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Abstract

Large Language Models (LLMs) enable a new form of digital experimentation
where treatments combine human and model-generated content in increasingly
sophisticated ways. The main methodological challenge in this setting is repre-
senting these high-dimensional treatments without losing their semantic meaning
or rendering analysis intractable. Here we address this problem by focusing on
learning low-dimensional representations that capture the underlying structure
of such treatments. These representations enable downstream applications such
as guiding generative models to produce meaningful treatment variants and fa-
cilitating adaptive assignment in online experiments. We propose double kernel
representation learning, which models the causal effect through the inner product
of kernel-based representations of treatments and user covariates. We develop
an alternating-minimization algorithm that learns these representations efficiently
from data and provide convergence guarantees under a low-rank factor model.
As an application of this framework, we introduce an adaptive design strategy
for online experimentation and demonstrate the method’s effectiveness through
numerical experiments.

1 Introduction

Randomized experiments are a cornerstone of measuring the efficacy of content (e.g., messaging,
imagery) in modern industry (e.g., Sun et al., 2021; Grimmer and Woolley, 2014; Leung et al., 2017)
and social science (e.g., Gerber et al., 2018; Green et al., 2023; Salovey and Williams-Piehota, 2004)
contexts. Historically, generating the content itself has been the core challenge. The advent of Large
Language Models (LLMs) and other generative models involving text, images, and videos (Gołąb-
Andrzejak, 2023; Baek, 2023; Kumar and Kapoor, 2024) in recent years has dramatically decreased
this design burden. By integrating human creativity with model-generated content, generative models
are transforming digital experimentation and streamlining treatment generation.

The ability to generate many content variants for experiments, however, has come with new statistical
challenges, especially since the corresponding experiment populations have largely stayed fixed. As
a result, practitioners often face the choice of either running underpowered experiments or leaving
many treatment variations unexamined. In this paper, we explore an alternative: to improve statistical
efficiency by explicitly incorporating semantic similarity from treatment embeddings (numeric
representations of the treatments). This raises two key technical challenges: (i) Effectively leveraging
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semantic information for better estimation and experimental designs, and (ii) Developing a framework
that appropriately captures the relationship between generated variants and user attributes. Dealing
with these challenges can facilitate many downstream applications, such as guiding generative models
to generate treatments and assisting adaptive treatment assignment in online experiments.

In this work, we propose a kernel-based representation learning approach that addresses these
challenges. Our framework integrates both treatment embeddings and user covariate information to
estimate the causal effects of LLM-generated variants. Specifically, our core contributions are:

1. A double-kernel representation learning framework in which the treatment effect is the inner
product of low-dimensional representations of treatment embeddings and user covariates.

2. A computationally efficient alternating minimization-style algorithm to learn these unknown
representations. This naturally extends to an adaptive algorithm that assigns treatments to
users in an online manner.

3. Theoretical guarantees, including convergence rates for treatment effect estimation and a
sublinear regret bounds of an algorithm for the adaptive experimentation setting.

2 Related Work and Background

Our work builds on several key threads.

Causal inference with structured treatments. There is an extensive literature on causal inference
with text; see Feder et al. (2022) for a comprehensive survey. Prior work has largely focused on
the challenging problem of learning latent treatments from images or text (Fong and Grimmer,
2023; Egami et al., 2022). We sidestep several of these issues by taking the generated texts as fixed
treatments and only focusing on using semantic information to improve efficiency. Many recent
works have started exploring textual causal inference with LLMs, such as Imai and Nakamura (2024);
Tierney et al. (2025). However, they are not touching the problem of personalized treatment effect
estimation and adaptive experimentation.

High-dimensional and continuous treatments. Our work builds most directly on recent results on
heterogeneous treatment effects with high-dimensional and continuous treatments. Kaddour et al.
(2021) extended the R-learner approach of Nie and Wager (2021) to a setting with unstructured
treatments. Liu et al. (2024) studied continuous treatment effect estimation by modeling dependences
among treatment and responses using covariate embeddings from generative models. Singh et al.
(2024) proposed estimators based on kernel ridge regression for nonparametric causal functions such
as dose, heterogeneous, and incremental response curves.

More generally, there has been substantial recent work on experimentation with high-dimensional
or continuous treatments, especially in the structured bandit problems, such as linear bandits (Rus-
mevichientong and Tsitsiklis, 2010; Hao et al., 2020; Oh et al., 2021; Komiyama and Imaizumi,
2024), generalized linear bandits (Filippi et al., 2010; Li et al., 2017), low-rank bandits (Lu et al.,
2021; Jun et al., 2019), among others.

Matrix completion for causal inference. There is a substantial literature on decomposing a function
(e.g., treatment effect) based on matrix factorization, such as Abernethy et al. (2006); Fithian and
Mazumder (2013); Mao et al. (2019); Zhou et al. (2012); Athey et al. (2021). Most relevant for our
work, Jin et al. (2022) propose low-rank matrix completion when covariate information is available.
Importantly, Jin et al. (2022) only have covariate information available for the treatment-user pair,
which differs from our setting in which we have both treatment embeddings and user attributes
available.

Kernel methods. We build on the expansive causal inference literature that leveraging kernel methods:
kernel-based methods that incorporate treatment embeddings for experimental design and analysis
offer several benefits. First, kernel-based methods allow for flexible response surface modeling,
f ∈ HK, going beyond simpler parametric formulations such as linear models (Rusmevichientong and
Tsitsiklis, 2010; Lu et al., 2010). Second, kernel-based methods provide adaptive design frameworks
through tools including kernel bandits (Srinivas et al., 2009; Valko et al., 2013) and Bayes optimization
(Frazier, 2018; Martinez-Cantin, 2014; Ignatiadis and Wager, 2019; Dimmery et al., 2019). Third,
kernel-based methods have well-established statistical guarantees, including prediction/estimation
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error analysis (Mendelson and Neeman, 2010; Wainwright, 2019) and regret analysis (Srinivas et al.,
2009; Frazier, 2018; Chowdhury and Gopalan, 2017; Valko et al., 2013; Vakili et al., 2023).

3 Problem description

3.1 Setup

Notation. We first introduce notation. Throughout, for an integer k, [k] denotes the set {1, . . . , k}.
For a matrix Γ, ∥Γ∥F is the Frobenius norm, ∥Γ∥∗ is the nuclear norm, and ∥Γ∥∞ is the element-wise
infinity norm. ρmin(Γ) and ρmax(Γ) denote the smallest and largest singular values, respectively.

Causal inference problem. Evaluating many content variants generated by LLMs creates chal-
lenges for classical A/B testing. We formalize these challenges under a causal inference framework.
For a user with covariate x ∈ X , we posit the following structural model for the potential outcome
under the treatment z ∈ Z:

y(z) = f(z, x) + ϵ, z ∈ Z, x ∈ X . (1)

Here f is an unknown smooth function, and ϵ is mean-zero random noise. Z and X can be either
finite or continuous spaces, representing the treatment and user covariate space, respectively. The
structural model (1) implicitly encodes SUTVA: (i) no interference between units, meaning one units’
treatments or outcomes do not affect another unit’s potential outcomes; and (ii) no hidden version of
treatments, meaning the realized outcome is the potential outcome at the assigned treatment.

For the estimation problem, we are interested in comparing a new treatment z with a control variant
z0, for a user with covariates x. The conditional average treatment effect is then defined as:

τ(z, x) = f(z, x)− f(z0, x).

When z is binary, i.e., z ∈ {z0, z1}, τ(z, x) is the standard conditional average treatment effect.

Learning τ(z, x) efficiently from data is crucial for both estimation and experimentation. For
traditional A/B testing, the treatment space Z involves a finite number of variants, which can be fully
explored by assigning each element in Z to a sufficient number of users. However, treating variants
as separate discrete elements in LLM-powered experiments leads to two issues: (i) experiments
are hugely underpowered since it is difficult to fully explore the treatment space Z due to the large
number of variants; (ii) the experiments ignore the semantic information in the variants, which
encodes similarity between arms and could deliver important information about the outcome function.
The two questions motivate the idea of leveraging treatment embeddings to explore the similarity
between treatment arms and pool information across variants to improve statistical efficiency. We
will now describe each of these problems in turn.

3.2 Warmup: learning with treatment embeddings

To illustrate the use of embeddings, we begin with a simple setup in which the outcome function is
homogeneous among users, i.e., f(z, x) = f(z) is only a function of the treatments, not the user
covariates; we relax this below. In a typical A/B testing framework, z is a discrete set, which makes
estimation difficult when there are a large number of treatments. Existing approaches to improve
efficiency using shrinkage (Dimmery et al., 2019; Ignatiadis and Wager, 2019) help alleviate this but
still face fundamental limits because of the discrete treatment space. However, in our setting, each
generated hypothesis (or treatment) is typically associated with an embedding that encodes important
information. In the generative setting, we can easily obtain such an embedding by, e.g., using the last
layer of a deep neural network that generated the treatment. By representing the treatment space Z
as an embedding space, with each treatment lying in Rp (possibly with large p), instead of a space
of unrelated discrete elements, we avoid some of the difficulties associated with high cardinality
treatments by implicitly pooling observations across treatments that are close in embedding space.

While conceptually straightforward, the continuous parameterization raises several estimation chal-
lenges. We tackle those using kernel methods, which is easily adapted to measuring similarity
between treatments over the embedding space Z . In particular, we apply kernel ridge regression
(based on a kernel K) to obtain an estimator f̂ for the outcome response curve. Given sample (zi, yi),
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we fit the following penalized regression:

f̂ = argmin
f∈HK

1

2n

n∑
i=1

(yi − f(zi))
2 + λn∥f∥HK .

We then predict the estimated outcome response given a specific treatment z ∈ Z as f̂(z). See
Appendix A for additional details.

3.3 Warmup: Incorporating covariates

Building on this simple case, we can then extend the idea of incorporating treatment embeddings into a
general setup that also includes user covariates. In an idealized setting, we would estimate the kernels
with access to all n × n (expected) potential outcomes {f(zk, xi)}k,i∈[n], For example, a natural
approach for this structure is the multi-task Gaussian process framework introduced by Bonilla et al.
(2007), which defines Kg and Kh as kernel functions that depict the similarity between treatments
and individual covariates. In practice, however, the fundamental problem of causal inference makes
directly estimating f(z, x) challenging because most values of this function are missing. In the next
section, we propose a kernel-based approach that makes progress despite these hurdles.

4 Learning with treatment embeddings and individual covariates

We now present our main approach, which we call Double Kernel Representation Learning for
treatment effect estimation. In section 4.1, we introduce a factorization that captures the estimation
problem as an inner product of representations involving treatment embeddings and user attributes. We
describe an alternating minimization style algorithm that recovers these representations. In Section 4.2,
we provide convergence guarantees of our estimator constructed from these representations under a
fixed basis.

4.1 Double-kernel representation learning

4.1.1 Setup and problem formulation

For binary treatment, Nie and Wager (2021) considered the following reformulated outcome model:

y = f(z0, x) + 1{z = z1} · τ(x). (2)

Define the outcome model m(x) = E {y | x} and propensity score e(x) = E {1{z = z1} | x}. Nie
and Wager (2021) introduced the Robinson Decomposition (Robinson, 1988) and further transformed
(2) into the following partial linear model:

y = m(x) + (1{z = z1} − e(x)) · τ(x).

Kaddour et al. (2021) extended this approach to the setting where z is a high-dimensional or
continuous treatment by directly assuming f(z, x) in (1) can be factorized as follows:

f(z, x) = g(z)⊤h(x),

where g : Rp → Rr and h : Rq → Rr are mappings in the real vector space.

Here, we take a slightly different perspective: instead of factorizing f(z, x), we factorize the treatment
effect τ(z, x), similar to Nie and Wager (2021). We posit the following partial linear model for f :

f(z, x)− f(z0, x) = g(z)⊤h(x),

which yields:

y = f(z0, x) + g(z)⊤h(x) + ϵ. (3)

The above factorization states that the CATE function has a low-dimensional representation despite
the high-dimensional covariate and treatment inputs. Such a structure is common in the literature
(see Section 2) and has become foundational for estimation and optimization. Following Wainwright
(2019); Rohde and Tsybakov (2011), we can further relax this to be approximately low-dimensional,
allowing a sparse set of large signals along with many small signals.

4



We can further condition on the user-level covariates by reparametrizing the model (3) and taking the
conditional expectation with respect to x. Formally, assume the positivity assumption:

P {z | x} > 0, for all z ∈ Z, x ∈ X .

Let g(x) = E {g(z) | x}⊤. Then,

m(x) = f(z0, x) + g(x)⊤h(x). (4)

Taking the difference between (3) and (4) yields:

y = m(x) + (g(z)− g(x))⊤h(x) + ϵ. (5)

In the special case where randomization to treatment z is independent of x, g(x) = g is a constant
function; we start with this case and still denote g(z)−g as g(z). In addition, we can directly use the
residuals y −m(x) for estimation by plugging in an estimated outcome model m(x). For simplicity,
we therefore take y to be the residualized outcome here without loss of generality.

4.1.2 Estimation and main result

Building on the above, a natural idea is to solve for g and h via the following double kernel regression:

(ĝ, ĥ) = arg min
{gl,hl}r

l=1

1

2n

n∑
i=1

{
yi −

r∑
l=1

gl(zi)hl(xi)

}2

+ λn

r∑
l=1

(∥gl∥2Kg
+ ∥hl∥2Kh

). (6)

We then prove the following representer theorem (see Appendix A and D.1):
Theorem 4.1 (Representer theorem). The optimal solutions g⋆ and h⋆ to the optimization problem 6
lie in HS

Kg
and HS

Kh
respectively.

The representer theorem immediately suggests that the solutions to ĝ and ĥ have the following form:

ĝ(z) =
∑
i∈[n]

U R
iKg(z, zi), ĥ(x) =

∑
i∈[n]

V R
iKh(x, xi), (7)

where the vectors U R
i ,V

R
i ∈ Rr. For convenience, we capture them using the following matrices:

U = [U R
1, . . . ,U

R
n]

⊤ ∈ Rn×r and V = [V R
1, . . . ,V

R
n]

⊤ ∈ Rn×r, each row representing a feature
representation for a unit. Alternatively, we can write U and V in terms of their columns: U =
[U C

1, . . . ,U
C
r ] and V = [V C

1, . . . ,V
C
r ]. With (7), we have a double RKHS model for f :

f(x, t) =
∑
i∈[n]

∑
j∈[n]

〈
U R

i , V
R
j

〉
Kg(z, zi)Kh(x, xi) = Kg(z, z1:n)ΘKh(x,x1:n)

⊤,

where Θ = UV ⊤ ∈ Rn×n is a low-rank matrix. We therefore propose the following double RKHS
regression:

(Û , V̂ ) = argmin
U,V

1

2n

n∑
k=1

{yk −Kg(zk,z1:n)UV ⊤Kh(xk,x1:n)
⊤}2 + λn

∑
l∈[r]

(U C
l
⊤KgU

C
l + V C

l
⊤KhV

C
l ).

(8)

Computationally, (8) can be solved by alternatively minimizing over U and V . Concretely, suppose

we have (Û
(t)
, V̂

(t)
) from the t-th iteration. In the (t + 1)-th round, we update the parameters as

follows:

Û
(t+1)

=argmin
U

1

2n

n∑
k=1

{yk −Kg(zk,z1:n)UV (t)⊤Kh(xk,x1:n)
⊤}2 + λn

∑
l∈[r]

U C
l
⊤KgU

C
l , (9)

V̂
(t+1)

=argmin
V

1

2n

n∑
k=1

{yk −Kg(zk,z1:n)U
(t+1)V ⊤Kh(xk,x1:n)

⊤}2 + λn

∑
l∈[r]

V C
l
⊤KhV

C
l . (10)

Both (9) and (10) have closed-form solutions when viewed as weighted ridge regression. Moreover,
the alternating minimization process guarantees a descending (thus convergent) loss function:

L(Û
(t)
, V̂

(t)
) ≥ L(Û

(t+1)
, V̂

(t)
) ≥ L(Û

(t+1)
, V̂

(t+1)
).
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Algorithm 1 Double Kernel Learning via Alternating Projection
Input: data (xi, zi, yi), kernel Kg,Kh, rank r, penalty level λn, maximal iteration T , accuracy tol
Initialize U (0) and V (0) as random matrices with gaussian elements.
for t = 0 to T do

Update U (t) → U (t+1) by solving (9);
Update V (t) → V (t+1) by solving (10);
if ∥U (t) −U (t+1)∥F /∥U (t)∥F < tol and ∥V (t) − V (t+1)∥F /∥V (t)∥F < tol then

Break
end if

end for
Output: U (t), V (t)

We summarize the procedure in Algorithm 11, along with some discussions.

Complexity of Algorithm 1. Algorithm 1 involves a loop that alternates between solving (9) and (10),
thus the computational complexity depends on the solver for (9) and (10). In our implementation,
we solve (9) and (10) by updating the columns of U and V recursively via ridge regression with a
general quadratic form penalty. To run these ridge regressions, we can compute the inverse of the
kernel matrices before the loop. With these holdout inverse matrices, we only need O(N2) to solve
each round of the generalized ridge regression. Therefore, in total, the time complexity is

O( N3︸︷︷︸
Compute inversion of kernel matrices

) + O( T︸︷︷︸
num of loops

· r︸︷︷︸
Rounds of ridge regressions

· N2︸︷︷︸
compute ridge updates

).

Scalability to large-scale datasets. To make the algorithm adaptive to large-scale datasets (especially
with large N ), we can leverage standard techniques to speed up kernel computation. For example,
using the Nyström method (Williams and Seeger, 2000) and its variations can reduce the inversion
complexity to linear in N .

Convergence of the algorithm. The optimization performance of alternative minimization is well
studied. Since we are more concerned with the statistical properties (see Theorem 4.2) and exper-
imentation performance (see Theorem 5.1) of the proposed method, we refer interested readers to
optimization-based discussions in Jain et al. (2013); Chi et al. (2019).

Comparison with a deep-learning based framework. Deep-learning offers an alternative framework
for learning CATE from (3) (Kaddour et al., 2021). That approach focuses primarily on prediction,
often resulting in difficult-to-interpret representations for the learned treatment and covariates. The
corresponding theoretical results are also quite different: as we show in Section 4.2 below, we provide
rigorous theoretical guarantees for the estimation accuracy of reconstructing feature representations.
By contrast, theoretical results for deep learning-based approaches mainly focus on proving bounds
on excess risk as a metric to measure prediction accuracy, but do not provide results on how
well the representations themselves are constructed. Finally, deep learning based approaches are
computationally expensive relative to the low computational cost of kernel-based methods.

Connection with classical approaches. The proposed double kernel learning method has a deep
connection with two classical approaches: (i) kernelized probability matrix factorization, which was
introduced by Zhou et al. (2012) and serves as the Gaussian process counterpart of our method; and
(ii) low-rank matrix factorization, which explores low-rank signals without a kernel structure and has
been discussed extensively in the literature (Recht et al., 2010; Chi et al., 2019). We explore these
connections in more depth in Section B of the Appendix.

4.2 Theoretical analysis for fixed bases

For our theoretical analysis, we follow Kaddour et al. (2021) and consider a fixed basis setting.
Suppose there are d1 treatment bases Z = {zk}, which is a set of p-dimensional vectors, and d2 user
bases X = {xk}, which is a set of q dimensional vectors. Z and X summarize the information of the
treatment to be tested and the pool of candidate users, respectively. Stack the bases into two matrices:

Z = [z1, . . . , zd1 ] ∈ Rp×d1 , X = [x1, . . . , xd2 ] ∈ Rq×d2 .

1There are other methods in the literature that may be used for solving the program, such as (stochastic)
gradient descent (Zhou et al., 2012) and Quasi-Newton methods (Abernethy et al., 2006).
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Let (ez, ex) be a pair of independent uniform samples in the product set Z ×X . The observation i is
associated with one covariate xi = Xex,i and one treatment zi = Zez,i. Based on our discussion
in Section 4.1, under the decomposition model (5), there exists a low rank matrix Θ⋆, such that the
observed outcome is

yi = m(xi) + z⊤i Θ⋆xi + ϵi = m(xi) + e⊤z,iZ
⊤Θ⋆Xex,i + ϵi.

Define the new matrix
Γ⋆ = Z⊤Θ⋆X ∈ Rd1×d2 , (11)

whose rank is at most r if rank(Θ⋆) ≤ r. We prove the following theorem:
Theorem 4.2. Assume that the noise ϵi’s are i.i.d. and sub-exponential, and the true signal matrix Γ⋆

has rank at most r and entries bounded by α⋆. With probability greater than 1− c′1 exp(−c′2d log d)
with d = d1 + d2, the estimator Γ̂ satisfies

1

d1d2
∥Γ̂− Γ⋆∥2F ≤ Cλ2nr, where λn ≍ max

{
1√
n
∥m̂(x)−m(x)∥2,

√
d log d

n

}
.

Theorem 4.2 suggests that Γ̂ is consistent in large samples as long as λ2nr → 0. When the rank r
is fixed, consistency then only requires a vanishing penalization level λn. We can then consider
each element of λn in turn. The left term captures the error in the outcome regression function,
m(x). For this term to vanish, we need a consistent estimator m̂(x) of m(x) in the sense that
(1/

√
n)∥m̂(x)−m(x)∥2 → 0. This is guaranteed by many statistical/machine learning methods m̂

under the assumption that m(x) belongs to an appropriate function class. For example, if m̂(x) is fit
with LASSO, the loss vanishes at a rate of

√
s log p/n where p is the dimension of the features and s

is the sparsity level (Bickel et al., 2008). If m̂(x) is fit via RKHS regression with a Gaussian kernel,
the rate is

√
log n/n (Wainwright, 2019; Ma et al., 2023). The right term,

√
d log d/n, captures

the cost of low-rank matrix recovery. For this term to vanish, n ≫ dr log d, where dr captures
the intrinsic dimension of a low-rank matrix (Candes and Plan, 2011). This rate has been verified
to be minimax-optimal for matrix completion tasks (Rohde and Tsybakov, 2011; Negahban and
Wainwright, 2012; Klopp, 2014). Finally, following Wainwright (2019); Rohde and Tsybakov (2011),
we note that it is possible to relax this setup to be approximately low-rank, in the sense that the true
signal can admit a set of large signals along with many small signals. We relegate a comprehensive
analysis under the approximate low-rank regime to Appendix D.

5 Online Experimentation: An Adaptive Strategy

In this section, we provide an adaptive algorithm for assigning treatments to individuals as they
become available in an online manner. We use Theorem 4.2 to justify the performance of an explore-
then-commit strategy. Consider a bandit with T rounds, which we divide into two stages. In the first
stage, we use Te rounds to explore the best arm for each user by drawing some samples and learning
the outcome response matrix Γ. In the second stage, we keep pulling from the learned best arm for
each selected user. Algorithm 2 summarizes this approach.

We prove that the explore-then-commit algorithm will lead to a sublinear regret. To see this, we
establish the following theorem:
Theorem 5.1. Assume the conditions in Theorem 4.2. Also, assume that m(x) lies in the RKHS
generated by a Gaussian kernel. The explore-then-commit algorithm has the following sublinear
regret bound with probability greater than 1− c′1 exp(−c′2d log d): Regret ≤ CT 2/3d log d1/3r1/3,
where d = d1 + d2.

We can see that the simple Explore-then-Commit strategy suffices to guarantee a regret with rate
O(T 2/3), which is sublinear. We anticipate that we can use ideas from the literature on low-rank
bandits, such as Jun et al. (2019) and Lu et al. (2021), to sharpen this regret bound in terms of the
horizon T , though this is outside the scope of the current paper.

6 Experimental Evaluation

In this section, we conduct semi-synthetic experiments based on three open-source datasets. (i) The
Upworthy Research Archive (Matias et al., 2021) is an open dataset of thousands of A/B tests of
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Algorithm 2 Explore-then-commit
Input: Exploration rounds Te and exploitation rounds Tc, total rounds T , treatment bases Z , covariates X
# Data collection for exploration:
for t = 1 to Te do

Randomly sample ez,t with replacement and obtain a treatment zt = e⊤z,tZ;
Randomly sample a ex,t with replacement and obtain a target user with covariate xt = e⊤x,tX;
Assign the user to treatment zt and observe outcome response yt;

end for
# Learn outcome responses:
Learn conditional mean m̂(x) with machine learning algorithms;
Learn a outcome response matrix Γ̂ by solving (6);
# Commit to the best personalized treatment:
for t = Te + 1 to T do

Randomly sample ex,t with replacement from X ;
Assign the user to treatment zt which maximizes the estimated outcome response vector Γ̂ex,t;
Collect outcome response yt;

end for
Output: outcome response matrix Γ̂, data (zt, xt, yt).

headlines conducted by Upworthy from January 2013 to April 2015. We use the Exploratory Dataset
in The Upworthy Research Archive, which contains headlines and metrics (clicks, impressions,
click-through rates, or CTR) from thousands of experiments. (ii) The MIND dataset (Wu et al.,
2020) is a benchmark dataset containing traffic from Microsoft for click rate prediction and news
recommendation. (iii) The ASOS E-Commerce Dataset2 is an open-source A/B testing dataset from
ASOS in the fashion industry. Due to space constraints, we present a subset of results regarding
the Upworthy experiment and MIND dataset, and relegate the remaining results to Section E in the
Appendix. The code for the algorithm and replication of the numerical experiments can be found
here: https://github.com/LeiShi-rocks/DKRL-LLM.

6.1 The Upworthy experiment

Upworthy experimental setup. We choose |Z| = 50 headlines as candidate treatments in a
hypothetical experiment. We use the sentence transformer MiniLM (Wang et al., 2020) to encode
the sampled headlines into sentence embeddings of dimension p = 384. Since user-level covariates
x are not available in the Upworthy Dataset, we simulate n = 500 Gaussian vectors of dimension
q = 200 as baseline covariates. The outcome of interest is the potential revenue that each user can
contribute. When a user with covariate x views the headline z, we model the average (centered)
potential revenue generated by this particular user as f(z, x) = z⊤Θ⋆x+ ϵ, where Θ⋆ ∈ Rp×q is a
matrix with varying ranks and ϵ is additive noise.

Evaluation of the estimation error. We use Monte Carlo simulations to evaluate the train and test
error of the proposed method, double kernel representation learning (DKRL), and compare with two
baseline methods: (i) Structured Intervention Network (SIN) by Kaddour et al. (2021), a deep-learning
based framework based on a generalized Robinson decomposition; and (ii) RKHS regression with a
product kernel Kg ⊙Kh (ProdKernel). We split the synthetic dataset into a training set and test set,
fit different methods on the training data, and evaluate the fitted results on the test dataset; we repeat
this procedure across multiple ranks.

From Table 1, we can see that in these cases, DKRL achieves the best training and testing error.
Neural network-based approaches are likely inferior here because they may not learn the low-rank
representation; moreover, it is quite challenging to construct the relevant propensity functions for
high-dimensional treatments (although this can be avoided in experimental settings). The low
computational cost (measured on a Macbook Pro with a M2 Max chip) of kernel-based methods also
enables more rapid iteration for large-scale A/B testing.

2The data is available at https://huggingface.co/datasets/TrainingDataPro/
asos-e-commerce-dataset
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Table 1: Upworthy Metrics by Rank and Method (Mean (Std), rounded to four decimals)

Rank Method Train Error Test Error Time (sec)

2
SIN 0.0105 (0.0006) 0.0104 (0.0017) 8.4686 (0.6584)
DKRL 0.0019 (0.0004) 0.0036 (0.0010) 0.1907 (0.0339)
ProdKernel 0.0043 (0.0002) 0.0080 (0.0013) 0.0014 (0.0002)

3
SIN 0.0113 (0.0006) 0.0113 (0.0016) 7.8103 (0.7073)
DKRL 0.0022 (0.0002) 0.0048 (0.0013) 0.5062 (0.1448)
ProdKernel 0.0048 (0.0002) 0.0090 (0.0013) 0.0014 (0.0002)

5
SIN 0.0143 (0.0006) 0.0144 (0.0018) 8.5115 (0.5318)
DKRL 0.0025 (0.0001) 0.0078 (0.0012) 1.6933 (0.3752)
ProdKernel 0.0062 (0.0002) 0.0115 (0.0014) 0.0015 (0.0003)

7
SIN 0.0171 (0.0007) 0.0172 (0.0021) 7.8928 (0.3724)
DKRL 0.0025 (0.0001) 0.0108 (0.0015) 3.6143 (0.5942)
ProdKernel 0.0072 (0.0002) 0.0136 (0.0017) 0.0015 (0.0005)

Dimension reduction and interpretation. Double kernel representation learning also enables low-
dimensional summaries of high-dimensional features. Figure 1(a) presents the kernel representation
for the treatment learned from the data. It shows that the components have a semantic interpretation
(based on an evaluation by GPT 4o). More concretely, the first learned feature captures the scale
of sharp contrasts with narrative surprises; the second captures the extent of a conflict-driven tone.
Hence, we can view the values as semantic scores that can directly drive the average reward of the
headlines and improve overall interpretability. In Table 2 of the Appendix, we show several example
headlines with extreme semantic scores, showcasing how the features capture semantic meaning.

(a) (b)

Figure 1: Results on the Upworthy experiment. Panel (a) shows kernel representation of treatments
in the semi-synthetic Upworthy Dataset. Panel (b) shows the cumulative regret in the evaluation of
the bandit algorithm. The shaded area is the 15%-85% quantile range of the regret over simulations.

Evaluation of the bandit algorithm. We also evaluate the Explore-then-commit algorithm for
online experimentation (Algorithm 2). We add explore-then-commit with only treatment representa-
tions as an additional baseline online experimentation method for comparison. Figure 1(b) presents
the cumulative regret of Algorithm 2. As demonstrated by the theoretical results in Theorem 5.1,
Algorithm 2 produces a sublinear regret in the long run; ignoring user-level covariates leads to failed
exploration and thus linear regret. This highlights the importance of incorporating treatment-user
interactions into both the outcome modeling and adaptive design strategy.
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6.2 MIND dataset

Finally, we present results on the MIND dataset, an observational dataset with news recommended to
users with unknown probabilities. We consider a semi-synthetic setup: suppose our goal is to train
this recommendation system from scratch by adaptively collecting recommendation-click data to
improve recommendation quality. We take x to be user features such as news category preference
and historical news click embeddings, and z to be the embeddings for a set of candidate news to be
recommended to users. All embeddings are taken from the knowledge graph embeddings that were
originally included in the dataset. We consider a synthetic outcome model for the click-through rate:
y = z⊤Θ⋆x+ ϵ, where Θ⋆ is a matrix that encodes the interaction mechanism between users and
treatments; we can interpret this as a match between user preferences and news information. We
consider Θ⋆ = UΛV ⊤, with Λi = Diag {i−q}, and vary q to ensure that the interaction model
varies from low rank (high eigenvalue decay rates) to high rank (low eigenvalue decay rates) setting.
We compare our method with four baselines: LASSO, XG-boost, a feed-forward neural network, and
a kernel regression. We finally combine the methods with different estimation strategies: “Z” only
incorporates treatment information, “X” only includes covariate information, and “ZX” includes a
concatenated (Z,X) vector.

Table 3 in the Appendix shows test RMSE. Overall, the performance of all methods is better with
low-rank signals (larger q) than high-rank signals. However, DKRL exploits this low-rank structure
most effectively, with the strongest performance. Even with a high-rank interaction matrix (e.g., a
full-rank matrix), DKRL effectively exploits the similarity structure in the embeddings, improving
accuracy and achieving comparable performance to XG Boost with combined features.

7 Conclusion

Summary. As content creation at scale becomes more readily available, developing new causal
inference methods becomes increasingly important. In this work, we explore the design and analysis
of GenAI-powered digital experimentation. We propose to use GenAI for efficient and novel treatment
generation and to learn the corresponding heterogeneous treatment effect function using a double-
kernel representation learning framework. We then propose an adaptive data collection algorithm
for online experimentation. Finally, we provide theoretical guarantees and multiple numerical
demonstrations.

Limitations and future directions. Several limitations remain. First, it is important to consider more
complex experimentation settings that are important in practice, such as delayed responses (Shi et al.,
2023, 2024b) or interference between participants (Li and Wager, 2022). Second, we established
theoretical guarantees for the double-kernel representation learning framework in a fixed-basis setting.
It would be interesting to generalize this theory to infinite-dimensional bases. Third, GenAI-powered
experimentation raises key questions on issues like privacy and fairness, which are important to
address independent of this current research. Fourth, it is natural to use other methods such as
language model finetuning (Hu et al., 2022) or contrast learning (Zha et al., 2023) to learn improved
embeddings and to generally improve the pipeline.
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A Kernel Methods

Kernel-based methods have been widely used in related practices such as representation learning
(Esser et al., 2024), dimension reduction (Schölkopf et al., 1997), natural language processing
Joachims (1998), among others. We do a brief overview of RKHS methods. Consider a positive
definite kernel K : Z × Z → R supported on a compact d-dimensional set Z ⊂ Rd. A Hilbert space
HK of functions on Z equipped with an inner product ⟨· , ·⟩HK

is called a reproducing kernel Hilbert
space (RKHS) with reproducing kernel K if the following properties are satisfied:

1. for all z ∈ Z , K(·, z) ∈ HK;

2. for all z ∈ Z and f ∈ HK, ⟨f , K(·, z)⟩HK
= f(z) (reproducing property).

A natural idea for estimation and policy learning is to incorporate embedding information with RKHS
methods. Given sample (ti, yi), we can fit the following penalized nonlinear least squares:

f̂ = argmin
f∈HK

1

2n

n∑
i=1

(yi − f(zi))
2 + λn∥f∥HK .

Then we can predict the estimated outcome response given a specific treatment z ∈ Z as f̂(z). By
the representer theorem, this leads to a program based on the data:

α̂ = argmin
α∈Rn

1

2n

n∑
i=1

{yi −
n∑

i=1

αjK(zi, zj)}2 + λnα
⊤Kα,

which gives the interpolator

f̂(z) =

n∑
i=1

α̂jK(z, zj).

Another viewpoint of the RKHS-based method is that we can put a distribution on the functions and
fit a Gaussian process model (Williams and Rasmussen, 2006):

y ∼ N (0, σ2), f ∼ GP(0,K). (12)

Then the interpolator is equivalent to a posterior prediction from (12).

In particular, if the kernel K is a linear inner product of finite dimensional features ϕ(z), the above
program is also equivalent to ridge regression:

f̂(z) = ϕ(z)⊤β̂,

where

β̂ =
1

2n

n∑
i=1

{yi − ϕ(zi)
⊤β}2 + λn∥β∥22.

Such connection has been pointed out by previous literature, e.g. Valko et al. (2013).

This is also equivalent to a Bayesian linear model:

y ∼ N (ϕ(z)⊤β, σ2I), where β ∼ N (0, σ2
0I).

B Connection with classical approaches

For intuition we now draw connections between the proposed method to two classical approaches:
kernelized probability matrix factorization, which is introduced by Zhou et al. (2012) and serves as
the Gaussian process counterpart of our method, and low-rank matrix factorization algorithms.
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Connection with kernelized probability matrix factorization. The proposed method is closely
related to kernelized probability matrix factorization (Zhou et al., 2012). To see this, we revisit the
program (8) but instead of using the parametrization U and V consider the following transformation:

R = KgU ∈ Rn×r, S = KhV ∈ Rn×r.

Here, R and S are the intrinsic representations of the treatment and covariate-level information,
respectively. Then (8) can be written as

(R̂, Ŝ) = argmin
R,S

1

2n

n∑
k=1

(
yk −RR

k
⊤
SR

k

)2

+ λn

r∑
l=1

(
RC

l
⊤K−1

g RC
l + SC

l
⊤K−1

h SC
l

)
.

We can instead follow the kernelized probabilistic factorization in Zhou et al. (2012). Under the
following data-generating process:

RC
l ∼ GP(0,Kg), SC

l ∼ GP(0,Kh), l ∈ [r],

and

yk ∼ N (RR
k
⊤
SR

k, σ
2),

Zhou et al. (2012) showed that the log-posterior over the latent features R and S is given by

log p(R,S | y, σ2) =− 1

2σ2

n∑
k=1

(yk −RR
k
⊤
SR

k)
2 − 1

2

r∑
l=1

(
RC

l
⊤K−1

g RC
l + SC

l
⊤K−1

h SC
l

)
− n log σ2 − r

2
{log(|Kg|) + log(|Kh|)}+ C, (13)

where C is some universal constant that does not depend on R and S. Maximizing the log-posterior
(13) is equivalent to minimizing

L(R,S) =
1

2σ2

n∑
k=1

(yk −RR
k
⊤
SR

k)
2 +

1

2

r∑
l=1

(
RC

l
⊤K−1

g RC
l + SC

l
⊤K−1

h SC
l

)
,

which is equivalent to (8).

Connection with low-rank matrix learning with finite-dimensional features. Consider the kernel
given by the inner product of some feature mapping ϕ ∈ Rp:

Kg(z, z
′) = ϕ(z)⊤ϕ(z′),

with feature matrix Φ = [ϕ(z1), . . . , ϕ(zn)]
⊤ ∈ Rn×p. Then the kernel matrix has the expression:

Kg = ΦΦ⊤.

We prove the following reformulation results:
Proposition B.1. Suppose the feature matrix Φ has full (column or row) rank. Then

(Û
⋆
, V̂

⋆
) = argmin

U ,V

1

2n

n∑
k=1

{yk − ϕ(zk)
⊤U⋆V ⋆⊤ψ(xk)}2 + λn(∥U⋆∥2F + ∥V ⋆∥2F ). (14)

Now following Proposition B.1, we have the following equivalent formulation based on nuclear-norm
penalization:
Proposition B.2. The program (14) is equivalent to the following low-rank learning program:

Θ̂ = argmin
Θ

1

2n

n∑
k=1

{yk − ϕ(zk)
⊤Θψ(xk)}2 + 2λn∥Θ∥∗. (15)

This equivalence connects the matrix factorization approach with nuclear norm penalization for
low-rank matrix estimation. The key insight is due to the variational expression of the nuclear norm
(Recht et al., 2010):

∥Θ∥∗ = min
U⋆,V ⋆:Θ=U⋆V ⋆⊤

1

2
(∥U∥2F + ∥V ∥2F ).
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C Additional results

C.1 Bounds on Θ

The rate in Theorem 4.2 also implies a rate for Θ when the number of tested variants and candidate
users is large in the sense that d1 > p and d2 > q. To see this, we can express Θ⋆ with Γ⋆, as defined
in (11):

Θ⋆ = (ZZ⊤)−1ZΓ⋆X⊤(XX⊤)−1.

This motivates an estimator:

Θ̂ = (ZZ⊤)−1ZΓ̂X⊤(XX⊤)−1. (16)

Then we have the following bound:

∥Θ̂−Θ⋆∥2F ≤ρmax{(ZZ⊤)−1}ρmax{(XX⊤)−1}∥Γ̂− Γ⋆∥2F
≤ρmin{(ZZ⊤/d1)}−1ρmin{(XX⊤/d2)}−1 · λ2nr.

Therefore, as long as the minimal eigenvalue of ZZ⊤ and XX⊤ are not degenerate, the estimator
(16) is also consistent.

D Technical proofs

D.1 Proof of Theorem 4.1

Proof of Theorem 4.1. The RKHS space Hg and Hh has the following decomposition:

Hg = HS
g ⊕H⊥

g , Hh = HS
h ⊕H⊥

h ,

where HS
g and HS

h are the orthogonal projection into the sample-generated function subspace. For
any g and h, we have the decomposition

g = gS + g⊥, h = hS + h⊥.

Then for any i, g(zi) = gS(zi) + g⊥(zi) = gS(zi), h(xi) = hS(xi) + h⊥(xi) = hS(xi).
Meanwhile, due to the projection, we have a reduction in the RKHS norm:

∥gSl ∥2Kg
≤ ∥gl∥2Kg

, ∥hSl ∥2Kh
≤ ∥hl∥2Kh

.

Therefore, by replacing g with gS and also h with hS , the objective function never increases. Hence,
the optimal solution must lie in HS

Kg
and HS

Kh
.

D.2 Proof of Proposition B.1

Proof of Proposition B.1. Case 1. When n ≥ p and the feature matrix Φ ∈ Rn×p has full column
rank, we can conclude that the mapping U 7→ Φ⊤U is a surjective mapping from Rn×r to Rp×r.
Therefore, (8) is equivalent to solving the feature-based optimization program:

(Û
⋆
, V̂

⋆
) = min

U ,V

1

2n

n∑
k=1

{yk − ϕ(zk)
⊤U⋆V ⋆⊤ψ(xk)}2 + λn(∥U⋆∥2F + ∥V ⋆∥2F ).

Case 2. When n < p and the feature matrix Φ ∈ Rn×p has full row rank, we start from the program
(14). For any U⋆, there exists U , such that

ΦΦ⊤U = ΦU⋆,

as one can take U = (ΦΦ⊤)−1ΦU⋆. Therefore, we can always reparametrize (14) as (8).
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D.3 Proof of Proposition B.2

Proof of Proposition B.2. The nuclear norm ∥Θ∥∗ of a matrix has the following variational represen-
tation:

∥Θ∥∗ = min
UV ⊤=Θ

1

2
(∥U∥2F + ∥V ∥2F ).

Using this result, we can deduce the equivalence between the program (14) and (15):

min
Θ

p
1

2n

n∑
k=1

{yk − ϕ(zk)
⊤Θψ(xk)}2 + 2λn∥Θ∥∗

=min
Θ

1

2n

n∑
k=1

{yk − ϕ(zk)
⊤Θψ(xk)}2 + 2λn

{
min

U⋆,V ⋆:U⋆V ⋆⊤=Θ

1

2
(∥U⋆∥2F + ∥V ⋆∥2F )

}

=min
Θ

min
U⋆,V ⋆:U⋆V ⋆⊤=Θ

1

2n

n∑
k=1

{yk − ϕ(zk)
⊤U⋆V ⋆⊤ψ(xk)}2 + λn(∥U⋆∥2F + ∥V ⋆∥2F )

= min
U⋆,V ⋆

1

2n

n∑
k=1

{yk − ϕ(zk)
⊤U⋆V ⋆⊤ψ(xk)}2 + λn(∥U⋆∥2F + ∥V ⋆∥2F ).

D.4 Statement and proof of a more general version of Theorem 4.2

In this section, we prove a more general version of Theorem 4.2, which extends the results to an
approximate low-rank setting. More concretely, let ρk(Γ) be the k-th largest singular value of matrix
Γ. We define the following notion of ℓq-ball in the matrix space:

Definition D.1 (ℓq ball). The ℓq ball with radius Rq is defined as the following set:

Bq(Rq) =

Γ ∈ Rd1×d2 :

min{d1,d2}∑
k=1

ρk(Γ)
q ≤ Rq

 , for q ∈ [0, 1).

When q = 0, this definition becomes the exact low-rank condition. When q > 0, the definition
allows the existence of many small positive singular values, decaying at a proper rate (Negahban and
Wainwright, 2012; Rohde and Tsybakov, 2011; Shi et al., 2024a; Shi and Zou, 2020; Cui et al., 2023).

Theorem D.2. Assume that the noise ϵi’s are i.i.d. and sub-exponential, and the true signal
matrix Γ⋆ belongs to the ℓq ball Bq(Rq) and entry bounded by a. With probability greater than
1− c′1 exp(−c′2d log d), the estimator Γ̂ satisfies

1

d1d2
∥Γ̂− Γ⋆∥2F ≤ CRqλ

2−q
n , where λn ≍ max

{
1√
n
∥m̂(x)−m(x)∥2,

√
d log d

n

}
.

Proof of Theorem 4.2. For the convenience of analysis, we introduce the sampling operator S :
Rd1×d2 → Rn×1:

S(Γ) = (e⊤z,1Γex,1, . . . , e
⊤
z,nΓex,n)

⊤.

S is a linear operator. The adjoint operator, S⋆ : Rn×1 → Rd1×d2 , is defined as

S⋆(ϵ) =

n∑
i=1

ϵiex,ie
⊤
z,i.

The operator satisfies

⟨S(Γ) , ϵ⟩ = ⟨Γ , S⋆(ϵ)⟩ .
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Step 1. Deriving a basic inequality. By the minimization program, for the estimated Γ̂, we have

1

2n
∥y − m̂(x)−S(Γ̂)∥22 + λn∥Γ̂∥∗ ≤ 1

2n
∥y − m̂(x)−S(Γ⋆)∥22 + λn∥Γ⋆∥∗.

This gives

1

2n
∥S(Γ̂− Γ⋆)∥22

≤ 1

n

〈
ϵ̂ , S(Γ̂− Γ⋆)

〉
+ λn∥Γ⋆∥∗ − λn∥Γ̂∥∗

=
1

n

〈
m̂(x)−m(x) , S(Γ̂− Γ⋆)

〉
+

1

n

〈
S⋆(ϵ) , Γ̂− Γ⋆

〉
+ λn∥Γ⋆∥∗ − λn∥Γ̂∥∗

≤ 1

n
∥m̂(x)−m(x)∥2∥S(Γ̂− Γ⋆)∥2 +

1

n
∥S⋆(ϵ)∥op∥Γ̂− Γ⋆∥∗ + λn∥Γ⋆∥∗ − λn∥Γ̂∥∗. (17)

Step 2. A cone inequality for the difference. Now we consider the projection of the difference
Γ̂− Γ⋆ onto a subspace that will lead to a decomposition into a low-rank part and a remainder that is
relatively small in scale.

Let the singular value decomposition (SVD) of Γ⋆ be Γ⋆ = UΛV ⊤, where U ∈ Rd1×d1 and
V ∈ Rd2×d2 are orthonormal matrices and Λ is the singular value matrix with descending diagonals.
For any matrix ∆ ∈ Rd1×d2 , if we write

U⊤∆V =

(
Ω11 Ω12

Ω21 Ω22

)
,

with Ω11 ∈ Rr×r and Ω22 ∈ R(d1−r)×(d2−r). We can define a projection

Π(∆) =

(
Ω11 Ω12

Ω21 0(d1−r)×(d2−r)

)
, Π⊥(∆) =

(
0r×r 0r×(d2−r)

0(d1−r)×r Ω22

)
.

With this decomposition, we always have rank(Π(∆)) ≤ 2r. Now we choose an effective rank by
trimming the matrix using a threshold, τ , and we will discuss how to pick τ later.

Since Γ⋆ ∈ Bq(Rq), we have

rτ q ≤
r∑

k=1

ρk(∆)q ≤
m∑

k=1

ρk(∆)q ≤ Rq, r ≤ Rqτ
−q. (18)

Meanwhile, we also have

∥Π⊥(∆)∥∗ =

m∑
k=r+1

ρk(∆) ≤ τ

m∑
k=r+1

(ρk(∆)

τ

)q ≤ Rqτ
1−q. (19)

Using the triangle inequality, we have

∥Γ̂∥∗ = ∥Γ⋆ + Γ̂− Γ⋆∥∗
= ∥Γ⋆ +Π(Γ̂− Γ⋆) + Π⊥(Γ̂− Γ⋆)∥∗
≥ ∥Π(Γ⋆) + Π⊥(Γ̂− Γ⋆)∥∗ − ∥Π(Γ̂− Γ⋆)∥∗ − ∥Π⊥(Γ⋆)∥∗
= ∥Π(Γ⋆)∥∗ + ∥Π⊥(Γ̂− Γ⋆)∥∗ − ∥Π(Γ̂− Γ⋆)∥∗ − ∥Π⊥(Γ⋆)∥∗,

which further gives

∥Γ⋆∥∗ − ∥Γ̂∥∗ ≤ ∥Π(Γ̂− Γ⋆)∥∗ − ∥Π⊥(Γ̂− Γ⋆)∥∗ + 2∥Π⊥(Γ⋆)∥∗.

By choosing λn that satisfies

λn ≥ max

{
1√
n
∥m̂(x)−m(x)∥2,

2

n
∥S⋆(ϵ)∥op

}
,
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together with (17), we have

1

2n
∥S(Γ̂− Γ⋆)∥22 +

λn
2
∥Π⊥(Γ̂− Γ⋆)∥∗

≤ λn√
n
∥S(Γ̂− Γ⋆)∥2 +

3λn
2

∥Π(Γ̂− Γ⋆)∥∗ + 2λn∥Π⊥(Γ⋆)∥∗. (20)

For the term 2n−1∥S⋆(ϵ)∥op, Negahban and Wainwright (2012) established the following bound in
the proof of their Corollary 1:

P
{
2n−1∥S⋆(ϵ)∥op ≥ c1ν

√
d log d/n

}
≤ c2 exp(−c3d log d).

Step 3. A final bound. We will prove the following result:

Consider two cases.

Case 1. Suppose we have

1

4n
∥S(Γ̂− Γ⋆)∥22 ≥ ∥Γ̂− Γ⋆∥2F .

Now using

∥Π(Γ̂− Γ⋆)∥∗ ≤
√
2r∥Γ̂− Γ⋆∥F

and
λn√
n
∥S(Γ̂− Γ⋆)∥2 ≤ λ2n +

1

4n
∥S(Γ̂− Γ⋆)∥22, (Young’s Inequality)

with (20), we have

∥Γ̂− Γ⋆∥2F ≤ 1

4n
∥S(Γ̂− Γ⋆)∥22 ≤ λ2n +

9λ2nr

4
+

1

2
∥Γ̂− Γ⋆∥2F + 2λn∥Π⊥(Γ⋆)∥∗.

Using (18) and (19), the above gives

∥Γ̂− Γ⋆∥2F ≤ 26λ2nRqτ
−q

4
+ 4λnRqτ

1−q.

To minimize the bound above, the best τ to pick is τ = 26q(1− q)−1λn/16, which leads to

∥Γ̂− Γ⋆∥2F ≤ CRqλ
2−q
n .

Case 2. Suppose Case 1 fails so that we have

1

4n
∥S(Γ̂− Γ⋆)∥22 ≤ ∥Γ̂− Γ⋆∥2F .

(20) gives

λn
2
∥Π⊥(Γ̂− Γ⋆)∥∗ ≤ 2λn∥Γ̂− Γ⋆∥F +

3λn
2

∥Π(Γ̂− Γ⋆)∥∗ + 2λn∥Π⊥(Γ⋆)∥∗,

and from this, we can derive

∥Γ̂− Γ⋆∥∗ ≤ 8
√
2r∥Γ̂− Γ⋆∥F + 4∥Π⊥(Γ⋆)∥∗.

Case 2.1. Suppose

∥Γ̂− Γ⋆∥2F ≤ c0(
√
d1d2∥Γ̂− Γ⋆∥∞)∥Γ̂− Γ⋆∥∗

√
d log d

n
.

Note that λn ≥ C
√
d log d/n by definition. The equality might not directly hold due to the fitting

error for m(x). It is of great interest to see whether such equality can be attained with methods such
as the cross-fitting technique to avoid double-dipping and reduce bias (Chernozhukov et al., 2018; Lu
et al., 2025).
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Now Using that√
d1d2∥Γ̂− Γ⋆∥∞ ≤ 2a, ∥Γ̂− Γ⋆∥∗ ≤ 8

√
2r∥Γ̂− Γ⋆∥F + 4∥Π⊥(Γ⋆)∥∗,

and the choice of τ = Cqλn in Case 1, we obtain the inequality

∥Γ̂− Γ⋆∥2F ≤ CR1/2
q λ1−q/2

n ∥Γ̂− Γ⋆∥F + CRqλ
2−q
n .

Applying Young’s inequality again, we obtain

∥Γ̂− Γ⋆∥2F ≤ CRqλ
2−q
n .

Case 2.2. Suppose we have that

384d√
n

· ∥Γ̂− Γ⋆∥∞
∥Γ̂− Γ⋆∥F

>
1

2
,

then ∥Γ̂− Γ⋆∥F ≤ 1536a/
√
n and we obtain the desired rate directly.

Case 2.3. Suppose we are under neither Case 2.1 and Case 2.2. Then the following inequality holds
with probability at least 1− c′1 exp(−c′2d log d) by our proof in Step 4:

1√
n
∥S(Γ̂− Γ⋆)∥2 ≥ 1

8
∥Γ̂− Γ⋆∥F − 48d∥Γ̂− Γ⋆∥∞√

n
≥ 1

16
∥Γ̂− Γ⋆∥F .

Now using (20), we obtain that

1

512
∥Γ̂− Γ⋆∥2F ≤2λn∥Γ̂− Γ⋆∥F +

3λn
2

∥Π(Γ̂− Γ⋆)∥∗ + 2λn∥Π⊥(Γ⋆)∥∗

≤3
√
2rλn∥Γ̂− Γ⋆∥F + 2λn∥Π⊥(Γ⋆)∥∗.

Combining the choice of τ in Case 1, (18) and (19), with Young’s inequality, we have

∥Γ̂− Γ⋆∥2F ≤ CRqλ
2−q
n .

Step 4. Justify the RSC condition. It remains now to justify the RSC condition. We prove the
following result holds with high probability:

1√
n
∥S(∆)∥2 ≥ 1

8
∥∆∥F − 48d∥∆∥∞√

n

for all ∆ ∈ Rd1×d2 in the set

C =

{
∆ ∈ Rd1×d2 | ∥∆∥2F ≥ c0(

√
d1d2∥∆∥∞)∥∆∥∗

√
d log d

n

}
.

Define the following bad event:

B =

{
∃∆ ∈ C |

∣∣∣∣ 1√
n
∥S(∆)∥2 − ∥∆∥F

∣∣∣∣ > 7

8
∥∆∥F +

48Ld∥∆∥∞√
n

}
.

Now we peel the set C with different radius:

C(D) = {∆ ∈ C | ∥∆∥∞ = d−1, ∥∆∥F ≤ D, ∥∆∥∗ ≤ D2/(c0
√
d log d/n)}

and the peeled event

B(D) =

{
∃∆ ∈ C(D) |

∣∣∣∣ 1√
n
∥S(Γ)∥2 − ∥∆∥F

∣∣∣∣ ≥ 3

4
D +

48L√
n

}
.

By a discretization argument, Lemma 4 and Lemma 5 in Negahban and Wainwright (2012) proved
the following bound: with probability at least 1− 4 exp(−cnD2), it holds that

sup
∆∈B(D)

∣∣∣∣ 1√
n
∥S(∆)∥2 − ∥∆∥F

∣∣∣∣ ≤ 3

4
D +

48L√
n
.
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Now observing that for any ∆ ∈ C with ∥∆∥∞ = d−1, we have that

∥∆∥2F ≥ c0(
√
d1d2∥∆∥∞)∥∆∥∗

√
d log d

n
≥ c0∥∆∥∗

√
d log d

n
≥ c0∥∆∥F

√
d log d

n
.

This then leads to

∥∆∥F ≥ c0

√
d log d

n
.

Therefore, we only need to focus on C′ where

C′ = {∆ ∈ C | ∥∆∥ = d−1, ∥∆∥F ≥ c0
√
d log d/n}.

By setting α = 7/6 and v = c0
√
d log d/n, we can peel C′ into the following layers:

C′
l = {∆ ∈ C | ∥∆∥∞ = d−1, αl−1v ≤ ∥∆∥F ≤ αlv, ∥∆∥∗ ≤ (αlv)2/(c0

√
d log d/n)}.

If the bad event B holds for some matrix ∆, then ∆ must belong to some set C′
l , which satisfies∣∣∣∣ 1√

n
∥S(∆)∥2 − ∥∆∥F

∣∣∣∣ > 7

8
αl−1v +

48L√
n

=
3

4
αlv +

48L√
n
.

Thus, B(αlv) must hold. Applying a union bound, we must have

P {B} ≤
∞∑
l=1

P
{
B(αlv)

}
≤ c1

∞∑
l=1

exp(−c2nα2lv2)

≤c1
∞∑
l=1

exp(−2c2n log(α)ld log d)

=
c1 exp(−c′2d log d)
1− exp(−c′2d log d)

≲c′1 exp(−c′2d log d).

D.5 Proof of Theorem 5.1

Proof of Theorem 5.1. In the first stage, the regret is bounded by

Regrete =
Te∑
t=1

e⊤z⋆,tΓ
⋆ex,t − e⊤ẑ,tΓ

⋆ex,t ≤ 2Te · ∥Γ⋆∥∞.

In the second stage, the regret is

Regretc =
T∑

t=Te+1

e⋆⊤z,tΓ
⋆e⋆x,t − ê⊤z,tΓ

⋆e⋆x,t

=

T∑
t=Te+1

(e⋆z,t − êz,t)
⊤(Γ⋆ − Γ̂)e⋆x,t + (e⋆z,t − êz,t)

⊤Γ̂e⋆x,t

≤
T∑

t=Te+1

(e⋆z,t − êz,t)
⊤(Γ⋆ − Γ̂)e⋆x,t

≤2Tc · ∥Γ⋆ − Γ̂∥∞
≤2Tc · ∥Γ⋆ − Γ̂∥F

≤2Tc

(
d1d2 log(d1 + d2)rd

Te

)1/2

.
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Therefore, the total regret across the two stages is

Regret =Regrete + Regretc

≤2Te · ∥Γ⋆∥∞ + 2(T − Te) · ∥Γ⋆∥∞ ·
(
d1d2 log(d1 + d2)rd

Te

)1/2

.

Now setting Te = T a for some a ∈ (0, 1). The above upper bound is minimized at

a ≍ 1

3
logT {CT 2d1d2 log(d1 + d2)rd},

which leads to a final regret bound

Regret ≤ CT 2/3d log d1/3r1/3.

E Additional simulation results

E.1 Comparison of several kernel-based estimation strategies

Based on the setup of the Upworthy experiment, we also conduct a Monte Carlo simulation to
evaluate the training and testing error of the proposed method. For the first experiment, we evaluate
the training and testing error of the proposed method and compare it with several baseline methods.
To do this, we split the synthetic dataset into a training set and a testing set, fit the training data with
different methods, and evaluate the fitted results on the testing dataset. The four baseline methods
we evaluate are: (i) double kernel representation learning (DKRL); (ii) RKHS regression with only
treatments (Treatment Only); (iii) RKHS regression with only covariates (Covariate Only); (iv)
RKHS regression with both treatments and covariates using a product kernel Kg ⊙ Kh (Product
Kernel). In our simulation, we vary across multiple levels of regularization parameters and compute
the mean squared training and testing error. The results are summarized in Figure 2.

Figure 2: Training and testing error for different methods

E.2 Interpretability of DKRL results

To further elaborate on the interpretability of the learned feature, we show several example headlines
with high or low semantic scores in Table 2, which are good demonstrations on how the features
capture the semantic meanings.

On the X row representing "sharp contrasts with narrative surprises", high-scored examples carry
stronger “contrast + surprise” hooks. Each headline pairs a familiar setup with a jarring twist—Hank
Green sparring with a “corporate suit” over a supposedly dull yet vital topic, a Black cop repeatedly
stop-and-frisked, and cute animals foreshadowing a darker reveal—creating instant narrative surprise.
The low-scored examples, on the contrary, lean more on curiosity or emotional uplift (e.g., “A Lot Of
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You Will Want To Know About It Anyway”, “hese Pics Of A Baby Bird’s Rescue Are So Moving”)
and less on jarring juxtapositions. They intrigue, but they don’t rely as heavily on opposites twists.

On the Y row representing "conflict-driven tone", high-scored examples signal confrontation, outrage,
or direct criticism, with words like “Deport THIS GUY”, “attacks”, “smackdown”, “bad-ass”, “tears
into the awful folks”. Besides, the examples pit one party against another (Hank Green vs. Corporate
Suit, pink gang vs. predators, Fox Anchor vs. colleagues). The low-scored examples lean toward
curiosity, wonder, and mild social critique. It uses softer hooks (“made me the happiest”, “reason to
think twice”) and lacks the adversarial or combative language that characterizes the high-scored ones.

Table 2: Interpretability of the learned representations from DKRL in the Upworthy experiment.
Feature X (X-axis in Figure 1(a)) represents whether there are "sharp contrasts with narrative
surprises", and feature Y (Y-axis in Figure 1(a)) represents whether the sentence is in a "conflict-
driven tone".

Feature Example headlines with high scores Example headlines with low scores

X

- “Hank Green Goes Up Against A
Corporate Suit To Debate An Unsexy
Issue That Is Really A Big Deal”;

- “He’s Black. He’s a Cop. He’s Also
Been Stopped and Frisked 30 Times.”;

- “Floppy Ears, Soulful Eyes, Adorable
Babies. And They Have Something Else
People Can’t Stop Taking.”

- “Anyone Able To Read This Won’t
Benefit From It, But A Lot Of You Will
Want To Know About It Anyway”;

- “She Won A Golden Globe And
Dedicated It To A Teen She Never Met.
Here’s Why It’s A Big Deal.”;

- “These Pics Of A Baby Bird’s Rescue
Are So Moving You Might Get
Emotionally Involved Here”

Y

- “Hey, I Have An Idea: Let’s Deport
THIS GUY, Instead”;

- “This Pink Gang Attacks Sexual
Predators And Rapists That Harm Them.
Tell Me, What Else Can They Do?”;

- “PLOT TWIST: Fox News Anchor Lays
Epic Smackdown On Fox News Anchors
For Obvious And Blatant Misogyny”

- “A Tiny Probe Millions Of Miles Away
Just Made Me The Happiest I’ve Been In
Weeks”;

- “Here’s A List Of Uncool Problems For
Ladies That We Could Fix To Make Life
Easier For Everyone”;

- “A Reason To Think Twice Before
Buying Your Kid All Those LEGOs”

E.3 Sensitivity to hyperparameter tuning

We evaluated the sensitivity of our Algorithm 1 to two tuning parameters, penalty level λ and rank
r, in Algorithm 1. The results are reported in Figure 3. In terms of selection of penalty level, an
appropriate choice of penalty is important to balance the level of regularization and loss minimization.
In practice, we recommend using cross validation to tune this parameter. In terms of rank selection,
we can see that selecting a rank that is smaller than the truth could lead to bias, as this loses important
features. In contrast, there is minimal bias from selecting a slightly larger rank. In practice, we
recommend starting with a larger rank and trimming slightly.

E.4 The MIND dataset experiment

In this subsection, we report the results for the synthetic simulation we conducted for the MIND
dataset in Table 3. As we have commented in the main paper, while most methods benefit from
the low-rank structure, DKRL exploits the low-rank structure more effectively. And even with a
high-rank interaction matrix, DKRL utilizes the similarity structure in the embeddings to enhance
accuracy.

E.5 The ASOS experiment

In the second simulation based on the ASOS experiment, we generated a synthetic study following
the similar DGP to the one used in the main paper, with newly generated embeddings from the
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Figure 3: Hyperparameter sensitivity against penalty level λ and rank r.

Table 3: Testing MSE across methods (rows) and decay levels (columns)

Method q = 0 q = 2 q = 4 q = 6

DKRL 0.007 (0.003) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001)
Lasso_Z 0.034 (0.003) 0.009 (0.002) 0.008 (0.002) 0.008 (0.002)
XGB_Z 0.036 (0.003) 0.007 (0.002) 0.007 (0.002) 0.007 (0.002)
FNN_Z 0.034 (0.003) 0.011 (0.002) 0.011 (0.002) 0.011 (0.002)
Kernel_Z 0.031 (0.003) 0.006 (0.002) 0.006 (0.001) 0.006 (0.002)
Lasso_X 0.055 (0.005) 0.013 (0.004) 0.011 (0.003) 0.011 (0.003)
XGB_X 0.056 (0.006) 0.014 (0.004) 0.011 (0.003) 0.011 (0.003)
FNN_X 0.055 (0.005) 0.014 (0.004) 0.011 (0.003) 0.011 (0.003)
Kernel_X 0.055 (0.005) 0.013 (0.004) 0.011 (0.003) 0.011 (0.003)
Lasso_ZX 0.032 (0.003) 0.009 (0.001) 0.008 (0.002) 0.008 (0.002)
XGB_ZX 0.022 (0.001) 0.004 (0.001) 0.004 (0.001) 0.004 (0.001)
FNN_ZX 0.016 (0.002) 0.010 (0.002) 0.009 (0.002) 0.010 (0.002)
Kernel_ZX 0.035 (0.002) 0.008 (0.002) 0.007 (0.001) 0.007 (0.002)

shopping item information from the ASOS dataset. We then compared the KDRL method with two
other methods: deep-learning based (SIN) method and product-kernel based (ProdKernel) method
in terms of their training/testing error and computation time. The results are reported in Table 4,
from which we consolidate the finding that DKRL performs fairly satisfactorily in terms of both
training/testing errors and computation time.
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Table 4: ASOS Experiment by Rank and Method (Mean (Std), rounded to four decimals)

Rank Method Train Error Test Error Time

2
SIN 0.0094 (0.0004) 0.0095 (0.0011) 7.9361 (0.4858)
DKRL 0.0022 (0.0002) 0.0035 (0.0009) 0.1739 (0.0305)
ProdKernel 0.0036 (0.0001) 0.0062 (0.0010) 0.0013 (0.0002)

3
SIN 0.0085 (0.0004) 0.0085 (0.0011) 8.0929 (0.3153)
DKRL 0.0025 (0.0002) 0.0047 (0.0010) 0.4702 (0.1094)
ProdKernel 0.0044 (0.0002) 0.0075 (0.0012) 0.0014 (0.0003)

5
SIN 0.0119 (0.0014) 0.0120 (0.0014) 7.9983 (0.4951)
DKRL 0.0027 (0.0000) 0.0076 (0.0012) 1.6868 (0.3907)
ProdKernel 0.0057 (0.0000) 0.0100 (0.0014) 0.0014 (0.0004)

10
SIN 0.0175 (0.0007) 0.0175 (0.0018) 8.1151 (0.4709)
DKRL 0.0026 (0.0001) 0.0128 (0.0017) 7.9518 (0.8747)
ProdKernel 0.0083 (0.0003) 0.0147 (0.0017) 0.0017 (0.0004)
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
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