
Under review as a conference paper at ICLR 2021

EVALUATING ROBUSTNESS OF PREDICTIVE UNCER-
TAINTY ESTIMATION: ARE DIRICHLET-BASED MOD-
ELS RELIABLE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Robustness to adversarial perturbations and accurate uncertainty estimation are
crucial for reliable application of deep learning in real world settings. Dirichlet-
based uncertainty (DBU) models are a family of models that predict the parameters
of a Dirichlet distribution (instead of a categorical one) and promise to signal when
not to trust their predictions. Untrustworthy predictions are obtained on unknown
or ambiguous samples and marked with a high uncertainty by the models.
In this work, we show that DBU models with standard training are not robust w.r.t.
three important tasks in the field of uncertainty estimation. First, we evaluate how
useful the uncertainty estimates are to (1) indicate correctly classified samples. Our
results show that while they are a good indicator on unperturbed data, performance
on perturbed data decreases dramatically. (2) We evaluate if uncertainty estimates
are able to detect adversarial examples that try to fool classification. It turns out
that uncertainty estimates are able to detect FGSM attacks but not able to detect
PGD attacks. We further evaluate the reliability of DBU models on the task of
(3) distinguishing between in-distribution (ID) and out-of-distribution (OOD) data.
To this end, we present the first study of certifiable robustness for DBU models.
Furthermore, we propose novel uncertainty attacks that fool models into assigning
high confidence to OOD data and low confidence to ID data, respectively. Both
approaches show that detecting OOD samples and distinguishing between ID-data
and OOD-data is not robust.
Based on our results, we explore the first approaches to make DBU models more
robust. We use adversarial training procedures based on label attacks, uncertainty
attacks, or random noise and demonstrate how they affect robustness of DBU
models on ID data and OOD data.

1 INTRODUCTION

Neural networks achieve high predictive accuracy in many tasks, but they are known to have two
substantial weaknesses: First, neural networks are not robust against adversarial perturbations,
i.e., semantically meaningless input changes that lead to wrong predictions (Szegedy et al., 2014;
Goodfellow et al., 2015). Second, neural networks tend to make over-confident predictions at test time
(Lakshminarayanan et al., 2017). Even worse, standard neural networks are unable to identify samples
that are different from the samples they were trained on. In these cases, they provide uninformed
decisions instead of abstaining. These two weaknesses make them impracticable in sensitive domains
like financial, autonomous driving or medical areas which require trust in predictions.

To increase trust in neural networks, models that provide predictions along with the corresponding
uncertainty have been proposed. There are three main families of models that aim to provide
meaningful estimates of their predictive uncertainty. The first family are Bayesian Neural Networks
(Blundell et al., 2015; Osawa et al., 2019; Maddox et al., 2019), which have the drawback that they
are computationally demanding. The second family consists of Monte-Carlo drop-out based models
(Gal & Ghahramani, 2016) and ensembles (Lakshminarayanan et al., 2017) that estimate uncertainty
by computing statistics such as mean and variance by aggregating forward passes of multiple models.
A disadvantage of all of these models is that uncertainty estimation at inference time is expensive.
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In contrast to these, the recently growing family of Dirichlet-based uncertainty (DBU) models
(Malinin & Gales, 2018a; 2019; Sensoy et al., 2018; Malinin et al., 2019; Charpentier et al., 2020)
directly predict the parameters of a Dirichlet distribution over categorical probability distributions.
They provide efficient uncertainty estimates at test time since they only require a single forward pass.

Figure 1: Visualization of the desired
uncertainty estimates.

DBU models bring the benefit of providing both, aleatoric
and epistemic uncertainty estimates. Aleatoric uncertainty
is irreducible and caused by the natural complexity of the
data, such as class overlap or noise. Epistemic uncertainty
results from the lack of knowledge about unseen data, e.g.
when the model is presented an image of an unknown
object. Both uncertainty types can be quantified using
different uncertainty measures based on a Dirichlet distri-
bution, such as differential entropy, mutual information,
or pseudo-counts (Malinin & Gales, 2018a; Charpentier
et al., 2020). These uncertainty measures have been shown
outstanding performance in, e.g., the detection of OOD
samples and thus are superior to softmax based confidence
(Malinin & Gales, 2019; Charpentier et al., 2020).

Neural networks from the families outlined above are ex-
pected to know what they don’t know, i.e., notice when
they are unsure about a prediction. This raises questions
with regards to adversarial examples: should uncertainty
estimates detect these corrupted samples and abstain from
making a prediction (i.e. indicated by high uncertainty in the prediction), or should they be robust
to adversarial examples and produce the correct output even under perturbations? Using humans
as the gold standard of image classification and assuming that the perturbations are semantically
meaningless, which is typically implied by small Lp norm of the corruption, we argue that the best
option is that the models are robust to adversarial perturbations (see Figure 1). Beyond being robust
w.r.t. label prediction, we expect models to robustly know what they do not know. That is, they
should robustly distinguish between ID and OOD data even if those are perturbed.

In this work, we focus on DBU models and analyze their robustness capacity w.r.t. the classification
decision and uncertainty estimations, going beyond simple softmax output confidence by investigating
advanced measures like differential entropy. Specifically, we study the following questions:

1. Is high certainty a reliable indicator of correct predictions?
2. Can we use uncertainty estimates to detect label attacks on the classification decision?
3. Are uncertainty estimates such as differential entropy a robust feature for OOD detection?

In addressing these questions we place particular focus on adversarial perturbations of the input in
order to evaluate the worst case performance of the models. We address question one by analyzing
uncertainty estimation on correctly and wrongly labeled samples, without and with adversarial
perturbations on the inputs. To answer question two, we study uncertainty estimates of DBU
models on label attacks. More specifically, we analyze whether there is a difference between
uncertainty estimates on perturbed and unperturbed inputs and whether DBU models are capable
of recognizing successful label attacks by uncertainty estimation. Addressing question three, we
use robustness verification based on randomized smoothing and propose to investigate uncertainty
attacks. Uncertainty attacks aim at changing the uncertainty estimate such that ID data is marked
as OOD data and vice versa. Finally, we propose robust training procedures that use label attacks,
uncertainty attacks or random noise and analyze how they affect robustness of DBU models on ID
data and OOD data.

2 RELATED WORK

Recently, multiple works have analyzed uncertainty estimation and robustness of neural networks.
(Snoek et al., 2019) compares uncertainty estimates of models based on drop-out and ensembles
under data set shifts. (Cardelli et al., 2019; Wicker et al., 2020) study probabilistic safety of Bayesian
networks under adversarial perturbations by analyzing inputs sets and the corresponding mappings
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in the output space. In contrast, our work focus on DBU models and analyze their robustness w.r.t.
adversarial perturbations specifically designed to fool label or uncertainty predictions of the models.
Furthermore, previous works on attack defenses have focused on evaluating either robustness w.r.t.
class predictions (Carlini & Wagner, 2017; Weng et al., 2018) or label attack detection (Carlini
& Wagner, 2017). In contrast, our work jointly evaluates both tasks by analyzing them from the
uncertainty perspective. Furthermore, in addition to label attacks, we study a new type of adversarial
perturbations that directly target uncertainty estimation. Those attacks are different from traditional
label attacks (Madry et al., 2018; Dang-Nhu et al., 2020).

Different models have been proposed to account for uncertainty while being robust. (Smith & Gal,
2018) and (Lee et al., 2018) have tried to improve label attack detection based on uncertainty using
drop-out or density estimation. In addition from improving label attack detection for large unseen
perturbations, (Stutz et al., 2020) aimed at improving robustness w.r.t. class label predictions on
small input perturbations. To this end, they proposed a new adversarial training with softer labels for
adversarial samples further from the original input. (Qin et al., 2020) suggested a similar adversarial
training where labels are soften differently depending on the input robustness. These previous works
only consider the aleatoric uncertainty contained in the predicted categorical probabilities, i.e. the
softmax output. They do not consider DBU models which explicitly account for both aleatoric and
epistemic uncertainty. (Malinin & Gales, 2019) proposed to improve a single type of DBU model for
label attack detection by assigning them high uncertainty during training.

Please note that the works (Tagasovska & Lopez-Paz, 2019; Kumar et al., 2020; Bitterwolf et al.,
2020; Meinke & Hein, 2020) study a different orthogonal problem. (Tagasovska & Lopez-Paz, 2019)
propose to compute confidence intervals while (Kumar et al., 2020) propose certificates on softmax
predictions. (Bitterwolf et al., 2020) uses interval bound propagation to compute bounds on softmax
predictions in the L∞-ball around an OOD point and for ReLU networks, (Meinke & Hein, 2020)
proposes an approach to obtain certifiably low confidence for OOD data. These four studies estimate
confidence based on softmax predictions, which accounts for aleatoric uncertainty only. In this paper,
we provide certificates on the OOD classification task using DBU models directly which is better
suited to epistemic uncertainty measures.

3 DIRICHLET-BASED UNCERTAINTY MODELS

Standard (softmax) neural networks predict the parameters of a categorical distribution
p(i) = [p

(i)
1 , . . . , p

(i)
C ] for a given input x(i) ∈ Rd, where C is the number of classes. Given the

parameters of a categorical distribution, we can evaluate its aleatoric uncertainty, which is the uncer-
tainty on the class label prediction y(i) ∈ {1, . . . , C}. For example, when predicting the result of an
unbiased coin flip, we expect the model to have high aleatoric uncertainty and predict p(head) = 0.5.

In contrast to standard (softmax) neural networks, DBU models predict the parameters of a Dirichlet
distribution – the natural prior of categorical distributions – given input x(i) (i.e. q(i) = Dir(α(i))
where fθ(x(i)) = α(i) ∈ RC+). Hence, the epistemic distribution q(i) expresses the epistemic uncer-
tainty on x(i), i.e. the uncertainty on the categorical distribution prediction p(i). From the epistemic
distribution, follows an estimate of the aleatoric distribution of the class label prediction Cat(p̄(i))
where Eq(i) [p

(i)] = p̄(i). An advantage of DBU models is that one pass through the neural network
is sufficient to compute epistemic distribution, aleatoric distribution, and predict the class label:

q(i) = Dir(α(i)), p̄(i)
c =

α
(i)
c

α
(i)
0

with α
(i)
0 =

C∑
c=1

α(i)
c , y(i) = arg max [p̄

(i)
1 , ..., p̄

(i)
C ] (1)

This parametrization allow to compute classic uncertainty measures in closed-form. As an example,
the concentration parameters α(i)

c can be interpreted as a pseudo-count of observed samples of
class c and, thus, are a good indicator of epistemic uncertainty. Note that further measures, such as
differential entropy of the Dirichlet distribution (see Equation 2, where Γ is the Gamma function and
Ψ is the Digamma function) or the mutual information between the label y(i) and the categorical p(i)

can also be computed in closed-form (App. A.2, (Malinin & Gales, 2018a)). Hence, DBU models can
efficiently use these measures to assign high uncertainty for unknown data making them specifically
suited for detection of OOD samples like anomalies.
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mdiffE =

K∑
c

ln Γ(αc)− ln Γ(α0)−
K∑
c

(αc − 1) · (Ψ(αc)−Ψ(α0)) (2)

Several recently proposed models for uncertainty estimations belong to the family of DBU models,
such as PriorNet, EvNet, DDNet and PostNet. These models differ in terms of their parametrization
of the Dirichlet distribution, the training, and density estimation. An overview of theses differences is
provided in Table 1. We evaluate all recent versions of these models in our study.

Table 1: Summary of DBU models. Further details on the loss functions are provided in the appendix.

α(i)-parametrization Loss OOD training data Ensemble training Density estimation

PostNet fθ(x
(i)) = 1 +α(i) Bayesian loss No No Yes

PriorNet fθ(x
(i)) = α(i) Reverse KL Yes No No

DDNet fθ(x
(i)) = α(i) Dir. Likelihood No Yes No

EvNet fθ(x
(i)) = 1 +α(i) Expected MSE No No No

Contrary to the other models, Prior Networks (PriorNet) (Malinin & Gales, 2018a; 2019) requires
OOD data for training to “teach” the neural network the difference between ID and OOD data.
PriorNet is trained with a loss function consisting of two KL-divergence terms. The fist term is
designed to learn Dirichlet parameters for ID, while the second one is used to learn a flat Dirichlet
distribution (α = 1) for OOD data. There a two variants of PriorNet. The first one is trained based on
reverse KL-divergence (Malinin & Gales, 2019), while the second one is trained with KL-divergence
(Malinin & Gales, 2018a). We include in our experiment the most recent reverse version of PriorNet,
as it shows superior performance (Malinin & Gales, 2019).

Evidential Networks (EvNet) (Sensoy et al., 2018) are trained with a loss that computes the sum
of squares between the on-hot encoded true label y∗(i) and the predicted categorical p(i) under the
Dirichlet distribution. Ensemble Distribution Distillation (DDNet) (Malinin et al., 2019) is trained
in two steps. First, an ensemble of M classic neural networks needs to be trained. Then, the soft-
labels {p(i)

m }Mm=1 provided by the ensemble of networks are distilled into a Dirichlet-based network
by fitting them with the maximum likelihood under the Dirichlet distribution. Posterior Network
(PostNet) (Charpentier et al., 2020) performs density estimation for ID data with normalizing flows
and uses a Bayesian loss formulation. Note that EvNet and PostNet model the Dirichlet parameters
as fθ(x(i)) = 1 +α(i) while PriorNet, RevPriorNet and DDNet compute them as fθ(x(i)) = α(i).

4 ROBUSTNESS OF DIRICHLET-BASED UNCERTAINTY MODELS

We analyze robustness of DBU models in the field of uncertainty estimation w.r.t. the following four
aspects: accuracy, confidence calibration, label attack detection and OOD detection. Uncertainty
is quantified by differential entropy, mutual information and pseudo counts. A formal definition
of all uncertainty estimation measures is provided in the appendix. Robustness of Dirichlet-based
uncertainty models is evaluated based on label attacks and a newly proposed type of attacks called
uncertainty attacks. While label attacks aim at changing the predicted class, uncertainty attacks aim at
changing uncertainty assigned to a prediction. All existing works are based on label attacks and focus
on robustness w.r.t. the classification decision. Thus, we are the first to propose attacks targeting
uncertainty estimates such as differential entropy and analyze further desirable robustness properties
of DBU models. Both attack types compute a perturbed input x̃(i) close to the original input x(i) i.e.
||x(i) − x̃(i)||2 < r where r is the attack radius. The perturbed input is obtained by optimizing a loss
function l(x) using Fast Gradient Sign Method (FGSM) or Projected Gradient Descent (PGD). We
use also a black box attack (Noise) which generates 10 Noise samples from a Gaussian distribution
with mean equal to the original sample. The pertrubed sample which fools the most the loss function
is selected as an attack. To complement attacks, we propose the first study of certifiable robustness
for DBU models, which is based on randomized smoothing (Cohen et al., 2019).

The following questions we address by our experiments have a common assessment metric. Distin-
guishing between correctly and wrongly classified samples, between non-attacked input and attacked
inputs or between ID data and OOD data can be treated as binary classification problems. To quantify
the performance of the models on these binary classification problems, we compute AUC-PR.
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Experiments are performed on two image data sets (MNIST (LeCun & Cortes, 2010) and CIFAR10
(Krizhevsky et al., 2009)), which contain bounded inputs and two tabular data sets (Segment (Dua &
Graff, 2017) and Sensorless drive (Dua & Graff, 2017)), consisting of unbounded inputs. Note that
unbounded inputs are challenging since it is impossible to describe the infinitely large OOD distribu-
tion. As PriorNet requires OOD training data, we use two further image data sets (FashionMNIST
(Xiao et al., 2017) and CIFAR100 (Krizhevsky et al., 2009)) for training on MNIST and CIFAR10,
respectively. All other models are trained without OOD data. To obtain OOD data for the tabular data
sets, we remove classes from the ID data set (class window for the Segment data set and class 9 for
Sensorless drive) and use them as the OOD data. See appendix for further details on the setup.

4.1 UNCERTAINTY ESTIMATION UNDER LABEL ATTACKS

Label attacks aim at changing the predicted class. To obtain a perturbed input with a different
label, we maximize the cross-entropy loss x̃(i) ≈ arg maxx l(x) = CE(p(i),y(i)) under the radius
constraint. For the sake of completeness we also analyze label attacks regarding their performance
to change class predictions and report their accuracy to show the effectiveness based on different
radii (see Appendix, Table 7). As expected and partially shown by previous works, none of the DBU
models is robust against label attacks. However, we noted that PriorNet is slightly more robust than
the other models. This might be explained by the use of OOD data during training, which can be
seen as some kind of robust training. From now on, we switch to the core focus of this work and
analyze robustness properties of uncertainty estimation.

Is high certainty a reliable indicator of correct predictions?
Expected behavior: Predictions with high certainty are more likely to be correct than low certainty
predictions. Assessment metric: We distinguish between correctly classified samples (label 0) and
wrongly classified ones (label 1) based on the differential entropy scores produced by the DBU
models (Malinin & Gales, 2018a). Correctly classified samples are expected to have low differential
entropy, reflecting the model’s confidence, and analogously that wrongly predicted samples tend to
have higher differential entropy. Observed behavior: Note that the positive and negative classes are
not balanced, thus, the use of AUC-PR scores (Saito & Rehmsmeier, 2015) are important to enable
meaningful measures. While uncertainty estimates are indeed an indicator of correctly classified
samples on non-perturbed data, none of the models maintains its high performance on perturbed data
(see. Table 2). Thus, using uncertainty estimates as indicator for correctly labeled inputs is not robust
to adversarial perturbations, although the used attacks do not target uncertainty.

Table 2: Certainty based on differential entropy under PGD label attacks (AUC-PR).

CIFAR10 Sensorless

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

PostNet 98.7 88.6 56.2 7.8 1.2 0.4 0.3 99.7 8.3 3.9 3.6 7.0 9.8 11.3
PriorNet 92.9 77.7 60.5 37.6 24.9 11.3 3.0 99.8 10.5 3.2 0.7 0.2 0.2 2.2

DDNet 97.6 91.8 78.3 18.1 0.8 0.0 0.0 99.7 11.9 1.6 0.4 0.2 0.1 0.2
EvNet 97.9 85.9 57.2 10.2 4.0 2.4 0.3 99.9 22.9 13.0 6.0 3.7 3.2 3.1

Can we use uncertainty estimates to detect label attacks on the classification decision?
Expected behavior: Adversarial examples are not from the natural data distribution. Therefore, DBU
models are expected to detect them as OOD data by assigning them a higher uncertainty. We expect
perturbations with larger attack radius r to be easier to detect as they differ more significantly from
the data distribution. Assessment metric: The goal of attack-detection is to distinguish between
unperturbed samples (label 0) and perturbed samples (label 1). To quantify the performance, we use
the differential entropy (Malinin & Gales, 2018a). Non-perturbed samples are expected to have low
differential entropy, reflecting the fact that they are from the distribution the models were trained
on, while perturbed samples are expected to have a high differential entropy. Further results based
on other uncertainty measures are provided in the appendix. Observed behavior: Table 7 shows that
the accuracy of all models decreases significantly under PGD label attacks, but none of the models
is able to provide an equivalently increasing high attack detection rate (see Table 3). Even larger
perturbations are hard to detect for DBU models. Although PGD label attacks do not explicitly
consider uncertainty, they seem to provide adversarial examples with similar uncertainty as the
original input. Such high certainty adversarial examples are illustrated in Figure 2, where certainty
is visualized based on the precision α0 that is supposed to be high for ID data and low for OOD
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data. While the original input (perturbation size 0.0) is correctly classified as frog and ID data, there
exist adversarial examples that are classified as deer or bird. The certainty on the prediction of these
adversarial examples has a similar or even higher value than the prediction on the original input.
Using the differential entropy to distinguish between ID and OOD data results in the same ID/OOD
assignment since the differential entropy of the three right-most adversarial examples is similar or
even smaller than on the unperturbed input.

Figure 2: Input & corr. Dir.-parameters
under label attacks (dotted: threshold to
distinguish ID and OOD).

For the less powerful FGSM and Noise attacks (see
Appendix), DBU models achieve mostly better attack
detection rates than for PGD attacks. This suggests that
uncertainty estimation is able to detect weak attacks,
which is consistent with the observations in (Malinin
& Gales, 2018b). Furthermore, PostNet provides bet-
ter label attack detection rate for large perturbations on
tabular data sets. An explanation for this observation is
that the density estimation of the ID samples has been
shown to work better for tabular data sets (Charpen-
tier et al., 2020). Standard adversarial training (based on
label attacks targeting the crossentropy loss function) im-
proves robustness w.r.t. class predictions (see Appendix,
Table 32), but does not improve label attack detection
performance of any model (see Table 40). Overall, none
of the DBU models provides a reliable indicator for
adversarial inputs that target the classification decision.

Table 3: Label Attack-Detection by normally trained DBU models based on differential entropy under
PGD label attacks (AUC-PR).

CIFAR10 Sensorless

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

PostNet 63.4 66.9 42.1 32.9 31.6 31.2 47.7 42.3 36.9 48.5 85.0 99.0
PriorNet 53.3 56.0 55.6 49.2 42.2 35.4 38.8 33.6 31.4 33.1 40.9 53.5

DDNet 55.8 60.5 57.3 38.7 32.3 31.4 53.5 42.2 35.0 32.8 32.6 33.9
EvNet 48.4 46.9 46.3 46.3 44.5 42.5 48.2 42.6 38.2 36.0 37.2 41.7

4.2 ATTACKING UNCERTAINTY ESTIMATION

DBU models are designed to provide uncertainty esti-
mates (beyond softmax based confidence) alongside predictions and use this predictive uncertainty
for OOD detection. Thus, in this section we focus on attacking these uncertainty estimates. We
present result for attacks based on the differential entropy as loss function (x̃(i) ≈ arg maxx l(x) =
Diff-Ent(Dir(α(i)))), since it is the most widely used metric for ID-OOD-differentiation. Result
based on further uncertainty measures, loss functions and details on the uncertainty attacks are
provided in the appendix. Regarding uncertainty attacks, we analyze model performance w.r.t. two
tasks. First, attacks are computed on ID data to transform them in OOD data, while OOD data is left
non-attacked. Second, we attack OOD data to transform it into ID data, while ID data is not attacked.
Hence, uncertainty attacks aim at posing ID data as OOD data or conversely.

Are uncertainty estimates a robust feature for OOD detection?
Expected behavior: We expect Dirichlet-based uncertainty models to be able to distinguish between
ID and OOD data by providing reliable uncertainty estimates, even under small perturbations. That is,
we expect the uncertainty estimates of DBU models to be robust under attacks. Assessment metric:
We distinguish between ID data (label 0) and OOD data (label 1) based on the differential entropy as
uncertainty scoring function (Malinin & Gales, 2018a). Differential entropy is expected to be small
on ID samples and high on OOD samples. Experiments on further uncertainty measure and results for
AUROC are provided in the appendix. Observed behavior: OOD samples are perturbed as illustrated
in Figure 3. The left part shows an OOD-sample, which is identified as OOD. Adding adversarial
perturbations≥ 0.5 to it changes the Dirichlet parameters such that the resulting images are identified
as ID, based on precision or differential entropy as uncertainty measure. Adding adversarial perturba-
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(a) OOD uncertainty attack (b) ID uncertainty attack

Figure 3: ID and OOD input with corresponding Dirichlet-parameters under uncertainty attacks
(dotted line: threshold to distinguish ID and OOD).

tions to an ID sample (right part) results in images identified as OOD. OOD detection performance of
all DBU models decreases rapidly with the size of the perturbation, regardless of whether attacks are
computed on ID or OOD data (Table 4). Thus, using uncertainty estimation to distinguish between ID
and OOD data is not robust. PostNet and DDNet achieve slightly better performance than the other
models. Further, PostNet provides better scores for large perturbations on tabular data sets which
could again be explained by its density-based approach.

Table 4: OOD detection based on differential entropy under PGD uncertainty attacks against differen-
tial entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

CIFAR10 – SVHN
PostNet 81.8 64.3 47.2 22.4 17.6 16.9 16.4 81.8 60.5 40.7 23.3 21.8 19.8 18.1

PriorNet 54.4 40.1 30.0 17.9 15.6 15.4 15.4 54.4 40.7 30.7 19.5 16.5 15.7 15.4
DDNet 82.8 71.4 59.2 28.9 16.0 15.4 15.4 82.8 72.0 57.2 20.8 15.6 15.4 15.4
EvNet 80.3 62.4 45.4 21.7 17.9 16.5 15.6 80.3 58.2 46.5 34.6 28.0 23.9 21.0

Sens. – Sens. class 10, 11
PostNet 74.5 39.8 36.1 36.0 45.9 46.0 46.0 74.5 43.3 42.0 32.1 35.1 82.6 99.4

PriorNet 32.3 26.6 26.5 26.5 26.6 28.3 38.6 32.3 26.7 26.6 26.6 27.0 30.4 36.8
DDNet 31.7 26.8 26.6 26.5 26.6 27.1 30.5 31.7 27.1 26.7 26.7 26.8 26.9 27.3
EvNet 66.5 30.5 28.2 27.1 28.1 31.8 37.5 66.5 38.7 36.1 30.2 28.2 28.8 32.2

4.3 ROBUST TRAINING FOR DBU MODELS & ID/OOD VERIFICATION

Our robustness analysis based on label attacks and uncertainty attacks shows that neither the predicted
class, nor the uncertainty corresponding to a prediction, nor the differentiation between ID and
OOD-data is robust. Thus, we propose adversarial training procedures to enhance robustness.
During training we augment the data set by samples computed based on (i) PGD attacks against the
crossentropy loss or (ii) against the differential entropy function, which is used to distinguish between
ID and OOD data, or (iii) by adding random noise as proposed for randomized smoothing training.

Since attacks are used during robust training, we want to avoid tying robustness evaluation to gradient
based attacks. Instead, we propose the first approach that certifies robustness of DBU models
based on randomized smoothing (Cohen et al., 2019). Randomized smoothing was proposed to
verify robustness w.r.t. class predictions and we modify it for ID/OOD-verification. As randomized
smoothing treats classifiers as a black-box, we transform distinguishing between ID data (label 0)
and OOD data (label 1) into a binary classification problem based on an uncertainty measure, which
requires to set a threshold for the uncertainty measure to obtain an actual decision boundary. This is
in contrast to our attack-based experiments where we avoided setting thresholds by analyzing area
under the curve metrics. Thresholds for uncertainty measure are set for each model individually based
on the validation set, such that the accuracy w.r.t. to ID/OOD-assignment of the model is maximized.
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In the following we discuss results for ID/OOD-verification based on differential entropy on CIFAR10
(ID data) and SVHN (OOD data). Further results on other data sets, other uncertainty measures
and results on the standard classification based randomized smoothing verification are shown in the
appendix. Table 5 shows the percentage of samples which are correctly identified as ID (resp. OOD)
data and are certifiably robust within this type (cc; certified correct) along with the corresponding
mean certified radius. The higher the portion of cc samples and the larger the radius the more robust
is ID/OOD-distinguishing w.r.t. the corresponding perturbation size σ.1

Table 5: Randomized smoothing verification for different σ of CIFAR10 (ID data) and SVHN (OOD
data). Left part: percentage of samples that is correctly identified and certified as ID data (cc) and
corresponding mean certified radius (R). Right part: same for OOD data.

ID-Verification OOD-Verification

σ 0.1 0.2 0.5 0.1 0.2 0.5

cc R cc R cc R cc R cc R cc R

adv. train. loss: None
PriorNet 83.2 0.26 97.8 0.58 100.0 1.47 3.7 0.10 0.0 0.00 0.0 0.00
PostNet 23.6 0.17 22.2 0.11 0.0 0.00 99.3 0.23 99.2 0.29 100.0 1.37
DDNet 63.7 0.24 88.7 0.50 53.0 0.32 27.9 0.17 8.7 0.16 77.6 0.58
EvNet 53.2 0.15 58.3 0.20 13.1 0.14 54.9 0.11 48.1 0.21 94.3 0.59

adv. train. loss: rand. smooth.
PriorNet 1.5 0.06 0.8 0.05 89.3 0.73 97.5 0.28 99.4 0.34 38.7 0.22
PostNet 63.3 0.26 51.8 0.46 65.3 0.86 93.4 0.26 92.9 0.48 73.2 0.63
DDNet 68.6 0.26 58.0 0.43 80.5 0.90 86.3 0.16 88.1 0.36 45.1 0.33
EvNet 58.9 0.27 56.6 0.45 63.9 0.98 92.9 0.27 74.4 0.46 85.6 0.81

adv. train. loss: crossentropy
PriorNet 99.8 0.38 0.0 0.00 31.1 0.25 0.0 0.00 100.0 0.76 60.7 0.21
PostNet 22.2 0.15 51.2 0.21 0.0 0.00 99.4 0.22 44.9 0.18 100.0 1.44
DDNet 49.0 0.20 33.8 0.25 0.0 0.00 45.4 0.18 61.6 0.39 100.0 1.91
EvNet 29.4 0.12 84.2 0.26 2.4 0.09 96.6 0.16 8.4 0.10 100.0 0.55

adv. train. loss: diffE
PriorNet 1.1 0.04 0.0 0.00 100.0 1.91 99.2 0.31 100.0 0.76 0.0 0.00
PostNet 30.3 0.17 6.1 0.13 0.0 0.00 94.9 0.17 99.8 0.55 100.0 1.17
DDNet 37.1 0.22 4.4 0.23 0.0 0.00 81.5 0.24 100.0 0.65 100.0 1.80
EvNet 38.6 0.31 22.6 0.15 1.0 0.11 77.9 0.32 91.8 0.21 99.8 0.62

For each model, we observe a performance jump between ID- and OOD-verification, where robustness
on ID data drops from high values to low ones while the cc percentage and radius on OOD-data
increase. These jumps are observed for normal training as well as adversarial training based on the
crossentropy or the differential entropy. Thus, either ID-verification or OOD-verification performs
well, depending on the chosen threshold. Augmenting the data set with random noise perturbed
samples (randomized smoothing loss) does not result in such performance jumps (except for PriorNet),
but there is also a trade-off between robustness on ID data versus robustness on OOD data and there
is no parametrization where ID-verification and OOD-verification perform equally well.

Table 6: Randomized smoothing verification for different σ of CIFAR10 (ID data) and SVHN (OOD
data): percentage of samples that is wrongly identified as ID/OOD and certifiably robust as this wrong
type (cw) and corresponding mean certified radius (R). The lower cw, the more robust the model.

σ 0.1 0.2 0.5 0.1 0.2 0.5

cw R cw R cw R cw R cw R cw R

adv. train. loss: None adv. train. loss: rand. smooth.
PriorNet 15.9 0.13 1.9 0.18 0.0 0.00 98.2 0.33 98.6 0.53 8.0 0.22
PostNet 74.9 0.17 73.5 0.21 100.0 1.30 35.7 0.16 46.7 0.34 32.3 0.47
DDNet 35.1 0.14 10.1 0.17 41.6 0.35 29.9 0.11 40.5 0.31 17.6 0.32
EvNet 43.0 0.09 37.2 0.15 82.8 0.52 39.5 0.22 41.4 0.33 34.2 0.50

adv. train. loss: crossentropy adv. train. loss: diffE
PriorNet 0.1 0.12 100.0 0.76 62.2 0.33 98.4 0.31 100.0 0.74 0.0 0.00
PostNet 76.4 0.18 45.0 0.18 100.0 1.28 68.0 0.15 93.5 0.42 100.0 1.10
DDNet 49.5 0.16 64.3 0.37 100.0 1.91 61.2 0.19 95.5 0.57 100.0 1.84
EvNet 68.3 0.12 12.9 0.11 95.6 0.39 61.2 0.33 73.8 0.18 97.9 0.60

While Table 5 shows the percentage of samples which are correctly identified and certified as ID/OOD
data (cc), Table 6 shows the percentage of samples which are wrongly identified as ID/OOD data

1We want to highlight again that attacks are here only used to enable robust training of the models. The
robustness evaluation itself operates on the original data (not attacked and, thus, seemingly easy); only smoothed
via randomized smoothing. The verification provides us a radius that guarantees robustness around the sample.
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and certifiably robust as this wrong type (cw; certified wrong). These cw samples are worse than
adversarial examples. Neither robust training based on label attacks, uncertainty attacks nor noise
perturbed samples consistently reduce the portion of certifiably wrong samples, even worse it seems to
increase the number of cw samples. Thus, although robust training improves DBU-model resistance
against label attacks (see Appendix, Table 35), ID/OOD-verification shows that each model is either
robust on ID-data or on OOD-data. Achieving robustness on both types is challenging. Our results
rise the following question: How do we make DBU models robust w.r.t. class label predictions and
ID/OOD-differentiation without favoring either performance on ID data or OOD data?

5 CONCLUSION

This work analyze robustness of uncertainty estimation by DBU models and answer multiple questions
in this context. Our results show: (1) While uncertainty estimates are a good indicator to identify
correctly classified samples on unperturbed data, performance decrease drastically on perturbed data-
points. (2) None of the Dirichlet-based uncertainty models is able to detect PGD label attacks against
the classification decision by uncertainty estimation, regardless of the used uncertainty measure.
(3) Detecting OOD samples and distinguishing between ID-data and OOD-data is not robust. (4)
Robust training based on label attacks or uncertainty attacks increases performance of Dirichlet-based
uncertainty models w.r.t. either ID data or OOD data, but achieving high robustness on both is
challenging – and poses an interesting direction for future studies.
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A APPENDIX

A.1 DIRICHLET-BASED UNCERTAINTY MODELS

In this section, we provide details on the losses used by each DBU model. PostNet uses a Bayesian
loss which can be expressed as follows:

LPostNet =
1

N

∑
i

Eq(p(i))[CE(p(i), y(i))]−H(q(i)) (3)

where CE denotes the cross-entropy. Both the expectation term (i.e. Eq(p(i))[CE(p(i), y(i))]) and the
entropy term (i.e. H(q(i))) can be computed in closed-form (Charpentier et al., 2020). PriorNet uses
a loss composed of two KL divergence terms for ID and OOD data:

LPriorNet =
1

N

 ∑
x(i)∈ID data

[KL[Dir(αID)||q(i)]] +
∑

x(i)∈OODdata

[KL[Dir(αOOD)||q(i)]]

 . (4)

Both KL divergences terms can be computed in closed-form (Malinin & Gales, 2019). The precision
αID and αOOD are hyper-parameters. The precision αID is usually set to 1e1 for the correct class
and 1 otherwise. The precision αOOD is usually set to 1. DDNet uses use the Dirichlet likelihood of
soft labels produce by an ensemble of M neural networks:

LDDNet = − 1

N

∑
i

M∑
m=1

[ln q(i)(πim)] (5)

where πim denotes the soft-label of mth neural network. The Dirichlet likelihood can be computed in
closed-form (Malinin et al., 2019). EvNet uses the expected mean square error between the one-hot
encoded label and the predicted categorical distribution:

LEvNet =
1

N

∑
i

Ep(i)∼Dir(α(i))||y ∗(i) −p(i)||2 (6)

where y∗(i) denotes the one-hot encoded label. The expected MSE loss can also be computed in
closed form (Sensoy et al., 2018). For more details please have a look at the original paper on
PriorNet (Malinin & Gales, 2018a), PostNet (Charpentier et al., 2020), DDNet (Malinin & Gales,
2019) and EvNet (Sensoy et al., 2018).

A.2 CLOSED-FORM COMPUTATION OF UNCERTAINTY MEASURES & UNCERTAINTY ATTACKS

Dirichlet-based uncertainty models allow to compute several uncertainty measures in closed form
(see (Malinin & Gales, 2018a) for a derivation). As proposed by Malinin & Gales (2018a), we use
precision mα0

, differential entropy mdiffE and mutual information mMI to estimate uncertainty on
predictions.

The differential entropy mdiffE of a DBU model reaches its maximum value for equally probable
categorical distributions and thus, a on flat Dirichlet distribution. It is a measure for distributional
uncertainty and expected to be low on ID data, but high on OOD data.

mdiffE =

K∑
c

ln Γ(αc)− ln Γ(α0)−
K∑
c

(αc − 1) · (Ψ(αc)−Ψ(α0)) (7)

where α are the parameters of the Dirichlet-distribution, Γ is the Gamma function and Ψ is the
Digamma function.

The mutual information mMI is the difference between the total uncertainty (entropy of the expected
distribution) and the expected uncertainty on the data (expected entropy of the distribution). This
uncertainty is expected to be low on ID data and high on OOD data.

mMI = −
K∑
c=1

αc
α0

(
ln
αc
α0
−Ψ(αc + 1) + Ψ(α0 + 1)

)
(8)
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Furthermore, we use the precision α0 to measure uncertainty, which is expected to be high on ID
data and low on OOD data.

mα0
= α0 =

K∑
c=1

αc (9)

As these uncertainty measures are computed in closed form and it is possible to obtain their gradients,
we use them (i.e. mdiffE, mMI, mα0

) are target function of our uncertainty attacks. Changing the
attacked target function allows us to use a wide range of gradient-based attacks such as FGSM attacks,
PGD attacks, but also more sophisticated attacks such as Carlini-Wagner attacks.

A.3 DETAILS OF THE EXPERIMENTAL SETUP

Models. We trained all models with a similar based architecture. We used namely 3 linear layers
for vector data sets, 3 convolutional layers with size of 5 + 3 linear layers for MNIST and the
VGG16 Simonyan & Zisserman (2015) architecture with batch normalization for CIFAR10. All the
implementation are performed using Pytorch (Paszke et al., 2019). We optimized all models using
Adam optimizer. We performed early stopping by checking for loss improvement every 2 epochs and
a patience of 10. The models were trained on GPUs (1 TB SSD).

We performed a grid-search for hyper-parameters for all models. The learning rate grid search was
done in [1e−5, 1e−3]. For PostNet, we used Radial Flows with a depth of 6 and a latent space equal
to 6. Further, we performed a grid search for the regularizing factor in [1e−7, 1e−4]. For PriorNet, we
performed a grid search for the OOD loss weight in [1, 10]. For DDNet, we distilled the knowledge
of 5 neural networks after a grid search in [2, 5, 10, 20] neural networks. Note that it already implied
a significant overhead at training compare to other models.

Metrics. For all experiments, we focused on using AUC-PR scores since it is well suited to imbalance
tasks (Saito & Rehmsmeier, 2015) while bringing theoretically similar information than AUC-ROC
scores (Davis & Goadrich, 2006). We scaled all scores from [0, 1] to [0, 100]. All results are average
over 5 training runs using the best hyper-parameters found after the grid search.

Data sets. For vector data sets, we use 5 different random splits to train all models. We split the data
in training, validation and test sets (60%, 20%, 20%).

We use the segment vector data set Dua & Graff (2017), where the goal is to classify areas of images
into 7 classes (window, foliage, grass, brickface, path, cement, sky). We remove class window
from ID training data to provide OOD training data to PriorNet. Further, We remove the class ’sky’
from training and instead use it as the OOD data set for OOD detection experiments. Each input is
composed of 18 attributes describing the image area. The data set contains 2, 310 samples in total.

We further use the Sensorless Drive vector data set Dua & Graff (2017), where the goal is to classify
extracted motor current measurements into 11 different classes. We remove class 9 from ID training
data to provide OOD training data to PriorNet. We remove classes 10 and 11 from training and use
them as the OOD dataset for OOD detection experiments. Each input is composed of 49 attributes
describing motor behaviour. The data set contains 58, 509 samples in total.

Additionally, we use the MNIST image data set LeCun & Cortes (2010) where the goal is to classify
pictures of hand-drawn digits into 10 classes (from digit 0 to digit 9). Each input is composed of
a 1× 28× 28 tensor. The data set contains 70, 000 samples. For OOD detection experiments, we
use FashionMNIST Xiao et al. (2017) and KMNIST Clanuwat et al. (2018) containing images of
Japanese characters and images of clothes, respectively. FashionMNIST was used as training OOD
for PriorNet while KMNIST is used as OOD at test time.

Finally, we use the CIFAR10 image data set Krizhevsky et al. (2009) where the goal is to classify
a picture of objects into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). Each input is a 3 × 32 × 32 tensor. The data set contains 60, 000 samples. For OOD
detection experiments, we use street view house numbers (SVHN) Netzer et al. (2011) and CIFAR100
(Krizhevsky et al., 2009) containing images of numbers and objects respectively. CIFAR100 was
used as training OOD for PriorNet while SVHN is used as OOD at test time.

Perturbations. For all label and uncertainty attacks, we used Fast Gradient Sign Methods and Project
Gradient Descent. We tried 6 different radii [0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0]. These radii operate on

13



Under review as a conference paper at ICLR 2021

the input space after data normalization. We bound perturbations by L∞-norm or by L2-norm, with

L∞(x) = max
i=1,...,D

|xi| and L2(x) = (

D∑
i=1

x2
i )

0.5. (10)

For L∞-norm it is obvious how to relate perturbation size ε with perturbed input images, because all
inputs are standardized such that the values of their features are between 0 and 1. A perturbation of
size ε = 0 corresponds to the original input, while a perturbation of size ε = 1 corresponds to the
whole input space and allows to change all features to any value.

For L2-norm the relation between perturbation size ε and perturbed input images is less obvious. To
justify our choice for ε w.r.t. this norm, we relate perturbations size ε2 corresponding to L2-norm with
perturbations size ε∞ corresponding to L∞-norm. First, we compute ε2, such that the L2-norm is the
smallest super-set of the L∞-norm. Let us consider a perturbation of ε∞. The largest L2-norm would
be obtained if each feature is perturbed by ε∞. Thus, perturbation ε2, such that L2 encloses L∞ is
ε2 = (

∑D
i=1 ε

2
∞)0.5 =

√
Dε∞. For the MNIST-data set, with D = 28× 28 input features L2-norm

with ε2 = 28 encloses L∞-norm with ε∞ = 1.

Alternatively, ε2 can be computes such that the volume spanned by L2-norm is equivalent to the
one spanned by L∞-norm. Using that the volume spanned by L∞-norm is εD∞ and the volume
spanned by L2-norm is π0.5DεD2

Γ(0.5D+1) (where Γ is the Gamma-function), we obtain volume equivalence

if ε2 = Γ(0.5D + 1)
1
D
√
πε∞. For the MNIST-data set, with D = 28× 28 input features L2-norm

with ε2 ≈ 21.39 is volume equivalent to L∞-norm with ε∞ = 1.
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A.4 ADDITIONAL EXPERIMENTS

Table 7 and 8 illustrate that no DBU model maintains high accuracy under gradient-based label
attacks. Accuracy under PGD attacks decreases more than under FGSM attacks, since PGD is
stronger. Interestingly Noise attacks achieve also good performances with increasing Noise standard
deviation. Note that the attack is not constraint to be with a given radius for Noise attacks.

Table 7: Accuracy under PGD label attacks.

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.4 99.2 98.8 96.8 89.6 53.8 13.0 89.5 73.5 51.7 13.2 2.2 0.8 0.3

PriorNet 99.3 99.1 98.8 97.4 93.9 75.3 4.8 88.2 77.8 68.4 54.0 37.9 17.5 5.1
DDNet 99.4 99.1 98.8 97.5 91.6 48.8 0.2 86.1 73.9 59.1 20.5 1.5 0.0 0.0
EvNet 99.2 98.9 98.4 96.8 92.4 73.1 40.9 89.8 71.7 48.8 11.5 2.7 1.5 0.4

Sensorless Segment
PostNet 98.3 13.1 6.4 4.0 7.0 9.8 11.3 98.9 82.8 50.1 19.2 8.8 5.1 8.6

PriorNet 99.3 16.5 5.6 1.2 0.4 0.2 1.6 99.5 90.7 47.6 7.8 0.2 0.0 0.4
DDNet 99.3 12.4 2.4 0.6 0.3 0.1 0.1 99.2 90.8 45.7 6.9 0.0 0.0 0.0
EvNet 99.0 35.3 22.3 11.2 7.0 5.2 4.0 99.3 91.8 54.0 10.3 0.8 0.5 0.6

Table 8: Accuracy under FGSM label attacks.

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.4 99.2 98.9 97.7 95.2 90.1 79.2 89.5 72.3 54.9 31.2 21.0 16.8 15.6

PriorNet 99.3 99.1 98.9 97.7 95.8 93.2 76.7 88.2 77.3 70.1 59.4 52.3 48.5 46.8
DDNet 99.4 99.2 98.9 97.8 94.7 79.2 25.2 86.1 73.0 60.2 32.5 14.6 7.1 6.0
EvNet 99.2 98.9 98.6 97.6 95.8 90.1 74.4 89.8 71.4 54.5 29.6 18.1 14.4 13.4

Sensorless Segment
PostNet 98.3 19.6 10.9 10.9 11.9 12.4 12.5 98.9 79.6 57.3 31.5 18.4 20.6 19.9

PriorNet 99.3 24.7 11.8 8.6 8.5 8.1 8.3 99.5 85.5 40.5 8.9 0.4 0.3 0.2
DDNet 99.3 18.0 8.2 6.5 5.4 6.7 7.8 99.2 86.4 36.2 11.9 0.9 0.0 0.0
EvNet 99.0 42.0 28.0 17.5 13.7 13.6 14.9 99.3 90.6 55.2 14.2 2.4 0.5 0.1

Table 9: Accuracy under Noise label attacks.

Noise Std 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.4 98.6 91.8 14.9 1.3 0.1 0.0 91.7 21.5 10.1 0.1 1.2 0.0 1.9

PriorNet 99.3 98.5 95.7 14.4 0.0 0.0 0.0 87.7 28.1 11.2 9.7 5.0 8.5 9.0
DDNet 99.4 98.6 92.4 13.3 0.7 0.0 0.0 81.7 23.0 11.2 11.2 11.0 7.8 6.7
EvNet 99.3 96.9 81.6 11.7 0.5 0.0 0.0 89.5 20.7 11.1 5.2 0.5 2.3 3.9

Sensorless Segment
PostNet 98.1 0.1 3.7 11.7 11.7 11.7 11.7 98.5 39.4 3.9 1.8 12.1 20.3 22.1

PriorNet 99.3 0.2 0.0 0.0 0.0 0.3 2.4 99.4 47.9 8.8 0.0 0.0 0.0 0.0
DDNet 99.0 0.4 0.1 0.0 0.0 0.0 0.0 99.1 50.0 10.3 0.0 0.0 0.3 0.0
EvNet 98.6 0.2 0.0 0.1 1.4 4.6 8.8 99.1 50.3 10.3 1.2 0.3 0.0 1.5

A.4.1 UNCERTAINTY ESTIMATION UNDER LABEL ATTACKS

Is high certainty a reliable indicator of correct predictions?

On non-perturbed data uncertainty estimates are an indicator of correctly classified samples, but if the
input data is perturbed none of the DBU models maintains its high performance. Thus, uncertainty
estimates are not a robust indicator of correctly labeled inputs.

Table 10: Certainty based on differential entropy under PGD label attacks (AUC-PR).

MNIST Segment

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

PostNet 99.9 99.9 99.8 98.7 89.5 43.5 9.0 99.9 77.6 31.6 11.1 5.3 4.4 8.7
PriorNet 99.9 99.8 99.6 97.7 90.5 69.1 6.4 100.0 96.8 44.5 4.5 0.4 0.0 15.2

DDNet 100.0 100.0 99.9 99.7 97.6 50.2 0.1 100.0 96.8 54.0 4.3 0.0 0.0 0.0
EvNet 99.6 99.3 98.7 96.1 88.8 63.1 31.7 100.0 95.9 44.3 5.9 0.8 0.6 0.7

Table 2, 10, 11, and 12 illustrate that neither differential entropy nor precision, nor mutual information
are a reliable indicator of correct predictions under PGD attacks. DBU-models achieve significantly
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Table 11: Certainty based on precision α0 under PGD label attacks (AUC-PR).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 100.0 99.9 99.7 98.2 87.9 39.1 6.9 98.7 88.6 56.2 7.8 1.2 0.4 0.3

PriorNet 99.9 99.8 99.6 97.7 90.4 69.1 6.6 92.9 77.7 60.5 37.6 24.9 11.3 3.0
DDNet 100.0 100.0 100.0 99.8 98.2 51.1 0.1 97.6 91.8 78.3 18.1 0.8 0.0 0.0
EvNet 99.6 99.2 98.6 95.7 88.6 63.6 32.6 97.9 85.9 57.2 10.2 4.0 2.4 0.3

Sensorless Segment
PostNet 99.6 7.0 3.3 3.1 6.9 9.8 11.3 99.9 74.2 31.6 11.1 5.0 4.2 8.6

PriorNet 99.8 10.5 3.2 0.6 0.2 0.2 1.8 100.0 96.9 45.2 4.4 0.4 0.0 1.2
DDNet 99.8 8.7 1.3 0.3 0.2 0.1 0.2 100.0 97.1 45.0 4.1 0.0 0.0 0.0
EvNet 99.9 23.2 13.2 6.0 3.7 2.7 2.1 100.0 95.7 44.5 5.9 0.8 0.6 0.7

Table 12: Certainty based on mutual information under PGD label attacks (AUC-PR).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.7 99.7 99.6 99.2 92.4 40.0 6.9 97.3 84.5 56.2 12.2 2.4 0.7 0.3

PriorNet 99.9 99.8 99.6 97.7 90.3 68.9 6.4 82.7 65.6 51.4 35.5 24.4 11.0 2.9
DDNet 100.0 99.9 99.9 99.7 97.4 50.2 0.1 96.9 90.8 77.2 18.8 0.8 0.0 0.0
EvNet 97.8 97.0 95.7 92.6 86.1 62.3 28.9 91.3 72.4 47.9 11.4 1.6 0.9 1.6

Sensorless Segment
PostNet 99.3 7.0 3.3 3.3 7.0 9.8 11.3 99.9 73.2 31.5 11.1 5.0 4.3 8.7

PriorNet 99.8 10.5 3.2 0.6 0.2 0.1 11.8 100.0 96.6 45.2 4.5 0.4 0.0 1.1
DDNet 99.6 8.6 1.3 0.3 0.2 0.1 0.1 100.0 96.5 42.4 4.1 0.0 0.0 0.0
EvNet 99.1 22.0 12.6 5.9 3.7 2.7 2.2 100.0 90.5 41.0 5.9 0.8 0.6 0.7

Table 13: Certainty based on differential entropy under FGSM label attacks (AUC-PR).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.9 99.8 99.4 97.8 92.1 83.2 98.5 88.7 68.9 31.0 18.6 15.5 16.7

PriorNet 99.9 99.9 99.7 98.3 94.1 88.5 78.6 90.1 73.6 61.6 46.1 38.5 35.6 37.3
DDNet 100.0 100.0 99.9 99.8 98.7 86.4 23.0 97.3 90.6 78.7 39.4 13.7 6.0 5.1
EvNet 99.6 99.4 99.1 97.8 95.8 90.4 76.8 98.0 86.2 67.4 32.7 19.9 18.2 19.7

Sensorless Segment
PostNet 99.7 11.7 7.3 9.3 11.8 12.5 12.5 99.9 73.6 40.6 23.7 17.2 19.8 20.2

PriorNet 99.8 21.4 10.4 8.5 9.0 9.2 10.3 100.0 93.7 37.7 5.8 1.1 0.9 0.8
DDNet 99.7 18.5 5.4 4.3 4.2 5.7 7.9 100.0 94.1 42.9 7.2 1.0 0.0 0.0
EvNet 99.9 44.8 29.2 18.2 15.1 14.9 15.5 100.0 93.7 48.7 8.7 2.4 1.6 0.5

Table 14: Certainty based on differential entropy under Noise label attacks (AUC-PR).

Noise Std 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.8 99.6 74.2 7.4 0.2 0.0 98.7 76.3 24.3 0.4 4.9 0.0 1.7

PriorNet 99.9 99.9 99.8 73.4 0.0 0.0 0.0 85.0 27.8 15.9 20.4 7.0 7.7 8.3
DDNet 100.0 99.9 99.4 51.1 0.6 0.1 0.0 96.1 61.0 39.8 14.2 11.3 6.9 6.9
EvNet 99.5 98.4 88.5 20.2 0.9 0.0 0.0 97.5 66.1 21.4 7.7 2.3 3.0 3.8

Sensorless Segment
PostNet 99.7 0.3 3.2 13.3 12.0 11.7 11.7 99.9 53.9 4.8 1.8 11.2 21.7 21.6

PriorNet 100.0 0.3 0.0 0.0 0.0 7.8 11.5 100.0 84.5 15.6 0.0 0.0 0.0 0.0
DDNet 99.7 0.9 0.6 0.0 0.0 0.0 0.0 100.0 82.7 23.9 0.0 0.0 0.6 0.0
EvNet 99.8 0.3 0.0 0.1 1.7 5.5 10.0 100.0 78.3 19.0 3.5 0.5 0.0 1.7
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better results when they are attacked by FGSM-attacks (Table 13), but as FGSM attacks provide
much weaker adversarial examples than PGD attacks, this cannot be seen as real advantage.
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Can we use uncertainty estimates to detect attacks against the classification decision?

PGD attacks do not explicitly consider uncertainty during the computation of adversarial examples,
but they seem to provide perturbed inputs with similar uncertainty as the original input.

Table 15: Attack-Detection based on differential entropy under PGD label attacks (AUC-PR).

MNIST Segment

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

PostNet 57.7 66.3 83.4 90.5 79.0 50.1 95.6 73.5 47.0 42.3 53.4 82.7
PriorNet 67.7 83.2 97.1 96.7 92.1 82.9 86.7 83.3 38.0 31.3 30.8 31.5

DDNet 53.4 57.1 68.5 83.9 96.0 86.3 76.1 83.5 45.4 32.4 30.8 30.8
EvNet 54.8 59.0 68.5 75.9 72.6 59.8 94.9 80.9 41.5 32.5 31.1 31.1

Table 16: Attack-Detection based on precision α0 under PGD label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 63.3 75.7 92.6 95.1 75.3 39.5 63.4 66.9 42.1 32.9 31.6 31.2

PriorNet 67.6 83.2 97.1 96.9 92.7 84.7 53.3 56.0 55.6 49.2 42.2 35.4
DDNet 52.7 55.7 64.7 78.4 91.9 80.9 55.8 60.5 57.3 38.7 32.3 31.4
EvNet 49.1 48.0 45.1 42.7 41.8 39.2 48.4 46.9 46.3 46.3 44.5 42.5

Sensorless Segment
PostNet 39.8 35.8 35.4 52.0 88.2 99.0 94.6 70.3 46.3 42.6 54.9 84.0

PriorNet 40.9 35.1 32.0 31.1 30.7 30.7 82.7 82.6 39.4 31.6 30.8 30.8
DDNet 47.7 40.3 35.3 32.8 31.3 30.8 80.0 86.0 43.3 33.6 31.0 30.8
EvNet 45.4 39.7 36.1 34.8 34.7 36.0 90.9 72.4 40.4 32.4 31.1 31.1

Table 17: Attack-Detection based on mutual information under PGD label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 42.2 37.5 36.7 54.5 70.5 70.3 52.2 52.1 50.0 65.9 76.3 80.7

PriorNet 67.7 83.3 97.1 96.9 92.6 84.5 54.0 56.9 56.3 49.7 42.4 35.5
DDNet 53.1 56.3 66.5 81.0 94.0 82.9 56.0 60.8 57.4 38.2 32.1 31.3
EvNet 49.1 48.0 45.2 42.9 41.9 39.3 48.7 47.3 46.3 46.0 44.1 42.2

Sensorless Segment
PostNet 75.3 76.6 66.5 57.7 85.6 98.7 94.8 73.5 55.9 47.9 58.0 84.0

PriorNet 40.7 35.0 32.0 31.0 30.7 30.7 83.5 82.7 39.2 31.6 30.8 30.8
DDNet 48.0 40.0 35.2 32.6 31.2 30.8 82.4 88.1 43.4 33.4 30.9 30.8
EvNet 45.5 39.7 36.1 34.8 34.7 36.0 91.7 72.9 40.5 32.4 31.1 31.1

FGSM and Noise attacks are easier to detect, but also weaker thand PGD attacks. This suggests that
DBU models are capable of detecting weak attacks by using uncertainty estimation.

Table 18: Attack-Detection based on differential entropy under FGSM label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 55.9 61.8 74.8 84.0 88.9 89.9 62.1 67.2 65.7 63.1 65.4 73.8

PriorNet 67.4 82.4 96.9 98.3 98.9 99.6 58.4 63.1 68.5 70.1 68.5 62.5
DDNet 53.6 57.3 68.3 82.6 95.6 98.7 57.2 62.9 69.1 68.7 69.7 76.5
EvNet 54.1 57.4 63.8 67.6 68.6 69.9 57.8 61.7 63.3 62.9 65.7 72.5

Sensorless Segment
PostNet 98.4 99.8 99.9 99.9 99.9 99.9 96.9 93.9 99.5 99.9 100.0 100.0

PriorNet 48.7 38.6 32.7 32.9 38.6 44.3 89.0 80.8 46.7 37.2 33.7 32.4
DDNet 61.5 47.8 37.1 33.1 32.4 33.2 79.6 86.2 60.2 47.5 36.6 31.6
EvNet 67.3 65.5 72.3 73.4 75.3 79.1 95.7 87.2 59.3 51.7 51.1 53.5
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Table 19: Attack-Detection based on differential entropy under Noise label attacks (AUC-PR).

Noise Std. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 51.3 65.3 93.8 95.1 95.2 95.2 80.8 84.5 97.6 99.5 99.3 98.2

PriorNet 32.5 36.8 88.9 99.6 99.7 92.7 34.7 32.3 34.3 60.3 95.5 100.0
DDNet 60.7 87.6 99.8 100.0 99.9 99.8 59.1 62.6 81.5 98.6 99.8 98.7
EvNet 51.2 55.7 66.9 70.3 68.0 67.1 75.7 78.6 88.2 97.8 96.4 95.6

Sensorless Segment
PostNet 99.8 100.0 100.0 100.0 100.0 100.0 95.6 99.4 100.0 100.0 100.0 100.0

PriorNet 42.0 33.8 31.5 34.7 43.7 47.0 56.7 56.7 39.8 33.7 31.9 33.7
DDNet 53.4 43.5 34.3 31.6 32.5 36.1 57.0 58.9 43.1 33.7 31.5 31.3
EvNet 67.1 78.8 88.3 95.4 96.9 97.8 60.8 63.5 61.2 64.8 73.7 85.2

A.4.2 ATTACKING UNCERTAINTY ESTIMATION

Are uncertainty estimates a robust feature for OOD detection?

Using uncertainty estimation to distinguish between ID and OOD data is not robust as shown in the
following tables.

Table 20: OOD detection based on differential entropy under PGD uncertainty attacks against
differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 94.5 94.1 93.9 91.1 77.1 44.0 31.9 94.5 93.1 91.4 82.1 62.2 50.7 48.8

PriorNet 99.6 99.4 99.1 97.8 93.8 77.6 32.0 99.6 99.4 99.1 98.0 94.6 85.5 73.9
DDNet 99.3 99.1 98.9 97.8 93.5 63.3 30.7 99.3 99.1 99.0 98.3 96.7 91.3 73.8
EvNet 69.0 67.1 65.6 61.8 57.4 50.9 43.6 69.0 55.8 48.0 39.4 36.2 34.9 34.4

Seg. – Seg. class sky
PostNet 99.0 80.7 53.5 38.0 34.0 41.6 49.5 99.0 88.4 69.2 45.1 36.4 42.6 75.4

PriorNet 34.8 31.4 30.9 30.8 30.8 30.8 30.8 34.8 31.8 31.0 30.8 30.8 30.8 32.1
DDNet 31.5 30.9 30.8 30.8 30.8 30.8 30.8 31.5 31.0 30.8 30.8 30.8 30.8 30.8
EvNet 92.5 67.2 43.2 31.6 30.9 30.9 31.2 92.5 86.1 82.7 48.9 32.7 30.9 30.9

Table 21: OOD detection under PGD uncertainty attacks against differential entropy on ID data and
OOD data (AUC-ROC).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 91.6 91.3 91.9 91.5 80.2 38.8 9.2 91.6 90.4 89.0 81.6 62.6 45.0 43.1

PriorNet 99.8 99.7 99.5 99.0 97.1 81.1 8.7 99.8 99.7 99.6 99.1 97.7 93.0 84.9
DDNet 99.2 98.9 98.6 97.3 92.1 58.2 1.2 99.2 99.0 98.8 97.9 95.8 89.1 69.3
EvNet 81.2 79.6 78.2 74.6 69.5 58.7 43.0 81.2 67.2 54.8 35.4 25.5 20.7 18.5

CIFAR10 – SVHN
PostNet 87.0 71.9 56.3 30.2 20.2 15.0 9.7 87.0 71.0 54.3 33.5 30.3 26.2 19.4

PriorNet 62.4 48.2 35.9 13.8 3.6 0.9 0.3 62.4 48.0 35.6 14.8 6.6 3.4 1.6
DDNet 87.0 76.0 63.6 29.3 6.1 1.1 0.4 87.0 78.1 66.1 26.2 5.1 0.7 0.1
EvNet 88.0 69.1 51.7 24.6 15.5 9.5 4.2 88.0 72.0 60.7 47.9 42.1 33.3 24.0

Sens. – Sens. class 10, 11
PostNet 85.3 49.1 38.1 7.8 8.2 8.2 8.2 85.3 57.2 54.0 27.3 31.5 86.7 99.5

PriorNet 28.1 0.8 0.3 0.4 1.6 8.4 26.8 28.1 2.5 0.7 0.2 2.3 18.9 41.0
DDNet 21.0 3.0 0.9 0.4 0.6 2.1 7.3 21.0 4.4 2.1 1.9 2.2 2.2 4.1
EvNet 74.2 21.4 12.2 4.3 1.4 0.6 0.3 74.2 45.3 38.5 19.6 9.6 12.1 26.0

Seg. – Seg. class sky
PostNet 99.2 84.7 55.5 23.0 9.7 4.4 4.7 99.2 92.1 77.1 41.5 24.9 41.0 80.8

PriorNet 17.1 4.4 1.3 0.0 0.0 0.0 0.1 17.1 5.9 1.5 0.1 0.0 0.1 5.8
DDNet 4.1 1.1 0.0 0.0 0.0 0.0 0.0 4.1 1.8 0.4 0.0 0.0 0.0 0.0
EvNet 91.2 54.5 23.3 3.9 0.9 0.4 0.2 91.2 82.9 76.4 42.2 9.7 0.8 0.6
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Table 22: OOD detection (AU-PR) under PGD uncertainty attacks against precision α0 on ID data
and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 98.4 97.4 96.0 88.8 70.9 39.3 31.3 98.4 97.2 95.2 82.8 52.6 34.3 32.1

PriorNet 99.6 99.5 99.2 98.0 94.1 76.0 31.1 99.6 99.5 99.2 98.2 95.3 87.5 75.6
DDNet 97.2 96.7 96.1 93.8 86.4 53.2 31.0 97.2 96.7 96.2 94.5 91.1 82.9 64.6
EvNet 39.8 39.2 38.8 37.9 37.1 36.3 35.4 39.8 34.5 32.5 31.2 31.0 30.9 31.0

CIFAR10 – SVHN
PostNet 82.4 63.8 46.1 22.3 17.4 16.7 16.4 82.4 61.8 41.5 21.8 19.8 17.5 15.8

PriorNet 37.9 25.0 19.2 15.8 15.4 15.4 15.4 37.9 25.9 19.4 15.6 15.4 15.4 15.4
DDNet 81.1 70.1 58.4 30.0 16.7 15.5 15.4 81.1 71.2 59.9 27.8 16.5 15.5 15.4
EvNet 34.7 27.4 25.4 22.0 19.7 18.1 17.1 34.7 19.4 18.1 17.1 16.8 16.2 15.7

Sens. – Sens. class 10, 11
PostNet 77.4 39.6 35.9 31.7 44.4 44.4 44.4 77.4 40.3 38.6 29.5 34.0 79.4 97.4

PriorNet 35.9 27.0 26.8 26.8 26.8 27.5 36.2 35.9 27.7 27.0 26.7 26.6 26.5 26.5
DDNet 55.6 34.4 31.7 30.4 29.5 30.2 33.4 55.6 40.9 34.1 28.0 26.9 26.6 26.5
EvNet 66.3 33.3 29.7 27.0 27.1 29.2 33.9 66.3 39.3 37.1 31.3 28.3 28.4 29.7

Seg. – Seg. class sky
PostNet 98.4 74.8 51.0 37.2 32.8 43.5 49.9 98.4 84.7 66.1 42.4 34.8 40.9 71.2

PriorNet 32.1 30.9 30.8 30.8 30.8 30.8 30.8 32.1 31.0 30.8 30.8 30.8 30.8 30.8
DDNet 31.0 30.8 30.8 30.8 30.8 30.8 30.8 31.0 30.8 30.8 30.8 30.8 30.8 30.8
EvNet 98.3 83.0 60.5 34.0 31.0 30.8 30.8 98.3 94.4 88.8 65.6 37.0 31.4 30.9

Table 23: OOD detection (AUC-ROC) under PGD uncertainty attacks against precision α0 on ID
data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 98.4 97.6 96.4 90.9 74.0 28.9 6.3 98.4 97.6 96.3 89.0 61.3 19.6 9.7

PriorNet 99.8 99.7 99.6 99.1 97.2 79.4 4.4 99.8 99.7 99.6 99.2 98.0 93.9 85.8
DDNet 96.5 95.9 95.1 92.0 82.6 44.3 3.5 96.5 95.9 95.2 92.9 88.6 78.7 59.4
EvNet 35.9 34.1 32.8 30.1 27.4 24.6 21.4 35.9 18.7 10.4 3.7 2.0 1.7 2.0

CIFAR10 – SVHN
PostNet 87.4 71.2 54.8 29.2 19.0 14.0 9.4 87.4 71.4 54.1 30.1 25.8 17.5 5.8

PriorNet 45.6 31.1 20.4 6.3 1.4 0.3 0.1 45.6 32.2 21.7 5.4 1.0 0.3 0.1
DDNet 84.9 73.8 61.8 30.2 9.3 3.0 0.8 84.9 76.6 66.2 34.6 10.4 2.3 0.3
EvNet 61.2 49.4 45.2 37.6 30.5 23.4 17.0 61.2 29.4 23.0 16.8 14.2 10.2 5.5

Sens. – Sens. class 10, 11
PostNet 87.2 48.8 37.3 4.1 0.7 0.7 0.7 87.2 50.0 45.4 16.5 27.6 81.9 98.0

PriorNet 37.3 3.5 2.4 2.2 2.9 6.3 19.2 37.3 8.0 3.6 1.4 0.6 0.1 0.0
DDNet 55.2 23.7 17.7 14.1 12.5 12.7 15.7 55.2 37.1 27.7 9.4 2.5 0.6 0.1
EvNet 75.5 30.8 18.2 5.8 1.6 0.6 0.2 75.5 47.8 41.9 24.1 10.2 10.2 15.6

Seg. – Seg. class sky
PostNet 98.6 77.7 50.8 20.3 8.2 1.3 0.5 98.6 88.9 73.4 36.2 19.4 36.7 75.2

PriorNet 8.5 1.3 0.2 0.0 0.0 0.0 0.1 8.5 2.0 0.4 0.0 0.0 0.0 0.0
DDNet 2.2 0.3 0.0 0.0 0.0 0.0 0.0 2.2 0.5 0.1 0.0 0.0 0.0 0.0
EvNet 97.7 78.4 47.7 9.9 1.2 0.2 0.1 97.7 93.5 86.9 62.2 21.5 3.7 1.0
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Table 24: OOD detection (AU-PR) under PGD uncertainty attacks against distributional uncertainty
on ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 80.5 76.2 73.4 69.1 66.6 65.4 60.2 80.5 72.1 63.9 43.9 33.0 30.9 30.8

PriorNet 99.6 99.4 99.2 98.0 94.1 76.3 31.2 99.6 99.4 99.2 98.2 95.2 87.2 75.2
DDNet 98.4 98.1 97.7 95.8 89.5 56.2 30.9 98.4 98.1 97.8 96.5 93.8 86.3 67.7
EvNet 40.1 39.5 39.1 38.2 37.3 36.5 35.6 40.1 34.6 32.6 31.3 31.0 31.0 31.1

CIFAR10 – SVHN
PostNet 64.2 44.7 37.5 31.1 28.5 25.0 19.3 64.2 31.0 19.5 16.3 16.4 16.5 16.3

PriorNet 40.8 27.4 20.4 15.9 15.4 15.4 15.4 40.8 28.3 21.1 15.9 15.4 15.4 15.4
DDNet 82.0 71.0 59.1 29.9 16.6 15.5 15.4 82.0 72.2 60.3 26.3 16.2 15.4 15.4
EvNet 36.4 28.7 26.5 22.8 20.2 18.4 17.2 36.4 19.8 18.3 17.2 16.9 16.2 15.7

Sens. – Sens. class 10, 11
PostNet 79.1 40.3 35.9 33.0 45.5 45.5 45.5 79.1 47.3 43.7 36.5 37.9 74.6 96.5

PriorNet 35.5 26.8 26.7 26.9 29.6 43.7 68.7 35.5 27.5 26.9 26.7 26.6 26.5 26.5
DDNet 52.9 31.7 29.8 29.1 28.4 30.1 37.6 52.9 38.4 31.5 27.5 26.8 26.6 26.5
EvNet 66.3 33.3 29.6 27.0 27.2 29.3 35.2 66.3 39.3 37.1 31.3 28.3 28.4 29.7

Seg. – Seg. class sky
PostNet 98.0 76.3 53.1 37.4 32.9 44.6 50.2 98.0 83.5 64.8 41.8 35.4 43.1 71.3

PriorNet 32.3 30.9 30.8 30.8 30.8 32.5 45.0 32.3 31.0 30.8 30.8 30.8 30.8 30.8
DDNet 30.9 30.8 30.8 30.8 30.8 30.8 30.8 30.9 30.8 30.8 30.8 30.8 30.8 30.8
EvNet 98.1 82.1 59.1 33.8 31.0 30.8 30.8 98.1 93.8 88.2 64.5 36.4 31.3 31.0

Table 25: OOD detection (AUC-ROC) under PGD uncertainty attacks against distributional uncer-
tainty on ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 90.1 88.0 86.2 82.2 79.0 77.1 66.1 90.1 84.5 77.2 46.4 12.9 2.7 2.4

PriorNet 99.8 99.7 99.6 99.1 97.2 79.7 4.7 99.8 99.7 99.6 99.2 97.9 93.7 85.6
DDNet 98.1 97.7 97.2 94.8 87.0 48.7 3.0 98.1 97.8 97.3 95.8 92.3 83.3 63.3
EvNet 36.8 35.0 33.7 30.9 28.2 25.3 22.1 36.8 19.3 10.7 3.9 2.1 1.8 2.2

CIFAR10 – SVHN
PostNet 82.9 67.7 59.2 51.3 47.7 40.1 24.2 82.9 51.9 26.2 8.9 9.5 11.1 9.9

PriorNet 48.0 33.6 22.5 7.1 1.6 0.3 0.1 48.0 34.8 24.0 6.7 1.6 0.6 0.2
DDNet 85.9 74.9 62.7 30.1 8.3 2.3 0.6 85.9 77.6 66.9 32.1 8.0 1.5 0.2
EvNet 63.3 51.4 47.1 39.3 32.1 24.9 17.9 63.3 31.1 24.4 17.7 15.0 10.7 5.7

Sens. – Sens. class 10, 11
PostNet 87.1 50.9 37.8 5.5 4.5 4.5 4.5 87.1 55.3 51.1 34.4 38.9 79.7 97.9

PriorNet 36.5 2.9 1.8 1.8 5.2 21.5 52.8 36.5 7.3 3.0 1.3 0.5 0.1 0.0
DDNet 52.3 18.7 13.1 10.3 9.3 10.8 18.4 52.3 33.1 22.0 6.7 2.2 0.6 0.1
EvNet 75.5 30.7 18.1 5.8 1.6 0.6 0.8 75.5 47.7 41.8 23.8 10.3 10.2 15.8

Seg. – Seg. class sky
PostNet 98.6 78.3 51.9 20.5 8.3 2.1 1.7 98.6 88.8 73.1 35.9 21.4 39.9 75.9

PriorNet 9.4 1.6 0.3 0.0 0.0 1.8 15.4 9.4 2.4 0.4 0.0 0.0 0.0 0.0
DDNet 1.3 0.2 0.0 0.0 0.0 0.0 0.0 1.3 0.2 0.0 0.0 0.0 0.0 0.0
EvNet 97.4 77.1 45.9 9.4 1.3 0.2 0.1 97.4 92.9 86.1 60.9 20.4 3.0 1.2
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Table 26: OOD detection (AU-PR) under FGSM uncertainty attacks against differential entropy on
ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 94.5 94.2 94.1 93.5 89.9 81.2 71.6 94.5 93.3 92.0 87.6 81.1 75.7 75.7

PriorNet 99.6 99.4 99.2 98.1 95.6 90.0 65.3 99.6 99.4 99.2 98.6 97.5 95.9 94.4
DDNet 99.3 99.1 98.9 98.0 95.4 80.9 48.2 99.3 99.2 99.0 98.5 97.6 95.5 92.0
EvNet 69.0 67.4 66.2 64.0 61.9 59.8 56.70 9.0 60.1 56.5 53.4 52.7 52.9 53.5

CIFAR10 – SVHN
PostNet 81.8 66.2 61.6 64.2 65.7 61.3 48.4 81.8 63.1 51.9 43.4 46.6 61.7 77.0

PriorNet 54.4 40.6 33.8 27.0 25.5 27.2 35.5 54.4 42.3 36.8 30.6 28.3 29.5 32.1
DDNet 82.8 71.9 64.6 53.8 50.2 47.8 41.0 82.8 71.5 60.5 39.1 31.4 41.2 66.6
EvNet 80.3 67.8 64.0 61.9 61.6 57.4 49.6 80.3 59.2 51.5 46.7 49.0 56.3 64.6

Sens. – Sens. class 10, 11
PostNet 74.5 40.6 37.2 31.4 38.1 44.9 45.9 74.5 99.6 99.8 99.9 99.9 99.9 99.9

PriorNet 32.3 35.7 57.6 83.1 88.8 79.7 70.0 32.3 28.3 28.1 27.6 28.0 32.7 38.5
DDNet 31.7 31.3 44.4 70.3 87.9 92.5 91.9 31.7 28.8 29.3 29.1 27.7 27.9 28.01
EvNet 66.5 45.7 46.8 42.3 42.0 41.4 41.8 66.5 54.7 66.5 76.2 71.1 75.3 75.8

Seg. – Seg. class sky
PostNet 99.0 80.8 66.4 43.6 37.0 35.5 43.0 99.0 94.8 92.0 98.5 99.7 100.0 100.0

PriorNet 34.8 31.2 31.4 46.3 74.0 88.8 94.5 34.8 31.6 31.0 31.2 30.9 30.8 30.8
DDNet 31.5 30.8 30.8 30.9 37.9 56.2 84.3 31.5 30.9 30.8 30.8 30.8 30.8 30.8
EvNet 92.5 64.9 54.6 66.6 69.5 69.6 64.6 92.5 85.9 83.0 66.3 66.1 61.1 56.8

Table 27: OOD detection (AU-PR) under Noise uncertainty attacks against differential entropy on ID
data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Noise Std 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 93.0 94.2 82.3 34.4 31.6 31.0 30.9 92.2 91.8 91.5 92.3 92.7 93.2 93.5

PriorNet 99.7 99.6 96.7 40.0 40.6 45.7 55.6 99.5 97.3 96.5 99.4 100.0 99.5 72.4
DDNet 99.1 97.5 81.2 31.3 31.0 30.9 31.2 99.0 98.8 99.2 99.8 99.9 99.8 99.1
EvNet 65.5 60.5 51.4 35.3 34.5 35.5 35.0 62.5 47.2 40.9 35.1 34.6 33.5 34.9

CIFAR10 – SVHN
PostNet 88.5 41.4 39.8 31.0 30.7 31.6 33.9 88.5 86.6 81.9 93.0 98.5 98.6 97.3

PriorNet 73.3 88.3 95.3 92.4 70.4 30.9 30.8 73.3 31.6 30.9 31.7 51.8 94.3 100.0
DDNet 87.3 69.3 78.4 55.2 31.6 30.7 31.4 87.3 55.8 57.9 73.9 97.3 99.5 97.2
EvNet 92.4 56.8 53.8 33.4 30.9 32.9 36.6 92.4 73.7 73.5 77.7 93.7 92.5 92.1

Sens. – Sens. class 10, 11
PostNet 85.3 30.8 39.4 50.0 50.0 50.0 50.0 85.3 98.9 100.0 100.0 100.0 100.0 100.0

PriorNet 32.3 30.8 34.9 83.7 77.7 49.8 80.3 32.3 30.7 30.7 32.5 40.1 49.9 47.6
DDNet 31.1 30.7 30.7 32.4 58.8 88.1 74.3 31.1 30.7 30.7 30.7 30.8 31.6 39.1
EvNet 80.3 30.8 31.2 37.9 46.3 50.0 50.0 80.3 34.6 38.4 53.9 69.3 78.8 81.5

Seg. – Seg. class sky
PostNet 99.9 41.8 30.8 34.5 49.1 50.0 50.0 99.9 97.4 96.6 99.5 100.0 100.0 100.0

PriorNet 31.0 30.8 30.8 30.8 32.7 69.0 78.3 31.0 30.8 30.8 30.8 30.9 31.1 32.4
DDNet 30.8 30.8 30.8 30.8 30.8 58.2 91.3 30.8 30.8 30.8 30.8 30.8 30.8 31.9
EvNet 99.1 38.1 32.2 30.8 30.8 32.2 37.5 99.1 95.6 87.6 58.0 44.9 46.6 53.8
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A.5 ROBUST TRAINING FOR DBU MODELS & ID/OOD VERIFICATION

Table 5 and 29 on adversarial training illustrate that there is a jump between ID-verification and
OOD-verification, where robustness on ID data drops while robustness on OOD data increases.
These jumps are observed for each model and each training (normal, noise-based, adversarial with
label attacks, adversarial with uncertainty attacks). Thus, either ID-verification or OOD-verification
perform well, depending on the chosen threshold.

In contrast to that, adversarial training improves robustness w.r.t. the predicted class label for most
pair model/data set (Fig. 7, 32).

Table 28: Randomized smoothing verification of CIFAR10 (ID data) and SVHN (OOD data) harmonic
mean.

0.1 0.2 0.5

adv. train. loss: None
PriorNet 26.7 3.7 0.0
PostNet 35.9 34.1 0.0
DDNet 45.2 18.1 46.6
EvNet 47.6 45.4 22.6

adv. train. loss: crossentropy
PriorNet 0.2 0.0 41.4
PostNet 34.4 47.9 0.0
DDNet 49.2 44.3 0.0
EvNet 41.1 22.4 4.7

adv. train. loss: diffE
PriorNet 2.2 0.0 0.0
PostNet 41.9 11.4 0.0
DDNet 46.2 8.4 0.0
EvNet 47.3 34.6 2.0

Table 29: Randomized smoothing verification of MNIST (ID data) and KMNIST (OOD data):
percentage of samples that is certifiably correct (cc) and mean certified radius (R).

ID-Verification OOD-Verification

σ 0.1 0.2 0.5 0.1 0.2 0.5

cc R cc R cc R cc R cc R cc R

adv. train. loss: None
PriorNet 97.0 0.36 88.2 0.52 3.0 0.20 98.7 0.37 99.5 0.74 100.0 1.88
PostNet 93.2 0.32 68.4 0.31 0.8 0.11 98.4 0.36 99.5 0.68 100.0 1.55
DDNet 90.6 0.35 52.3 0.46 0.0 0.00 97.8 0.37 99.5 0.74 100.0 1.90
EvNet 95.0 0.31 83.0 0.30 17.3 0.21 77.3 0.17 82.7 0.24 88.6 0.39

adv. train. loss: crossentropy
PriorNet 97.0 0.36 94.3 0.58 1.0 0.15 99.8 0.38 99.5 0.74 100.0 1.89
PostNet 94.4 0.31 57.7 0.32 3.2 0.13 97.2 0.33 95.6 0.51 99.6 1.02
DDNet 82.6 0.34 55.5 0.46 0.0 0.00 99.6 0.38 100.0 0.75 100.0 1.90
EvNet 96.8 0.34 70.1 0.27 18.8 0.25 58.7 0.11 85.2 0.24 89.1 0.26

adv. train. loss: diffE
PriorNet 98.0 0.37 83.4 0.49 0.7 0.10 99.7 0.38 100.0 0.76 100.0 1.90
PostNet 93.5 0.33 47.1 0.23 0.6 0.15 95.8 0.34 98.8 0.63 100.0 1.38
DDNet 93.6 0.36 52.7 0.43 0.0 0.00 97.7 0.37 99.7 0.75 100.0 1.90
EvNet 95.4 0.33 81.6 0.34 23.1 0.63 81.7 0.20 82.8 0.28 99.1 1.70
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Table 30: Randomized smoothing verification of MNIST (ID data) and KMNIST (OOD data):
percentage of samples that is certifiably wrong (cw) and mean certified radius (R).

0.1 0.2 0.5

cw R cw R cw R

adv. train. loss: None
PriorNet 2.8 0.16 10.7 0.21 96.0 0.97
PostNet 6.4 0.17 28.8 0.22 99.0 1.15
DDNet 9.1 0.24 46.3 0.42 100.0 1.81
EvNet 4.5 0.10 15.1 0.13 78.8 0.31

adv. train. loss: crossentropy
PriorNet 2.9 0.20 4.9 0.24 98.4 1.05
PostNet 5.3 0.17 38.8 0.23 95.2 0.93
DDNet 16.4 0.25 43.5 0.41 100.0 1.74
EvNet 3.0 0.08 26.3 0.13 76.3 0.27

adv. train. loss: diffE
PriorNet 2.0 0.19 15.7 0.25 98.8 1.10
PostNet 6.3 0.17 49.8 0.25 99.1 1.10
DDNet 6.2 0.22 46.2 0.42 100.0 1.81
EvNet 4.2 0.14 17.0 0.16 73.9 0.94

Table 31: Randomized smoothing verification of MNIST (ID data) and KMNIST (OOD data)
harmonic mean.

0.1 0.2 0.5

adv. train. loss: None
PriorNet 5.5 19.1 5.9
PostNet 12.0 40.5 1.5
DDNet 16.5 49.2 0.0
EvNet 8.7 25.6 28.4

adv. train. loss: crossentropy
PriorNet 5.6 9.3 2.0
PostNet 10.0 46.4 6.2
DDNet 27.4 48.8 0.0
EvNet 5.8 38.2 30.2

adv. train. loss: diffE
PriorNet 3.9 26.4 1.4
PostNet 11.8 48.4 1.2
DDNet 11.6 49.2 0.0
EvNet 8.0 28.1 35.2

Table 32: Adversarial training with CE: Accuracy under PGD label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.1 98.7 96.7 89.3 62.4 14.8 72.1 50.6 12.8 2.4 0.2 0.1

PriorNet 99.1 98.8 97.6 94.8 91.1 79.5 69.6 63.9 55.8 46.4 30.9 11.1
DDNet 99.1 98.9 97.4 90.6 47.0 0.2 74.7 63.9 23.6 2.0 0.0 0.0
EvNet 80.3 98.3 96.7 90.5 60.0 52.7 78.3 51.0 14.6 2.6 2.9 0.7

Sensorless Segment
PostNet 15.5 6.4 4.7 6.7 11.1 11.7 84.5 52.4 21.1 7.6 5.0 6.3

PriorNet 31.3 15.8 0.2 0.0 0.3 5.3 94.0 65.2 19.1 0.6 0.0 0.0
DDNet 12.4 4.2 0.2 0.3 0.2 0.1 91.4 46.2 7.4 0.2 0.0 0.0
EvNet 33.6 19.4 8.3 5.4 2.6 1.7 93.0 55.2 15.5 2.0 1.4 1.4

Table 33: Adversarial training with CE: Accuracy under FGSM label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.1 98.8 97.6 95.3 90.1 81.3 71.0 54.4 30.4 19.9 17.0 17.7

PriorNet 99.1 98.9 97.9 96.2 94.7 90.0 69.7 65.3 58.8 52.1 38.9 22.2
DDNet 99.1 98.9 97.8 94.6 79.1 27.9 73.7 64.7 34.8 15.5 8.0 4.8
EvNet 80.3 98.5 97.6 94.0 72.7 81.3 48.0 56.9 27.0 17.1 17.8 15.7

Sensorless Segment
PostNet 20.6 10.6 11.0 11.8 12.5 12.5 82.9 60.1 27.5 22.7 19.1 24.3

PriorNet 35.0 20.8 0.5 0.1 0.9 7.5 91.2 55.2 19.0 0.7 0.0 0.0
DDNet 16.4 9.7 7.0 4.6 6.4 7.5 86.8 36.4 10.5 0.8 0.0 0.0
EvNet 41.1 27.4 20.1 15.2 14.9 12.6 93.8 64.2 25.0 1.5 0.0 0.4
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Table 34: Adversarial training with CE: Accuracy under Noise label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 97.8 84.3 8.4 3.2 0.0 0.0 19.3 7.3 3.4 0.0 10.2 10.1

PriorNet 97.7 94.6 32.7 0.0 0.0 0.0 39.1 16.8 3.8 10.5 3.7 0.4
DDNet 97.6 89.1 16.5 2.1 0.0 0.3 25.8 15.1 2.2 0.2 9.8 8.9
EvNet 94.1 74.3 5.0 0.0 0.0 0.0 27.1 7.1 0.1 2.8 8.6 9.7

Sensorless Segment
PostNet 1.0 4.7 11.4 11.7 11.7 11.7 27.6 1.5 3.6 15.2 20.9 21.2

PriorNet 4.7 0.0 0.0 0.1 0.0 2.2 56.4 16.1 2.1 0.9 0.0 0.0
DDNet 0.3 0.0 0.0 0.0 0.0 0.1 49.4 6.1 0.0 0.0 0.0 0.0
EvNet 0.9 0.0 0.9 0.2 3.5 3.1 51.2 10.6 0.3 0.0 0.0 0.6

Table 35: Randomized smoothing verification of CIFAR10: percentage of samples that is certifiably
correct (cc) w.r.t. the predicted class label and mean certified radius (R) w.r.t. class labels.

0.1 0.2 0.5

cc R cc R cc R

adv. train. loss: None
PriorNet 42.8 0.25 21.2 0.42 11.8 1.30
PostNet 35.0 0.22 12.3 0.51 9.4 0.12
DDNet 31.7 0.26 12.2 0.69 10.8 1.91
EvNet 34.3 0.22 15.4 0.42 11.0 0.63

adv. train. loss: crossentropy
PriorNet 56.2 0.25 25.4 0.48 13.0 0.35
PostNet 34.7 0.22 15.6 0.45 11.0 0.32
DDNet 41.7 0.24 19.6 0.44 9.1 1.30
EvNet 34.3 0.16 11.1 0.55 10.8 0.74

adv. train. loss: diffE
PriorNet 48.1 0.23 28.0 0.40 8.4 0.22
PostNet 45.5 0.21 18.0 0.36 5.4 0.18
DDNet 49.2 0.25 26.3 0.34 9.6 0.27
EvNet 21.9 0.30 15.2 0.24 10.8 1.06

Table 36: Randomized smoothing verification of MNIST: percentage of samples that is certifiably
correct (cc) w.r.t. the predicted class label and mean certified radius (R) w.r.t. class labels.

0.1 0.2 0.5

cc R cc R cc R

adv. train. loss: None
PriorNet 99.2 0.38 98.8 0.71 61.4 0.45
PostNet 99.2 0.38 98.1 0.66 51.2 0.51
DDNet 99.3 0.38 98.0 0.68 47.3 0.52
EvNet 98.9 0.37 96.2 0.56 57.1 0.42

adv. train. loss: crossentropy
PriorNet 99.1 0.38 99.0 0.72 50.4 0.53
PostNet 99.4 0.38 97.4 0.62 28.8 0.51
DDNet 99.3 0.38 98.6 0.69 75.4 0.64
EvNet 99.1 0.37 92.1 0.43 35.0 0.40

adv. train. loss: diffE
PriorNet 99.5 0.38 98.3 0.71 64.0 0.48
PostNet 99.1 0.38 96.8 0.62 48.1 0.44
DDNet 99.6 0.38 98.1 0.69 32.4 0.64
EvNet 99.1 0.37 96.7 0.59 89.5 0.93

Table 37: Adversarial training with CE: Certainty based on differential entropy under PGD label
attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.8 98.5 88.7 47.6 9.0 88.1 54.1 7.5 1.3 0.1 0.1

PriorNet 99.8 99.4 97.7 92.4 79.7 67.5 54.0 45.5 37.9 29.7 18.1 6.1
DDNet 100.0 99.9 99.7 96.9 46.1 0.1 92.1 83.1 24.8 1.1 0.0 0.0
EvNet 81.2 98.4 95.5 90.4 53.2 38.3 62.9 59.2 13.1 1.5 1.6 0.4

Sensorless Segment
PostNet 8.8 4.2 4.6 6.7 11.1 11.7 76.1 35.8 12.6 4.9 4.9 6.3

PriorNet 22.6 11.7 0.2 0.0 0.3 3.6 98.1 66.2 12.8 0.6 0.0 0.0
DDNet 10.9 3.0 0.1 0.2 0.1 0.1 95.9 52.6 4.5 0.5 0.0 0.0
EvNet 21.4 11.0 4.4 3.1 1.7 1.4 94.8 42.7 8.9 1.2 1.3 1.3
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Table 38: Adversarial training with CE: Certainty based on differential entropy under FGSM label
attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.8 99.5 97.4 90.7 83.5 88.0 66.6 28.8 18.0 15.5 20.4

PriorNet 99.8 99.5 98.2 94.6 89.3 83.5 54.7 48.1 42.3 36.8 27.3 19.8
DDNet 100.0 99.9 99.7 98.7 87.3 27.4 91.3 83.4 45.4 15.0 6.5 3.6
EvNet 81.2 98.7 97.4 95.9 73.4 80.7 62.4 68.7 28.6 15.1 20.5 23.1

Sensorless Segment
PostNet 12.5 7.5 9.9 11.6 12.5 12.5 75.1 46.2 20.5 19.5 20.2 26.3

PriorNet 30.0 22.2 0.7 0.5 3.2 8.7 96.1 55.6 13.5 2.1 0.0 0.0
DDNet 17.5 6.7 6.2 3.1 4.8 5.5 92.0 42.0 6.4 2.3 0.0 0.0
EvNet 41.6 25.1 18.9 13.2 14.6 13.9 93.1 55.1 15.5 1.6 0.0 1.3

Table 39: Adversarial training with CE: Certainty based on differential entropy under Noise label
attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 100.0 98.8 54.7 12.1 0.0 0.0 52.1 22.7 6.6 0.0 9.8 9.0

PriorNet 100.0 99.9 88.5 0.0 0.0 0.0 34.9 11.2 7.8 8.7 10.0 0.4
DDNet 99.8 98.5 77.2 15.1 0.0 0.4 81.6 45.3 4.2 0.2 9.6 8.6
EvNet 98.4 86.9 13.3 0.0 0.0 0.0 54.5 17.6 0.1 3.7 8.3 10.5

Sensorless Segment
PostNet 0.6 5.1 12.2 11.7 11.7 11.7 36.7 2.0 3.6 17.2 20.8 21.3

PriorNet 8.5 0.0 0.0 0.2 0.0 2.0 90.5 32.8 7.1 1.2 0.0 0.0
DDNet 1.5 0.0 0.0 0.0 0.0 0.0 79.6 21.8 0.0 0.0 0.0 0.0
EvNet 1.5 0.0 1.0 0.2 4.9 4.8 75.7 22.0 3.2 0.0 0.0 0.7

Table 40: Adversarial training with CE: Attack-Detection based on differential entropy under PGD
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 57.8 67.0 84.1 91.0 76.8 47.9 62.5 66.7 41.6 35.0 37.5 36.6

PriorNet 71.7 83.8 96.5 96.0 90.0 79.3 54.4 55.2 54.8 51.1 45.9 40.6
DDNet 54.4 57.4 69.9 86.4 96.2 86.3 56.7 62.4 60.8 39.3 32.9 31.8
EvNet 52.9 59.7 67.7 71.9 66.5 58.5 52.4 59.0 48.9 41.7 40.5 40.7

Sensorless Segment
PostNet 43.7 41.1 38.4 53.0 83.5 98.7 94.2 73.5 47.7 42.7 56.8 70.7

PriorNet 60.9 47.5 35.8 31.1 30.8 34.5 86.2 90.1 59.5 47.6 34.0 30.8
DDNet 53.1 43.3 34.7 33.0 31.1 32.6 76.6 83.0 45.7 32.7 30.8 30.8
EvNet 48.3 42.1 37.7 36.6 39.2 48.5 95.9 79.6 43.3 33.4 31.3 31.2

Table 41: Adversarial training with CE: Attack-Detection based on differential entropy under FGSM
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 56.1 62.8 75.5 86.3 90.4 92.6 63.0 68.9 66.1 63.2 66.2 77.5

PriorNet 68.6 80.6 96.8 98.0 98.4 98.2 55.9 59.0 63.0 65.4 63.4 58.4
DDNet 54.4 57.4 69.5 84.0 95.5 99.0 57.6 63.7 70.3 69.0 73.4 76.4
EvNet 52.6 57.9 62.9 66.0 64.0 70.0 52.4 60.0 59.0 61.2 62.9 72.3

Sensorless Segment
PostNet 98.3 99.8 99.9 100.0 99.9 100.0 98.0 99.8 99.9 100.0 99.9 100.0

PriorNet 78.6 68.1 37.6 32.0 30.7 49.1 68.8 60.0 42.9 31.4 30.7 32.3
DDNet 60.9 55.5 41.0 34.6 31.7 32.7 61.3 51.7 39.0 33.8 31.5 32.5
EvNet 70.0 70.4 67.5 63.0 77.2 76.6 69.5 70.0 66.9 62.4 77.2 76.4

Table 42: Adversarial training with CE: Attack-Detection based on differential entropy under Noise
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 59.0 66.4 97.2 95.7 95.9 99.6 80.5 89.2 95.2 99.5 85.7 99.7

PriorNet 31.8 33.8 61.3 99.5 100.0 95.8 52.2 50.2 31.2 54.4 99.8 100.0
DDNet 51.8 86.4 99.8 100.0 100.0 99.6 80.3 88.4 99.7 98.8 99.4 68.4
EvNet 51.7 58.6 85.3 84.9 66.3 100.0 46.9 68.1 93.4 94.9 71.4 77.8

Sensorless Segment
PostNet 99.9 100.0 100.0 100.0 99.9 100.0 93.2 99.3 99.9 100.0 100.0 100.0

PriorNet 56.7 42.9 32.0 30.8 31.0 30.7 68.8 60.0 42.9 31.4 30.7 32.3
DDNet 51.2 43.9 33.8 32.4 31.7 35.0 61.3 51.7 39.0 33.8 31.5 32.5
EvNet 69.2 58.6 71.7 52.3 70.9 77.6 69.5 70.0 66.9 62.4 77.2 76.4
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Table 43: Adversarial training with CE: OOD detection based on differential entropy under PGD
uncertainty attacks against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 95.7 93.1 88.3 78.1 46.9 32.1 94.8 90.3 78.6 58.7 46.4 41.2

PriorNet 99.6 99.3 98.1 95.4 86.7 62.6 99.7 99.3 98.3 90.7 77.7 37.3
DDNet 99.0 98.9 97.8 91.7 58.6 30.7 99.1 99.0 98.4 96.2 90.8 75.7
EvNet 71.3 66.9 60.6 64.4 50.4 42.7 66.3 47.8 37.4 46.7 37.3 33.3

CIFAR10 – SVHN
PostNet 65.1 45.6 21.0 17.7 16.4 15.5 63.8 41.1 19.6 19.4 17.0 16.1

PriorNet 17.0 16.6 16.0 15.9 16.0 16.1 17.1 16.4 15.8 15.8 15.6 15.7
DDNet 70.8 63.5 34.0 16.8 15.5 15.4 72.7 64.8 28.3 17.9 15.4 15.4
EvNet 53.9 43.7 24.2 16.6 16.1 15.5 55.8 34.7 29.6 21.5 22.0 22.5

Sens. – Sens. class 10, 11
PostNet 40.5 37.3 43.8 46.7 47.3 45.8 42.6 41.7 31.7 38.5 81.9 99.3

PriorNet 26.6 26.6 26.5 26.5 30.8 40.0 27.9 27.7 26.5 26.5 26.5 26.5
DDNet 26.6 26.6 26.5 26.5 26.6 28.2 26.6 26.6 26.8 26.7 26.6 26.7
EvNet 31.8 29.7 27.2 28.0 32.8 37.8 36.5 38.1 27.8 27.4 30.0 38.3

Seg. – Seg. class sky
PostNet 61.2 50.8 53.3 32.7 45.3 49.2 79.9 61.6 62.7 32.6 46.0 66.7

PriorNet 31.1 30.8 30.8 30.8 30.8 30.8 31.4 30.8 30.8 30.8 30.8 30.8
DDNet 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8
EvNet 67.0 34.9 30.9 30.8 30.8 31.6 75.5 52.1 31.2 31.2 30.8 30.8

Table 44: Adversarial training with CE: OOD detection based on differential entropy under FGSM
uncertainty attacks against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 95.8 93.7 91.7 90.2 80.3 73.5 95.0 91.6 84.9 80.8 73.9 81.4

PriorNet 99.5 99.2 98.3 95.7 87.2 77.0 99.5 99.2 98.8 96.8 92.4 76.2
DDNet 99.0 99.0 98.1 94.6 80.3 47.3 99.1 99.1 98.6 97.3 95.3 92.4
EvNet 71.4 67.7 62.6 68.6 56.9 53.0 68.3 57.1 50.7 62.6 50.7 46.4

CIFAR10 – SVHN
PostNet 67.4 61.4 62.9 70.7 65.0 44.4 65.6 54.6 39.0 45.1 62.7 77.6

PriorNet 17.0 16.9 17.1 18.1 24.0 37.5 17.2 17.3 17.4 18.9 22.2 29.8
DDNet 71.0 66.9 56.1 55.7 48.7 44.7 72.2 66.4 48.0 42.2 48.7 69.1
EvNet 56.5 62.2 51.6 53.9 64.4 46.6 55.9 42.1 35.0 37.4 56.2 68.7

Sens. – Sens. class 10, 11
PostNet 41.2 37.9 34.3 41.4 45.7 45.7 99.2 99.8 99.8 100.0 99.9 100.0

PriorNet 27.2 28.0 29.3 37.5 96.5 77.7 28.8 29.5 26.6 26.5 26.5 26.5
DDNet 30.7 32.8 65.6 72.7 92.9 94.4 27.5 29.5 28.7 26.6 26.5 27.2
EvNet 44.3 47.2 47.7 46.3 38.8 40.0 51.6 69.3 50.4 48.5 65.4 72.3

Seg. – Seg. class sky
PostNet 61.9 54.3 57.4 34.0 37.5 43.3 92.9 92.2 91.1 99.9 99.9 100.0

PriorNet 31.0 30.8 30.8 30.8 30.8 36.9 31.2 30.8 30.8 30.8 30.8 30.8
DDNet 30.8 30.8 33.0 37.8 59.4 92.1 30.8 30.8 30.8 30.8 30.8 30.8
EvNet 66.7 42.3 45.6 49.0 61.5 50.1 74.6 57.3 51.2 45.8 60.0 63.2
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Table 45: Adversarial training with CE: OOD detection based on differential entropy under Noise
uncertainty attacks against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 91.7 72.7 32.4 36.2 33.2 30.7 93.0 85.5 89.9 90.5 73.1 99.1

PriorNet 99.7 98.4 71.5 34.3 37.3 38.7 99.2 96.8 96.8 99.3 100.0 77.4
DDNet 96.6 79.5 31.9 31.2 30.9 35.0 98.6 99.5 99.9 100.0 99.8 98.5
EvNet 87.4 49.9 32.8 32.0 33.2 36.3 87.4 46.8 48.6 45.1 33.3 100.0

CIFAR10 – SVHN
PostNet 43.9 31.9 30.7 30.7 56.2 31.5 85.1 84.8 85.2 97.0 82.2 99.5

PriorNet 31.4 32.8 85.8 37.1 30.7 30.8 35.2 40.1 30.8 42.1 99.0 100.0
DDNet 50.8 42.8 30.7 32.8 30.7 94.9 82.3 80.3 99.2 97.8 98.9 63.9
EvNet 56.2 34.4 32.1 32.4 37.9 46.7 59.8 63.2 82.5 92.0 41.6 51.2

Sens. – Sens. class 10, 11
PostNet 30.8 47.8 50.0 50.0 50.0 50.0 98.7 99.8 100.0 100.0 99.8 100.0

PriorNet 30.7 30.7 30.9 87.7 100.0 100.0 31.0 30.7 32.4 31.4 34.2 30.7
DDNet 30.7 30.7 47.4 75.0 92.9 79.7 30.7 30.7 30.7 41.3 34.3 39.6
EvNet 30.8 30.8 40.8 36.3 50.7 34.2 34.5 31.0 34.4 38.8 47.4 51.1

Seg. – Seg. class sky
PostNet 34.2 31.0 42.6 49.9 50.0 50.0 97.7 93.7 99.8 100.0 100.0 100.0

PriorNet 30.8 30.8 30.8 30.8 30.9 100.0 30.9 30.8 30.8 30.9 31.2 32.9
DDNet 30.8 30.8 30.8 31.3 77.8 93.3 30.8 30.8 30.8 30.8 30.8 32.3
EvNet 63.3 30.8 30.8 30.8 32.7 36.0 98.8 40.2 40.4 34.8 50.0 32.5

Table 46: Adversarial training with Diff. Ent.: Accuracy based on differential entropy under PGD
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.1 98.8 96.8 88.8 65.9 15.6 72.9 50.7 12.9 3.1 0.4 0.4

PriorNet 99.1 98.8 97.7 94.7 88.8 73.4 66.5 62.8 52.9 35.8 23.0 9.6
DDNet 99.1 98.9 97.4 91.9 48.7 0.3 78.9 63.1 22.0 1.9 0.0 0.0
EvNet 98.3 98.1 95.2 91.0 72.7 40.1 65.6 48.9 14.8 8.4 3.8 1.8

Sensorless Segment
PostNet 16.1 7.4 5.8 7.5 9.4 12.5 84.7 47.1 22.3 6.4 10.8 3.8

PriorNet 33.3 15.6 3.7 0.0 0.0 0.0 93.9 65.9 18.1 2.9 0.0 0.0
DDNet 12.9 3.0 0.5 0.3 0.2 0.2 90.6 47.5 8.4 0.1 0.0 0.0
EvNet 36.1 22.1 10.8 3.8 1.7 3.1 92.0 56.2 11.9 2.1 0.4 2.8

Table 47: Adversarial training with Diff. Ent.: Accuracy based on differential entropy under FGSM
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.1 98.9 97.6 95.0 91.2 80.9 23.5 11.2 0.2 0.1 9.0 1.6

PriorNet 99.1 98.8 97.9 95.9 93.5 87.4 31.6 14.4 6.2 7.8 0.2 1.4
DDNet 99.1 99.0 97.9 94.9 78.4 23.3 36.8 13.9 9.2 10.3 10.0 10.0
EvNet 98.3 98.3 95.7 95.4 88.9 63.7 24.4 4.8 0.5 9.0 11.2 3.9

Sensorless Segment
PostNet 21.4 10.6 10.3 12.3 12.4 12.5 83.9 53.7 27.8 15.4 20.1 19.1

PriorNet 40.2 21.7 8.1 0.0 0.0 2.3 91.3 57.2 18.1 3.2 0.0 0.0
DDNet 17.6 5.0 4.9 8.0 7.0 5.7 86.1 39.2 12.1 0.4 0.0 2.9
EvNet 43.1 29.3 21.3 14.4 13.4 13.5 91.9 65.3 17.9 2.9 0.1 0.8

Table 48: Adversarial training with Diff. Ent.: Accuracy based on differential entropy under Noise
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 97.0 88.5 10.0 2.2 0.0 0.4 71.8 54.2 30.7 21.6 16.8 14.6

PriorNet 98.1 88.5 24.5 4.1 0.0 0.0 67.2 65.2 58.9 48.5 40.5 31.4
DDNet 97.8 92.5 6.4 2.2 0.1 0.1 78.1 63.8 34.2 16.0 8.0 6.0
EvNet 96.2 87.0 2.3 0.1 0.0 0.0 65.2 54.8 29.2 18.7 17.4 16.2

Sensorless Segment
PostNet 1.0 4.7 11.4 11.7 11.7 11.7 27.6 1.5 3.6 15.2 20.9 21.2

PriorNet 4.7 0.0 0.0 0.1 0.0 2.2 56.4 16.1 2.1 0.9 0.0 0.0
DDNet 0.3 0.0 0.0 0.0 0.0 0.1 49.4 6.1 0.0 0.0 0.0 0.0
EvNet 0.9 0.0 0.9 0.2 3.5 3.1 51.2 10.6 0.3 0.0 0.0 0.6
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Table 49: Adversarial training with Diff. Ent.: Certainty based on differential entropy under PGD
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.8 98.5 86.8 53.0 10.2 88.5 56.6 7.5 1.7 0.3 0.2

PriorNet 99.7 99.6 98.0 91.4 76.2 54.8 51.0 44.7 36.3 23.7 13.8 5.5
DDNet 100.0 99.9 99.7 97.6 47.9 0.1 94.7 82.4 21.2 1.1 0.0 0.0
EvNet 99.2 98.9 96.8 86.5 60.8 33.73 80.6 50.4 14.1 9.1 9.7 2.2

Sensorless Segment
PostNet 10.6 5.3 5.8 7.5 9.5 12.5 76.1 30.1 13.4 4.9 13.2 3.8

PriorNet 22.6 10.3 3.8 0.0 0.0 0.0 97.9 63.8 11.4 1.7 0.0 0.0
DDNet 13.2 2.2 0.4 0.3 0.1 0.2 95.8 51.1 5.0 0.3 0.0 0.0
EvNet 22.6 12.8 5.9 2.0 1.1 2.9 94.5 44.3 7.0 1.2 0.4 2.0

Table 50: Adversarial training with Diff. Ent.: Certainty based on differential entropy under FGSM
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.9 99.4 97.1 92.3 82.2 88.3 67.8 30.9 19.2 15.9 16.7

PriorNet 99.7 99.6 98.4 93.8 87.0 79.5 52.9 49.1 44.1 36.3 28.6 20.9
DDNet 100.0 99.9 99.8 98.8 85.8 21.0 94.1 82.8 43.1 15.4 6.8 5.1
EvNet 99.2 99.1 97.8 95.3 87.8 67.0 80.2 61.1 32.5 21.9 21.6 22.2

Sensorless Segment
PostNet 13.8 7.2 9.7 12.3 12.4 12.5 74.4 37.9 20.2 16.7 19.5 19.9

PriorNet 32.3 19.1 9.1 0.0 0.0 5.2 96.2 56.6 11.4 10.7 0.0 0.0
DDNet 19.7 7.0 3.7 7.6 7.6 7.1 92.2 40.5 7.0 0.4 0.0 4.9
EvNet 37.8 30.5 26.0 14.7 13.9 13.6 91.9 57.7 11.8 2.3 0.7 1.1

Table 51: Adversarial training with Diff. Ent.: Certainty based on differential entropy under Noise
label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.7 99.2 64.5 8.7 0.0 0.5 77.4 14.6 0.3 0.1 9.1 3.7

PriorNet 99.9 98.8 84.5 17.5 0.0 0.0 44.7 11.3 13.6 9.0 0.4 2.6
DDNet 99.7 99.4 39.5 5.9 0.6 0.3 86.1 46.5 15.5 17.4 10.2 10.1
EvNet 99.2 97.0 19.4 0.1 0.0 0.0 67.1 12.7 4.5 12.8 13.2 3.3

Sensorless Segment
PostNet 0.6 5.1 12.2 11.7 11.7 11.7 36.7 2.0 3.6 17.2 20.8 21.3

PriorNet 8.5 0.0 0.0 0.2 0.0 2.0 90.5 32.8 7.1 1.2 0.0 0.0
DDNet 1.5 0.0 0.0 0.0 0.0 0.0 79.6 21.8 0.0 0.0 0.0 0.0
EvNet 1.5 0.0 1.0 0.2 4.9 4.8 75.7 22.0 3.2 0.0 0.0 0.7

Table 52: Adversarial training with Diff. Ent.: Attack-Detection based on differential entropy under
PGD label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 57.9 65.4 87.1 93.6 79.3 47.7 63.1 67.1 41.7 34.4 35.0 36.5

PriorNet 66.9 76.0 95.1 96.4 88.7 74.8 55.7 55.8 53.1 48.9 43.3 37.8
DDNet 53.7 58.5 69.3 85.5 96.1 87.7 56.7 62.5 60.4 41.2 32.6 31.8
EvNet 54.3 58.9 63.2 72.3 69.4 59.1 55.9 60.2 49.7 44.6 41.4 39.4

Sensorless Segment
PostNet 49.8 41.5 36.3 51.0 85.9 99.0 95.0 77.6 48.9 42.9 45.2 68.5

PriorNet 50.4 39.4 31.6 30.8 30.7 30.7 86.1 89.7 50.8 37.5 32.9 30.8
DDNet 52.2 41.5 35.5 32.3 31.5 35.9 77.9 87.3 43.4 32.4 30.9 30.8
EvNet 48.0 44.3 38.8 35.2 39.1 48.9 95.4 77.9 42.6 33.7 31.3 31.6

Table 53: Adversarial training with Diff. Ent.: Attack-Detection based on differential entropy under
FGSM label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 56.2 61.6 78.0 89.5 92.1 90.7 63.8 68.8 65.8 62.9 67.0 73.6

PriorNet 67.3 76.9 95.3 98.0 98.0 98.0 58.0 62.5 67.3 67.3 65.9 62.2
DDNet 53.8 58.6 68.7 83.9 95.8 98.9 57.7 63.8 71.0 72.8 74.8 79.3
EvNet 53.7 57.2 59.8 65.2 71.5 72.4 56.2 62.4 58.9 59.0 63.2 70.5

Sensorless Segment
PostNet 98.3 99.8 99.9 99.9 99.9 100.0 96.0 93.3 93.1 97.4 99.8 99.6

PriorNet 67.0 56.0 35.8 30.8 30.7 30.7 88.6 89.3 55.1 45.2 37.6 30.8
DDNet 60.1 50.0 40.3 32.5 31.5 33.8 81.6 89.2 56.9 49.1 35.8 31.8
EvNet 68.7 69.8 69.9 68.6 68.8 73.2 95.9 86.6 66.2 63.2 74.2 77.2
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Table 54: Adversarial training with Diff. Ent.: Attack-Detection based on differential entropy under
Noise label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 53.7 67.7 94.5 94.1 98.1 100.0 85.8 79.1 93.0 98.5 96.3 96.6

PriorNet 33.1 42.4 80.8 93.8 78.8 56.0 52.3 38.2 51.8 38.1 87.4 99.9
DDNet 56.0 86.7 99.9 100.0 100.0 99.4 79.5 90.9 99.6 98.2 96.2 85.0
EvNet 50.8 71.7 83.1 88.2 68.4 88.0 67.9 87.0 93.3 89.6 93.7 97.3

Sensorless Segment
PostNet 99.9 100.0 100.0 100.0 99.9 100.0 93.2 99.3 99.9 100.0 100.0 100.0

PriorNet 56.7 42.9 32.0 30.8 31.0 30.7 55.9 63.1 41.7 33.3 30.8 30.8
DDNet 51.2 43.9 33.8 32.4 31.7 35.0 55.9 58.9 42.1 33.4 31.1 32.7
EvNet 69.2 58.6 71.7 52.3 70.9 77.6 63.0 62.7 63.9 54.4 74.6 61.2

Table 55: Adversarial training with Diff. Ent.: OOD detection based on differential entropy under
PGD uncertainty attacks against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 92.6 94.0 89.5 69.1 49.6 31.6 91.9 91.4 79.8 54.2 42.4 46.0

PriorNet 99.6 99.3 97.6 93.7 81.4 50.8 99.6 99.2 97.4 92.1 66.3 37.6
DDNet 99.1 98.9 97.6 93.6 60.7 30.7 99.1 99.0 98.3 97.0 91.4 77.5
EvNet 73.4 66.7 72.9 57.7 49.3 45.0 63.7 51.3 58.8 35.1 33.4 36.4

CIFAR10 – SVHN
PostNet 68.6 46.1 21.7 17.5 16.2 15.6 63.3 37.4 19.0 17.4 16.7 16.8

PriorNet 17.3 15.9 17.4 15.5 15.4 15.4 17.1 15.7 16.6 15.4 15.4 15.4
DDNet 77.5 66.0 34.5 16.4 15.4 15.4 79.6 67.4 33.2 16.9 15.4 15.4
EvNet 57.8 35.2 22.0 21.5 17.5 16.0 52.7 30.7 30.3 31.1 20.8 18.0

Sens. – Sens. class 10, 11
PostNet 39.6 34.8 41.8 46.0 44.9 47.6 41.1 40.6 30.8 35.6 83.0 99.5

PriorNet 26.6 26.5 26.5 26.5 26.5 26.6 28.8 27.0 26.6 26.9 26.5 26.5
DDNet 26.8 26.5 26.5 26.6 26.6 28.0 26.8 26.6 26.7 26.7 26.6 26.6
EvNet 31.0 29.4 27.2 29.1 32.4 36.5 39.1 35.1 28.9 28.7 30.0 38.3

Seg. – Seg. class sky
PostNet 91.7 45.3 44.6 38.8 46.0 49.4 98.7 67.3 44.1 47.7 37.5 59.4

PriorNet 31.2 30.8 30.8 30.8 30.8 30.8 31.7 30.8 30.8 30.8 30.8 30.8
DDNet 31.0 30.8 30.8 30.8 30.8 30.8 31.2 30.8 30.8 30.8 30.8 30.8
EvNet 58.0 39.4 31.0 30.8 30.8 31.5 84.1 71.7 36.1 31.1 30.8 30.8

Table 56: Adversarial training with Diff. Ent.: OOD detection based on differential entropy under
FGSM uncertainty attacks against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 92.8 94.2 93.1 84.7 81.2 72.9 92.1 92.2 88.7 79.0 78.2 75.9

PriorNet 99.6 99.3 97.7 94.5 86.6 71.0 99.6 99.3 98.1 96.5 90.2 71.5
DDNet 99.1 98.9 97.9 95.5 79.2 46.3 99.1 99.0 98.5 97.8 95.4 92.1
EvNet 73.7 67.6 74.4 62.2 56.5 59.5 67.7 57.6 67.5 49.8 49.0 55.0

CIFAR10 – SVHN
PostNet 71.3 60.8 67.1 68.7 61.8 54.4 65.7 49.9 41.7 37.8 61.0 78.4

PriorNet 17.5 16.3 20.8 17.4 19.8 19.6 17.5 16.4 21.7 17.2 21.0 20.1
DDNet 77.7 69.9 61.4 53.8 45.7 37.2 79.3 69.3 54.2 47.5 52.4 73.9
EvNet 62.9 51.2 48.9 58.7 58.1 46.3 53.9 35.0 37.9 51.4 56.4 59.6

Sens. – Sens. class 10, 11
PostNet 40.1 35.5 33.8 43.0 43.6 47.5 99.7 99.9 99.9 99.9 99.9 100.0

PriorNet 28.4 29.5 39.4 53.3 93.0 98.3 30.2 28.3 27.2 27.8 26.9 26.5
DDNet 32.2 34.4 53.5 84.2 93.8 92.2 26.8 26.6 26.7 26.7 26.6 26.6
EvNet 43.1 41.0 37.0 43.5 42.9 41.9 56.8 56.4 57.8 60.0 66.0 67.8

Seg. – Seg. class sky
PostNet 91.4 54.2 53.1 45.4 38.1 40.6 98.8 75.9 87.7 99.1 99.9 100.0

PriorNet 31.1 30.8 30.8 30.8 30.8 39.2 31.5 30.8 30.8 30.8 30.8 30.8
DDNet 30.9 30.8 30.8 34.9 58.2 85.4 31.1 30.8 30.8 30.8 30.8 30.8
EvNet 55.3 46.6 51.8 51.0 48.9 41.4 86.6 71.6 49.5 57.4 76.6 58.6
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Table 57: Adversarial training with Diff. Ent.: OOD detection based on differential entropy under
Noise uncertainty attacks against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 90.8 81.0 39.1 38.3 30.8 30.7 88.1 88.9 81.0 70.8 95.4 100.0

PriorNet 99.8 93.6 41.0 42.1 40.0 51.7 100.0 99.3 98.1 94.0 44.8 32.1
DDNet 97.2 87.1 31.0 31.1 31.6 40.6 98.8 99.5 99.9 99.9 100.0 98.1
EvNet 68.6 52.2 31.9 33.1 32.9 31.3 53.2 62.2 39.7 45.9 33.7 50.3

CIFAR10 – SVHN
PostNet 46.7 67.3 33.9 30.7 39.4 44.0 88.0 78.2 84.8 92.1 93.6 95.9

PriorNet 41.9 37.0 33.9 42.5 32.6 30.7 35.4 32.4 38.2 33.3 76.1 99.5
DDNet 58.7 37.3 30.7 33.5 33.6 61.0 90.6 88.3 99.0 97.5 93.9 80.9
EvNet 48.9 34.8 30.9 31.8 37.7 34.4 69.6 77.7 85.3 87.4 93.1 95.7

Sens. – Sens. class 10, 11
PostNet 30.8 47.8 50.0 50.0 50.0 50.0 98.7 99.8 100.0 100.0 99.8 100.0

PriorNet 30.7 30.7 30.9 87.7 100.0 100.0 31.0 30.7 32.4 31.4 34.2 30.7
DDNet 30.7 30.7 47.4 75.0 92.9 79.7 30.7 30.7 30.7 41.3 34.3 39.6
EvNet 30.8 30.8 40.8 36.3 50.7 34.2 34.5 31.0 34.4 38.8 47.4 51.1

Seg. – Seg. class sky
PostNet 34.2 31.0 42.6 49.9 50.0 50.0 97.7 93.7 99.8 100.0 100.0 100.0

PriorNet 30.8 30.8 30.8 30.8 30.9 100.0 30.9 30.8 30.8 30.9 31.2 32.9
DDNet 30.8 30.8 30.8 31.3 77.8 93.3 30.8 30.8 30.8 30.8 30.8 32.3
EvNet 63.3 30.8 30.8 30.8 32.7 36.0 98.8 40.2 40.4 34.8 50.0 32.5

A.6 VISUALIZATION OF DIFFERENTIAL ENTROPY DISTRIBUTIONS ON ID DATA AND OOD
DATA

The following Figures visualize the differential entropy distribution for ID data and OOD data for
all models with standard training. We used label attacks and uncertainty attacks for CIFAR10 and
MNIST. Thus, they show how well the DBU models separate on clean and perturbed ID data and
OOD data.

Figures 4 and 5 visualizes the differential entropy distribution of ID data and OOD data under label
attacks. On CIFAR10, PriorNet and DDNet can barely distinguish between clean ID and OOD data.
We observe a better ID/OOD distinction for PostNet and EvNet for clean data. However, we do not
observe for any model an increase of the uncertainty estimates on label attacked data. Even worse,
PostNet, PriorNet and DDNet seem to assign higher confidence on class label attacks. On MNIST,
models show a slightly better behavior. They are capable to assign a higher uncertainty to label
attacks up to some attack radius.
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Figure 4: Visualization of the differential entropy distribution of ID data (CIFAR10) and OOD data
(SVHN) under label attack. The first row corresponds to no attack. The other rows correspond do
increasingly stronger attack strength.

Figures 6, 7, 8 and 9 visualizes the differential entropy distribution of ID data and OOD data
under uncertainty attacks. For both CIFAR10 and MNIST data sets, we observed that uncertainty
estimations of all models can be manipulated. That is, OOD uncertainty attacks can shift the OOD
uncertainty distribution to more certain predcitions, and ID uncertainty attacks can shift the ID
uncertainty distribution to less certain predictions.
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Figure 5: Visualization of the differential entropy distribution of ID data (MNIST) and OOD data
(KMNIST) under label attack. The first row corresponds to no attack. The other rows correspond do
increasingly stronger attack strength.
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Figure 6: Visualization of the differential entropy distribution of ID data (CIFAR10) and OOD data
(SVHN) under OOD uncertainty attack. The first row corresponds to no attack. The other rows
correspond do increasingly stronger attack strength.
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Figure 7: Visualization of the differential entropy distribution of ID data (CIFAR10) and OOD
data (SVHN) under ID uncertainty attack. The first row corresponds to no attack. The other rows
correspond do increasingly stronger attack strength.
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Figure 8: Visualization of the differential entropy distribution of ID data (MNIST) and OOD data
(KMNIST) under OOD uncertainty attack. The first row corresponds to no attack. The other rows
correspond do increasingly stronger attack strength.

36



Under review as a conference paper at ICLR 2021

Figure 9: Visualization of the differential entropy distribution of ID data (MNIST) and OOD data
(KMNIST) under ID uncertainty attack. The first row corresponds to no attack. The other rows
correspond do increasingly stronger attack strength.

37


	Introduction
	Related work
	Dirichlet-based uncertainty models
	Robustness of Dirichlet-based uncertainty models
	Uncertainty estimation under label attacks
	Attacking uncertainty estimation
	Robust training for DBU models & ID/OOD Verification

	Conclusion
	Appendix
	Dirichlet-based uncertainty models
	Closed-form computation of uncertainty measures & Uncertainty attacks
	Details of the Experimental setup
	Additional Experiments
	Uncertainty estimation under label attacks
	Attacking uncertainty estimation

	Robust training for DBU models & ID/OOD Verification
	Visualization of differential entropy distributions on ID data and OOD data


