv preprint
arXiv:2402.05966, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqgi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1-67, 2020.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Ben-
gio, and Aaron Courville. On the spectral bias of neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari, and
Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 2022.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by norms.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Proceeding of the International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2015.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In Proceedings
of the European Signal Processing Conference (EUSIPCO), 2007.

Ildus Sadrtdinov, Dmitrii Pozdeev, Dmitry P Vetrov, and Ekaterina Lobacheva. To stay or not to stay in the
pre-train basin: Insights on ensembling in transfer learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

A Saxe, J McClelland, and S Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear

neural networks. In Proceedings of the International Conference on Learning Representations (ICLR),
2014.

18

Under review as submission to TMLR

Steffen Schotthofer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco Tudisco. Low-rank
lottery tickets: Finding efficient low-rank neural networks via matrix differential equations. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. In International
Conference on Learning Representations, 2018.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D Nowak. Vector-valued variation spaces and
width bounds for DNNs: Insights on weight decay regularization. arXiv preprint arXiv:2305.16534, 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Berfin Simsek, Francois Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner, and
Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symmetries and
invariances. In Proceedings of the International Conference on Machine Learning (ICML), 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In Proceedings of the International Conference on Machine
Learning (ICML), 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Zhiquan Tan and Weiran Huang. Understanding grokking through a robustness viewpoint. arXiv preprint
arXi:2311.06597, 2023.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The slingshot
mechanism: An empirical study of adaptive optimizers and the grokking phenomenon. arXiv preprint
arXiv:2206.04817, 2022.

Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in ReLU
networks. In Proceedings of the International Conference on Algorithmic Learning Theory (ALT), 2023.

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Proceedings of
the Annual Conference on Learning Theory (COLT), 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Binxu Wang and John Vastola. ML from scratch: Stable diffusion, day 2, 2022. URL
https://colab.research.google.com/drive/1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#
scrollTo=9is-DXZYwIIi.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient models
at no extra cost. Proceedings of Machine Learning and Systems, 3:365-386, 2021.

Zihan Wang and Arthur Jacot. Implicit bias of SGD in [_{2}-regularized linear DNNs: One-way jumps
from high to low rank. arXiv preprint arXiv:2305.16038, 2023.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):3021,
2021.

19

https://colab.research.google.com/drive/1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#scrollTo=9is-DXZYwIIi
https://colab.research.google.com/drive/1Y5wr91g5jmpCDiX-RLfWL1eSBWoSuLqO?usp=sharing#scrollTo=9is-DXZYwIIi

Under review as submission to TMLR

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Conference on
Learning Theory, pp. 3635-3673. PMLR, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model soups:
averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
Proceedings of the International Conference on Machine Learning (ICML), 2022.

Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in ReLLU
networks for XOR cluster data. In Proceedings of the International Conference on Learning Representations
(ICLR), 2023.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. Invariant low-dimensional
subspaces in gradient descent for learning deep matrix factorizations. In NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning, 2023a.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. The law of parsimony in gradient
descent for learning deep linear networks. arXiv preprint arXiv:2306.01154, 2023b.

Hao Yu and Jianxin Wu. Compressing transformers: Features are low-rank, but weights are not! In
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2023.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low rank and
sparse decomposition. In Proceedings of the IEEE/CVE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

David Yunis, Kumar Kshitij Patel, Pedro Henrique Pamplona Savarese, Gal Vardi, Jonathan Frankle,
Matthew Walter, Karen Livescu, and Michael Maire. On convexity and linear mode connectivity in
neural networks. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.

Emanuele Zangrando, Piero Deidda, Simone Brugiapaglia, Nicola Guglielmi, and Francesco Tudisco. Neu-
ral rank collapse: Weight decay and small within-class variability yield low-rank bias. arXiv preprint
arXiv:2402.03991, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107-115, 2021.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay regular-
ization. arXiv preprint arXiv:1810.12281, 2018a.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without normal-
ization. In Proceedings of the International Conference on Learning Representations (ICLR), 2018b.

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks
on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

20

Under review as submission to TMLR

Train Err

—err . —err

pruned_bot_err —— pruned_bot_err
—— pruned_top_err —— pruned_top_err

Layer

"1 25 50 "1 25 50 1 25 50
Epoch Epoch Epoch
0.910 f—
0.8 = pruned_bot_err
0.905 —— pruned_top_err 0.06
£ 06 £
< 5 0.900 @ 0.04
0.4 g g
= 0.895
0.2{ — err 0.02
= pruned_bot_err 0.890
—— pruned_top_err
0.0 —_— 14 0.00
1 25 50 1 25 50 1 25 50 1 50 1 25 50
Epoch Epoch Epoch Epoch Epoch
(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 9: Dynamics with random labels for VGG. Top row: results with true labels. Bottom row: results
with random labels. We see that the middle layers have a lower effective rank (Eqn. [1)) when using true
labels and that alignment (Eqn. [3) in the middle layers persists throughout training. The results are less
stark in the VGG case, but similar to the MLP.

71.00 0
15.0 0.5
20
125 0.95 ¥ 0.4
.
8 — cer —cer 10.0 © 40
LC) —— pruned_bot_cer —— pruned_bot_cer 2 E 0.90 ® 0.3
© = pruned_top_cer = pruned_top_cer 75 s <)
I > 60 0.2
5.0 0.85 a
25 80 0.1
0.80
0.0 0.0
1 100 200 1 100 200 1 100 200 1 100 200
Epoch Epoch Epoch Epoch
R r71.00 0
1.00 05
1.025 pruned_bot_cer 2
. 0.95 1.000 = pruned_top_cer 0.95 « 0.4
o] . o
© 0.90 o} o 40
¢ 8 0.975 % 090 © 03
£ 085 £ 0950 = 860 02
— car 0.925 085 O
0.801 — pruned_bot_cer _ 0.900 80 0.1
== pruned_top_cer
0.80 0.0
1 100 200 1 100 200 1 100 200 1 100 200 100 200
Epoch Epoch Epoch Epoch Epoch
(a) Train Err. (b) Val. Err. (c) SVs (d) Eff. Rank (e) Alignment

Figure 10:

Dynamics with random labels for LSTM. Top row: results with true labels. Bottom row:

results with random labels. We see that the middle layers have a lower effective rank (Eqn. [1) when using
true labels and that alignment (Eqn. [3]) in the middle layers persists throughout training. Though the LSTM
doesn’t fit the random labels perfectly, the results are qualitatively similar to the other cases.

A Spectral Dynamics with Random Labels

Given the observations connecting generalization and rank thus far, and the enlightening view on the implicit
effects of weight decay, we are interested in seeing whether the perspective developed sheds any light on the
classic random label memorization experiments of [Zhang et al.| (2021)).

Similar to
Appendix

Zhang et al.| (2021)), we train a MLP, VGG and an LSTM to fit random or true labels. Please see
for the details regarding the experimental setup. Zhang et al.| (2021) decay the learning rate

to zero, and the random label experiments only converge late in training. Consequently, we use a constant
learning rate to avoid confounding factors. We see in Figure [7] that both cases for the MLP are able to
achieve zero error, though with different singular value evolution and alignment (Eqn. |3]) in the middle layer.

21

Under review as submission to TMLR

1.0

o
o

0

1.0

o

1.0

(9]
(9]
(9]
ul

0.5 0.5

(6,

N o N
Ul O
N O N
U O

Diagonal rank
~ Ul N
(@)

o
(9]
Diagonal rank

O]

Diagonal rank
~ u N
(@)
Diagonal rank

1 82 164 0.0 0.0

Epoch Epoch Epoch Epoch

1.0 1 1.0

0.5 0.5 0.5

Layer
o
(9]

Layer

Layer

Layer

4 16 17
1 82 164 0.0 1 50 100 0.0 1 25 50 0.0 >0 1 5 10

Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

0.0

Figure 11: Top row: Singular vector agreement for a single matrix in the middle of each model (diagonal
of Eqn. . Notice top singular vectors become stable in direction earlier. Bottom row: Summary score
for each matrix across architectures. As we move down the y-axis, the depth of the parameters in the model
increases, while the z-axis tracks training time. The sharp transition midway through training in the VGG
case is likely due to a 10x learning rate decay.

Surprisingly in Figure[7] we see that with true labels the inner layers are low rank, while with random labels
they are much higher rank. This may be explained by the shared structure in the true classes of the dataset,
which manifests in the parameters. Even more surprisingly, we find here that even without weight decay,
inner layers align with true labels, while with random labels, this alignment occurs and then disappears with
more training. This is particularly intriguing as there are non-linearities that could theoretically separate the
network from the linear case, and yet strong alignment occurs despite that. Such alignment has not yet been
leveraged by existing theory, and might provide structured assumptions for new understanding. Results on
the VGG (Figure @ and LSTM (Figure are qualitatively quite similar, though weaker in alignment. In
summary, these results suggest that viewing generalization through the lens of rank and alignment may be
fruitful, deepening the connection previously revealed.

B Beyond Generalization

We have seen over the course of many experiments that deep models are biased toward low rank, and that
there is a tempting connection between rank minimization and generalization. Still, spectral dynamics may
have broader connections. In the following subsections, we explore two unexplained phenomena: lottery
tickets (Frankle & Carbin, [2018) and linear mode connectivity (Frankle et al. 2020). Beyond shedding
further light on neural networks, these phenomena have implications for more efficient inference and storage,
as well as understanding the importance of pretraining (Neyshabur et al., |2020). We find that lottery
tickets are a sparse approximation of final-checkpoint top singular vectors. The ability to linearly interpolate
between faraway checkpoints and improve performance coincides strongly with top singular vector sharing
between checkpoints. Such observations may form a foundation for a better understanding compression and
model averaging (Wortsman et al., |2022; [[lharco et al., |2022]).

22

Under review as submission to TMLR

B.1 Top Singular Vectors Become Stable Earlier

Before we explore the phenomena, we first make another observation that will be helpful. As top sin-
gular values grow disproportionately large, it would be natural that top singular vectors become sta-
ble in direction as the gradients remain small. To demonstrate this, for a given matrix in the network
Wi(t) = Zf‘:l o;(t)u;(t)v;(t) T at training time t, we compute

St = [{u;(t)v; (1) ", un(T)on(T) 7)1, (5)

where T is the final step of training, and the absolute value is taken to ignore sign flips in the SVD compu-
tation. We then plot the diagonal of this matrix S(t);; ¥V i < 100 over time. We also use a scalar measure
of the diagonal to summarize like in the alignment case: s(t) = 75 >_; S(t);;. In Figure we see that top
singular vectors converge in direction earlier than bottom vectors.

B.2 Lottery Tickets Preserve Final Top Singular Vectors

As large singular vectors will become stable late in training, we wonder about the connection to magnitude
pruning and the lottery ticket hypothesis. [Frankle & Carbin (2018)) first showed evidence for the lottery
ticket hypothesis, the idea that there exist sparse subnetworks of neural networks that can be trained to a
comparable performance as the full network, where the sparse mask is computed from the largest magnitude
weights of the network at the end of training. [Frankle et al| (2020) build further on this hypothesis and
notice that, for larger networks, the masking cannot begin at initialization, but rather at some point early
in training. Still, the mask must come from the end of training.

The reason for this particular choice of mask may be connected to the dynamics we previously observed.
Specifically, at the end of training large singular values are disproportionately larger, so high-magnitude
weights may correspond closely to weights in the top singular vectors. If magnitude masks were computed
at the beginning, the directions that would become the top singular vectors might be prematurely masked
as they have not yet stabilized, which may prevent learning on the task.

Here we train an unmasked VGG-16 (Simonyan & Zisserman, 2014)) on CIFAR10, then compute either a
random mask, or a global magnitude mask from the end of training, and rewind to an early point (Frankle
et al., 2020) to start sparse retraining. We also do the same with an LSTM (Hochreiter & Schmidhuber,
1997b) on LibriSpeech (Panayotov et all [2015). Please see Appendix |§| for details. In Figures |12 and
we plot the singular vector agreement (SVA, Eqn. [5)) between the final model, masked and unmasked, where
we see exactly that magnitude masks preserve the top singular vectors of parameters, and with increasing
sparsity fewer directions are preserved. Even though prior work has remarked that it is possible to use low-
rank approximations for neural networks (Yu et al |2017)), and others have explicitly optimized for low-rank
lottery tickets (Wang et al., |2021; [Schotthofer et al., [2022), we rather are pointing out that the magnitude
pruning procedure seems to recover a low-rank approximation though it was intended to be "unstructured."

We also compute the singular vector agreement (SVA) between the masked model trajectory and the original
unmasked model trajectory (diagonal of Eqn. [5)). We see in Figures and that there is no agreement
between the bottom singular vectors at all, but there is still loose agreement in the top singular vectors.
Thus, it seems the mask allows the dynamics of only the top singular vectors to remain similar, which we
know are most important from the pruning analysis in Figure [4]

Preserving top singular vectors by pruning seems like a natural outcome of large matrices regardless of the
mask, so as a control, we follow exactly the same protocol except we generate the mask randomly with the
same layerwise sparsity. We can see in Figures 12| and [13|that this results in much lower preservation of top
singular vector dynamics, and also performs worse, as in (Frankle et al., |2020)). It would not be surprising
that random pruning is worse if simply evaluated at the end of training, but masking is applied quite early
in training at epoch 4 of 164 long before convergence, so it’s striking that the network now fails to learn
further even though it is far from convergence. We interpret this as evidence that the mask has somehow cut
signal flow between layers, so it is now impossible for the network to learn further, while magnitude pruning
and rewinding still allows signals to pass that eventually become important. Examining the SVD dynamics
of neural network weights allows us to see all of this structure that was hidden previously.

23

Under review as submission to TMLR

0
Y
22 0.75 & 25
o —— loss — = .
_C‘ —— pruned_bot _loss Aé g 0.50 ‘© 50 q>J‘
'S 1| = pruned_top_loss g wn S ©
= 0.25 £75
0 o
1 82 164 0.00 0 10 1
Epoch Layer Epoch Epoch
0 1 1.0
Y
29 G 25
[e] —— loss — — o
_C‘ —— pruned_bot_loss AC‘ l'_g 50 g 0.5
S —— pruned_top_loss g o ©
=1 875
e 14
1 82 164 0 50 ' ' 10 1 82 164 1 82 164 0.0
Epoch Rank i Layer Epoch Epoch
(a) Loss (b) Pruned SVA (c) All Layers (d) SVA evol. (e) All Layers

Figure 12: Pruning results for VGG. Top row: Magnitude pruning. Bottom row: random pruning. First
column: Training loss. We see that at 5% sparsity magnitude pruning is significantly better than random
pruning of the same layerwise sparsity. 2nd column: Singular vector alignment pre- and post-pruning at
the end of training for a single layer (the 3rd convolution). We see that magnitude pruning approximates
many more top singular vectors, than random pruning at the same sparsity. 3rd column: Singular vector
alignment score pre- and post-pruning across all layers. Agreement is higher across all layers for magnitude
pruning, though curiously deeper layers do not agree, likely as later layers are wider so weights are lower
magnitude and more will be pruned by the unstructured process. 4th column: Singular vector alignment
between the pruned and unpruned models along the training trajectory. We see that the magnitude pruning
still has similar dynamics in its top singular vectors, while random pruning does not. Last column: Singular
vector alignment score between pruned and unpruned models across layers and time. Again evolution is
similar for early layers with magnitude pruning, and completely different for random pruning.

6 0 1.0 1 1.0
" 0.75 €.
8 49| — loss ; < = =
= L= pned potioss | 050 $0.50 S 50 2
‘S —— pruned_top_loss g 4 o E
=2 \ 0.25 875
[a)]
1 25 50 0.00 0 10 1
Epoch Layer Epoch Epoch
6 0 1 m1.0
v
o G 25
8 4 = |oss ; f_E o
_C‘ = pruned_bot_loss % g 50 G>J, 0.5
‘S ——— pruned_top_loss o 8\ ﬁ
=2 \J 875
° 17
1 25 50 0 50 ' 0 10 1 25 50 1 25 50 0.0
Epoch Rank i Layer Epoch Epoch
(a) Loss (b) Pruned SVA (c) All Layers (d) SVA evol. (e) All Layers

Figure 13: Pruning results for LSTM. Top row: Magnitude pruning. Bottom row: random pruning. See
Figure [12[for details. Results are quite similar for the LSTM at 25% pruning as the VGG in Figure

B.3 Spectral Dynamics and Linear Mode Connectivity

We come to the final phenomenon that we seek to describe: linear mode connectivity. Linear mode connec-
tivity (LMC) is the property that one can interpolate linearly between two different minima in weight space
and every parameter set along that path performs well, which gives the impression that the loss surface of

24

Under review as submission to TMLR

neural networks is somehow convex despite its theoretical nonconvexity. This was first demonstrated in small
networks with the same initialization (Nagarajan & Kolter| 2019), then expanded to larger networks and
connected to lottery tickets (Frankle et al.,[2020; [Paul et al.,[2022). [Entezari et al.| (2021)) first conjecture that
two arbitrary minima show LMC up to permutation, and demonstrate it in simple models. Others expanded
this to wide models (Ainsworth et al., [2022; lJordan et al., [2022; |Qu & Horvath, [2024), and permutation
connectivity can be proven in various ways (Kuditipudi et al., |2019; Brea et al., [2019; [Simsek et al., 2021
Ferbach et al, [2023). Still, these conditions and results do not hold for standard models (Qu & Horvath
2024). LMC has also been exploited for model-averaging and performance gains (Wortsman et al., 2022
[harco et all 2022; Rame et al. 2022). Still despite all of this work, we lack a description for why LMC
occurs. In particular: why is there a convex, high dimensional (Yunis et al., 2022)) basin that models find
shortly in training (Frankle et al., 2020), or after pretraining (Neyshabur et all [2020} [Sadrtdinov et all
? We do not answer this question in full, but find a deep connection through the dynamics of singular
vectors.

B.3.1 Linear Mode Connectivity Correlates with Top Singular Vector Agreement

We saw in Figure [I1] that top singular vectors converge in direction earlier. We also know that for models to
display LMC, they need to share an early part of the training trajectory. Perhaps the top singular vectors
become stable after this early stage, so we might expect mode-connected solutions to share these components.
To examine this, we plot agreement between the singular vectors of the weight matrices at either endpoint
of branches:

R
W(l ZUJ J(T)T ’
J
R
WET) = o (Dup(T)op(T) ",
k

spawned from the same initialization in training. If the branches are split from an initialization on a trunk tra-
jectory W (t), we call ¢ the split point or epoch. We visualize the diagonal of |{u;(T)v;(T) ", u},(T)v,(T) ")k
vs. split epoch, where the absolute value is taken to ignore sign flips in SVD computation.

The technical definition of LMC requires measuring the bump, or barrier, in the loss surface along the linear
interpolation between final checkpoints(Frankle et al.,[2020). To measure this precisely, we use the definition
from [Neyshabur et al| (2020), which is the maximum deviation from a linear interpolation in the loss, an
empirical measure for convexity in this linear direction. When this deviation is 0, we consider the checkpoints
to exhibit LMC. Please see Appendix [D.I0]for details on the calculation. Given evidence in Figure 4 that top
components are the most important for prediction, and that top components become stable before training
has finished, it is plausible that LMC is connected to the stability of top singular vectors in the later portion
of training.

This would mean that checkpoints that do not exhibit the LMC property should not share top singular
vectors, while checkpoints that do exhibit the LMC property should share top singular vectors. We see
in Figure [§] that this is the case across models and tasks, where the alignment between endpoints is much
stronger in top singular vectors. We also see no LMC and poor agreement in top components between
branches that have initializations from different trunk trajectories, but with the same split epoch ¢ and the
same branch data order in Figure[I4] Thus, these top directions are not a unique property of the architecture
and data, but rather are dependent on initialization. It is notable that concurrent work
arrives at a similar conclusion: permutation solvers between optima match top singular vectors. Though
the conclusions are similar, their experiments are primarily conducted on smaller scale settings, and only
for permutation matching at the end of training. Here we connect these observations to the optimization
behavior of SVDs throughout training, tying our previous observations on generalization in with weight
averaging.

25

Under review as submission to TMLR

3.6
2.00 4.40
@ @ g34 k3
£1.75 E |[~—— | E /\/\,_ E4.35 \/\N
© © © ©
m D0 m3.2 m
1.50 4.30
3.0
0 1 25 0 1 2 5 0 1 2 5 0 1 25
Split epoch Split epoch Split epoch Split epoch
0 0 0 0.04 0
& 25 0.03 §25 G 25 & 25 0.03
= - 0.02 = =
¢ 50 0.02 250 50 0.02 250 0.02
> > 001 & &
£ 75 0.01 ©75 T m75 & 75 0.01
&)) [a) a
125 0.00 125 0.00 125 0.00 125 0.00
Spl|t epoch SpI|t epoch Spllt epoch Spllt epoch
0.04 0.03 0.02 0.02
9 g 002 ¢ g
3 0.02 3 S 0.01 8 0.01
0.01
125 0.00 175 0.00 135 0.00 175 0.00
Spl|t epoch Spl|t epoch Spllt epoch Spllt epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 14: Top row: Barrier size vs. split step. Middle row: singular vector agreement for a single matrix
parameter between branch endpoints that do not share a common trunk, but do share split time and branch
data order. Bottom row: summary statistic for singular vector agreement across layers. We see that when
branches do not share a common trunk, there is neither LMC nor singular vector agreement, even though
the optimization is otherwise the same.

B.3.2 Perturbing Breaks Linear Mode Connectivity and Singular Vector Agreement Simultaneously

To make the connection between top singular vectors and LMC even tighter, we intervene in the training
process. If we add random perturbations to destabilize the components that will become the top components
long before they have converged, and if singular vector agreement is tied to LMC, we would like to see that
final models no longer exhibit the LMC property. Indeed this is the case. In Figure[I5 when increasingly large
random perturbations are applied, the barrier between final checkpoints increases and the LMC behavior
disappears. Please see Appendix [D]for details. In addition, the previously-strong singular vector agreement
disappears simultaneously. Thus it seems this agreement is tied to linear mode connectivity.

We speculate that, due to the results in Figure {4] that show the top half of the SVDs are much more critical
for performance, if these components are shared then interpolating will not affect performance much. Rather,
interpolation will eliminate the orthogonal bottom components which may only make a minor impact on
performance. If however the top components are not shared, then interpolating between two models will
remove these components, leading to poor performance in between. Such observations may help in explaining
the utility of pretraining (Neyshabur et al., 2020)), weight averaging (Rame et all [2022; |Wortsman et al.,

26

Under review as submission to TMLR

0.4 1.5 1.0
—_ — — 2 _
] 1.0 g 2
5 0.2 © G c0.5
0.0 0.0 0 0.0
0 0.10.250.5 _1.0 2.5 0 0.10.250.5 1.0 2.5 0 0.10.250.5 1.0 2.5 0 0.10.250.5 1.0 2.5
Pert. magnitude Pert. magnitude Pert. magnitude Pert. magnitude
0 0.6 0 OF
Aé v 4 4
& 25 04 & 25 0.75 § 0.75 §25 0.75
250 250 0.50 €50 0.50 & 50 0.50
o o o o
=) 02 © o o
L 75 875 0.25 ©7 0.25 ©7 0.25
=) =) [a) =)
0 0.10.250.5 1.0 2.5 * 0 0.10.250.5 1.0 2.5 000 0 0.10.250.5 1.0 2.5 O OO 0 0.10.250.5 1.0 2.5 0 00
Pert. magnltude Pert. magnitude Pert. magnitude Pert. magnitude
1 1 1l
0.6 0.75 0.75 0.75
5 04 © 5 5
E E 0.50 E 0.50 5, - 0.50
0.25 0.25 0.25
: 16 0.00 17 0.00 50 0.00

0 0.10.250.5 1.0 2.5
Pert. magnltude

(a) VGG

0 0.10.250.51.02.5
Pert. magnitude

(b) UNet

0 0.10.250.51.02.5
Pert. magnitude

(c) LSTM

0 0.10.250.51.0 2.5
Pert. magnitude

(d) Transformer

Figure 15: Top row: Barrier size vs. perturbation magnitude. Middle row: singular vector agreement for
a single matrix parameter between branch endpoints vs. perturbation magnitude. Bottom row: summary
statistic for singular vector agreement across layers with perturbation magnitude. We see that whereas
without perturbation models would exhibit LMC after training, with increasing perturbations the LMC
property disappears simultaneously with the agreement in top singular vectors.

2022; [llharco et al., 2022)) or the use of LoRA (Huh et al.;, 2022) to replace full finetuning. Studying spectral
dynamics allows us to see this deep structure.

C Explanation of Balancedness

Prior work on deep linear networks (Arora et al.,|2019; Milanesi et al., 2021]) suggests that rank minimization
may describe implicit regularization in deep matrix factorization better than simple matrix norms. See
Arora et al| (2018) (Appendix A) for a detailed argument. However, a critical assumption used in these
works is “balanced initialization.” This means that for consecutive matrices W; and W;y1 in the product
matrix Hj W;, we have W¢11Wz‘+1 = WiWiT at initialization. Decomposing these matrices with SVDs
and leveraging orthogonality, this simplifies to V;113%,,V;1, = U;S2U," where U; and V;4; are orthogonal
matrices. Since these are orthogonal decompositions of the same matrix, their diagonals must be equivalent,
allowing for the permutation of elements with the same value. This leads to U; = V;410 up to signs, where O
is a block diagonal permutation matrix that may permute the rows of equivalent diagonal elements. Notably,
if all diagonal elements are distinct and U; and V1 are square matrices, then U; = V; ;1 up to signs. This
gives us matching singular vectors for consecutive matrices.

27

Under review as submission to TMLR

D Experimental Details

For all experiments, we use 3 random seeds and average all plots over those 3. This is relatively small, but
error bars tend to be very tight, and due to the high volume of runs required for this work we lack the
resources to run much more.

In order to compute alignment we consider only pairs of consecutive layers that directly feed into each other,
and ignore the influence of residual connections so as to cut down on the number of comparisons. Specifics
on individual architectures are given below.

D.1 Image Classification with VGG

We train a VGG-16 (Simonyan & Zisserman), 2014) on CIFAR-10 (Krizhevsky| 2009) for 164 epochs, following
the hyperparameters and learning rate schedule in (Frankle et al., [2020), but without data augmentation as
it contributes extra randomness. For the optimizer we use SGD with batch size 128, initial learning rate 0.1
and momentum of 0.9. We also decay the learning rate 3 times by a factor of 10 at epoch 82, epoch 120,
and finally at epoch 160. We also use a minor amount of weight decay with coefficient 0.0001.

VGG-16 uses ReLU activations and batch normalization (Ioffe & Szegedyl |2015|), and includes both convolu-
tional and linear layers. For linear layers we simply compute the SVD of the weight matrix. For convolutional
layers, the parameters are typically stored as a 4D tensor of shape (cout, Cin, h, w) for the output channels,
input channels, height and width of the filters respectively. As the filters compute a transformation from
each position and input channel to an output channel, we compute the SVD of the flattened tensor of shape
(Couts Cin + h - w), which maps all inputs to outputs, similar to Praggastis et al.| (2022). This is not the SVD
of the entire transformation of the feature map to the next feature map |Sedghi et al.| (2018]), but rather the
transformation from a set of adjacent positions to a particular position in the next layer computed by the
parameters. For the individual SV evolution plot, we use the 12th convolutional layer.

In order to compute alignment of bases between consecutive convolutional layers, V;},U; we need to match
the dimensionality between U; and V;4 1. For convolutional layers we are presented with a question as to how
to handle the spatial dimensions h and w as naively the input dimension of the next layer will be a factor
of h - w larger dimension. We experimented with multiple cases, including aligning at each spatial position
individually or averaging over the alignment at all spatial positions, and eventually settled at aligning the
output of one layer to the center spatial input of the next layer. That is, for a 3x3 convolution mapping to a
following 3x3 convolution, we compute the alignment only for position (1,1) of the next layer. This seemed
reasonable to us as on average the edges of the filters showed poorer alignment overall. For the individual
alignment plot, we use the alignment between the 11th and 12th convolutional layers at the center spatial
position of the 12th convolutional layer.

D.2 Image Generation with UNets

We train a UNet (Ronneberger et al., 2015) diffusion model (Sohl-Dickstein et al., 2015} [Ho et al.l [2020)
on MNIST (LeCun) [1998) generation. We take model design and hyperparameters from (Wang & Vastola,
2022). In particular we use a 4-layer residual UNet and train with AdamW (Loshchilov & Hutter} |2017)) with
batch size 128, and learning rate of 0.0003 for 100 epochs. This model uses swish (Ramachandran et al.|
2017) activations and a combination of linear and convolutional, as well as transposed convolutional layers.

Computing SVDs and alignment is similar to the image classification case described above, except in the case
of the transposed convolutions where an extra transpose of dimensions is needed as parameters are stored
with the shape (cin, Cout, h, w). For the individual SV evolution plot, we use the 3rd convolutional layer. For
the alignment plot, we use the alignment between the 3rd and 4th convolutional layers at the center spatial
position of the 4th convolutional layer.

28

Under review as submission to TMLR

D.3 Speech Recognition with LSTMs

We train a bidirectional LSTM (Hochreiter & Schmidhuber] 1997a) for automatic speech recognition on
LibriSpeech (Panayotov et al.,|2015)). We tune for a simple and well-performing hyperparameter setting. We
use AdamW (Loshchilov & Hutter} [2017)) with batch size 32, learning rate 0.0003 and weight decay 0.1 for
50 epochs. We also use a cosine annealing learning rate schedule from 1 to 0 over the entire 50 epochs.

The LSTM only has matrix parameters and biases, so it is straightforward to compute SVDs of the matrices.
For individual SV evolution plots, we plot the 3rd layer input parameter. In the case of alignment, we
make a number of connections: first down depth for the input parameters, then connecting the previous
input parameter to the current hidden parameter in both directions, then connecting the previous hidden
parameter to the current input parameter. In particular the LSTM parameters are stored as a stack of 4
matrices in PyTorch, and we find alignment is highest for the "gate" submatrix, so we choose that for all
plots. For the individual layer alignment, we plot alignment between the 3rd and 4th layer input parameters.

D.4 Language Modeling with Transformers

We train a Transformer (Vaswani et al., [2017) language model on Wikitext-103 (Merity et al.2016). We base
hyperparameter choices on the Pythia suite (Biderman et al.l 2023)), specifically the 160 million parameter
configuration with sinusoidal position embeddings, 12 layers, model dimension 768, 12 attention heads per
layer, and hidden dimension 768. We use AdamW (Loshchilov & Hutter, 2017)) with batch size 256, learning
rate 0.0006 and weight decay 0.1. We use a context length of 2048 and clip gradients to a maximum norm of
1. We also use a learning rate schedule with a linear warmup and cosine decay to 10% of the learning rate,
like |Biderman et al.| (2023]).

For SVDs, for simplicity we take the SVD of the entire (3dmodel, dmodel) Parameter that computes queries,
keys and values from the hidden dimension inside the attention layer, without splitting into individual
heads. This is reasonable as the splitting is done after the fact internally. We also take the SVD of the
output parameters, and linear layers of the MLPs, which are 2 dimensional matrices. For the individual SV
evolution plot, we plot the SVs of W; of the 8th layer MLP

For alignment, we consider the alignment of Wy and Wx matrices, Wy and W matrices, computing
alignment between heads individually then averaging over all heads. We also consider the alignment between
Wo and W7 of the MLP block, between W7 and W5 of the MLP block, and between W5 and the next attention
layer. For the individual layer alignment, we plot alignment between W; and W5 of the 8th layer MLP.

D.5 Spectral Dynamics with Scale (Pythia)

Here we apply the perspective developed in Section [4] to larger scale models. As we lack the resources
to train these models ourselves, we leverage the Pythia (Biderman et all [2023) family which provides
training trajectories for language models across a range of scales (70m to 12b parameters). We are further
constrained to the 2.8b parameter model at the largest due to memory requirements when computing SVDs
and alignment.

In Figure we see similar rank dynamics across a variety of scales. We choose to select the 7th layer MLP
to compare between models as it is present at all scales. We do see an unequal evolution in singular values,
but also a contraction as training proceeds for longer. The difference between scales is not very obvious,
but proportionally fewer of the singular values evolve to be large in the 2.8b model as opposed to the 410m
model, which one can see from the thickness of the light magenta color. The lack of alignment except for
the top rank is quite consistent with earlier observations, and such alignment happens much later for the
largest model.

D.6 Weight Decay Experiments

All tasks are trained in exactly the same fashion as mentioned previously, with increasing weight decay in
the set {0,0.0001,0.001,0.01,0.1,1.0,10.0}. For ease of presentation we consider a subset of settings across

29

Under review as submission to TMLR

251 == loss 10 1 1.0
—— pruned_bot_loss
20 == pruned_top_loss 8 0.9
@ 6
S15 0.8
g 4

0.30

0.25

0.20

0.15

Layer pair

0.10

Diagonal rank

0.7

0.05

-
w o
sV
N
Layer

0.10 1
0.08
0.06 I
0.04
0.02

e —— 0.6 0.00 61

1k 20k 143k 1k 20k 143k 0 1k 20k 143k 0 1k 20k143k ’ 0 1k 20k143k
Step Step Step Step Step

1.0 0.25 1
0.9 0.20 0.3
= 0.8 0.15 0.2
07 0.10
0.1
0.05
0.6
9 0.00 121 0.0

0.00

o
o

25 == loss
—— pruned_bot_loss
~—— pruned_top_loss

Layer pair

™
c
[
©
c
S
>
S
=)

12 1 -
10
20
a 8 -
Sis 5 :
§ i
10 4
5 2
0

0 1k 20k 143k 0 1k 20k 143k 0 1k 20k 143k 0 1k 20k143k 0 1k 20k143k
Step Step Step Step Step
20| — ioss 1'% 1.00 0 1
— pruned_bot_loss /\/ 125 — e 0.125 04
=== pruned_top_loss 20
e 10.0 = 090 ¥ 0100 0.3
a . = 40 g
S 275 g 08 3 0.075 ; 02
s 10 3 080 © g :
> 5.0 260 0050 &
075 ©
0.1
2.5 80
5 0.70 0.025
0.0 96 = 0.000 121 0.0
0 1k 20k 143k 0 1k 20k 143k 0 1k 20k143k 0 1k 20k143k 0 1k 20k143k
Step Step Step Step Step
—|0sS 15.0 1 1.0 0.25 1 0.4
20{ = pruned_bot_loss . -
~—— pruned_top_loss 12.5 0.9 x 0.20 0.3
0 15 = s 5
3 10.0 5 = 015 8
- 3 75 > = os & 5 0.2
210 = S 010 ®
5.0 2 =
e 0.1
5 2.5 0.7 0.05
0.0 128 = 000 161 0.0
0 1k 20k 143k 0 1k 20k 143k 0 1k 20k143k 0 1k 20k143k 0 1k 20k143k
Step Step Step Step Step
(a) Val. Loss (b) SVs (c) Eff. Rank (d) Alignment (e) Alignment Score

Figure 16: Spectral dynamics of Pythia suite. From top to bottom we examine the 160m, 410m, 1.4b and 2.8b
parameter models. Notably, much less noise appears in the alignment plot with increasing scale. Presumably
this could be due to the fact that larger dimensional vectors have higher probability to be orthogonal, which
may play a role in making optimization easier. We see stronger alignment score (Eqn. [4)) in all layers in the
larger model, perhaps because of that cleaner signal.

tasks. In Figure we include trained model performance and pruned model performance to show that,
even with high levels of weight decay, models do not entirely break down. More so, the approximation of
the pruned model to the full model gets better with higher weight decay.

D.7 Grokking Experiments

For the Trasnformer, we mostly follow the settings and architecture of [Nanda et al| (2023)), except we use
sinusoidal positional encodings instead of learned.

For the slingshot case we follow hyperparameter settings in |Thilak et al| (2022)), Appendix B except with
the 1-layer architecture from Nanda et al.| (2023)) instead of the 2-layer architecture specified. We perform
addition modulo 97. The original grokking plot in [Thilak et al|(2022) appears much more dramatic as it
log-scales the x-axis, which we do not do here for clarity.

30

Under review

as submission to TMLR

0 1 0 1 0 0 los
525 02« 02 s = 006 €55 045 525 =
—_ Q - Q - [} —_— o
gs0 8 850 010 5 004 Ts50 5 g0 01
S 0.1 > 01 o > 5] 02 > S (S
875 3 875 005 5 002 75 3 875 5
o 3 o 17 [=) [=)
1 82 164 00 1 82 164 0O 1 50 100 %00 1 50 100 %00 25 50 00 0.0
Epoch Epoch Epoch Epoch Epoch
0 n 1 06 0 (015 1 M 0 n 0 n
¥ 0.2 6 x 006 x
§25 s §25 5 525 045 525 02
= =% = 010 & = o = 2
= 04 - 004 5 5
850 5 850 5 S50 5 ®50 5
S 0.1 35 S 0.05 S 02 > S 01 %
875 3 02 875 3 002 §75 3 875 3
° 13 e 17 a a
1 82 164 %0 1 g2 164 00 1 50 100 %00 7750 100 000 25 50 00 0.0
Epoch Epoch Epoch Epoch Epoch Epoch
0 n 1 0.6 0 70.15 1 [lo.10 0 n | 0
= 03 = = =
525 = & 25 = © 25 0.4 =5 & 25 =
T: 02 8 0.4 % 0.10 % T 0.10 % 028
£50 5 €50 ‘n;; 005 550 02 a; £50 5
> . >
®75 0157 02 275 0.05 8 275 3 005 275 017
° 13 e 17 s 22 e
1 82 164 0O 1 82 164 00 1 50 100 000 1 50 100 000 25 50 00 1 25 50 000 0.0
Epoch Epoch Epoch Epoch Epoch Epoch Epoch Epoch
0 los 0 po1s 1 0 n 1 0 f
~ . ~ ~ ~ =
£as 5 02 §as 3 02 §as 04 0z B2s 075 075
= 02 & = 010 & = 48 = g 050
gs0] o1 gs0] ol gs0 5 gs0 0.50 o -
. . > >
®75 0153 875 0.05 3 875 02 & ot 85 025 5 0.25
[} 13 [} 17 [} 2 [=}
1 82 164 %0 1 82 164 0O 1 50 100 %00 7750 100 00 25 50 00 1 25 50 0O 15 10 000 BLEEEo—p70.00
Epoch Epoch Epoch Epoch Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 17: Diagonal of alignment for a single pair over time (Eqn. |3 and alignment metric across pairs
of matrices over time (Eqn. [4) where the y-axis represents depth. From top to bottom, for VGG we use
coefficients {0,0.001,0.01,0.1}, while for other networks we use coefficients {0,0.1,1,10}. We see that the
maximum alignment magnitude is higher with large weight decay, and in particular, the Transformer has
the strongest alignment even when nonlinearities separate the MLP layers.

In the case of the deep MLP, we follow [Fan et al.| (2024)), where we use a 12-layer MLP with ReLU activations
and width 400, trained on MSE loss on MNIST (LeCunl [1998)). We use 2000 examples, a batch size of 100,

weight decay 0.01, and initialization scale 8 (Liu et al., 2023)).

D.8 Random Label Experiments

We train a 4-layer MLP on CIFARI10 (Krizhevsky} 2009) with either completely random labels, or the true
labels. We use SGD with momentum of 0.9 and constant learning rate of 0.001, and train for 300 epochs to
see the entire trend of training. The major difference to the setting of [Zhang et al| (2021) is the use of a
constant learning rate, as their use of a learning rate schedule might conflate the results.

For the VGG case, we follow our previous hyperparameters, except we leave out weight decay and learning
rate scheduling, instead using a constant learning rate of 0.01.

For the LSTM case, we follow our previous hyperparameters, and extend the training budget to 200 epochs
allow for the random label setting to train longer. In this case, our network does not have sufficient capacity
to memorize the data completely.

D.9 Magnitude Pruning Experiments

We use the same VGG setup as described previously. In this case we train until the end, then compute a
global magnitude mask. To do this we flatten all linear and convolutional weights into a single vector, except
for the last linear layer, and sort by magnitude. Then we keep the top 5% of weights globally, and reshape
back to the layerwise masks. This results in different sparsity levels for different layers, so when generating
the random masks, we use the per-layer sparsities that resulted from the global magnitude mask.

31

Under review as submission to TMLR

VI— loss 6 — loss
3 0 15 = pruned_bot_loss " " = pruned_bot_loss
0 0 o d_top_loss 0 0 ~—— pruned_top_loss
2 — o pranegoe- o 4| — loss o 20 P P
3 2 - lp())rsusned bot loss _CI 10 ‘_:I —— pruned_bot_loss _CI
- _bot_ £ =
'S — d_top_| © 'S —— pruned_top_loss ©
|r_£ 1 pruned_top_loss = 5 g 2 g = 10
ol N—— 0 0
i 8 164 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
VI— loss 6 — loss
0 15 = pruned_bot_loss " = pruned_bot_loss
a 2 8 —— pruned_top_loss § VRl I——— 8 20 — pruned_top_loss
S —— loss 310 i . |
p —— pruned_bot_loss c c prune:_bot_:oss c
=17 — d_top_| ‘© = —— pruned_top_loss | ‘@
0 0 0
i 82 164 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
—— loss 157I— loss 61— —— loss
—— pruned bot loss n pruned_bot_loss " ——— pruned_bot_loss
v 6 — P T 0 = pruned_top_loss 0 Y 20 = pruned_top_loss
8 pruned_top_loss 3 10 0 4i{| — loss 3
_CI 4 c _CI = pruned_bot_loss c
S E 5 é —— pruned_top_loss @
£, = £20 =10
0 1 50 100 1 25 50 1 10
i 82 164 >
Epoch Epoch Epoch Epoch
2.36 | —— loss
: I:rsusned bot_loss W L | a @ [Prined ton o
g 2.344|— pruned:top:loss 8 10‘— loss 8 — |oss 8 20 — pruned_top_loss
— _CI = pruned_bot_loss _CI 4 —— pruned_bot_loss _Cl
c T —— pruned_top_loss H — pruned_top_loss | g
2 2.32 = 5|| = =10
2.30 0 2
1 82 164 1 50 100 1 25 50 1 5 10
Epoch Epoch Epoch Epoch
(a) VGG (b) UNet (c) LSTM (d) Transformer

Figure 18: Training loss over time, where the rows use differing amounts of weight decay. From top to bottom,
for VGG we use coefficients {0,0.001,0.01,0.1}, while for other networks we use coefficients {0,0.1,1, 10}.
We see that it is still possible to achieve low training loss under high weight decay, and as we increase the
amount of weight decay, the gap between pruned and unpruned parameters closes, lending support to the
idea that the parameters become lower rank.

To retrain the network, we rewind to epoch 4 (after the point of LMC (Frankle & Carbin, 2018)), then
continue training with the mask, always setting other weights and their gradients to 0. We average all
results over 3 random seeds.

For the LSTM we follow exactly the same procedure, except our mask only reaches a level of 25% sparsity,
due to larger performance degradations with higher sparsity.

32

Under review as submission to TMLR

D.10 LMC Experiments

We save 5 evenly-spaced checkpoints in the first epoch, as well as at the end of the next 4 epochs for 10
intializations in total. We train 3 trunks, and split 3 branches from each trunk for a total of 9 branches
which we average all plots over.

Following Neyshabur et al.| (2020), we compute the barrier between checkpoints as follows: given W1 (T)
and W®)(T) that were branched from W (t) we compute

b(#) = (max L£((1 - Q)W N(T) + aWE(T)) — (1 —) LW (D)) + aL(W(T))) (6)

when this quantity is 0, we consider the checkpoints to exhibit LMC.

We recompute batch normalization parameters after interpolating for VGG-16, and group normalization
parameters for the UNet, as these do not necessarily interpolate well (Frankle et al. [2020). We also compute
singular vector agreement for the same parameter between either branch endpoint.

To plot the singular vector (dis)agreement and LMC between different modes, we make 11 evenly spaced
measurements interpolating between branch endpoints that had the same split epoch, and the same branch
seed, but different trunk initializations.

D.11 Perturbed LMC Experiments

We perturb all weights W after the point of dynamics stability where we expect to see LMC at the end of
training (epoch 4 is sufficiently late in all cases) using randomly sampled normal perturbations € ~ N(0, I)
with ||| = n||W|| where n € {0.0,0.1,0.25,0.5,1.0,2.5}. We do not perturb the output layer, as this has a
very substantial effect on the optimization. We also do not perturb the input layer for the Transformer as
it is too computationally expensive for our resources.

E Limitations

There are a few key limitations to our study. As mentioned, we lack the computational resources to run more
than 3 random seeds per experiment, though we do find error bars to be quite tight in general (except for
the generalization epoch in the grokking experiments). In addition, as discussed we ignore 1D parameters
like biases and normalization in the neural networks, which may play additional roles. Due to computa-
tional constraints we do not consider alignment of layers across residual connections as this quickly becomes
combinatorial in depth, thus there may be other interesting interactions that we do not observe. Finally,
due to computational constraints we are unable to investigate full results on larger models than the 12 layer
Transformer, which may have different behavior, but the results on the Pythia suite in Appendix [D.5] are
encouraging.

F Additional Experiments

F.1 Effect of initialization scale

In Figure [20| we explore the effect of initialization scale. Prior work (Woodworth et al.l 2020) showed that
in deep linear systems the choice of initialization modulated the effect of incremental learning of ranks,
with smaller initialization increasing this effect. We observe that alignment is slightly stronger with smaller
initialization, mirroring the theory in deep linear networks.

F.2 Effect of learning rate

In Figure 21 we explore the effect of learning rate on dynamics for an MLP trained on CIFAR10. [Ghosh et al.
(2025)) proved that balancedness may develop in deep linear systems when the learning rate is sufficiently
large. We see here that the trend is mixed: learning rate 0.01 shows the strongest balancedness, and going
above or below has a weaker effect.

33

Under review as submission to TMLR

F.3 Individual seed plots for grokking

For clarity, in Figurewe show a single seed of grokking modular addition with Transformers (see Figure.
The transition to low error and low rank coincide.

F.4 Full alignment matrix evolution

We previously plotted only the diagonal of the alignment matrix (Eqn. |3 instead of considering off-diagonal
elements. In Figure[23]we provide the evolution of the entire alignment matrix between two layers throughout
training for an MLP on CFIARI10 so as to explain why: anecdotally we did not observe much signal off-
diagonal, hence the focus on the upper diagonal in Eqns [3] and [}

F.5 Image classification

In Figure 24 we provide the behavior for all networks tested in CIFAR10 side-by-side to facilitate comparison.
We see across architectures that there is qualitative agreement in the trend toward rank minimization.

G Compute Resources

All experiments are performed on an internal cluster with on the order of 100 NVIDIA 2080ti GPUs or newer.
All experiments run on a single GPU in less than 8 hours, though it is extremely helpful to parallelize across
machines. We estimate that end-to-end it might take a few days on these resources to rerun all of the
experiments in this paper. Additionally, the storage requirements for all of the checkpoints will take on the
order of 10 terabytes.

H Code Sources

We use PyTorch (Paszke et al.l |2019) and NumPy (Harris et al.l |2020) for all experiments and Weights
& Biases (Biewald, 2020)) for experiment tracking. We make plots with Matplotlib (Hunter, 2007) and
Seaborn (Waskom/ [2021]). We also use HuggingFace Datasets (Lhoest et al., 2021) for Wikitext-103 (Merity
et al.l [2016)).

34

Under review as submission to TMLR

0.5
0.4
0.3
0.2
0.1
0.0
0.8
0.6
0.4
0.2
0.0
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.6
0.4
0.2
0.0

1.0 = train/err 1.00 0
—val/err 8
0.8 0.95 20
Y4
6 G
0.6 5 0.90 * 40
= > = ©
] 0 F c
0.4 4 - 0.85 60
a
0.2 2 0.80 80
0.0
1 20000 40000 1 20000 40000 20000 40000 20000 40000
Epoch Epoch Epoch Epoch
1.0 = train/err 15.0 L0 0
—val/err
12.5
0.8 08 20
10.0 <
06 . S0
&0.4 3 7 7 06 g
5.0 e, g0
0.2 A S s s 2 04 A
| 2.5 S 80
0.0 s = R :
0.0 0.2
1 20000 40000 1 20000 40000 20000 40000 20000 40000
Epoch Epoch Epoch Epoch
1.0 = train/err 1.00 0
= vallerr
0.8 0.95 20
0.90 <
06 - S
= > 085 @©
o4 3 S
0.80 90
[=)
0.2 \ 0.75 80
al
0.0 0.70
1 50000 100000 1 50000 100000 50000 100000 50000 100000
Epoch Epoch Epoch Epoch
1.0 = train/err 1.00 0
val/err
0.8 0.95 20
0.90 =
_0.6 . . g 20
5 > 085 2
w © =
0.4 3 60
0.80 .‘D_“
0.2
075 80
0.0 : 0.70
1 20000 40000 1 20000 40000 20000 40000 ' 20000 40000
Epoch Epoch Epoch Epoch
(a) Error (b) SV Evolution (c) Effective Rank (d) Alignment

Figure 19: Grokking and Spectral Dynamics in Modular addition. Top row: 30% data and no

weight decay. 2nd row: 30% data and weight decay 1.0 (grokking), using hyperparameters from

et al| (2023). 3rd row: 70% data with no weight decay (slingshot), using hyperparameters from

Nanda,

Thilak

et al| (2022). Bottom row: 90% data and no weight decay. 1st column: Training and validation error.

2nd column: Singular value evolution is visualized for the first attention parameter, where each line
represents a single singular value and the color represents the rank. 3rd column: Effective rank of all layers
(Eqn. . 4th column: Alignment (Eqn. between the embedding and the first attention parameter is
also visualized, where the y-axis corresponds to index ¢ of the diagonal. One can see that grokking co-occurs

with low-rank weights. In addition, there is an alignment that begins early in training that evolves
diagonal. Without weight decay and with less data, neither grokking nor the other phenomena occur

up the
during

the entire training budget, but using more data, even without weight decay, leads to low-rank solutions from
the beginning of training. The slingshot case follows a similar trend, though the validation loss is gradually
fit. Across cases with good generalization, parameters are lower rank, and alignment is also more prevalent

in the top ranks.

35

Under review as submission to TMLR

0.010 100 0 0.04
.01 Y 1 .
0.95 &25 0.10 =
¢ 0.905 o = 3
L > © —
= % 0.005 & 0.90 ¢50 005 & 0.02
> 0.900{|— err (o)) ©
= pruned_bot_err 0.85 ®75 - 3
= pruned_top_err 0.000 o 0.00 0.00
1 150 300 1 150300 1 150 300
Epoch Epoch Epoch Epoch
2 ml.0 0 —
0.9 1 N
0.8 ©25 0.75 5
LE 0.8 = = 2
w > 1 9 © 050 %
g 0.7 —_ err @ E 0.6 g >0 d>)"
(o)} ©
—— pruned_bot_err 0.4 © 75 0.25 -
0.6 — pruned_top_err 0 4 A
1 150 300 1 150 300 1 150 300 1 150300 000
Epoch Epoch Epoch Epoch Epoch
rml.0 Om—=
i 1 Y 0.6
08 08 25 075 £
= — err o =
% —— pruned_bot_err °>J‘ 0.6 E 50 0.50 g 0.4
b ——— pruned_top_err ° % %-
" \-.m:: 04 875 025 - 0.2
4 [a 3
1 150 300 1 150 300 150 300 1 150 300 0.00 1 150 300 0.0
Epoch Epoch Epoch Epoch Epoch
3 o L P — 0.75
~ 1
0.8 i S 25 0.75 =
Eo—en 2 s = g 0.50
5 e G 2 08 50 050 5
> T —OP 1 4
06 \ | 275 025 3 0.25
a 3
0 0.6
1 150 300 150 300 150 300 1 150 300 0.00 1 150 300 0.00
Epoch Epoch Epoch Epoch Epoch
ﬁ » Ogm 1 0.75
08 2 & 25 0-75 =
et —_—err - : o 0.50
w —— pruned_bot_err > v © 0.50 o
g 0.6 —— pruned_top_err n 1 E S 50 q>)\
' 875 0.25 B 0.25
o 4 e >
1 150 300 150 300 1 150 300 1 150300 29 1 150 300 %0
Epoch Epoch Epoch Epoch Epoch
(a) Val. Err (b) SVs (c) Eff. Rank (d) Alignment (e) Alignment Score

Figure 20: Varying initialization scale affects the dynamics of an MLP trained on CIFAR10. From top
to bottom we use default PyTorch initialization multiplied by the constants {0.001,0.01,0.05,0.1,0.5,1.0}.
Notably, alignment occurs slightly more strongly with smaller initialization, as predicted by

for deep linear models.

Under review as submission to TMLR

0.9 1.00 0
i < 0.6 _
£ 0.8 — e . £ 25 g
E —— pruned_bot_err q>", E 50 0.4 GLJ
g 0.7 — pruned_top_err R I ‘%,
875 02 3
0.6 o
: 0.0
1 25 50 1 25 50 1 25 50
Epoch Epoch Epoch Epoch
‘ ~
_08 % 25 0.75 _%
5 — err o = o
— = pruned_bot_err q>)‘ g 50 0.50 CILJ
g 0.6 —— pruned_top_err 3 o %,
. 37 0.25 4
[a)]
1 23 46 1 23 46 1 23 46 1 23 46 0.00
Epoch Epoch Epoch Epoch
1.0 (==
‘ Y
= — err o =
E —— pruned_bot_err g 0.9 © 50 0.4 S-
© ~—— pruned_top_err © g q>)~.
=>0.6 - o ©
' 08 875 02 2
. o
0 0.0
1 25 50 1 25 50 1 25 50 1 25 50 1 25
Epoch Epoch Epoch Epoch Epoch
(a) Val. Err (b) SVs (c) Eff. Rank (d) Alignment (e) Alignment Score

Figure 21: The effect of varying learning rate on an MLP trained on CIFAR10. From top to bottom we use
learning rates {0.001,0.01,0.1}. Notably, alignment increases with larger learning rate, agreeing with the
deep linear setting in|Ghosh et al.| (2025)).

1.0 = train/err 12.5 Lo 0
val/err 0.8
08 10.0 o8 % '
C
0.6 . S 40 0.6
e > 7.5 o 06 w©
n % g
0.4 5.0 - & 60 0.4
04 3
0.2 2.5 80 0.2
0.0l [0.0 0.2
1 20000 40000 1 20000 40000 20000 40000 20000 40000 0.0
Epoch Epoch Epoch Epoch
(a) Error (b) SV Evolution (c) Effective Rank (d) Alignment

Figure 22: Plots for a single seed of grokking modular addition with Transformers (Figure. We see a stark
transition to low-rank when validation error decreases.

0 50 . 50 : : 50
Rank j Rank j j Rank j

50 ’ 50
Rank j Rank j

(a) Init (b) Epoch 0.2 (c) Epoch 0.4 (d) Epoch 1 (e) Epoch 20 (f) Epoch 40 (g) Epoch 50

Figure 23: Alignment matrix (Eqn. |3)) over time. We see that the vast majority of signal is concentrated in
the diagonal, justifying why we consider the diagonal in the rest of the work.

37

Under review as submission to TMLR

1.0
1
0.8 [
- — err -
E —— pruned_bot_err G>J. 0.9
g 0.6 —— pruned_top_err ©
W 4 0.8
1 23 46 1 23 46
Epoch Epoch
1.00
1
0.8
T06 ©
> —err =
—— pruned_bot_err 0.90
0.4 | — pruned_top_err 5
1 23 46 1 23 46 1 23 46
Epoch Epoch
1 1.0
0.75
= — err . ¥ 0.8
E 0.5(7 pruned_bot_err G>J,
g = pruned_top_err 3 0.6
0.25 \
14 0.4
1 82 164 82 164 1 82 164
Epoch Epoch Epoch
(a) Val. Err (b) SVs (c) Eff. Rank

U
< 0.75
G 25
250 0.50
(o]
875 0.25
a
1 23 46 000
Epoch
0
= 0.6
©25
© 0.4
§ 50
Ko 0.2
875 0.0
1 23 46
Epoch
0
v
525 0.15
E 50 0.10
o
875 0.05
a
1 82 164 000
Epoch
(d) Alignment

Layer pair

Layer pair

1 23 46
Epoch
1
= 0.4
©
o
2 0.2
3
13
1 82 164 0.0
Epoch

(e) Alignment Score

Figure 24: Different architectures all trained on CIFAR10. From top to bottom, MLP, LeNet-5 and VGG-16.
We see roughly consistent spectral dynamics across architectures within the same task.

38

	Introduction
	Related Work
	Singular Value Dynamics
	Low-Rank Properties

	Grokking and Rank Minimization
	Spectral Dynamics Across Tasks
	Methodology
	Effective Rank Minimization
	Alignment of Singular Vectors Between Layers

	The Effect of Weight Decay
	Additional Connections
	Discussion
	Spectral Dynamics with Random Labels
	Beyond Generalization
	Top Singular Vectors Become Stable Earlier
	Lottery Tickets Preserve Final Top Singular Vectors
	Spectral Dynamics and Linear Mode Connectivity
	Linear Mode Connectivity Correlates with Top Singular Vector Agreement
	Perturbing Breaks Linear Mode Connectivity and Singular Vector Agreement Simultaneously

	Explanation of Balancedness
	Experimental Details
	Image Classification with VGG
	Image Generation with UNets
	Speech Recognition with LSTMs
	Language Modeling with Transformers
	Spectral Dynamics with Scale (Pythia)
	Weight Decay Experiments
	Grokking Experiments
	Random Label Experiments
	Magnitude Pruning Experiments
	LMC Experiments
	Perturbed LMC Experiments

	Limitations
	Additional Experiments
	Effect of initialization scale
	Effect of learning rate
	Individual seed plots for grokking
	Full alignment matrix evolution
	Image classification

	Compute Resources
	Code Sources

