
DyGSSM: Multi-view Dynamic Graph Embeddings with SSM
Gradient Update

Bizhan Alipour Pijani
University of North Texas

pijanialipourpijani@my.unt.edu

Serdar Bozdag
University of North Texas
serdar.bozdag@unt.edu

Abstract
Dynamic graphs whose topology and nodes evolve over time are ubiquitous in
multiple real world domains such as social networks, finance, and healthcare.
Traditional graph learning methods fail to capture structural changes and tempo-
ral patterns in dynamic graphs. Recent advances in dynamic graph representation
learning, such as meta-learning-based approaches, have addressed some of these
challenges. However, existing methods still face three key limitations. First, most
approaches capture either local or global structures of the graphs, neglecting
to model both simultaneously. Second, meta-learning models often depend on
user-specific window size, which must be carefully tuned for each dataset. A
short window size may miss trends, and a long window size may blur recent
updates. Third, most methods work on only discrete-time or continuous-time
dynamic graphs, resulting in suboptimal performance across different temporal
settings. To address these limitations in dynamic graph representation learn-
ing, we propose a novel method called DyGSSM (Multi-view Dynamic Graph
Embeddings with SSM Gradient Update). We extract local and global features
at each snapshot and fuse them using a lightweight attention mechanism for
link prediction. To capture long-term dependencies when updating model pa-
rameters, we incorporate HiPPO (High-order Polynomial Projection Operators)
algorithm, which has gained attention for its ability to efficiently optimize and
preserve sequence history in State Space Models (SSMs). DyGSSM is designed
to handle both discrete-time and continuous-time dynamic graphs. Parameter
comparisons show that DyGSSM requires substantially fewer parameters than
the other methods. Extensive experiments on 12 public datasets demonstrate
that DyGSSM outperforms baselines and State-Of-The-Art (SOTA) methods in
32 out of 36 evaluation metrics. The source code and datasets are available at
https://github.com/bozdaglab/DyGSSM.

1 Introduction

Dynamic graphs are ubiquitous as many real-world interactions and relationships are dynamic in
nature, such as social networks [1], transportation networks [2], transaction networks [3], and trade
networks [4]. Unlike static graphs, dynamic graphs evolve over time, with changes occurring in their
topology or edge/node attributes. Message passing-based graph representation learning models [5–9]
have achieved significant success in graph analysis tasks. These models are effective in capturing
local structural information due to the inherent locality of the message-passing mechanism. These
models have recently been extended to dynamic graphs for representation learning [10–14]. For
example, in [13, 15, 16] “snapshot” of the dynamic graph at each time point is processed using a
graph representation learning approach and sequence encoders such as Long Short Term Memory
(LSTM) [17] or Transformers [18] are utilized to capture the temporal evolution of the graph over
time. Although these approaches have shown promising results, they have low expressive power, as
an independent GCN is trained for each snapshot of the graph. As a result, these models may fail to
extract historical structural information. To address this, researchers have integrated the sequence

Pijani et al., DyGSSM: Multi-view Dynamic Graph Embeddings with SSM Gradient Update. Proceedings of the
Fourth Learning on Graphs Conference (LoG 2025), PMLR 269, Hybrid Event, December 10–12, 2025.

DyGSSM

encoder into the GCN layer to update the parameters of the GCN model [17, 18] over time. However,
these methods have another limitation. In dynamic graphs, changes occurring in multiple hops away
from a source node could still influence the source node in subsequent snapshots. However, these
methods fail to extract signal from such distant nodes, thereby reducing their expressive power.

Meta-learning has emerged as an effective approach for modeling temporal dynamics. In meta-
learning, which is based on the idea of model transfer, the model parameters are updated based on
previous time steps and then passed to the next time steps. In this setting, ROLAND [10] updated
node embeddings generated by the GNN layer utilizing adjacent time snapshots. However, this
approach only aggregates two adjacent snapshots and neglects temporal information with long-term
dependencies. WinGNN [11] introduced a sliding window approach to update the model parameters.
WinGNN is mainly designed for discrete-time snapshots and may not handle irregularly timed events.
It relies on several hyperparameters, such as window size, beta value, and meta-learning rate, which
require careful tuning for each dataset. Additionally, if the window size is too small, it may miss
trends, and if too large, it may blur recent updates. Moreover, these methods are GNN-based and
typically focus on local neighbors (local view), while ignoring the global structure of the graph
(global view). Both views provide complementary information: local views capture fine details of
immediate interactions, while global views capture long-range changes that may affect future states.
Long-distance information is especially important in time series data, as dynamic graphs evolve over
time and interactions can occur at any step [19, 20]. Changes in distant hops may also influence the
source node in later snapshots. Therefore, it is important to extract both local and global features,
which together can be regarded as a multi-view representation of the same snapshots.

Recently, state space models (SSMs) have become a popular and powerful tool for sequence modeling.
Some SSM-based methods have been proposed for dynamic graphs [21, 22]. For example, GraphSSM
[23] leverages SSMs to capture continuous-time dynamics in dynamic graphs for node classification
tasks. DyGMamba [21] uses two types of SSM, a node- and time-level SSM. DyGMamba encodes
one-hop temporal neighbors of nodes; as a result, it may miss higher-order structural dependencies.
Additionally, the node-level SSM still sequentially processes interaction histories for each node.
In very dense graphs or when histories are extremely long, this sequential processing can become
computationally expensive and slow. As shown in the results section, dynamic SSM-based models
often require a large number of parameters, which makes them less practical for large datasets.

To address these challenges, we introduce Multi-view Dynamic Graph Embeddings with State
Space Model Gradient Update (DyGSSM). While traditional SSMs model time-series data directly,
DyGSSM leverages SSM to update model parameters. To initialize the SSM state, we utilized
High-order Polynomial Projection Operators (HiPPO) [24, 25]. To make this process computationally
tractable, we introduce a compressed parameter-space representation: instead of flattening every
scalar weight into the SSM state, we treat each parameter tensor as a single entity, maintaining one
HiPPO state per tensor. This drastically reduces memory and computational overhead and reduces
the number of hyperparameters (such as window size). The SSM in DyGSSM considers the loss
of each snapshot during parameter updates, which facilitates smoother updates and introduces a
mechanism for forgetting less relevant information from the past time while remembering critical
patterns from earlier ones. This design enables DyGSSM to encode both discrete-time (snapshot-
based) and continuous-time dynamic graphs. Additionally, DyGSSM introduces a lightweight
attention-fusion mechanism that departs from conventional multi-head attention. We summarize our
main contributions as follows:

• To the best of our knowledge, we are the first to integrate SSM into the meta-learning strategy to
update model parameters. We introduce an SSM-based method to effectively capture long-term
dependencies when updating model parameters. This approach avoids the need for numerous
hyperparameters, which can increase the model’s sensitivity to specific datasets.

• We introduce a compressed HiPPO formulation that maintains one SSM state per parameter
tensor rather than per-weight, which significantly reduces computational and memory costs.

• DyGSSM is designed to handle both discrete-time (snapshot-based) and continuous-time dy-
namic graphs, extending its applicability to a broader range of temporal graph scenarios.

• We introduce a lightweight, and scalable attention mechanism that fuses local and global
embeddings efficiently.

• Extensive experiments on multiple datasets demonstrate the superiority of DyGSSM over
State-Of-The-Art (SOTA) models, while having the lowest number of parameters.

2

DyGSSM

2 Related Work
Dynamic graph representation models can broadly be categorized into the following three groups.

2.1 Sequence-Based Models

Sequence-based models follow the message passing and temporal encoder to capture time depen-
dencies [12]. Researchers have utilized GCN with RNN variants to capture time dependencies.
For example, CD-GCN [26] is a combination of GCN and LSTM. They apply GCN to obtain the
embeddings of each snapshot and pass the embeddings to LSTM for time sequence dependencies.
EvolveGCN [17] and GC-GCN-N [27] integrate GCN and GRU for tasks such as link prediction,
edge classification, node classification, and landslide displacement forecasting. GC-GCN-N captures
spatial dependencies among monitoring stations through a weighted adjacency matrix and temporal
patterns from time-series data using GRU. PoGeVon [19] introduces an encoder-decoder architecture
for dynamic graph representation. They utilize a novel node position embedding derived from the
random walk with restart (RWR) approach. In addition, they use the concept of the sliding window
with a Lagrange multiplier to control the amount of information that can be transmitted through the
latent representation. They use a 2-layer GRU to capture the dynamic information in networked time
series. These models have two main limitations. First, they do not share parameters across time steps;
instead, each time step trains an independent GCN, which restricts the model’s ability to leverage
historical structural information. Second, they require a large number of parameters because they rely
on sequence-based models (i.e., GRU and LSTM) to capture the graph’s temporal evolution.

2.2 Meta-Learner-Based Models

Meta-learning is based on the idea of transfer learning, where previous experience is used to quickly
adapt to a new task. In dynamic graphs, meta-learning–based models extend static GNNs by learning
model parameter initializations for the next time steps. ROLAND [10] extends static graphs to
dynamic ones with minimal extra computational cost. They use a two-layer GNN, where each layer
updates its parameters and passes them to the adjacent snapshot. WinGNN [11] proposes a framework
that combines GNN with a meta-learning strategy and a novel random gradient aggregation mecha-
nism. Instead of relying on temporal encoders, WinGNN models graph dynamics by introducing a
randomized sliding-window strategy that computes loss on each snapshot and propagates updated
model parameters to the next snapshot. They perform backpropagation only at the end of the window.
MetaDyGNN [28] leverages a meta-learning strategy for few-shot link prediction in dynamic graphs.
They introduce time interval-wise and node-wise adaptations to encompass time dependencies and
node dependency features, and update the global parameters. These models suffer from one main
limitation. The meta-learning parameters, such as the meta-learning rate and window size, must be
carefully tuned for each dataset, which adds extra complexity. For example, short window size (or a
ROLAND-based parameter update) may fail to capture long-term trends, while a long window size
may obscure recent updates.

2.3 SSM- and Transformers-based methods

Many researchers have used transformers instead of LSTM or GRU to capture the temporal evolution
of dynamic graphs [29]. For example, Dysat [18] employs self-attention in two different aspects. First,
attending to structural neighborhoods at each time point. Second, attending to previous historical
representations to conduct link prediction. Graph Transformers (GT) have gained popularity in the
field of graph representation [30–32]. For example, TransformerG2G [33] utilizes transformer for
learning temporal graphs. They use only transformer encoder to learn intermediate node represen-
tations from all the previous snapshots up to the current snapshot. They use two projection heads
(linear mapping and non-linear mapping) to generate low dimensional latent embedding at different
snapshots. DTFormer [34] collects all the first-hop neighbors of source and destination nodes. Then,
it maps these neighbor features into a sequence to be processed by transformer. Despite the effective-
ness of transformer on graph-structured data, it suffers from having a quadratic computational cost
and lack of inductive biases on graph structures.

Recent successes of SSM-based models (such as Mamba) in computer vision and natural language
processing tasks have motivated researchers to apply SSM-based models to graphs. For example,
DyGMamba [21] introduces two levels of SSM: a node-level SSM to encode node interactions and

3

DyGSSM

a time-level SSM to exploit temporal patterns. DG-Mamba [22] treats a dynamic graph as a self-
contained system, using an SSM to capture global intrinsic dynamics. It discretizes the system state
according to cross-snapshot graph adjacency, enabling the model to capture long-range dependencies
through a selective snapshot scanning strategy. Dyg-mamba [35] proposes a new continuous SSM
for dynamic graph learning. They consider irregular time spans as control signals for SSM to have
robust and generalizable model. Although these methods achieve good performance, their high
computational and memory costs make it difficult to scale them to large dynamic graphs. Moreover,
none of the SSM-based models integrate SSM and meta-learning to address the limitations of meta-
learning while enabling the model to distinguish which information to forget and which information
to remember from the past.

3 Preliminaries
In this section, we introduce the notion of a discrete and continuous-time dynamic graph and other
important components that are adopted in DyGSSM.

3.1 Problem Formulation

Let V be a set of nodes and E be the set of edges that connect the nodes in V . A graph consists of
three components G = (V, E ,X), where X ∈ Rn×m is a node feature matrix, n = |V| and m is the
dimension size of the feature. For a graph G, we can create an adjacency matrix A ∈ Rn×n, that
represents local neighbors of each node as follow:

Aij =

{
1 if (vi, vj) ∈ E ,
0 otherwise. (1)

To study a discrete-time dynamic graph, we let G = {G1, . . . ,GT } be a sequence of graphs for
discrete snapshots t = 1, . . . , T . Here, each Gt = (Vt, Et,Xt) represents a snapshot of the dynamic
graph with adjacency matrix At at time t. The local neighbors of a node i at time t denoted
as N local

t,i = {vj | (vi, vj) ∈ Et} and the global neighbors of a node i at time t denoted as
N global

t,i = {vj | vj ∈ RWt(vi)} where RWt(vi) denotes the set of nodes visited by random
walk (RW) starting from vi in snapshot t. In contrast, a continuous-time dynamic graph models
interactions as an event stream. We represent the graph as a sequence of non-decreasing chronological
interactions

G = {(u1, v1, t1), (u2, v2, t2), . . . },
with 0 ≤ t1 ≤ t2 ≤ . . . , where ui, vi ∈ V denote the source and destination nodes of the i-th
interaction at timestamp t. Each node u ∈ V may be associated with a feature vector xu ∈ RdN ,
and each interaction (u, v, t) may carry an edge feature etu,v ∈ RdE , where dN and dE denote the
dimensions of the node feature and link feature. To evaluate DyGSSM, we consider a link prediction
task in discrete- and continuous-time dynamic graphs. The model takes the local (X local

t) and global
(X global

t) node embeddings of nodes vi and vj in discrete/continuous time, and outputs the probability
of a connection between them in the next time frame or event.

3.2 State Space Model

A SSM frames a discrete-time system by a linear mapping from a discrete input ut at time t to a
discrete output yt through a state variable st and three matrices, namely K, B, and C as follows:

st = Kst−1 +But (2)
yt = Cst (3)

The structure of the matrix K is important when building an SSM, as this matrix determines which
part of the previous state can be passed to the current state. In continuous time, the hidden state (s(t))
evolves as follows:

ds(t)

dt
= Ks(t) +Bu(t) (4)

y(t) = Cs(t) (5)

4

DyGSSM

Figure 1: DyGSSM architecture.

where u(t) is a continuous input signal and y(t) is the corresponding output. To use the SSM for
meta-learning-based parameter updates without relying on a window size, we start from Equation 2
and modify it slightly to obtain

st = K̂st−1 + Ĝt · weightt (6)

where st−1 is the state vector at time t− 1, initialized to zero, Ĝt is the gradient vector of the model
parameters at time t, weightt is the reciprocal of the loss (see Section 4.3), and K̂ is the projection
matrix. Using HiPPO to initialize the matrix K was shown to perform better than initializing it as a
random matrix. The HiPPO matrix is designed to generate a hidden state that can memorize the past
inputs with no tunable hyperparameters. We initialized K̂ using the HiPPO algorithm [24, 25] as
follow:

K̂i,j =


(−1)i−j(2i+ 1) if i > j
2 if i= j
0 otherwise

(7)

For entries where the row index is greater than the column index (i > j), the equation above fills
the values along the lower diagonal. (2i+ 1) acts as linear function of the row index i and takes a
positive or negative sign depending on whether i− j in (−1)i−j is even or odd. If i− j is even, the
output is positive; otherwise, it is negative. On the diagonal (i = j), this matrix has a value of 2, and
above the diagonal (i < j), the values are set to 0. The Equation 6 in continuous time becomes as
follows:

s(t) = K̂s(t) + Ĝ(t) · weight(t) (8)

4 Method
In this section, we describe the DyGSSM architecture. We start by explaining how we compute local
and global node embeddings. Next, we show how these two types of embeddings are combined.
Finally, we discuss how the model optimizes its parameters using the HiPPO method. Fig. 1 shows
DyGSSM architecture and Fig. 2 (see Appendix A.2) represents the parameter update mechanisms in
ROLAND, WinGNN, and DyGSSM. Note that we only show local and global representations in the
discrete-time setting here, but the same process can be applied to the continuous-time case as well.

4.1 Node Embeddings

Here, we discuss local and global node embeddings.

4.1.1 Local Embeddings

Graph representation techniques update the embedding of each node u in Gt by performing message
passing between neighbor nodes as follows:

h
(l)
t,u = UPDATE(h

(l−1)
t,u , AGG(h

(l−1)
t,v ,∀v ∈ N local

t,u)), (9)

5

DyGSSM

where h
(l)
t,u, the embedding of node u at layer l, is computed by aggregating information from all its

local neighbors at time point t, denoted by N local
t,u . This process can be expressed in matrix form

as H(l)
t = σ

(
ÂtH

(l−1)
t W

(l)
t

)
where H

(l)
t ∈ Rn×d represents the embeddings of all nodes in Gt at

layer l, Ât = D
− 1

2
t AtD

− 1
2

t is the normalized adjacency matrix with At being the adjacency matrix
of Gt and Dt being the corresponding diagonal degree matrix. Here, W (l)

t is the learnable weight
matrix of the l-th layer at time t, and σ denotes a non-linear activation function. We used two-layer
message passing to compute local node embeddings (X local

t).

4.1.2 Global Embeddings

Given a snapshot of a graph at time t, Gt, to compute global embeddings for nodes, we computed a
biased RW-node embedding as follows: For each node in Gt, we customized the RW to explore
far-away nodes from the source node. To make sure that we are not selecting an arbitrary global
neighbor for each node, we ran the biasedRW for each node 50 times with a path length of 5. This
results in a list of 250 nodes for each source node. We selected the five most frequent nodes in the
sequence for each source node.

To increase the efficiency of the training phase, we precomputed the global neighbors of each node
before the training phase. However,RW can still be costly on large graphs as the biasedRW must
be performed for each node. Alternatively,RW can be recalculated for the entire graph only when
new data arrives, which can increase the overall inference time. To mitigate these cost-prohibitive
scenarios, we introduced a caching mechanism that stores node edges from prior snapshots. At each
snapshot, we identify newly introduced nodes or those whose topology has changed, and recompute
the neighbors for only those nodes. For the remaining snapshots, we reuse the cached distributions to
avoid redundant computation. This would allow the model to reuse previously computed information
and update embeddings incrementally, rather than recomputing them entirely, which reducesRW
computational cost (see Fig. 3 in Appendix D). After computing the RW for the source node, we
obtain a sequence of five nodes, including the source node i as follows,RWi

t = [vit, v
1
t , v

2
t , v

3
t , v

4
t].

The embeddings of the generated sequence are passed through a linear transformation:
zit = W1RWi

t + b1,

where W1 and b1 are learnable parameters that expand the embedding dimension. Next, a 1D
convolution is applied to generate embeddings for each source node:

eit = Conv1D(zit),

where Conv1D(·) denotes the 1D convolution operation. Finally, another linear transformation
reduces the dimension back to the original size:

xglobal
t = W2e

i
t + b2,

with learnable parameters W2 and b2. The final global node embeddings for all nodes in Gt are
denoted as X global

t . Note that this global node embedding approach is highly parameter-efficient
compared to GRU, LSTM, or transformer encoders.

4.2 Integration of Local and Global Node Embeddings

To fuse the local and global embeddings, we first concatenate X local
t and X global

t as follows:

hconcat
t = concat(X local

t ,X global
t) (10)

Next, we compute attention weights for each embedding as follows:

at = softmax
(
Ŵ1 · σ(Ŵ2 · hconcat

t)
)

(11)

where Ŵ1 and Ŵ2 are two learnable attention matrices with shapes 2 × d × da and 2 × da × 2,
respectively. Here, da denotes the size of attention weights computed for each embedding, and the
2 corresponds to the number of embeddings (local and global). at acts as a gate that controls the
amount of information that X local

t and X global
t can transmit to the final representation of the graph at

time t. This single lightweight gating operation has no head count or depth parameters. As a result,
the performance is not sensitive to some parameters (e.g., the number of attention layers). The final
representation is given as follows:

hfused
t = at · hconcat

t (12)

6

DyGSSM

4.3 Gradient Optimization using HiPPO

Consistent with existing research, we use the cross-entropy loss as our loss function:

Lt = −
1

M

M∑
(u,v)∈Et

ytu,v · log(ŷtu,v) + (1− ytu,v) · log(1− ŷtu,v) (13)

where ŷtu,v is calculated as follow

ŷtu,v = MLP (concat(hfused
u,t , hfused

v,t))

The main objective of this step is to calculate the gradient of the current snapshot t with respect to
Lt, efficiently optimize model parameters, and propagate it to the next snapshot. To do that, we first
calculate the reciprocal of the loss, acting as a simple dynamic weighting mechanism to adjust the
influence of each snapshot during parameter updates, as presented below:

weightt =
1

Lt + ϵ
(14)

This dynamic weighting helps the model prioritize parameter updates from snapshots where it
performs well (i.e., when the loss Lt is small), while reducing the influence of updates from snapshots
with poor performance. The small constant ϵ prevents division by zero and ensures numerical stability.
We followed Equation 6 to update the SSM state, and performed model parameter updates as follows

loss_scale = min(loss,max_loss_scale) (15)
gate = tanh(Θt × st) (16)

scaled_gate = clamp(gate,−max_gate,max_gate) (17)
Θt+1 ← Θt − loss_scale× scaled_gate (18)

In the update equation, Θt denotes the model parameter in the current snapshot, and Θt+1 is
the updated model parameter for the snapshot t + 1. The loss value capped by a constant value,
max_loss_scale, to produce the loss scaling factor loss_scale, which prevents excessively large
gradients or NaN values during training. The raw gradients (Θt+1) are then elementwise multiplied
by the SSM state (st), passed through a hyperbolic tangent function to bound their range, and
then clamped to the interval ([−max_gate,max_gate]), producing scaled_gate value. Finally, the
update step multiplies this loss scaling factor (loss_scale) by the scaled gate (scaled_gate) and
subtracts the result from the current parameters (Θt), ensuring stable and bounded parameter updates.
In our implementation, we set max_gate = 1.0 and max_loss_scale = 0.1. Both constants are
non-learnable and were not subject to hyperparameter tuning. These two factors aim to mitigate
instability caused by spiky or large loss values.

In continuous dynamic graphs, each interaction (edge event) is processed sequentially according
to its timestamp rather than aggregated into fixed snapshots. When a new event (u, v, t) arrives,
DyGSSM uses the cachedRW representation and runsRW only for the affected nodes, ensuring that
computation scales linearly with the number of active nodes. The HiPPO-based SSM state maintains
a continuous temporal memory between irregular events, updating the parameter trajectory which
preserves long-range dependencies even under uneven event intervals. This design allows DyGSSM
to operate efficiently in event-driven streams without reconstructing full snapshots or retraining the
model.

5 Experiments
Datasets. We evaluated DyGSSM on 12 different datasets, commonly employed in dynamic graph
representation studies. All datasets are available on the SNAP website (https://snap.stanford.edu/)
and DyGFormer paper. We provide detailed descriptions of each dataset in Appendix A.1. To ensure
a fair comparison with existing methods, we follow two settings in the discrete dynamic graph.
In the WinGNN setting, we used the evaluation code (https://github.com/pursuecong/WinGNN.git)
provided by the WinGNN authors, while in the HawkesGNN [36] setting, we used the evaluation code
(https://github.com/oncemoe/hawkesGNN.git) provided by the HawkesGNN authors. For example,

7

DyGSSM

WinGNN employed 1000 negative samples when computing MRR, whereas HawkesGNN used
100. For continuous dynamic graphs, we followed the evaluation code (https://github.com/yule-
BUAA/DyGLib.git) released with DyGFormer. In all cases, we adopted the preprocessing and data
splits from the respective repositories. Baselines. To verify the superiority of DyGSSM, we compared
its results with various recent dynamic graph models on the link prediction task in discrete-time
dynamic graphs, including EvolveGCN, DGNN [26], dyngraph2vec [37], ROLAND, WinGNN,
TransformerG2G [33], DTFormer [34], DySAT [18], VGRNN [38], HTGN [39], M2DNE [40], GHP
[41], HawkesGNN and DG-Mamba [22], and continuous-time dynamic graphs, including JODIE
[42], DyRep [43], TGAT [44], TGN [45], CAWN [46], EdgeBank [4], TCL [47], GraphMixer [48],
DyGFormer [31], and FreeDyG [49]. We did not compare DyGSSM with GraphSSM because
GraphSSM focuses on node classification, which differs from our task. We explain each of the
baseline methods in Appendix A.2. We describe the evaluation metrics and implementation details in
Appendix B.

5.1 Link Prediction Results

Table 1 presents the link prediction results for DyGSSM and SOTA models in WinGNN settings
(see Table 5 in Appendix A.1 for the dataset statistics). In this table, the results for EvolveGCN-H,
EvolveGCN-O, DGNN, Dyngraph2vec, ROLAND, and WinGNN were taken directly from the
WinGNN paper, while we ran the remaining models using the same train/test split and random seed.
As shown, DyGSSM outperformed SOTA models in 18 out of 20 cases with substantial improvements.
For instance, on Bitcoin-Alpha, DyGSSM boosted accuracy to 92.33% and AUC to 96.71%, far
exceeding the second best baselines. Similar trends were observed on DBLP and Reddit-Title, where
DyGSSM achieved high accuracy (97.63% and 99.79%, respectively) and substantially higher MRR
and Recall@10 compared to the second best methods. On the UCI dataset, DyGSSM delivered the
best performance across all metrics, improving accuracy to 96.82%, AUC to 98.56%, and Recall@10
to 58.43%, consistently surpassing competing models. On Bitcoin-OTC, while DTFormer and
WinGNN achieved the highest AUC and Recall@10, respectively, DyGSSM slightly improved
accuracy while substantially improving MRR. Importantly, across datasets where older baselines
struggled with scalability or memory issues, DyGSSM did not encounter Out-Of-Memory (OOM)
errors and consistently provided large performance margins, particularly in MRR and Recall@10. A
key observation is that in datasets with large snapshots, such as Bitcoin-Alpha and Reddit-Title, the
improvement was promising. This suggests that as the dataset gets bigger in terms of snapshots, SSM
can effectively capture long-range dependencies in those datasets.

Table 1: Link prediction performance comparison on five datasets. The best and second best results
are shown in bold and underlined, respectively. We repeated the experiment with 10 random seeds
and reported the average metrics with standard deviation. The * indicates that due to memory
constraints, the number of negative samples was reduced from 1000 to 50. OOM indicates that
OOM occurred when we attempted to run the model in our environment, even with smaller negative
samples.
Dataset Metric EvloveGCN-H EvloveGCN-O DGNN dyngraph2vec ROLAND WinGNN TransformerG2G DTFormer DG-Mamba DyGSSM

Bitcoin-Alpha

Accuracy 51.99±0.2546 57.44±0.4096 OOM OOM 66.21±2.7566 81.17±0.5058 OOM 80.44±0.0238 OOM 92.33±0.0013
AUC 63.71±1.0318 68.93±0.9144 OOM OOM 90.21±1.1762 91.43±0.3259 OOM 95.62±0.0174 OOM 96.71±0.0276
MRR 3.28±0.2845 2.52±0.1014 OOM OOM 14.52±0.6506 36.74±3.9389 OOM * OOM 62.97±0.0281

Recall@10 7.06±1.1900 5.27±0.5093 OOM OOM 31.25±2.2782 64.55±3.6126 OOM * OOM 88.69±0.0618

Bitcoin-OTC

Accuracy 50.48±0.0321 50.56±1.5719 54.08±0.6755 58.29±4.5547 86.60±0.5233 87.14±1.2408 0.5±0.0000 77.49±0.0266 OOM 88.45±0.0027
AUC 55.38±1.6617 59.82±2.5744 59.13±6.4914 62.12±10.7457 90.07±1.2998 91.64±0.6178 58.43±0.0594 97.59±0.0034 OOM 94.37±0.0478
MRR 11.27±0.5793 11.44±0.4986 15.16±0.5773 35.39±2.5046 16.54±1.2191 37.94±1.7019 * * OOM 52.49±0.0165

Recall@10 20.58±1.6515 26.40±2.1204 31.09±2.1594 58.29±6.7410 41.77±3.3926 73.96±1.4569 * * OOM 70.47±0.0281

DBLP

Accuracy 63.17±0.4138 65.24±0.5294 OOM OOM 62.87±0.5908 68.43±0.4135 49.99±0.0000 70.07±0.0130 51.97±0.0211 97.19±0.0002
AUC 70.91±0.3823 72.64±0.4697 OOM OOM 77.79±0.1689 77.87±0.3050 53.01±0.00946 77.80±0.0167 52.17±0.0293 99.37±0.0005
MRR 2.55±0.0032 2.48±0.0038 OOM OOM 6.60±0.0047 7.46±0.0020 3.42±0.0028 * * 27.90±0.0449

Recall@10 5.12±0.0310 4.84±0.0023 OOM OOM 13.48±0.0132 16.63±0.0299 6.87±0.0046 * * 62.11±0.0732

Reddit-Title

Accuracy 85.85±0.0164 77.46±1.2696 OOM OOM 93.42±0.0073 99.55±0.0009 OOM 82.74±0.0008 OOM 99.79±0.0004
AUC 93.87±0.0054 97.17±0.2683 OOM OOM 97.90±0.0001 99.87±0.0002 OOM 94.25±0.0004 OOM 99.99±0.0000
MRR 3.28±0.0198 1.31±0.0213 OOM OOM 35.11±0.0928 29.91±0.0829 OOM * OOM 66.62±0.0211

Recall@10 5.05±0.6796 1.81±0.2453 OOM OOM 61.13±0.0970 60.46±0.2910 OOM * OOM 97.47±0.0205

UCI

Accuracy 59.85±2.5388 49.91±1.4492 50.91±0.0510 50.88±3.1146 81.83±0.6433 86.70±1.1867 50.00±0.0000 78.84±0.0160 63.52±0.0040 96.82±0.0148
AUC 71.99±1.8252 62.05±3.8124 52.19±0.5604 54.30±1.1352 91.81±0.3052 94.05±0.4679 65.32±0.0809 87.10±0.0149 58.88±0.0040 98.56±0.0093
MRR 8.17±0.2284 10.81±0.5327 1.52±0.0016 17.84±0.4917 11.84±0.2561 21.69±0.3383 17.46±0.0422 19.36±0.0769 17.14±0.0095 25.95±0.0570

Recall@10 14.37±0.4915 16.94±0.9584 4.56±0.7313 36.22±1.6716 25.14±0.9237 40.62±0.9364 29.92±0.0487 29.30±0.1027 28.91±0.0108 58.43±0.1529

Table 2 shows the comparison of DyGSSM with SOTA models in HawkesGNN settings (see Table 6
in Appendix A.1 for the dataset statistics). We obtained all the results from the HawkesGNN paper
and ran DyGSSM under the same settings. As presented, DyGSSM outperformed all the models
on five out of seven datasets. Particularly, on the Reddit-Title and Reddit-Body datasets, DyGSSM
outperformed the second-best model by 17%. We also compared DyGSSM with models designed for

8

DyGSSM

continuous-time dynamic graphs under both inductive and transductive settings. As shown in Table 3
(see Table 7 in Appendix A.1 for the dataset statistics), DyGSSM outperformed all competing models
across five datasets in the transductive and inductive setting with respect to Average Precision (AP).
Particularly, DyGSSM outperformed the second-best method by about 50% in UN Trade dataset both
in inductive and transductive settings. We also compared the AP of our model with several baseline
models on the discrete datasets, as presented in Table 8 (see Appendix C). As shown, our model
outperformed other models except on Bitcoin-OTC dataset.

We encountered an OOM issue (Table 1) when sampling 1000 negative edges (following WinGNN
settings) to compute MRR and Recall@10 for DTFormer, DGMamba, and TransformerG2G. To
address this, we reduced the number of negative samples to 50 edges for these calculations. We
observed that DyGSSM outperformed all the models on DBLP, Reddit-Title, and Bitcoin-Alpha (see
Table 9 in Appendix C). On Bitcoin-OTC, DTFormer achieved better MRR and Recall@10, while
DyGSSM was the second-best model. If a model still encounters an OOM issue there, we report
it as OOM in Table 1; otherwise, we mark it with ∗. Finally, Table 10 (see Appendix C) presents
comparisons of AUC for transductive and inductive continuous-time dynamic graph link prediction
tasks, where DyGSSM again consistently outperformed baselines.

Table 2: Overall performance (MRR@100) comparison on seven datasets. Each experiment was
conducted using three random seeds, and the average performance is reported along with the standard
error.

Methods Bitcoin-OTC Bitcoin-Alpha UCI Reddit-Title Reddit-Body AS733 StackOverflow

DySAT 21.39 ± 2.79 19.16 ± 2.21 23.31 ± 9.42 17.46 ± 4.18 13.87 ± 3.90 25.10 ± 1.71 OOM
EvolveGCN 7.84 ± 0.09 6.65 ± 0.55 7.33 ± 0.15 30.67 ± 0.00 18.55 ± 0.02 42.06 ± 0.00 31.21 ± 0.48
Roland 30.94 ± 0.70 32.97 ± 1.78 17.04 ± 2.30 46.33 ± 0.27 38.57 ± 0.42 21.21 ± 5.73 38.57 ± 1.44
WinGNN 3.86 ± 1.26 3.90 ± 0.84 2.37 ± 0.13 4.19 ± 1.25 2.69 ± 0.38 4.29 ± 2.10 7.51 ± 0.67
VGRNN 6.62 ± 0.10 6.49 ± 0.29 6.96 ± 0.08 OOM 17.19 ± 0.14 41.94 ± 2.04 OOM
HTGN 6.36 ± 0.06 7.72 ± 0.66 8.67 ± 0.43 11.50 ± 0.98 10.70 ± 0.52 13.86 ± 0.58 OOM
GraphMixer 43.67 ± 0.25 35.72 ± 0.41 33.63 ± 0.02 38.32 ± 0.01 33.15 ± 0.02 28.86 ± 0.00 OOM
M2DNE 7.82 ± 1.05 5.49 ± 0.29 8.86 ± 0.44 5.40 ± 0.05 6.03 ± 0.38 19.43 ± 0.12 OOM
GHP 3.40 ± 0.41 3.40 ± 0.46 4.15 ± 0.14 16.00 ± 2.32 8.33 ± 2.00 22.15 ± 4.88 OOM
Hawkes-GCN 46.16 ± 0.45 47.87 ± 5.85 35.61 ± 0.06 47.44 ± 0.20 36.44 ± 0.42 44.34 ± 0.41 46.41 ± 0.31
Hawkes-GAT 51.34 ± 0.07 40.66 ± 0.25 35.59 ± 1.58 50.84 ± 0.05 40.97 ± 0.47 45.95 ± 0.79 48.83 ± 0.14

DyGSSM 35.75±0.00 30.22 ± 0.00 36.08 ± 0.03 59.38 ± 0.00 48.04 ± 0.00 52.64 ± 0.00 52.43±0.00

Table 3: Average Precision (AP) for transductive and inductive dynamic link prediction with random
negative sampling strategies. The best and second best results are shown in bold and underlined,
respectively. The results are taken from the DyGFormer and FreeDyG papers. Since the FreeDyG
authors did not evaluate their model on Can. Parl, US Legist, and UN Trade, we used the results
reported for DyGFormer on these datasets and marked FreeDyG with “–”. Inductive results for
EdgeBank were not reported by either DyGFormer or FreeDyG and are marked as “–”. .

Settings Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer FreeDyG DyG-Mamba DyGSSM

Tr
an

sd
uc

tio
n Enron 79.10±0.85 82.02±3.07 72.58±0.79 85.33±1.05 89.56±0.09 83.53±0.00 79.70±0.71 81.08±0.73 92.47±0.12 92.51±0.05 93.14±0.08 94.64 ± 0.01

UCI 87.65±1.85 70.24±0.32 79.55±0.83 90.69±0.45 94.35±0.11 76.20±0.00 88.12±2.73 93.50±0.49 95.76±0.15 96.28±0.11 96.14±0.14 98.95 ± 0.00
Can. Parl. 69.26±0.31 66.54±2.76 70.73±0.72 70.88±2.34 69.82±2.34 64.55±0.00 68.67±2.67 77.04±0.46 97.36±0.45 - 98.20±0.52 99.99 ± 0.00
US Legis. 75.05±1.52 75.34±0.39 68.52±3.16 75.99±0.58 70.58±0.48 58.39±0.00 69.59±0.48 70.74±1.02 71.11±0.59 - 73.66±1.13 92.91 ± 0.04
UN Trade 64.94±0.31 63.21±0.93 61.47±0.18 65.03±1.37 65.39±0.12 60.41±0.00 62.21±0.03 62.61±0.27 66.46±1.29 - 68.51±0.17 99.99 ± 0.00

In
du

ct
iv

e Enron 80.72 ± 1.39 74.55 ± 3.95 67.05 ± 1.51 77.94 ± 1.02 86.35 ± 0.51 - 76.14 ± 0.79 75.88 ± 0.48 89.76 ± 0.34 89.69 ± 0.17 91.14 ± 0.07 97.58 ± 0.00
UCI 79.86 ± 1.48 57.48 ± 1.87 79.54 ± 0.48 88.12 ± 2.05 92.73 ± 0.06 - 87.36 ± 2.03 91.19 ± 0.42 94.54 ± 0.12 94.85 ± 0.10 94.15 ± 0.04 97.06 ± 0.00

Can. Parl. 53.92 ± 0.94 54.02 ± 0.76 55.18 ± 0.79 54.10 ± 0.93 55.80 ± 0.69 - 54.30 ± 0.66 55.91 ± 0.82 87.74 ± 0.71 - 90.05 ± 0.86 99.99± 0.00
US Legis. 54.93 ± 2.29 57.28 ± 0.71 51.00 ± 3.11 58.63 ± 0.37 53.17 ± 1.20 - 52.59 ± 0.97 50.71 ± 0.76 54.28 ± 2.87 - 59.52 ± 0.54 78.78 ± 0.06
UN Trade 59.65 ± 0.77 57.02 ± 0.69 61.03 ± 0.18 58.31 ± 3.15 65.24 ± 0.21 - 62.21 ± 0.12 62.17 ± 0.31 64.55 ± 0.62 - 65.87±0.40 97.39 ± 0.02

In addition to prediction performance, we also highlight DyGSSM’s advantages in model efficiency.
Figures 4 and 5 (see Appendix D) compare model parameter sizes across different datasets on a
logarithmic scale. DyGSSM consistently has the smallest parameter sizes compared to other SOTA
models.

We also performed complexity analysis of proposedRW for both discrete and continuous datasets
(see Table 11,12 in Appendix D). The proposed caching mechanism yields consistent speedups
between 1.8× and 2.4×, with a maximum of 3.9× improvement on large-scale graphs, corresponding
to an average 50–60% reduction in random-walk time. The gains become more substantial on larger
graphs. For example on StackOverflow dataset (≈2.6M nodes, ≈63M edges) proposed RW was
2× faster. Since only structurally updated nodes trigger recomputation, runtime scales linearly with

9

DyGSSM

active nodes—not total graph size—enabling real-time feasibility even on million-edge networks.
Note that DyGSSM retains onlyRW information related to the most recent snapshot that indicates
constant memory footprint over time. In the very high-churn snapshot, worst-case scenario—the
framework smoothly degrades to the standard (non-caching)RW complexity, ensuring no negative
impact on correctness or embedding quality, only a temporary reduction in computational gain.

To compare the extent to which DyGSSM relies on local and global structural components, we also
analyzed the temporal evolution of the learned attention weights on the UCI dataset (see Fig. 6 in
Appendix E). The average attention weights remain stable over time, with slightly higher values
assigned to the local component (0.514) compared to the global component (0.486). This indicates
that the model maintains a balanced contribution from both components, with a mild preference for
local neighborhood information during the fusion process.

5.2 Ablation study

To evaluate the contribution of each component in DyGSSM, we performed an ablation study
utilizing the DBLP and UCI datasets. Specifically, we computed MRR and Recall@10 after disabling
attention, local and global embeddings, and SSM. We selected 50 and 1000 negative samples per
positive edge in DBLP and UCI, respectively. Table 4 and Table 13 (see Appendix E) show that all
components contribute to DyGSSM’s overall performance. In DBLP, removing global information
led to substantial drop in performance, whereas in UCI, local information was most critical (as the
attention scores also show (see Fig. 6 in Appendix E). We observed performance drop when we
disabled the SSM and the attention mechanism, too. Both ablation studies confirm the necessity of
each component.

To explicitly evaluate the contribution of the HiPPO algorithm in generating the SSM projection
matrix, we conducted an experiment on DBLP, UCI and AS733 datasets where the SSM matrix
was randomly initialized using a Gaussian distribution (see Table 14 in Appendix E). The proposed
HiPPO initialization consistently improved the model performance across three datasets of varying
graph sizes under two different settings (i.e., WinGNN and HawkesGNN). These results demonstrate
that HiPPO initialization provides a more structured and informative state representation, enabling the
model to capture temporal dependencies more effectively and achieve superior overall performance.

Table 4: Ablation results for DyGSSM on DBLP dataset.

Model MRR Recall@10

No global information 23.99±0.0050 58.91±0.0205
No local information 56.40±0.0021 92.64±0.0010
No SSM 61.52±0.0196 97.08±0.0120
No attention 69.55±0.0149 99.18±0.0007
DyGSSM 79.11±0.0442 99.85±0.0005

6 Conclusion
In this study, we propose DyGSSM, a multi-view dynamic graph representation learning approach
for link prediction tasks. We trained DyGSSM in a supervised manner, leveraging both the lo-
cal and global structure of each node in each snapshot to generate two distinct node embeddings.
We integrate these embeddings using a lightweight attention mechanism. To mitigate RW cost,
we introduced a caching mechanism that reduce the complexity and time of running RW on each
time steps. To effectively incorporate past information when updating the model parameters, and
to avoid the need for numerous hyperparameters, we utilized an SSM-based approach using the
HiPPO algorithm to incorporate a meta-learning strategy into DyGSSM. Experiments on 12 pub-
lic datasets with two training settings show that DyGSSM outperforms SOTA models in 32 out
of 36 evaluation metrics. As future work, we plan to extend DyGSSM to downstream tasks
such as node classification to further validate its representational power on real-world dynamic
graphs. In addition, we aim to optimize the RW component through parallelized mini-batch
sampling, graph partitioning, and subgraph-based RW to improve scalability on large and dense
networks. Finally, we intend to explore replacing the RW process with learned graph embed-
dings.

10

DyGSSM

References
[1] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-

shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 5363–5370, 2020. 1

[2] Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, and Cesare Alippi. Scalable spatiotemporal
graph neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 37, pages 7218–7226, 2023. 1

[3] Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G Akcora.
Chartalist: Labeled graph datasets for utxo and account-based blockchains. Advances in Neural
Information Processing Systems, 35:34926–34939, 2022. 1

[4] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems,
35:32928–32941, 2022. 1, 8, 16

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 1

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[7] Cagri Ozdemir, Mohammad Al Olaimat, Yashu Vashishath, Serdar Bozdag, and Alzheimer’s
Disease Neuroimaging Initiative. Igcn: Integrative graph convolutional networks for multi-
modal data. arXiv preprint arXiv:2401.17612, 2024.

[8] Ziynet Nesibe Kesimoglu and Serdar Bozdag. Supreme: multiomics data integration using
graph convolutional networks. NAR Genomics and Bioinformatics, 5(2):lqad063, 2023.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 1

[10] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic
graphs. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data
mining, pages 2358–2366, 2022. 1, 2, 3, 15, 17

[11] Yifan Zhu, Fangpeng Cong, Dan Zhang, Wenwen Gong, Qika Lin, Wenzheng Feng, Yuxiao
Dong, and Jie Tang. Wingnn: Dynamic graph neural networks with random gradient aggregation
window. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 3650–3662, 2023. 2, 3, 15, 17

[12] Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and William L Hamilton. Temp: Temporal
message passing for temporal knowledge graph completion. arXiv preprint arXiv:2010.03526,
2020. 3

[13] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE transactions on
intelligent transportation systems, 21(9):3848–3858, 2019. 1

[14] Hao Li, Hao Jiang, Fan Jiajun, Dongsheng Ye, and Liang Du. Dynamic neural dowker network:
Approximating persistent homology in dynamic directed graphs. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1554–1564, 2024.
1

[15] Stephen Bonner, Amir Atapour-Abarghouei, Philip T Jackson, John Brennan, Ibad Kureshi,
Georgios Theodoropoulos, Andrew Stephen McGough, and Boguslaw Obara. Temporal neigh-
bourhood aggregation: Predicting future links in temporal graphs via recurrent variational graph
convolutions. In 2019 IEEE international conference on big data (Big Data), pages 5336–5345.
IEEE, 2019. 1

[16] Hansheng Xue, Luwei Yang, Wen Jiang, Yi Wei, Yi Hu, and Yu Lin. Modeling dynamic
heterogeneous network for link prediction using hierarchical attention with temporal rnn. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part I, pages 282–298.
Springer, 2021. 1

11

DyGSSM

[17] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 5363–5370, 2020. 1, 2, 3, 15

[18] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In Proceedings of the
13th international conference on web search and data mining, pages 519–527, 2020. 1, 2, 3, 8,
16

[19] Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew Margenot, and
Hanghang Tong. Networked time series imputation via position-aware graph enhanced vari-
ational autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2256–2268, 2023. 2, 3

[20] Jacob Miller, Vahan Huroyan, and Stephen Kobourov. Balancing between the local and global
structures (lgs) in graph embedding. In International symposium on graph drawing and network
visualization, pages 263–279. Springer, 2023. 2

[21] Zifeng Ding, Yifeng Li, Yuan He, Antonio Norelli, Jingcheng Wu, Volker Tresp, Michael
Bronstein, and Yunpu Ma. Dygmamba: Efficiently modeling long-term temporal dependency
on continuous-time dynamic graphs with state space models. arXiv preprint arXiv:2408.04713,
2024. 2, 3

[22] Haonan Yuan, Qingyun Sun, Zhaonan Wang, Xingcheng Fu, Cheng Ji, Yongjian Wang, Bo Jin,
and Jianxin Li. Dg-mamba: Robust and efficient dynamic graph structure learning with selective
state space models. arXiv preprint arXiv:2412.08160, 2024. 2, 4, 8, 16

[23] Jintang Li, Ruofan Wu, Xinzhou Jin, Boqun Ma, Liang Chen, and Zibin Zheng. State space
models on temporal graphs: A first-principles study. Advances in Neural Information Processing
Systems, 37:127030–127058, 2024. 2

[24] Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train
your hippo: State space models with generalized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022. 2, 5

[25] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021. 2, 5

[26] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.
Pattern Recognition, 97:107000, 2020. 3, 8, 15

[27] Yanan Jiang, Huiyuan Luo, Qiang Xu, Zhong Lu, Lu Liao, Huajin Li, and Lina Hao. A
graph convolutional incorporating gru network for landslide displacement forecasting based on
spatiotemporal analysis of gnss observations. Remote Sensing, 14(4):1016, 2022. 3

[28] Cheng Yang, Chunchen Wang, Yuanfu Lu, Xumeng Gong, Chuan Shi, Wei Wang, and Xu Zhang.
Few-shot link prediction in dynamic networks. In Proceedings of the fifteenth ACM international
conference on web search and data mining, pages 1245–1255, 2022. 3

[29] Guangyin Jin, Lingbo Liu, Fuxian Li, and Jincai Huang. Spatio-temporal graph neural point
process for traffic congestion event prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 14268–14276, 2023. 3

[30] Mahdi Biparva, Raika Karimi, Faezeh Faez, and Yingxue Zhang. Todyformer: Towards
holistic dynamic graph transformers with structure-aware tokenization. arXiv preprint
arXiv:2402.05944, 2024. 3

[31] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:
67686–67700, 2023. 8, 16

[32] Xue Ye, Shen Fang, Fang Sun, Chunxia Zhang, and Shiming Xiang. Meta graph transformer: A
novel framework for spatial–temporal traffic prediction. Neurocomputing, 491:544–563, 2022.
3

[33] Alan John Varghese, Aniruddha Bora, Mengjia Xu, and George Em Karniadakis. Trans-
formerg2g: Adaptive time-stepping for learning temporal graph embeddings using transformers.
Neural Networks, 172:106086, 2024. 3, 8, 15

12

DyGSSM

[34] Xi Chen, Yun Xiong, Siwei Zhang, Jiawei Zhang, Yao Zhang, Shiyang Zhou, Xixi Wu,
Mingyang Zhang, Tengfei Liu, and Weiqiang Wang. Dtformer: A transformer-based method
for discrete-time dynamic graph representation learning. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management, pages 301–311, 2024.
3, 8, 15

[35] Dongyuan Li, Shiyin Tan, Ying Zhang, Ming Jin, Shirui Pan, Manabu Okumura, and Renhe
Jiang. Dyg-mamba: Continuous state space modeling on dynamic graphs. arXiv preprint
arXiv:2408.06966, 2024. 4

[36] QingGuo Qi, Hongyang Chen, Minhao Cheng, and Han Liu. Input snapshots fusion for scalable
discrete-time dynamic graph neural networks. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V. 1, pages 1138–1149, 2025. 7

[37] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems, 187:104816,
2020. 8, 15

[38] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan
Zhou, and Xiaoning Qian. Variational graph recurrent neural networks. Advances in neural
information processing systems, 32, 2019. 8, 16

[39] Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-
time temporal network embedding via implicit hierarchical learning in hyperbolic space. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining,
pages 1975–1985, 2021. 8, 16

[40] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S Yu, and Yanfang Ye. Temporal network embedding
with micro-and macro-dynamics. In Proceedings of the 28th ACM international conference on
information and knowledge management, pages 469–478, 2019. 8, 16

[41] Jin Shang and Mingxuan Sun. Geometric hawkes processes with graph convolutional recurrent
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 4878–4885, 2019. 8, 16

[42] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1269–1278, 2019. 8, 16

[43] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019. 8, 16

[44] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020. 8, 16

[45] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv
preprint arXiv:2006.10637, 2020. 8, 16

[46] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974,
2021. 8, 16

[47] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via
contrastive learning. arXiv preprint arXiv:2105.07944, 2021. 8, 16

[48] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
arXiv preprint arXiv:2302.11636, 2023. 8, 16

[49] Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dy-
namic graph model for link prediction. In The twelfth international conference on learning
representations, 2024. 8, 16

[50] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrah-
manian. Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, pages 333–341, 2018. 14

13

DyGSSM

[51] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight
prediction in weighted signed networks. In 2016 IEEE 16th international conference on data
mining (ICDM), pages 221–230. IEEE, 2016. 14

[52] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009. 14

[53] Yichen Hu, Qing Wang, and Peter Christen. Developing a temporal bibliographic data set for
entity resolution. arXiv preprint arXiv:1806.07524, 2018. 14

[54] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction
and conflict on the web. In Proceedings of the 2018 world wide web conference, pages 933–943,
2018. 14

A Experimental Details
A.1 Dataset Description

We evaluated DyGSSM on discrete and continuous publicly available benchmarks.

Bitcoin-OTC and Bitcoin-Alpha are who-trusts-whom network, representing trust relationships
among users trading Bitcoin on Bitcoin OTC and Bitcoin Alpha platform [50, 51]. These two datasets
have the highest number of snapshots among all five datasets, despite having the lowest number of
edges—35,592 and 24,186, respectively.

UCI-Message consists of private message communication exchanged between students at the Univer-
sity of California, Irvine [52]. It has the fewest nodes among all datasets but ranks among the top
three in terms of edge density, with 59,835 edges.

DBLP represents a comprehensive list of research papers in computer science. The dataset show
research collaborations between two authors, where two authors are connected if they have co-
authored at least one paper [53]. Note that we obtained the dynamic DBLP dataset from the WinGNN
authors.

Reddit-Title dataset consists of a hyperlink network that captures directed connections between
subreddits based on hyperlinks embedded in posts linking from one subreddit to another [54].

Reddit-Body captures networks of hyperlinks between subreddits, where the hyperlinks appear in the
body of the posts.

SBM short for Stochastic Block Model, is a widely adopted random graph model designed to simulate
the evolution of community structures.

AS short for Autonomous Systems represent a communication network between routers. In this
network, the nodes are routers, where each node represents a network or an AS. The edges indicate
that two routers exchange traffic or routing information.

StackOverflow is a dataset containing interactions on the Stack Overflow platform. In this dataset, the
nodes are users, and an edge between two users appears if one user answered another user’s question.

Enron is an email communication network from the Enron Energy Corporation. The dataset was
collected over a period of three years. In this network, nodes represent email addresses, and an edge
exists from address i to address j if i sent at least one email to j.

Can.Parl. is a political network that shows interactions between Canadian Members of Parliament
(MPs). In this dataset, the nodes are MPs from electoral districts, and an edge is formed between two
MPs when they both vote “yes” on the same bill.

USLegis dataset is a Senate co-sponsorship network that shows social interactions between legislators
in the U.S. The nodes represent senators, and an edge between two nodes indicates how many times
those senators co-sponsored a bill together during a given congressional session.

UNTrade is a dataset of food and agriculture trade between 181 countries over the past 30 years. In
this dataset, the nodes represent countries, and an edge between two nodes shows the total imports
and exports of food and agricultural products exchanged between those countries. A summary of
dataset statistics is presented in Tables 5, 6, and 7.

14

DyGSSM

Table 5: Dataset statistics for WinGNN settings.
Dataset #Nodes #Edges # Snapshots Avg. Density

Bitcoin-Alpha 3,783 24,186 226 2.5890 ×10−3

Bitcoin-OTC 5,881 35,592 262 1.7396 ×10−3

DBLP 28,086 162,451 27 9.5423 ×10−3

Reddit-Title 54,075 571,927 178 1.9592×10−5

UCI 1,899 59,835 28 1.1191 ×10−3

Table 6: Summary of dataset statistics for HawkesGNN settings.
Dataset #Nodes #Edges Time Steps (Train/Val/Test) Avg. Degree
UCI 1,899 59,835 35/5/10 0.36
Bitcoin-Alpha 3,777 24,173 95/13/28 0.04
Bitcoin-OTC 5,881 35,588 95/14/28 0.05
Reddit-Title 54,075 571,927 122/35/17 0.06
Reddit-Body 35,776 286,562 122/35/17 0.05
AS733 7,716 1,167,892 70/10/20 2.12
SBM 1,000 4,870,863 35/5/10 97.42
StackOverflow 2,601,997 63,497,050 65/9/18 0.12

Table 7: Statistics of the datasets for continuous dynamic graph.
Dataset Domain #Nodes #Links Duration Timestamps
Enron Social 184 125,235 3 years 22,632
UCI Social 1,899 59,835 196 days 58,911
Can.Parl. Politics 734 74,478 14 years 14
USLegis. Politics 225 60,396 12 congresses 12
UNTrade Economics 255 507,497 32 years 32

A.2 Description of Baselines

We compare DyGSSM against state-of-the-art models on both discrete-time and continuous-time
dynamic graphs.

EvolveGCN [17] introduced a recurrent mechanism to update the network parameters. In other
words, it uses GCN to extract the local structure of each snapshot and injects the recurrent neural
network (RNN) to capture the dynamism within the parameters of the GCN. In this study, we show
the results of EvolveGCN with different temporal encoders (i.e., LSTM vs. GRU) and refer to them
as EvolveGCN-O and EvolveGCN-H.

DGNN [26] combined GCN and LSTM to exploit both structured data and temporal information. In
their study, they used stack encoder (e.g., LSTM) to capture the dynamics of nodes.

Dyngraph2vec [37] used an encoder-decoder architecture to learn temporal transition in a dynamic
graph. They proposed three different settings for their encoder-decoder architectures, composed of
dense and recurrent based models.

ROLAND [10] is a meta-learning based approach that update the model parameters of the adjacent
snapshots. They introduced a live update based mechanisem on the traditional GNN layer, that makes
their model adoptable to convert static graph to dynamic graph learning.

WinGNN [11] is another meta-learning method that introduces an encoder-free architecture to extract
the dynamics.

TransformerG2G [33] is a transformer based model that aim to obtain lower-dimensional multivariate
Gaussian representations of nodes, that effectively capture long-term temporal dynamics. They trained
the transformer encoder from the second timesteps when weights transferred from the pre-trained
model for the first graph snapshot embedding.

DTFormer [34] is another transformer based model. They used attention mechanism to capture
topological information in each time steps and temporal dynamics of graphs along the timestamps.

15

DyGSSM

DG-Mamba [22] is a SSM based method that design to extract long dependency on dynamic graph.
The authors introduced kernelized dynamic message-passing operator. To capture global intrinsic
dynamics, we establish the dynamic graph as a self-contained system with SSM.

DySAT [18] learns node representations by jointly applying self-attention across structural neighbor-
hoods and temporal dynamics to capture both relational structure and temporal evolution.

VGRNN [38] is a hierarchical variational model that introduces latent random variables to jointly
captures both topology and node attribute changes in dynamic graphs.

HTGN [39] is a model that captures how networks evolve over time by embedding them in hyperbolic
space. It uses hyperbolic GNNs, recurrent units, attention, and a stability module to learn evolving
patterns effectively and reliably.

M2DNE [40] is a temporal network embedding method that models both micro- and macro-dynamics
of evolving networks. It uses a temporal attention to capture fine-grained edge events and a dynamics
equation to enforce higher-level structural evolution in node embeddings.

GHP [41] integrates Hawkes processes with a graph convolutional recurrent neural network. It is
also computationally efficient, using a constant number of parameters regardless of graph size.

HawkesGNN fused multiple snapshots into a single temporal graph by combining Hawkes process
with GNN. They used a Hawkes excitation matrix to model the temporal edges.

JODIE [42] is a coupled recurrent neural network that learns user and item embedding trajectories,
predicts future embeddings via a novel projection operator, and accelerates training using the scalable
t-Batch algorithm.

DyRep [43] is an inductive deep learning framework that generates low-dimensional node embeddings
evolving over time. It models the communication and association dynamics between nodes using a
time-scale-dependent multivariate point process.

TGAT [44] is a temporal graph attention layer that aggregates temporal and topological neighborhood
features using self-attention and a functional time encoding based on Bochner’s theorem

TGN [45] combines memory modules with graph-based operators to achieve superior performance,
using a message function, message aggregator, and memory updater.

CAWN [46] captures network dynamics through temporal random walks. CAWs anonymize node
identities using hitting counts to maintain inductiveness and motif correlations. These are then
encoded by the CAW-N neural network, paired with a constant-time, and constant-memory sampling
strategy.

EdgeBank [4] is a memory-based baseline for dynamic link prediction that stores past interactions
and predicts edges as positive if observed. It has four variants—unlimited memory, fixed time-window
(two versions), and threshold-based, which allow flexible memory management.

TCL [47] TCL is a graph neural network for continuous-time dynamic graphs. It introduces a
graph-topology-aware Transformer, a two-stream encoder with co-attentional modeling of interaction
dependencies, and a contrastive learning objective that maximizes mutual information between future
interaction nodes.

GraphMixer [48] is a simple yet effective architecture composed of three components: an MLP-based
link encoder, a neighbor mean-pooling node encoder, and an MLP-based link classifier.

DyGFormer [31] is a Transformer-based model that only relies on nodes’ historical first-hop inter-
actions. It encodes neighbor co-occurrences to capture source–destination correlations and uses a
patching technique to handle longer histories.

FreeDyG [49] is a continuous-time dynamic graph model for link prediction that enhances learning by
encoding node interaction frequency. Unlike prior time-domain methods, it leverages the frequency
domain to capture periodic and shifting interaction patterns.

B Evaluation Metrics and Implementation Details
We evaluate the effectiveness of our model using four widely adopted metrics: accuracy, macro-AUC,
Mean Reciprocal Rank (MRR), and Recall@10. Among these, MRR and Recall@10 are our primary

16

DyGSSM

Figure 2: The figure compares how ROLAND, WinGNN, and DyGSSM update their model pa-
rameters. (a) ROLAND updates model parameters between consecutive time steps using fixed
meta-learning weights. (b) WinGNN updates parameters between time steps with a fixed learning rate.
Instead of relying on explicit time encoding, it uses a window-based gradient aggregation mechanism.
(c) DyGSSM utilizes the HiPPO-based algorithm to update model parameters without a need to
specify a window size.

evaluation metrics, as accuracy and AUC can be overly sensitive to imbalanced class distributions.
To ensure a fair comparison with SOTA methods, we follow ROLAND [10] framework for future
link prediction task. For each node u with a positive edge (u,v) at time t+ 1, we randomly sample
1,000 negative edges originating from u. The rank of the prediction score for the positive edge (u,v)
is then determined relative to the scores of the sampled negative edges. The MRR is computed as the
average of the reciprocal ranks across all nodes u. Using the same ranking, Recall@10 is calculated
as the proportion of positive edges ranked within the top 10. It is worth noting that, due to memory
constraints, we limit the sampling to 50 negative edges for DTFormer and DG-Mamba on the DBLP
dataset, as indicated in Table 1 with an asterisk. To have a fair comparison with the HawkesGNN
model, we used Average Precision (as they used in their paper) to compare DyGSSM with the SOTA
model. We used their source code and integrated DyGSSM into their code. All the results in Table 1
up to WinGNN columns are coming from the WinGNN paper [11]. We followed WinGNN in train
test data division, 70% of snapshots for training, and remaining 30% for testing. Training is set for
100 epochs, with patience of 10 epochs for early stopping. We used Adam as our optimizer and
repeated the experiment with 10 random seeds to ensure robust error estimation. All the results in
Table 2 come from the HawkesGNN paper. All experiments are performed on a single GPU equipped
with Nvidia A100 with 80GB of memory.

C Additional Results

Table 8: Average Precision (AP) score comparison on five datasets. The best and second best results
are shown in bold and underlined, respectively. We repeated the experiment with 10 random seeds
and reported the average metrics with standard deviation.

Dataset WinGNN TransformerG2G DTFormer DG-Mamba DyGSSM
DBLP 92.96±0.0019 59.41±0.0077 82.03±0.0119 53.70±0.0385 98.69±0.0002
UCI 96.49±0.0119 74.36±0.0660 86.19±0.0208 72.54±0.0063 98.89±0.0061

Bitcoin-OTC 92.25±0.0067 63.25±0.0518 97.83±0.0039 OOM 95.52±0.0284
Bitcoin-Alpha 93.85±0.0139 OOM 95.97±0.0162 OOM 97.29±0.0229
Reddit-Title 99.99±0.0001 OOM 95.80±0.0000 OOM 99.99±0.0000

17

DyGSSM

Table 9: Performance comparison of MRR and Recall@10 on four datasets for the models with
asterisk in Table 1 using 50 negative samples instead of 1000. The best and second best results are
shown in bold and underlined, respectively. We repeated the experiment with 10 random seeds and
reported the average metrics with standard deviation. TransformerG2G for DBLP results are not
shown as they are available in Table 1. OOM: out-of-memory

Dataset Metric DTFormer DG-Mamba TransformerG2G DyGSSM

DBLP MRR 61.07±0.0102 16.00±0.0042 - 79.11±0.0442
Recall@10 68.14±0.01658 38.71±0.0230 - 99.85±0.0005

Bitcoin-OTC MRR 77.49±0.0266 OOM 48.40±0.1327 75.35±0.0802
Recall@10 85.95±0.0225 OOM 60.72±0.1618 78.21±0.0987

Bitcoin-Alpha MRR 55.22±0.0307 OOM OOM 77.88±0.0449
Recall@10 71.21±0.0532 OOM OOM 79.33±0.0450

Reddit-Title MRR 80.12±0.0054 OOM OOM 96.43±0.0067
Recall@10 85.94±0.0006 OOM OOM 99.99±0.0000

Table 10: AUC-ROC for transductive and inductive dynamic link prediction with random negative
sampling strategies. The best and second best results are shown in bold and underlined, respectively.
The results are taken from the DyGFormer and FreeDyG papers. Since the FreeDyG authors did
not evaluate their model on Can. Parl, US Legist, and UN Trade, we used the results reported for
DyGFormer on these datasets and marked FreeDyG with “–”. Inductive results for EdgeBank were
not reported by either DyGFormer or FreeDyG and are marked as “–”.

Settings Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer FreeDyG DyG-Mamba DyGSSM

Tr
an

sd
uc

tiv
e Enron 87.96±0.52 84.89±3.00 68.89±1.10 88.32±0.99 90.45±0.14 87.05±0.00 75.74±0.72 84.38±0.21 93.33±0.13 94.01±0.11 93.05±0.17 92.60±0.01

UCI 90.44±0.49 68.77±2.34 78.53±0.74 92.03±1.13 93.87±0.08 77.30±0.00 87.82±1.36 91.81±0.67 94.49±0.26 95.00±0.21 95.32±0.18 96.95±0.00
Can. Parl. 78.21±0.23 73.35±3.67 75.69±0.78 76.99±1.80 75.70±3.27 64.14±0.00 72.46±3.23 83.17±0.53 97.76±0.41 – 98.67±0.29 99.99±0.00
US Legis. 82.85±1.07 82.28±0.32 75.84±1.99 83.34±0.43 77.16±0.39 62.57±0.00 76.27±0.63 76.96±0.79 77.90±0.58 – 78.19±0.64 92.86±0.03
UN Trade 69.62±0.44 67.44±0.83 64.01±0.12 69.10±1.67 68.54±0.18 66.75±0.00 64.72±0.05 65.52±0.51 70.20±1.44 – 72.19±0.09 99.99±0.00

In
du

ct
iv

e Enron 81.96±1.34 76.34±4.20 64.63±1.74 78.83±1.11 87.02±0.50 – 72.33±0.99 76.51±0.71 90.69±0.26 89.51±0.20 90.84±0.18 97.40±0.01
UCI 78.80±0.94 58.08±1.81 77.64±0.38 86.68±2.29 90.40±0.11 – 84.49±1.82 89.30±0.57 92.63±0.13 93.01±0.08 91.99±0.03 96.77±0.00
Can. Parl. 53.81±1.14 55.27±0.49 56.51±0.75 55.86±0.75 58.83±1.13 – 55.83±1.07 58.32±1.08 89.33±0.48 – 90.77±0.86 99.99±0.00
US Legis. 58.12±2.35 61.07±0.56 48.27±3.50 62.38±0.48 51.49±1.13 – 50.43±1.48 47.20±0.89 53.21±3.04 – 56.56±1.08 74.35±0.07
UN Trade 62.28±0.50 58.82±0.98 62.72±0.12 59.99±3.50 67.05±0.21 – 63.76±0.07 63.48±0.37 67.25±1.05 – 69.22±0.52 96.59±0.02

D Model Scalability

Figure 3: Global neighborhood computation time using RW on DBLP, Reddit-Title, and StackOver-
flow datasets after applying the caching mechanism. The computation cost per snapshot is initially
high, but it significantly decreases when the caching mechanism is used.

Table 11: Runtime comparison of the random-walk (RW) component with and without caching
across seven discrete dynamic graph datasets.

Dataset # Nodes # Edges Normal RW (s) Caching RW (s) Speedup (× Faster) % Time Reduction

Bitcoin-OTC 5,881 35,588 5.31 2.67 1.99× 49.8%
Bitcoin-Alpha 3,777 24,173 3.63 1.50 2.42× 58.8%
UCI 1,899 59,835 1.34 0.70 1.91× 47.8%
Reddit-Title 54,075 571,927 61.86 34.26 1.81× 44.6%
Reddit-Body 35,776 286,562 41.61 21.90 1.90× 47.4%
AS733 7,716 1,167,892 6.13 6.01 1.02× ∼2%
Stack Overflow 2,601,997 63,497,050 1795.54 897.01 2.00× 50.0%

18

DyGSSM

Figure 4: Model parameter size comparison discrete-time dynamic graphs. Each bar represents a
model and its number of learnable parameters in millions (M) or thousands (K). DyGSSM consistently
has one of the smallest parameter sizes, typically ranging from 50K to 92K. Despite integrating GCN,
Conv1D, and light attention, our model remains lightweight and highly scalable.

Figure 5: Model parameter size comparison (continuous-time dynamic graph). Each bar represents a
model and its number of learnable parameters in millions (M) or thousands (K). DyGSSM has the
smallest parameter size.

Table 12: Runtime comparison of the random walk with and without caching across four continuous
dynamic graph datasets.

Dataset # Nodes # Edges Without Caching With Caching Speedup (×) / % Time Reduction

Reddit 10,984 672,447 5 min 59 s (≈ 359 s) 1 min 32 s (≈ 92 s) 3.9× / 74%
UN Vote 201 1,035,742 14 min 28 s (≈ 868 s) 7 min 17 s (≈ 437 s) 2.0× / 50%
UN Trade 255 507,497 3 min 12 s (≈ 192 s) 0 min 52 s (≈ 52 s) 3.7× / 73%

E Ablation and Attention Results

Table 13: Ablation results for DyGSSM on UCI dataset.

Model MRR Recall@10

No global information 30.85±0.0011 55.17±0.0031

No local information 20.11±0.0000 45.40±0.0000
No SSM 27.32±0.0036 55.05±0.0083
No attention 25.57±0.0131 54.76±0.0012
DyGSSM 42.92±0.0072 74.08±0.0018

19

DyGSSM

Table 14: Comparison of Random and HiPPO-based initialization on the DBLP dataset.

Dataset Initialization Setting MRR (↑) # Nodes # Edges

DBLP Gaussian distribution 19.18 ± 0.0026 28,086 162,451
HiPPO 27.90 ± 0.0449

UCI Gaussian distribution 33.59 ± 0.0081 1,899 59,835
HiPPO 36.08 ± 0.0300

AS733 Gaussian distribution 38.14 ± 0.0222 7,716 1,167,892
HiPPO 52.64 ± 0.0000

Figure 6: DyGSSM attention to local and global structure on UCI dataset.

20

	1 Introduction
	2 Related Work
	2.1 Sequence-Based Models
	2.2 Meta-Learner-Based Models
	2.3 SSM- and Transformers-based methods

	3 Preliminaries
	3.1 Problem Formulation
	3.2 State Space Model

	4 Method
	4.1 Node Embeddings
	4.1.1 Local Embeddings
	4.1.2 Global Embeddings

	4.2 Integration of Local and Global Node Embeddings
	4.3 Gradient Optimization using HiPPO

	5 Experiments
	5.1 Link Prediction Results
	5.2 Ablation study

	6 Conclusion
	A Experimental Details
	A.1 Dataset Description
	A.2 Description of Baselines

	B Evaluation Metrics and Implementation Details
	C Additional Results
	D Model Scalability
	E Ablation and Attention Results

