Published at ICLR 2025 Workshop on Foundation Models in the Wild.

COST-EFFICIENT COMMUNICATION BETWEEN ON-
DEVICE AND CLOUD LANGUAGE MODELS

Avanika Narayan”!, Dan Biderman"!, Sabri Eyuboglu™', Avner May?, Scott Linderman!, James
Zou!, and Christopher Ré!

Stanford University !~ Together AI?
{avanikan,biderman, eyuboglu}@stanford.edu

ABSTRACT

We investigate an emerging setup in which a small, on-device language model
(LM) with access to local data communicates with a frontier, cloud-hosted LM to
solve real-world tasks involving financial, medical, and scientific reasoning over
long documents. Can a local-remote communication reduce cloud inference costs
while preserving quality? First, we consider a naive communication protocol where
the local and remote models simply chat back and forth. Because only the local
model reads the full context, this protocol achieves a 30.4x reduction in remote
costs, but fails to recover the performance of the frontier model. We identify two
key limitations of this protocol: the local model struggles to (1) follow the remote
model’s multi-step instructions and (2) reason over long contexts. Motivated by
these observations, we study an extension of this protocol, coined MINIONS, in
which the remote model decomposes the task into easier subtasks over shorter
chunks of the document, that are executed in-parallel locally. MINIONS reduces
costs by 5.7 x on average while recovering 97.9% of the performance of the remote
model alone. Our analysis reveals several key design choices that influence the
trade-off between cost and performance in local-remote systems.

1 INTRODUCTION

Today’s cloud-hosted frontier Language Models (LMs) can perform data-intensive reasoning: they
can program across repositories and make decisions based on financial, legal, and medical documents.
However, accessing these models is expensive: processing a standard million-token code repository
with OpenAI’s ol API costs > $15 per query. At the same time, smaller LMs (1-8B parameters) are
rapidly improving and can now run on personal computers (Ollama, llama.cpp) and smartphones
Mehta et al.| (2024); Y1 et al.|(2024); Xu et al.[(2024))). Yet, today, these small, on-device LMs are
used mostly for simple tasks such as tone adjustment and text completion |Gunter et al.|(2024)). They
do not play a role in data-intensive reasoning tasks.

Inspired by the growing literature on multi-agent systems (Wang et al., [2024} |Guo et al., 2024), in
this work we ask: how can a small LM on-device collaborate with a frontier LM in the cloud to
reduce inference costs on data-intensive reasoning tasks? In particular, we study the communication
protocols that govern how the two LMs talk to each other. To mimic realistic use cases, we study
tasks that involve varying levels of reasoning over large volumes of medical, financial, and academic
data (Islam et al., 2023} |Adams et al., [2024} |Dasigi et al., 2021).

As our first attempt, we study a simple communication protocol: an unconstrained chat between the
local and remote models. This protocol, coined MINION, reduces cloud costs by only “reading” the
data locally, and communicating a compressed version of the context to the remote model. We show
that while MINION achieves a 30.4 x reduction in remote model costs, it trails behind the remote-only
baseline by 9.4 accuracy points on average (with an 8B model; see Section 4] for details). We identify
two key limitations of small LMs that hinder MINION’s performance (Section[4.1)):

» Small LMs struggle following multi-step instructions. We find that splitting complex instruc-
tions into separate requests improves performance by 56%.

https://ollama.com/
https://github.com/ggerganov/llama.cpp
https://machinelearning.apple.com/research/introducing-apple-foundation-models

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

1 Data-intensive Reasoning

Query
Based on my files, can you
&) compute FY15 depreciation
and amortization margin for AMD?

Context

 WEEEN

User's working context

2 Local-Remote Systems

VAN
=
@ —
SIZ77

Frontier LM Local LM

3 Minion Protocol

1

Local-Remote Conversation

7% What was the total
{7 revenue in FY2015?

The total revenue
in 2015 was $1.3bn.

7%, Find the D&A in the
& 10-K document.

| can't find any mention
of D&A in the context.

7 Find the D&A in the
& 10-K document

Until answer...

4 Minion$S Protocol

7> Here is a function that
{1 generates jobs.

e

71 We need more info.,
{F let's create more jobs.

Until answer...

a Job Preparation

Job
7% Extract the
{7 D&A from
10-K document.
Output “none” if
not present.
Instruction Chunk
b Job Execution and filtering
-
Co- = ¥:
Local LM -
¢ Job Aggregation
*_ - @

® Fontier LM

Figure 1: Local-Remote Systems. MINION and MINIONS protocols. (Left) Problem set-up:
local and remote LM collaborate on a data-intensive reasoning task. (Center) MINION: A simple
communication protocol in which the local and remote models have an “unconstrained” back and
forth chat. (Right) MINIONS: an extension of MINION where the remote LM decomposes a query
into many jobs that are processed in parallel by the local model. Each job is a single-step instruction
over a chunk of the context.

* Small LMs get confused by long contexts. Increasing context length from < 1K to > 65K
decreases performance by 13% on a simple extraction task.

Motivated by these limitations, we propose MINIONS, an extension of MINION where the remote
LM decomposes the problem into a set of single-step instructions to be performed on smaller chunks
of the document. Crucially, the remote model has to do this without reading the full document, which
it achieves by generating code that is later executed locally where the document is. More precisely,
MINIONS involves a loop over three steps:

1. Decompose: Given a task, the remote model writes code that decomposes it into “bite-sized”
subtasks.

2. Execute: The local LM then executes the subtasks in parallel and sends a filtered selection
of the responses back to the remote model.

3. Aggregate: The remote model aggregates the local outputs and finalizes the solution or
loops back to the Decompose step.

Averaged across tasks, MINIONS with an 8B parameter local LM can recover 97.9% of the perfor-
mance of remote-only systems at 18.0% of the cloud cost. With a 3B parameter local LM, MINIONS
achieves 93.4% of the performance of remote-only systems at 16.6% of the cloud cost.

We perform a detailed analysis of the design and hyperparameter space of MINIONS. Our analysis
highlights several “knobs” that allow us to trade off cost for quality.

(a) Model choice How does the size and family of the language models affect the cost and quality?
We show that MINIONS would not have been feasible until mid-2024 and is now performant with the
latest 3B-parameter models running locally.

(b) Scaling parallel workloads on-device. How should we structure parallel workloads at the
edge to maximize performance? In Section[6.3] we study three different strategies for increasing the
parallel workload on-device: (a) repeated sampling, (b) decomposition, and (c) context chunking. We
show that all three can independently improve quality at the expense of increased remote cost.

(¢) Sequential communication protocols. Can multiple rounds of communication improve quality?
At what cost? We show that by increasing the number of sequential rounds of communication, we
can pay more to improve quality.

To summarize, our main contributions are as follows:

* Propose a naive local-remote LM communication protocol that achieves 30.4 x efficiency
over remote-only workloads while recovering 87% of performance.

* Propose MINIONS, an extension that overcomes the limitations we identify in MINION,
achieving 5.7 % cost-reduction over remote-only workloads and recovering 97.9% of perfor-
mance.

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

_________ (O7Y)___ (gptao @72 Lmmmmmmmbmmeepm
0.67

PR E— Local Model Protocol
g A {llama-3.1-8b (0.44)]-~~~===r=====-= @ llama3.23b A Localonly
‘50'4 © qwen2.5-3b ’ Remote only
§ @ llama-3.1-8b @ MINION
0.3 @ MINIONS
02 - -_{llama-3.2-3b (0.21)]=======bmmmm e
0.1
[T —— {lama-3.2-1b (0.04))~~~ - - - - —-— =
0.00 0.05 0.10 0.15 0.20

Remote Cost ($)

Figure 2: Cost-Accuracy Tradeoff in Edge-Remote Systems. Macro-average accuracy (y-axis) vs.
cost (x-axis) across FINANCEBENCH (Islam et al.,|2023)), LONGHEALTH (Adams et al.| 2024}, and
QASPER (Dasigi et al.L[2021). Accuracy represents the fraction of correct predictions, while cost is
the average USD per query based on GPT-40 rates (Jan 2025: $2.50/1M input tokens, $10.00/1M
output tokens); see section [3] The table compares Naive (section f)) and MINIONS (section [3))
protocols against local-only and remote-only baselines. Points, colored by local model, use GPT-40
as the remote model. Exact metrics in tablem

* Conduct an in-depth analysis of MINIONS, exploring design choices to traverse the cost-
accuracy trade-off.

2 RELATED WORK

See Appendix[A|for an extended discussion of related work.

We are inspired by a large body of work that studies how to combine multiple LMs and tools
to improve quality and reduce cost of cloud workloads. These include multi-agent system (Guo
et al., [2024; [Wang et al., 2024}, compound LM systems (Saad-Falcon et al., |2024; |Khattab et al.,
2023} [Yuksekgonul et al., 2024)), model-routing (Chen et al.| [2024a};[2023), and retrieval-augmented
generation (Lewis et al., [2020; [Karpukhin et al., 2020; [Lee et al., 2019). We differ from these works
by studying the specific asymmetric cost model that arises from the local-remote setting.

The techniques used in MINIONS build upon several ideas proposed in the literature, including
LM orchestration and memory systems to support long-context reasoning (Packer et al.| 2023
Jayalath et al.| 2024; Russak et al., 2024} |Shankar et al., [2024} |[Zhou et al., [2024)), prompting and
decomposition techniques for improved small LM quality (Arora et al.,|2022; |Patel et al., 2022; Wu
et al., [2022), scaling local compute via test-time sampling and verification (Brown et al.|[2024; |Song
et al.| 2024} Hassid et al., 2024; [Snell et al.l [2024; Wu et al.| 2024), and using code to facilitate
reasoning (Arora et al., 2023} [Li et al., [2023))

Some recent works have explored aspects of the local-remote setting. Several study how local-remote
systems can limit leakage of private information to a cloud-hosted LM API siyan2024papillon,
zhang2024cogenesis. In this work, we do not address privacy concerns, though these privacy
techniques can be used in conjunction with MINIONS. Others have explored efficient routing patterns
between local and remote computation for LM workloads, albeit without two models communicating
in natural language or collaborating on a solution (Jin & Wul |[2024;|Yang et al., [2024).

3 PRELIMINARIES

We study the tradeoff between the guality of a local-remote system and the cost of running it. We
first outline the problem setup and then provide details on how we measure accuracy and cost.

Problem setup We study language tasks that involve a context c (e.g. a long document), a query q
against that context, and a ground-truth answer y (see (1) in Figure[T).

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Scaling Tasks Scaling Samples Scaling Chunks

0.65 e)Y (0 e — 0.70 33) 0.65 9pt-40 (0.65)

— 0 = &
— H*/07 \I:
0.60 /
055

o & o] 120
G 065 @] Sptdo 0657 060

Accuracy

0.015 0.020 0.025 0.030 0.02 0.03 0.03 05 006 007

0.04 0.05 0.06
Remote Cost ($) Remote Cost ($)

0.04 0.
Remote Cost ($)

@ Uama-3.2-38-Instruct @ Ulama-3.1-8B-Instruct

Figure 3: Scaling parallel jobs on-device improves quality. The x-axis represents tokens processed
by the remote model, and the y-axis shows macro-average accuracy across LONGHEALTH and
QASPER. The cloud model is GPT-40. Each plot varies a different MINIONS hyperparameter
affecting parallelism, with annotated values. (Left) Varying the number of unique instructions.
(Middle) Varying the number of unique samples. (Right) Varying the chunking granularity in code f.
See section 5] for details.

Context (c): Apple’s FY24 10-K report
Query (q): What is the total revenue for the year?
Answer (y): US$394, 328 million

A local-remote system S (see (2) in Figure[I)), consists of two language models that must collaborate to
solve the task—a small LM (LocallLM) running on on-device, and a large frontier LM (RemoteLM)
running in the cloud. S ingests a context and an associated query, and applies both models in
conjunction to output a predicted answer: y ~ S(c, q).

Measuring quality We evaluate the performance of S on a dataset D = {(c;,q;,y;)}Y,, viaa
scoring metric s(y;,y;). Here, we use s(-,) is binary (correct/incorrect) and we report accuracy. As
baselines, we compare S to Yremote ~ RemoteLM(c, q) and Yioca ~ LocalLM(c, q).

Measuring cost Monetary cost (in $USD) is our primary cost metric. We assume that RemoteLM
calls incur a cost while LocalLLM calls (for < 8B parameter models) are free, ignoring the fixed cost
of the hardware and marginal cost of energy consumption.

More concretely, the cost of calls to RemoteLLM are proportional to a weighted sum of the number
of prefill (i.e. input) tokens and decode (i.e. output) tokens:

Oremote(npreﬁlh ndecode) X Nprefill + & * Ndecode

Where « varies by provider (=1- 5) (Dubey et al.l 2024; |Anthropicl 2024). Decode tokens are
more expensive since the decoding stage is [0-bound (Leviathan et al.,|2023)) and has lower GPU
utilizatio

In this work we do not focus on optimizing the latency of local-remote systems. However, in
appendix [C| we show analytically that there are important regimes where the systems proposed
(MINION, MINIONS) incur at most a 5x increase in latency relative to performing the entire
operation remotely. This is possible because these systems avoid the costly step of processing the
entire document with the huge RemotelLM, and because they can make efficient use of the local
hardware by batching (e.g. in MINIONS). We leave a detailed empirical study of the latency trade-offs
of these local-remote systems for future work.

4 MINION: A NATVE COMMUNICATION PROTOCOL
In this section, we describe MINION, a baseline local-remote communication protocol, which
implements a simple free-form conversation between LocalLM and RemoteLM.

It begins with system prompts for both models informing them of the query q and that they will be
collaborating with another model to answer it (see (3) in Figure[I)). Crucially, the system prompt

! Generating each decode token requires loading the full model and KV cache into GPU SRAM.

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

for the LocalLM does include the full context ¢ while the system prompt for the RemoteLM does
not. After the system prompts, the models chat back and forth until the RemoteLM provides a final
answer to the query. See Appendix[D.1|for a detailed description of the MINION protocol.

4.1 ANALYSIS

We compare MINION to a baseline where RemoteLLM is given the full context and the query.
Excitingly, MINION reduces RemoteLLM costs by 38.13%, 31.3%, and 20.9x on FINANCEBENCH,
LONGHEALTH and QASPER, respectively. Averaged across these datasets, it closes 87.0% of the
quality gap between RemoteLLM and LocalLLM operating alone.

To close the gap, we analyze MINION conversations and find that in unconstrained chat, RemoteLM
often gives LocalLM complicated instructions over long contexts. Appendix [E.2] presents micro-
experiments illustrating LocalLM’s struggles with these instructions:

1. LocalLLM struggles to handle multi-part instructions. Using GPT-40, we generate
instructions with varying numbers of sub-parts. We then show splitting sub-parts into
separate requests leads to a 56 point performance improvement (see Figure 6)).

2. LocalLLM struggles to reason across long contexts. We show how increasing context length
from < 1K to > 65K tokens can decrease performance by 13% on a simple extraction
instruction (see Figure[6).

Put simply, these models are currently better equipped to answer simple queries on shorter contexts.

5 MINIONS: A SIMPLE, DECOMPOSITION-BASED COMMUNICATION
PROTOCOL

Motivated by these observations, we introduce MINIONS, a simple extension of the naive commu-
nication protocol discussed in sectiond] MINIONS uses a divide-and-conquer strategy where the
RemoteLM decomposes the task into simpler jobs that can be run in parallel (see (4) in Figure [I).

5.1 PROTOCOL DESCRIPTION

MINIONS protocol is a loop around three steps:

1. Job preparation on remote. RemoteLLM writes code that generates a list of job specifications
for LocalLM (see 4(a) in Figure|I).

2. Job execution and filtering locally. The job specifications are executed locally with the
LocalLLM and outputs are filtered (see 4(b) in Figure|l)).

3. Job aggregation on remote. The remote model receives the filtered outputs and decides
whether to output an answer or begin another iteration (see 4(c) in Figure

Throughout we will continue with this example task:

Compute the 2015 depreciation and amortization margin for AMD (in percentage).

Step 1: Job preparation on remote. In this step, the RemoteLM generates a list of jobs that
the LocalLM will run in parallel. A job is a specification of a subtask, which can be converted
into a prompt and sent to the local model. More precisely, a job, t, is a context-instruction pair
t@ = (@, &®). We denote a list of jobs with T = [t(1),t(), ..]

Instruction (§‘¥): Extract the total revenue for FY2015, abstain if not present. Try look for the income
statement and make sure it is from 2015.
Context (¢'V): “Operating income for North America for the years ended...”

Crucially, the context &%) for a job need not include the entire context c of the full task. In principle,
this allows us to chunk the context into more manageable pieces, which can be executed in parallel.
But how can the RemoteLM chunk the context without reading it?

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

To avoid reading the entire context, we have the remote model program a function, f(c, T), that
accepts the full task context ¢ and jobs from the last iteration T and outputs a new list of jobs
T. Specifically, we prompt RemoteLM with the task query q and instruction prompt Pgecompose:
f(-,-) ~ RemoteLM(d, Pdecompose)- Then, on-device, the function is executed with the context c as

the argument producing a list of jobs T = f(c, T).

This strategy, which builds on work using LMs to generate code for information extraction (Arora
et al., 2023} |Li et al., 2023)), allows us to decouple the number of unique jobs from the number tokens
generated by the cloud model. For example, the code below, which is an abbreviated version of a
function that was generated by the cloud model, is < 15 lines but can generate hundreds of jobs.

'4 N\

@dataclass
class Job:
instruction: str
chunk: str
def f (ctx: str,lastjobs: List[Job])->List[Job]:
jobs = []
instructions = ["Extract the total revenue for...", "In the statement of cash flow..."]
for chunk in chunk.on_pages (ctx) :
for instr in instructions:
for _in range (5):
jobs.append (Job (instr, chunk))
return jobs

| & J

Additionally, by passing the previous iteration’s jobs and responses T (last_jobs in the code
snippet), the large model can create jobs which build on previous responses. For example, the cloud
model in the second round might zoom in on a relevant chunk identified in the first round. For more
examples of generated functions or prompts used to generate the code, see appendix [F

Step 2: Job execution and filtering on-device. In this step, we convert the jobs T = [t(1) t(2) .]
into prompts and execute them in parallel locally.

The jobs are fed in batch(es) to the LocalLM together with a system prompt pyorker that instructs the
model to either abstain or return a JSON object z(*) with fields answer and explanation to help
verify its reasoning.

2 ~ LocalLM(t™") | pyorker) 1)

After the LocalLM has generated the results, we discard any z() for which the model abstained.
Intuitively, many instructions will be irrelevant to their paired chunks, allowing the LocalLM to
abstain and avoid sending unnecessary information to the RemoteLLM. The surviving subtask-chunk
pairs are aggregated to form the formatted string w.

Step 3: Job aggregation on remote. RemoteL M receives w and a synthesis prompt Psynthesize>
instructing it to generate a JSON object a with a “decision” field for sufficiency and a “response”
field for a (potential) final answer:

S’ ~ RemOteLM(W7 psymhesize) (2)
If the RemoteLLM decides that more information is needed, the loop continues from Step 1.

There are several ways to maintain context across MINIONS rounds. One simple approach is to keep
the entire the conversation in context. However, this strategy incurs significant additional cost, even
with prompt caching. We experiment with two alternatives: (1) simple retries, in which only the
RemoteLM’s advice is carried over between rounds and (2) scratchpads, in which the RemoteLM
can record what it learned from the round before proceeding to the next.

5.2 PROTOCOL HYPER-PARAMETERS

MINIONS has three hyper-parameters: choice of RemoteLM and LocallLM (model choice), job
preparation strategy (scale of parallel workloads on-device), and looping strategy (sequential commu-
nication protocol).

Model choice. Different model sizes (e.g. 3B vs. 8B), families (e.g. QWEN2.5 vs. LLAMA), and
generations (e.g. 3.1 vs. 3.2) can be used for both the LocalLM and the RemoteLM.

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Protocol Local Model ~ Remote Model Macro Avg. FINANCEBENCH LONGHEALTH QASPER
Acc. Cost Acc. Cost Acc. Cost Acc. Cost
Remote Only — — GPT-40 0.724 $0.233 0.826 $0.261 0.748 $0.301 0.598 $0.137
Local Only LLAMA-8B — 0.444 $0.000 0.326 $0.000 0.468 $0.000 0.538 $0.000
Local Only LLAMA-1B — 0.038 $0.000 0.000 $0.000 0.115 $0.000 0.000 $0.000
Local Only LLAMA-3B — 0.213 $0.000 0.130 $0.000 0.345 $0.000 0.164 $0.000
Local Only QWEN-3B — 0.140 $0.000 0.087 $0.000 0.177 $0.000 0.156 $0.000
MINION LLAMA-8B GPT-40 0.630 $0.008 0.804 $0.007 0.635 $0.010 0450 $0.007
MINION LLAMA-3B GPT-40 0.518 $0.010 0.698 $0.010 0482 $0.009 0372 $0.011
MINION QWEN-3B GPT-40 0.236 $0.028 0.217 $0.029 0.281 $0.021 0.210 $0.035
MINIONS LLAMA-8B GPT-40 0.709 $0.042 0.804 $0.053 0.740 $0.054 0.582 $0.019
MINIONS LLAMA-3B GPT-40 0.662 $0.052 0.726 $0.079 0.703 $0.057 0.558 $0.020
MINIONS QWEN-3B GPT-40 0.676 $0.039 0.783 $0.059 0.645 $0.043 0.600 $0.015

Table 1: Accuracy and cost of local-remote systems. Evaluation of cost and accuracy on 3 datasets.
The table compares two edge-remote protocols—Naive (section[d) and MINIONS (section[5)—against
edge-only and remote-only baselines. We assess 3 local models and 1 remote model. Cost (USD) is the
average per-query expense, based on GPT-40 rates (Jan 2025: $2.50M/input tokens, $10.00M/output
tokens). Local model execution is assumed free (see section E] for cost details).

Scale of parallel workload on-device. MINIONS has three knobs for increasing the degree of task
decomposition and thus, workload parallelization: (1) number of tasks per round (i.e. “Extract the
ARR for Q1 of 2014”), (2) number of samples per tasks (i.e. any integer value > 1), and (3) number
of chunks (i.e. chunk by page, paragraph, etc.). These parameters can be configured by RemoteL.M.

Sequential communication protocol. In practice, it is important to cap the number of loops for
MINIONS. After this limit, the synthesis prompt is adjusted to produce a final answer. This maximum
affects accuracy and cost, and context management strategy (simple retries vs. scratchpads) is another
key hyperparameter.

We analyze these hyperparameters in Section 6]

6 RESULTS

oes { ©.671} [0 E5ee) oo | S - S — {eptao 060}~ ’"/"O'J"equ ,,,,,,,
3 (1 (i 070 gfif—0f2]
. % 4 5 o=
~ 0.65 /.‘*

0.55 2 ——
o]

Accuracy

Accuracy
°
a
3

°

°
&
3

0.50

045 { 1185 (0.44) - ---~

6 7 8000 10000 12000 14000 16000 18000 20000 22000 0.040 0.045 0.050 0.055 0.060 0.065
Model Size (Billion Parameters) Remote Prompt Tokens Remote Cost ($)

Local Model Family @ Qwen @ meta-llama Edge Model @ Qwen @ meta-llama Edge Model @ llama323b @ llama-3.1-8b

Figure 4: Trade-offs in edge model performance, communication efficiency, and cost of se-
quential communication. (Left) Accuracy vs. edge model size, with the dashed line showing the
GPT-40 model baseline. (Middle) Communication efficiency of MINIONS with different local LMs,
where larger models (7-8B) are more token-efficient. (Right) The trade-off between cost and quality
across multiple rounds, where the x-axis represents the number of tokens processed by the remote
model, and the y-axis shows the accuracy achieved. Point labels indicate the number of rounds of
communication, with the dashed line at the top representing the GPT-40 model benchmark.

Here, we analyze how the design of MINIONS affects cost and quality. Our main takeaways are:

* On average across three datasets, MINIONS can recover 97.9% of the performance of
remote-only systems while spending 5.7 less;

* We identify protocol hyper-parameters that let us flexibly trade-off cost and quality;
* As local models grow stronger, MINIONS becomes increasingly cost-effective.

We structure our analysis around three core design choices:

7

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

1. Model choice How does the choice of local and remote model effect cost and quality? We

examine different model types and sizes for LocalLM and RemoteLM in Sectiond@
2. Scaling parallel workloads on-device How should we structure parallel workloads on the

local device to maximize performance and minimize cost? We highlight how scaling the

local workloads can improve performance (Section@ and study the effects on cost.
3. Sequential communication protocol Can multiple rounds of communication improve

quality? At what cost? We explore this trade-off in Section [6.4]

Our findings are detailed in Sections|[6.2] and

6.1 EXPERIMENTAL SETUP

Datasets and models We evaluate MINIONS on three benchmarks that are well suited for data-
intensive reasoning: FINANCEBENCH, LONGHEALTH, and QASPER. FINANCEBENCH tests fi-
nancial document understanding with complex reasoning over reports. LONGHEALTH focuses on
tracking and interpreting longitudinal health records. QASPER assesses question answering over
dense scientific papers. See Appendix [B.0.]for details. We use two open-source model families
(LLAMA, QWEN2.5) as LocalLM and GPT-40 as RemoteLM (details in Appendix [B.0.2).

6.2 MODEL CHOICE

This section explores the model requirements and generalization capabilities of MINIONS, examining
the local model sizes necessary for effective collaboration, the sensitivity of the communication
protocol across different local-remote model pairings, and the longitudinal evolution of MINIONS ’
performance with advances in model capabilities over time.

What size do LocalLM have to be in order to be effective in MINIONS? Our results demonstrate
that MINIONS starts being competitive with RemoteLM-only baseline at the 3B parameter model
scale. When considering both the QWEN2.5 and LLAMA model families running locally, at 1B scale,
MINIONS recovers 49.5% of the GPT-40-only baseline performance, 3B scale recovers 93.4% and
8B recovers 97.9% accuracy (see Tablefor more details).

How does the capacity of LocalLM affect the cost-accuracy tradeoff? 1In our system, LocalLM
implicitly acts as an information encoder, optimizing the Information Bottleneck objective (Tishby
et al.| 2000) by compressing input context while preserving predictive information (see appendix D.2).
To measure this, we analyze the tradeoff between remote “prefill” tokens (fewer tokens indicate
greater compression) and accuracy (higher accuracy means better retention). Figure |4 shows that
as LocalLM size increases, representations become more compressed and accurate, improving
Information Bottleneck values. Larger LocalLM models trade local FLOPs for communication, with
7-8B models being 1.53x more token-efficient than 1B models. Additionally, the QWEN2.5 family
follows a different tradeoff than LLAMA, yielding more compressed representations. This suggests
that as small LMs improve, local-remote systems will become increasingly cost-efficient.

Is MINIONS sensitive to different local/remote pairs? ~We ask whether the communication protocol
in MINIONS is invariant to changing the model types (i.e. LLAMA vs QWEN2.5 locally and LLAMA
vs GPT-40 remotely). Our results indicate that MINIONS performs similarly with different local-
remote LM combinations (see the Table[T): varying the LocalLM from QWEN2.5 to LLAMA-3.2,
results in performances within + .05 performance points (see Table[I). Furthermore, we find that
holding the LocalLM fixed as LLAMA-3.2-3B and varying RemoteLM from GPT-40 to LLAMA-
3.3-70B leads to similar overall performances within & 0.07 points (see App. Table[2)).

How have local / remote model capabilities changed over time, and what effects do they have
on MINIONS? In Table[3] we provide a retrospective analysis demonstrating how the quality of
MINIONS would have changed with model releases over time. From 2023 to 2025, the average
performance of MINIONS with the best models available has improved from 0.26 to 0.66 (see App.
Table[3). Interestingly, it was only in July 2024 — with the emergence of GPT4-TURBO and LLAMA-
3.1-8B — that MINIONS could have come within 12% of the best frontier model performance at the
time (see App. Table[3).

6.3 SCALING PARALLEL WORKLOADS ON-DEVICE

In MINIONS, there are three levers for maximizing local compute resources through parallelized,
batched processing: (1) number of tasks per round, (2) number of samples taken per task, and (3)

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

number of chunks. We ablate each, showing their impact on performance. We find that (1) and (3)
are more cost effective ways of increasing performance.

How does the number of tasks per round affect performance? Increasing tasks per round proxies
task decomposition, with more sub-tasks enhancing decomposition. Raising tasks from 1 to 16 boosts
performance by up to 14 points but doubles RemoteLLM prefill costs. Optimal task count varies by
query and model, but exceeding 16 reduces performance.

How does scaling local samples affect performance? We explore whether increased sampling at
an individual {task, context} level improves performance. Increased sampling enables us to better
utilize the available compute resources while improving task-level accuracy (Brown et al.}[2024). Our
results indicate that increasing the number samples from 1 to 32 can improve performance on average
7.4 points, but comes at the cost of 5x the RemoteLM prefill costs. This being said, increasing
sampling beyond 16 starts hurting task performance as the noise across samples is too large for the
remote model to effectively distill the correct answer (Kuratov et al., [2024)).

What effect does chunk size have on downstream performance? We test whether increasing local
utilization by using more chunks per task improves performance. Our results indicate that increasing
of chunks per task (by decreasing the number of “pages” per chunk from 100 to 5) leads to an 11.7
point accuracy lift. However, this lift comes with a 2.41 X increase in prefill costs.

6.4 SCALING SEQUENTIAL COMMUNICATION

Both the MINION and MINIONS communication protocols feature sequential communication: they
allow for multiple rounds of exchange between the local and remote models.

Does performance improve as we increase the maximum number of rounds? At what cost? We
vary the maximum communication rounds and find it is correlated with accuracy and cost (see
fig.@). By simply increasing the maximum number of rounds in MINION from 1 to 5, we enable
a 8.5-point lift in average accuracy across the three tasks (with LLAMA-3.2 on-device). However,
longer conversations also cost more: on FINANCEBENCH, each additional round of communication
increases cost by 0.006 per query and accuracy by 4.2 accuracy points.

How should we maintain context between MINIONS rounds? We experiment with two sequential
protocol strategies: (1) simple retries and (2) scratchpad. See section [5|for details of these strategies.
As shown in Figure [5] both strategies show consistent increases in both accuracy and cost when
increasing the maximum number of rounds, with the scratchpad strategy achieving a slightly better
cost-accuracy tradeoff. Notably, each additional round of communication with the scratchpad strategy
leads to a larger improvement in accuracy (6.1 accuracy points) which are mostly offset by larger
increases in cost (8.6 dollars).

6.5 RETRIEVAL AUGMENTED GENERATION IN THE CONTEXT OF LOCAL-REMOTE COMPUTE

In this section, we examine the relationship between local-remote collaboration (e.g., MINIONS)
and retrieval-augmented generation (RAG). These complementary techniques can be combined for
different benefits.

In appendix we compare MINIONS, MINION, and RAG on two data-intensive reasoning
tasks: one focused on extraction (FINANCEBENCH) and another on summarization (BOOOKSCORE).
On FINANCEBENCH, RAG achieves similar or better cost-accuracy tradeoffs than MINIONS but is
less cost-effective than MINION. On BOOOKSCORE (appendix [E.3.2)), which requires integrating
dispersed information, MINIONS produces summaries comparable to a GPT-40-only baseline, while
RAG omits key plotlines, characters, and details.

7 DISCUSSION

Our study explores two protocols, MINION and MINIONS, for collaboration between on-device and
cloud LMs, demonstrating that cloud computing costs can be reduced by 5.7-30.4 x by effectively
delegating tasks to local models. With increasingly powerful GPUs in consumer devices, users
will rely less on cloud APIs, reducing operational costs while enabling complex local tasks like
code refactoring and document analysis. MINIONS highlights the promise of co-designing local
and remote models to enhance efficiency, with the potential of moving beyond natural language to
compressed real-valued representations in the future.

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

REFERENCES

Lisa Adams, Felix Busch, Tianyu Han, Jean-Baptiste Excoffier, Matthieu Ortala, Alexander Loser,
Hugo JWL Aerts, Jakob Nikolas Kather, Daniel Truhn, and Keno Bressem. Longhealth: A question
answering benchmark with long clinical documents. arXiv preprint arXiv:2401.14490, 2024.

Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. 2024. URL https://www—cdn|
anthropic.com/de8ba9b01lc9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language
models. arXiv preprint arXiv:2210.02441, 2022.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trummer,
and Christopher R€. Language models enable simple systems for generating structured views of
heterogeneous data lakes. arXiv:2304.09433, 2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A systematic exploration of
book-length summarization in the era of llms. arXiv preprint arXiv:2310.00785, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems. arXiv
preprint arXiv:2403.02419, 2024a.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024b.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 4599-4610, 2021.

Luc Devroye. Nonuniform random variate generation. Handbooks in operations research and
management science, 13:83—-121, 2006.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd of Models.
arXiv preprint arXiv:2407.21783,2024. URL https://arxiv.org/abs/2407.21783.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
language model pre-training. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The larger the better?
improved Ilm code-generation via budget reallocation. arXiv preprint arXiv:2404.00725, 2024.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2407.21783

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, and Bertie Vidgen. Fi-
nancebench: A new benchmark for financial question answering. arXiv preprint arXiv:2311.11944,
2023.

Gautier Izacard and Edouard Grave. Unsupervised dense information retrieval with contrastive
learning. In Advances in Neural Information Processing Systems, 2021.

Dulhan Jayalath, James Bradley Wendt, Nicholas Monath, Sandeep Tata, and Beliz Gunel. Long-
range tasks using short-context llms: Incremental reasoning with structured memories. arXiv
preprint arXiv:2412.18914, 2024.

Hongpeng Jin and Yanzhao Wu. Ce-collm: Efficient and adaptive large language models through
cloud-edge collaboration. arXiv preprint arXiv:2411.02829, 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714,
2023.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of 1lms with long context reasoning-in-a-haystack.
arXiv preprint arXiv:2406.10149, 2024.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. arXiv preprint arXiv:1906.00300, 2019.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
code emulator. arXiv preprint arXiv:2312.04474, 2023.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
Sun, Seyed Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm: An
efficient language model family with open training and inference framework. In Workshop on
Efficient Systems for Foundation Models I1@ ICML2024, 2024.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E
Gonzalez. Memgpt: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and Chitta Baral. Is a question decomposition unit all
we need? arXiv preprint arXiv:2205.12538, 2022.

Fabio Petroni, Tim Rocktischel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. Language models as knowledge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing, 2019.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends in Information Retrieval, 3:333-389, 01 2009. doi: 10.1561/1500000019.

11

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Melisa Russak, Umar Jamil, Christopher Bryant, Kiran Kamble, Axel Magnuson, Mateusz Russak,
and Waseem AlShikh. Writing in the margins: Better inference pattern for long context retrieval.
arXiv preprint arXiv:2408.14906, 2024.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An architecture
search framework for inference-time techniques. arXiv preprint arXiv:2409.15254, 2024.

Shreya Shankar, Aditya G Parameswaran, and Eugene Wu. Docetl: Agentic query rewriting and
evaluation for complex document processing. arXiv preprint arXiv:2410.12189, 2024.

Kurt Shuster, Douwe Kiela, Ethan Perez, Harm de Vries, Jack Urbanek, Arthur Szlam, and Jason
Weston. Retrieval augmentation reduces hallucination in conversation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, 2021.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
Evaluation of llms should not ignore non-determinism. arXiv preprint arXiv:2407.10457, 2024.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. Ai chains: Transparent and controllable human-ai
interaction by chaining large language model prompts. In Proceedings of the 2022 CHI conference
on human factors in computing systems, pp. 1-22, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analy-
sis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and Xuanzhe
Liu. Empowering 1000 tokens/second on-device llm prefilling with mllm-npu. arXiv preprint
arXiv:2407.05858, 2024.

Zheming Yang, Yuanhao Yang, Chang Zhao, Qi Guo, Wenkai He, and Wen Ji. Perllm: Personalized
inference scheduling with edge-cloud collaboration for diverse 1lm services. arXiv preprint
arXiv:2405.14636, 2024.

Rongjie Yi, Xiang Li, Weikai Xie, Zhenyan Lu, Chenghua Wang, Ao Zhou, Shangguang Wang,
Xiwen Zhang, and Mengwei Xu. Phonelm: an efficient and capable small language model family
through principled pre-training. arXiv preprint arXiv:2411.05046, 2024.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Kaiyan Zhang, Jianyu Wang, Ning Ding, Biqing Qi, Ermo Hua, Xingtai Lv, and Bowen Zhou.
Fast and slow generating: An empirical study on large and small language models collaborative
decoding. arXiv preprint arXiv:2406.12295, 2024a.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan O Arik. Chain of agents:
Large language models collaborating on long-context tasks. arXiv preprint arXiv:2406.02818,
2024b.

Zihan Zhou, Chong Li, Xinyi Chen, Shuo Wang, Yu Chao, Zhili Li, Haoyu Wang, Ronggiao An,
Qi Shi, Zhixing Tan, et al. LIm x mapreduce: Simplified long-sequence processing using large
language models. arXiv preprint arXiv:2410.09342, 2024.

12

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

A EXTENDED RELATED WORK

Orchestration of LMs Recent works attempt to improve long document processing by taking a
divide-and-conquer approach akin to MINIONS. Instead of using single LM calls with the entire
context, the task is decomposed into smaller tasks to be executed on chunks of context. (Zhang et al.|
2024bj Zhou et al., [2024) use a predefined protocol for chunk processing (defined by a prompt).
(Shankar et al.;|2024) performs a more involved automated pipeline optimization (via agent-based
rewrite directives). Crucially, none of the works study the cost-efficient interaction between a small
local LM and large remote LM and instead focus exclusively on larger LMs (70B parameters and
above). Moreover, they do not explore multi-round communication patterns for document analysis.

Long-context management techniques These works aim to improve single LM accuracy in long
context tasks. (Russak et al., [2024)) prefill the context using chunks of the document, summarize each
chunk (using a predefined prompt), and aggregate the results. This improves accuracy and requires
marginal additional computation. PRISM similarly (Jayalath et al.| 2024)) processes the context as a
stream of chunks, and writes important information into a typed data structure which can be amended
as needed. MemGPT (Packer et al.| [2023) proposes a virtual memory paging system inspired by
operating systems, where the LLM manages information across main context (akin to RAM) and
external storage (akin to disk). When approaching context limits, the system actively decides what
information to preserve and can later retrieve this information through paginated function calls.
Orthogonally, other methods explore the usage of code for context management (Arora et al., 2023).

Cost-efficient multi-LLM Systems A plethora of recent works show that multiple LMs can
collaborate on a task to improve both accuracy and efficiency (Guo et al.|[2024)). The most similar
work is perhaps (Wang et al.l|2024) which neither investigates LMs with with asymmetric capabilities
nor optimizes for local compute efficiency.

Model routing techniques Our work studies a collaboration of LMs, and thus should be differenti-
ated from model routing techniques (Chen et al.||2024a;|[2023) that route a prompt to the appropriate
single LM that can completely answer it using the full context. This is often done for cost reduction,
identifying that simple tasks can be executed by smaller and cheaper LMs.

Compound LM systems Recent works explore the use of LMs as part of more elaborate pipelines
that, retrieval models, tool use, and more. (Saad-Falcon et al.,2024; Khattab et al.,|2023;|Yuksekgonul
et al.,|2024) seeks to optimize the pipeline architecture and prompts using different approaches, which
we do not pursue on this work.

Retrieval-Augmented Generation (RAG) RAG is a hybrid approach that integrates information
retrieval into the text generation process, leveraging external knowledge sources to enhance the output
of language models (LMs). Instead of relying solely on parametric memory, RAG reduces the number
of tokens processed by an LM by first retrieving a subset of relevant documents or document chunks
and appending them as context to the LM (Lewis et al.,|2020; Karpukhin et al.|[2020; [Lee et al.|[2019;
Izacard & Gravel 2021} |Guu et al., 2020). This retrieval step mitigates issues such as hallucination
and knowledge staleness, which are common in traditional autoregressive models (Shuster et al.}
2021} |Petroni et al.l [2019). We differ in two ways: first, our local LM can perform tasks beyond
information extraction, such as summarization or reasoning. Second, by performing arbitrary tasks
on document chunks, the small LM communicates its compact answer instead of the raw document
chunk, which amounts to sending fewer tokens to remote.

Speculative decoding Speculative decoding (Leviathan et al., 2023}; Zhang et al.| 2024a; |Chen
et al.| 2024b)) techniques are addressing the different question of how to effectively sample from the
distribution of a large LM by only sampling from smaller LM and using the large LM for cheaper,
likelihood evaluation (using the “acceptance-complement algorithm” (Devroyel 2000)). It neither
considers a collaboration between two LMs, nor attempts to minimize the communication between
them.

On-device language models for privacy siyan2024papillon, zhang2024cogenesis attempt to
prevent leaks of private information to a cloud-hosted LM API by mediating the communication with

13

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

a local privacy-aware LM that removes private information from the prompt. While the local-remote
LM setup bears resemblance to ours, we do not study the aspects of privacy, but rather focus on
reducing cloud costs by delegating work to devices while maintaining accuracy. Moreover, we have
additional focus on local runtime efficiency.

Local-remote systems Recent work has explored efficient routing patterns between local and
remote computation for LM workloads, albeit without two models communicating or collaborating on
a solution. (Jin & Wu, [2024) partition a single LLM with early layers on the edge and later layers in
the cloud, routing to the cloud when confidence is low. (Yang et al.l 2024) propose a complementary
task scheduling framework that routes to cloud or local based on resource constraints and service
requirements.

B EXTENDED DESCRIPTION OF EXPERIMENTAL SETUP

B.0.1 DATASET DETAILS

In this section we provide additional details on dataset preparation. In order to extend the context
length of the problems in LONGHEALTH and QASPER, we make a few modification to the dataset.

FINANCEBENCH We filter the original FINANCEBENCH to include only the numerical reasoning,
resulting in a dataset of length 64. Each sample has an average context length of 142.9 K (479224.32).

LONGHEALTH In the original instantiation of the LONGHEALTH dataset, each question is paired
with a set of medical documents corresponding to a single patient. To increase the complexity of the
dataset, we include medical documents from 10 other patients in the context. We evaluate over the
entire dataset (400 problems) for results reported in Table|l} Each sample has an average context
length of 120.1K(+1,237) tokens. For all ablations in Section @ we use a fixed subset of 128
problems.

QASPER Similarly, in the QASPER dataset, the original dataset provides questions that are
associated with a single scientific paper. In order to increase complexity, we include 10 other papers
in the context. We evaluate over a random subset of 500 problems for results reported in Table
Each sample has an average context length of 54281 tokens (£2403). For all ablations in Section%
we use a fixed subset of 128 problems.

B.0.2 MODEL DETAILS

Local Models. For QWEN2.5 we use the following models: QWEN2.5-1.5-Instruct, QWEN2.5-3B-
Instruct, QWEN2.5-7B-Instruct. For LLAMA, we use the following models: LLAMA-3.2-1B-Instruct,
LLAMA-3.2-3B-Instruct, LLAMA-3.1-8B-Instruct.

Remote Models. We use GPT-40 and LLAMA-3.2-70B-Instruct, LLAMA-3.1-70B-Instruct

All “local-only” and “remote-only” experiments are run with temperature of 0.2. For all MINIONS
experiments run in Table[T} we run the RemoteLM with a temperature of 0.0 and LocalLM with a
temperature of 0.2 for FINANCEBENCH and 0.00001 for QASPER and LONGHEALTH.

C EXTENDED DISCUSSION OF COST MODEL

Here, we explain in detail the costs of the different communication protocols discussed in this paper—
remote-only, MINION, and MINIONS—with a strong focus on the latency of these methods. This
section is organized as follows:

 Section We review background on language model inference, to motivate our cost and
latency models.

* Section|[C.2} We present mathematical models for the latency of the remote-only, MINION,
and MINIONS protocols.

* Section We present Proposition an upper bound on the total latency of MINIONS,
relative to that of the remote-only model, demonstrating that MINIONS is not much slower

14

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

than the naive approach of performing the full query in the cloud. As an example, we
show that a Llama-8B model on a GTX-4090 GPU collaborating via MINIONS with a
Llama-405B model on a 8xHI100 server is at most 4.75x slower than the remote-only
protocol.

C.1 BACKGROUND ON LANGUAGE MODEL INFERENCE

Language model inference consists of a sequence of forward passes through a model, one for prefill
(i.e. input) followed by one for each additional token generated (i.e. output). At low/medium
batch sizes, each forward pass after prefill is I/O bound, meaning the time it takes to load weights
from memory exceeds the time it takes to actually compute the output. As the batch size increases,
the computational cost of the forward pass eventually exceeds the I/O cost. Strikingly, for most
models and hardware, this happens at a batch size > 100 (Leviathan et al., 2023} |Chen et al.,
2024b)). As a result of this transition from being I/O bound to being compute bound, we can model
(as is common in the literature) the cost of running a forward pass as a piecewise linear function
Cm.e(n) = max(A, a-n+ f) of the number of tokens n being processed. This is because for small
n, the IO cost dominates (and is roughly constant as n grows), whereas at larger n the compute cost
dominates and scales roughly linearly with n (assuming n is not too large).

In the cloud, the provider can batch generation requests from multiple users to keep hardware
utilization high. Therefore, the cost of each output token is typically within a small multiple of the
cost of each input token, and the total cost of processing the request scales as 7pre 511 + O - Ndecodes
for some small o < 5.

On-device, we cannot assume we’ll have enough concurrent user requests to form a large enough
batch to achieve high utilization. As a result, the latency of a request does not scale linearly with the
number of tokens. A single request can occur similar latency to hundreds run in parallel. As a result,
tokens are a poor proxy for cost on-device and we instead measure latency in micro experiments (see

Section [6.3)).

C.2 LATENCY MODELS FOR ALL PROTOCOLS: REMOTE-ONLY, MINION, MINIONS

We now model the latency of each of these protocols (remote-only, MINION, MINIONS). We will
then use these results in the following section to upper bound the latency of MINIONS by a scalar
multiple of the latency of the remote-only protocol.

First, we introduce the following assumptions and notation:

* We assume we have a local GPU (e.g. RTX-4090) with peak compute F; (flops/sec), and
peak bandwidth A/ (bytes/sec), and a remote GPU (e.g. H100) with peak compute F;.
(flops/sec), and peak bandwidth M,. (bytes/sec),

* We also assume for now simple transformer architectures for both the local and remote
models:

- LocalLM: L, layers, each with 847 params in MLP (Up/down projections each of size
d; x 4d;, and 4d? parameters in the W¢ k v.o projections. The total memory required
for the (non-embedding/LM head) parameters is thus P, = 2 - 12L,d?. For simplicity,
we assume the memory for the LM head is small relative to P;.

— RemoteLM: Equivalent architecture to the LocalLLM, but with L,. layers, d, hidden
dimension, and P, total non-embedding/LM-head parameter memory (again assumed
to be much greater than the number of LM head parameters).

* We model the number of input/output tokens of each protocol as follows, letting n denote
the number of tokens in the original document:

— Remote-only: n prefill tokens and n] ,, decode tokens. Note that we assume—here
and below—that the number of tokens in the query is negligible relative to n. We
assume n > n] , so we can effectively ignore the K'V-cache load time for the output
tokens.

!

— MINION: For LocalLM, we assume n prefill tokens and n,,, decode tokens. For
RemoteLM, we assume n' , prefill tokens, and n”,, decode tokens. In the case of

15

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

multiple rounds of communication, the KV cache for the document can be stored to
avoid recomputation.
— MINIONS: For LocalLM, we assume n/c prefill tokens per chunk (¢ chunks total),
and n! ,, decode tokens per job (though we assume only p fraction of output jobs do
not abstain). For RemoteLLM, we assume J - n! , - p prefill tokens, and n”,,, decode
tokens, letting J = cks denote the total number of jobs in MINIONS (c chunks, %
instructions, s samples). In the case of multiple rounds of communication, the KV

cache for each document chunk can be stored to avoid recomputation.

* Throughout, we use the fact that a [m x n] - [n x k] matmul takes 2 - mnk flops, and assume
model parameters are stored in half-precision (2 bytes/param).

We are now ready to present the latency models for the three protocols (remote-only, MINION,
MINIONS).

C.2.1 REMOTE-ONLY

* Prefill: We are compute bound, so time is approximately given by total_flops/F,.. We
can break down total_flops into the matmuls (MLP up/down projections, and QKVO
operations) and attention operations.

— Matmuls: 2 - 12nd? per layer. Equivalent to a [n x d,.] - [d, x 12d,.] matmul.
— Attention: 2 - n2d, per layer. Equivalent to [n x d,] - [d, X n] matmul.
- Time: L, - (24nd? + 2n?d,)/F, = (nP. + 2L,d,n?)/F,.

* Decode: We are memory bound (batch size 1 for Minion), so time is approximately given
by total_-memory/M, per decode step. We can break down total_memory into model
parameters and KV cache.

— Model parameters: 2 - 12d? bytes per layer.
— KV-cache: 2 - 2nd,. bytes per layer (K and V are each [n x d] matrices).
- Time: L, -n",, - (24d? + 4nd,.) /M, = n",,,(P, + 4L,d,n)/M,.

out ’ out

Total time is given by the sum of prefill and decode times:

nP, +2L.d.n?> n’,, (P, +4L.dn)
Tremote = F + M

C.2.2 MINION

The latency of the LocalLLM in the MINTON protocol can be modeled equivalently to the latency of
the remote-only protocol, but replacing the remote parameters with the corresponding local ones.
Thus, total local latency is:

_ TLP[+ 2lem2 4 néut(})l + 4lem)

TMINION —
local Fl Ml

The total remote latency can also be expressed using these same equations, but with n , prefill

tokens, and n,, decode tokens.

TMINION _ nb,. Py 4 2Lyd, (ni)ut)z + Nt (Pr + 4LTdTnlout)

out out

remote Fr Mr

C.2.3 MINIONS

The LocalLLM latency of the MINIONS protocol has some important differences from the MINION
protocol—the prefill computation avoids cross-chunk attention (which saves time), while the decode
operations can actually be compute bound if batching of the different jobs is done. We review these
details below:

* Prefill: We are compute bound, so time is approximately given by total_flops/F. We

can break down total_flops into the matmuls (MLP up/down projections, and QKVO
operations) and attention operations.

16

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

- Matmuls: 2 - 12nd? per layer. Equivalent to ¢ [n. x d;] - [d; X 12d;] matmuls (where
n. =njc).
— Attention: 2 - cn?d; = 2 - ¢ (n/c)?d; = 2n2d; /c per layer. Equivalent to ¢ [n. x di] -
[d; X n.] matmuls.
- Time: L; - (24nd; + 2n?d;/c)/F = (nP, + 2L;din*/c)/F.
* Decode: We will now assume we are compute bound during decode, because we have
many jobs (ks) per chunk, and many chunks (c) per document, which we can batch together.
Thus, time is approximately given by total_flops/F; per decode step. We can break down

total_flops into matmuls and attention. The flops below are per job, per output token (so
for total flops we will multiply by nl , - pcks):

— Matmuls: 2 - 12d? per layer. Equivalent to a [1 x d;] - [d; x 12d,;] matmul.
— Attention: 2 - n.d; = 2d; n/c per layer. Equivalent to [1 x d;] - [d; X n.] matmul.
- Time: L; - nl,, - pcks - (24d? + 2din/c)/F = nl,, - pcks - (P, + 2Lidin/c)/ F.

The fotal local latency for MINIONS is given by the sum of prefill and decode times:

nP +2Lidn?/c nl,, - pcks- (P, +2Lidin/c)
T‘local = F + F .
1 1

The total remote latency for MINIONS can be expressed using the same equations as MINION, but
with pcks - nl , prefill tokens, and n%,, decode tokens.

T _ (pcks - nl)Pr+2L.d.(pcks -n!)2 N n’ o (Pr+4L.d.(pcks -n! ;)

remote Fr Mr

C.3 MINIONS VS. REMOTE-ONLY COMPARISON
Assume nlout - pcks = an, for some a < 1, and that F,.;, d,;, and L, ; are all as defined in
Appendix [C.2] In this case, we can show that the ratio of total latency of MINIONS vs. the
remote-only protocol is upper-bounded by the following expression:

remote oca < 1 1 L. .
Tremote + (+ a) E err

Let’s assume nl , - pcks = an, for some a < 1.

nP; + 2Lidn?/c N an - (P, +2Lidin/c)

,Tlocal = E Fl
P, +2Ldin?
(14 a). O 2
F
(an)P. 4 2L,d,(an)®> nZ(P. +4L.d.(an))
Tremote = F + M
< nP, + 2L,.d.n? n ne+4Lrdrm n np: Pr
a
F, M, M,
nP.+2L.d.n* n’, (P +4L.dn)
Tremote = I + M

Thus, it is easy to see that ;TL“’;@ < 1. Now let’s look at TT“’iwi, and show it is upper bounded by a
constant:

17

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

nP1+2leln2/c
(1+a) Iy S
nP.+2L,d,n?

r

_ (1+) F. nP, + 2Lidn?/c
- YE uP. + 2L.don?

F, P, Liq
< (1 L R
< (1+4a) 7 max (Pr7 erTC>

2
) D ()

< (1+a)~—~

T‘local

Tremote

Thus, combining the above two results we can see that:

T T, F. L
Lremote T Liocal < 1+(1+a).7. ndl

TT‘ETTL ote ﬂ L,- d,-

Real example: Let’s assume that the local GPU is a RTX 4090 (F; ~ 160 TFLOPS), the remote
server is a full node of 8 H100s (F}. = 8000 TFLOPS across full node), the local model is Llama-8B
(L; = 32, d; = 4096), and the remote model is Llama-405B (L; = 126, d; = 16384). Furthermore,
let’s assume a =~ 0.2, which is actually a bit larger than we see in practice. In this case:

F. Ld 8000 32 -4096

1+ (1 R 1+1.2- .
+(1+a) F L.d, + 160 126 - 16384
1
~ 1+12-50.- —
+ 16
— 475,

Note that if we perform multiple rounds of MINIONS, this ratio gets multiplied by at most the number
of rounds, though as mentioned previously, we can save time by only performing prefill on all the
document chunks in the first round.

D EXTENDED DISCUSSION OF METHODS

D.1 EXTENDED DESCRIPTION OF MINION

In this section, we describe MINION, a baseline local-remote communication protocol. We ask
whether we can reduce remote prefill tokens, and thus cost, by simply orchestrating a free-form
conversation between the LocalLM and the RemoteLM in which only the LocalLLM has direct
access to the context c.

The protocol proceeds with initialization step followed by a simple correspondence between the two
models, which terminates when the remote model can answer the question or a maximum iteration
limit is reached.

Iteration ; = 1: Initialize. The RemoteLM receives the task query q along with a system prompt
Premote that instructs it to interact with a small LM that has full access to context. It outputs a first

1 .
mMessage Mg o

mr(elxznote ~ RemoteLM(q, premote)

The message is then provided to LocalLLM, along with the full context c, the query c, and a minimal
system prompt Piocal that instructs it to answer questions on the context:

ml(olc)a] ~ LocalLl\/[(mr(eermtea q, Plocals C)

18

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Local Model Remote Model Release Date Accuracy (Longhealth) Accuracy (QASPER) Accuracy (Finance)
llama-3B gpt-4o May 2024 0.7025 0.598 0.7826
llama-3B gpt-4-turbo April 2024 0.6247 0.614 0.6304
llama-3B gpt-3.5-turbo-0125 Jan 2024 0.2157 0.4314 0.1707
llama-3B gpt4o-mini July 2024 0.6275 0.568 0.6522
llama-3B llama3-70B-Instruct-Turbo April 2024 0.3525 0.144 0.1818
llama-3B llama3.1-70B-Instruct-Turbo ~ July 2024 0.6193 0.514 0.4348
llama-3B 1lama3.3-70B-Instruct-Turbo December 2024 0.6658 0.534 0.6739

Table 2: Accuracy Results for Longhealth, QASPER, and Finance across Various Models

Iteration i > 1. Step 1: Message from remote to local. RemoteLLM consumes the conversation
history and outputs new messages:

] 1—1 —1
mr(étllote ~ RemOteLM(mr(e:note)v ml(ozal)7 q, premote)

In its message, RemoteLM indicates whether it has sufficient information to terminate the loop and
answer the question, or alternatively raises additional questions.

Step 2: Message from local to remote LocalLLM consumes the latest remote message and conversa-

tion history, and outputs ml(;c)al-

3 g—1 d—1
ml((:c)al ~ LocalLlw(mEe:note)v ml(mz;al)7 q, Plocals C)

We then increment the iteration ¢ and loop back to Step 1 until the break condition is met or we reach
a maximum number of iterations.

D.2 INFORMATION BOTTLENECK PERSPECTIVE

How does local model capacity affect the cost-accuracy tradeoff?

The Information Bottleneck (IB) principle (Tishby et al., [2000) provides a useful analogy. One
communication round of a local-remote system does as follows:

z ~ p(z|c) [Extract info. from context]
y ~p(y|z) [Predict outcome from extracted info]

The IB principle seeks to find a p(z | c), our LocalLM, as follows:
min | 1(C;7) - B1(Z:Y))|. 3)

p(zlc
i.e. find a mapping that forces the latent representation to be maximally informative of the label
I(Z;Y) and minimally informative of the input I(C; Z), with a tradeoff parameter /3. Here, we do
not optimize the mapping p(z | ¢) but instead only get to choose it by setting LocalLM.

Since we cannot compute these quantities in closed form for nonlinear distributions over tokens,
we use (coarse) empirical proxies as follows. As a proxy for I(C; Z), we compute the number of
prefill tokens sent to RemoteLLM, capturing the intuition that more tokens carry more information
on the input. I(Z;Y) is estimated as the average accuracy of the local-remote system, quantifying
the preservation of task-relevant information in z. While these proxies do not exactly match the
underlying mutual informations, they capture the core tension of compressing the input vs. preserving
predictive power.

We plot these quantities in Figure ??. We find that across both QWEN2.5 and LLAMA model families,
as we increase LocalLM size, we send fewer tokens to RemoteLM (= I(C; Z) |), and improve
accuracy (=~ I(Z;Y) |). We find that LLAMA has higher ~ I(C'; Z) and higher ~ I(Z;Y").

E EXTENDED RESULTS

E.1 MODEL ANALYSIS
We include additional experiment results from Section[6.2] In Table[2] we show the effects of varying

RemoteLM on MINIONS. In Table[3] we show the performance of MINIONS using the best in-class
models at the time (from late 2023 to late 2024).

19

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

FinanceBench

—————————————————— gpt-40 (0.83) |- === —mmm
0.80
0.75
Strategy

30.70
© @ Simpleretry
§ @ Scratchpad
< 0.65

0.60

0.55

8000 10000 12000 14000 16000
Total Remote Tokens

Figure 5: Comparing strategies for maintaining context between MINIONS rounds. The x-axis
represents the number of tokens processed by the remote model, while the y-axis shows the accuracy
achieved.

Local Model Remote Model Accuracy (Longhealth) Accuracy (QASPER) System Date
Llama-2-7b-chat-hf gpt-4-1106-preview 0.340 0.178 November 2023
Llama-3.1-8B-Instruct gpt-4-turbo 0.645 0.528 April 2024
Llama-3.1-8B-Instruct gpt-40 0.740 0.582 July 2024
— gpt-4-turbo 0.768 0.391 April 2024

Table 3: Point in time results for MINIONS configurations with best-in-class LocalLM and
RemoteLM

E.2 MINION LocalLM ANALYSIS

Total Chunks In-Context Accuracy

1 0.59375
16 0.53906
32 0.50000
64 0.48438

128 0.46094

Table 4: Accuracy vs. Number of Chunks in Context
Each chunk has 512 tokens.

We perform an empirical analysis evaluating the robustness of LocalLM. We perform experiments to
evaluate two axes of model capabilities: (1) ability to reason over long contexts and (2) ability to solve
multi-part queries. To test (1) and (2) we curate a synthetic dataset built over the FINANCEBENCH
dataset wherein we use GPT-40 to construct an extraction based question-answering dataset over
chunks (length 512 tokens) of documents in the FINANCEBENCH dataset. We then construct two
settings evaluating over LLAMA-3.2-3B-Instruct.

Long Context Reasoning: To evaluate long-context reasoning, we concatenate between
{1,16,32,64,128} chunks to construct the context. At least one chunk in the concatenated context
contains the ground truth result. As seen in Table[d] increasing the context length from 512 to 65.5K
tokens leads to a 13 point drop in accuracy.

Multi-step Queries To evaluate the ability of LocalLM to fulfill multi-step queries, we construct
queries that have between {1,2,3,4} sub-tasks. Our results indicate increasing from 1 to sub-tasks
leads to a 56.3 point drop in accuracy (see Table [5).

20

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Number of Sub Tasks Accuracy

1 0.70313
2 0.39844
3 0.19531
4 0.14844

Table 5: Accuracy vs. Number of Sub Tasks

0 600Number of Chunks in Context Number of Sub Tasks

0.575
> 0.550 >05
@

c
30525

Ac

0.500

0.475

—— T T T T 7
116 32 64 128 1 2 3 4
Total Chunks In-Context (each 512 tokens) Number of Sub Tasks

Figure 6: Analysis of small LM limitations. Evaluation of LLAMA-3.2-3B on simple extraction
tasks (see Section |E.2). (Left) Performance drops significantly as context length increases. (Right)
Increasing sub-task complexity reduces performance, with fewer sub-tasks yielding better results.

E.3 RELATIONSHIP WITH RETRIEVAL-AUGMENTED GENERATION

In this section, we discuss the relationship between local-remote collaboration and retrieval-
augmented generation (RAG), a technique that reduces the number of tokens processed by an
LM by retrieving a subset of relevant documents or chunks LM [Lewis et al.| (2020); Karpukhin et al.
(2020); [Lee et al.|(2019).

Retrieval-augmented generation and local-remote collaboration (e.g. MINIONS) are complementary
techniques. They both provide a means to reduce cost by providing an LLM with a partial view of a
large context. But, as we discuss below, they also have different error profiles and can be used in
conjunction to improve performance.

E.3.1 COMPARISON OF MINIONS AND RAG ON FINANCEBENCH

In Figure (left), we plot the quality-cost trade-off on FINANCEBENCH for local-
remote systems (MINION and MINIONS) and RAG systems using BM25 and OpenAl’s
text-embedding-3-small embeddings [Robertson & Zaragozal (2009); |[Neelakantan et al.
(2022)). For RAG, we use a chunk size of 1000 characters, which we found to be optimal for this
dataset after sweeping over chunk sizes with the BM25 retriever (see Figure[7] (center)). We show
how a simple hyperparameter (number of retrieved chunks provided to the remote model) allows
us to trade off quality of the RAG system for remote cost. Furthermore, we note that when the
BM25 RAG system provides 50 or more chunks of the document to the remote model, it exceeds
the performance of the remote model with the full context. This likely indicates that RAG helps in
minimizing distractions from the long context. For FINANCEBENCH, when compared to MINIONS,
the RAG system with OpenAl embeddings reaches similar points in the quality-cost trade-off space.
Interestingly however, none of the RAG configurations are are able to match the quality of MINION
at the same low cost.

E.3.2 COMPARISON OF MINIONS AND RAG (EMBEDDINGS + BM25) ON SUMMARIZATION
TASKS

RAG is a very suitable approach for FINANCEBENCH, since all of the questions heavily rely on
information extraction from specific sections of financial statements. However, RAG will not
be suitable for a summarization task, unlike small LMs. Therefore, we use the long-document
summarization dataset, BOOOOKSCORE (Chang et al.,|2023). BOOOOKSCORE which contains a set
of 400 books published between 2023-2024. The average story length in BOOOOKSCORE is 128179

21

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Protocol Local Model Remote Model FINANCEBENCH LONGHEALTH QASPER
Acc. Cost In Tok. (1k) Out Tok. (1k) Acc. Cost In Tok. (1k) Out Tok. (1k) Acc. Cost In Tok. (1k

Remote Only — GPT-40 0.826 $0.261 103.04 0.32 0.748 $0.301 120.10 0.07 0.598 $0.137 54.40
Local Only LLAMA-8B — 0.326 $0.000 0.00 0.00 0.468 $0.000 122.58 0.07 0.538 $0.000 54.41
Local Only LLAMA-1B — 0.000 $0.000 0.00 0.00 0.115 $0.000 122.58 0.07 0.000 $0.000 54.41
Local Only LLAMA-3B — 0.130 $0.000 0.00 0.00 0.345 $0.000 122.58 0.08 0.164 $0.000 54.41
Local Only QWEN-3B — 0.087 $0.000 0.00 0.00 0.177 $0.000 31.24 0.08 0.156 $0.000 32.58
aive LLAMA-8B GPT-40 0.804 $0.007 0.88 0.46 0.635 $0.010 1.85 0.50 0.450 $0.007 0.92
aive LLAMA-3B GPT-40 0.698 $0.010 1.74 0.52 0.482 $0.009 1.56 0.47 0.372 $0.011 2.26
aive QWEN-3B GPT-40 0.217 $0.029 8.28 0.82 0.281 $0.021 5.70 0.68 0.210 $0.035 10.51
MINIONS LLAMA-8B GPT-40 0.804 $0.053 15.99 1.29 0.740 $0.054 18.96 0.65 0.582 $0.019 5.10
MINIONS LLAMA-3B GPT-40 0.726 $0.079 24.67 1.77 0.703 $0.057 20.11 0.66 0.558 $0.020 5.62
MINIONS QWEN-3B GPT-40 0.783 $0.059 17.20 1.56 0.645 $0.043 14.43 0.65 - - -
MINIONS QWEN-7B GPT-40 - - - - - - - - 0.600 $0.015 3.44

Table 6: Accuracy and cost of local-remote systems. Evaluation of cost and accuracy on the
FINANCEBENCH [Islam et al.| (2023)), LONGHEALTH |Adams et al.| (2024), and QASPER |Dasigi
et al| (2021). The table compares two edge-remote communication protocols — Naive (section 4]
and MINIONS (section [5)) — alongside edge-only and remote-only baselines. Three different edge
models are considered (LLAMA-8B, LLAMA-3B, QWEN-3B, and LLAMA-1B) and a remote model
(GPT-40). Accuracy (Acc.) is the fraction of correct predictions across the dataset. Cost (USD) is
the average cost in USD per query in the dataset computed. Costs are incurred for any calls to the
remote model at GPT-40 rates (January 2025: $2.50 per million input tokens and $10.00 per million
output tokens). We assume that running the edge model is free; see section 3 for details on the cost
model. In tokens is the number of input (i.e. prefill) tokens sent to the remote model. Out tokens is
the number of output (i.e. decode) tokens generated from the remote model. Both values are shown
in thousands.

FinanceBench FinanceBench

Edge Model Chunk Size

¢ llama-3.2-3b
¢ llama-3.1-8b ¢ 50
® BM25 ¢ 1000
>) ¢ 2000
g @ OpenAl Embedding $ 000
5 Protocol
o @ RAG @ loooo
< Protocol
A Remote Only
¢ Minions @ Edge Only
@ Minion A Remote Only
0.2 % Edge Only ¢ RAG
- i E——
I £ R llama-3.2-3b (0.13)) - ==+ === —mmmrmmm (ama-3.2-3b (0.13))
0.1 1 ————
= 0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Remote Cost ($) Remote Cost ($)

Figure 7: Relationship with retrieval-augmented generation.

tokens with a max of 401486 tokens and a minimum of 26926 tokens. We utilize both MINIONS,
RAG (w/Embeddings + BM25), and GPT-40 only to complete the task. We describe the set-up for
all three approaches next.

MINIONS for summarization In applying MINIONS to the task, the LocalLM (LLAMA-3.2-3B-
Instruct) provides summaries on chunks of the original text, passing a list of chunk summaries to the
RemoteLM (GPT-40). RemoteLLM produces the final summary.

RAG (Embedding) for summarization In our embedding-based RAG approach, we use the OpenAl
TEXT-EMBEDDING-3-SMALL to embed chunks of the original text (of length 5000 characters) and
we retrieve the top-15 most relevant chunks using the query “Summarize the provided text”. We then
prompt GPT-40 to generate a complete summary over the retrieved chunks.

RAG (BM25) for summarization In our BM25-based RAG approach, we use the BM25 to retrieve
chunks of the original text (of length 5000 characters) based on the query: “Summarize the provided
text”. We retrieve the top-15 most relevant chunks and prompt GPT-40 to produce a final summary
over the retrieved chunks. We choose top-15 to ensure the number of tokens passed up by the baseline
is comparable with those passed up by MINIONS.

GPT-40 In our final baseline, we use GPT-40 alone to create the story summaries. For texts that
extend beyond the 128K context length window, we truncate the stories.

22

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Evaluation

* Qualitative In Table[§ we provide samples outputs from each of the 4 methods described above.
We highlight major events in red, themes in green, locations in blue and names in indigo.
The samples demonstrate that amongst all the methods, MINIONS outputs contain the most
entity mentions and story specific details. Moreover, when compared to GPT-40-only
RemoteLM, MINIONS is 9.3x more efficient — 11,500 versus the full 108,185 prefill
tokens.

The summaries from MINIONS are generally 1.3x longer and more verbose than the RAG
systems’ summaries, likely indicating that the former is more effective at “passing forward”
salient information. Moreover, RAG systems’ summaries are missing the main arc of the
narrative in favor of what seems an assortment of facts.

* Quantitative We additionally perform a quantitative analysis of the generated summaries using
a LLM-as-a-judge framework. As an evaluator, we use the CLAUDE-3.5-SONNET model,
to avoid any biases between the evaluator and the supervisor model. We prompt the model
with the generated summary, ground truth summary (gpt4-4096-inc-cleaned) provided from
the original BOOOOKSCORE generations, and a grading rubric (see Figure[8). The rubric
evaluates 7 criteria: coherence, relevance, conciseness, comprehensiveness, engagement &
readability, accuracy, and thematic depth. We prompt CLAUDE-3.5-SONNET to generate a
score (1-5) for each of the criteria and average the scores. We find that summaries generated
by MINIONS score comparably with GPT40-only generated summaries, while RAG based
baslines perform worse. Our results can be found in Table

Evaluation Rubric for Summaries

1. Coherence (1-5): Summary is logically structured, with clear connections between
events, avoiding abrupt jumps or inconsistencies.

2. Relevance (1-5): Accurately reflects key themes, events, and characters, focusing
on essential details without unnecessary plot points.

3. Conciseness (1-5): Thorough yet avoids excessive detail, presenting necessary
information without redundancy.

4. Comprehensiveness (1-5): Covers all major characters, events, and themes, ensur-
ing a complete overview without omissions.

5. Engagement & Readability (1-5): Engaging and easy to read, with well-
constructed sentences and clear, precise language.

6. Accuracy (1-5): Stays true to the book’s storyline, themes, and tone, with correct
details, names, and events.

7. Thematic Depth (1-5): Identifies underlying themes and messages, providing
insights into conflicts, motivations, and resolutions.

Figure 8: Evaluation Rubric for Summaries

Method Score
MINIONS 3.01
GPT4o0 3.06
RAG (BM25) 2.48

RAG (Embedding) 2.38

Table 7: Comparison of Methods and Rubric Scores

23

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Table 8: Comparative Analysis of Story Summaries Across Different Methods

Story Ti-
tle

Minions

GPT-40

BM25

Embedding

A Likely
Story

The novel follows the complex
dynamics of the Manning fam-
ily, focusing on Isabelle Man-
ning, a struggling writer grap-
pling with the legacy of her fa-
mous father, Ward Manning,
and the recent death of her
mother, Claire. As Isabelle nav-
igates her career and personal
life, she uncovers family se-
crets, including her father’s pla-
giarism and her mother’s hid-
den manuscript, which chal-
lenge her identity and ambi-
tions. The narrative explores
themes of fame, family expec-
tations, and personal growth,
culminating in Isabelle’s jour-
ney towards self-discovery and
independence. Set against the
backdrop of New York City
and Sag Harbor, the story
delves into the intricacies of fa-
milial relationships and the pur-
suit of creative fulfillment.

Isabelle Manning, daughter of
a famous author, discovers an
unfinished manuscript by her
late mother, Claire. She com-
pletes and publishes it as her
own, leading to success but
also guilt and exposure. Her
father, Ward, reveals he sabo-
taged her first book to teach
her resilience, deepening her
sense of betrayal. Ultimately,
Isabelle confesses her actions,
seeks redemption, and begins
to redefine her identity beyond
her father’s shadow.

Isabelle Manning, overshad-
owed by her famous father
Ward, receives a threatening
text, ”I KNOW WHAT YOU
DID,” hinting at a secret tied
to her book, ”Underpaint-
ing.” Meanwhile, her mother
Claire’s past support and her fa-
ther’s hidden illness add layers
to Isabelle’s challenges.

In a narrative spanning New
York and Sag Harbor, Claire
Cunningham grapples with her
identity beyond being a Vassar
graduate, while her daughter Is-
abelle faces personal and pro-
fessional challenges, including
her father’s illness and her own
writing struggles.

All the
Dan-
gerous
Things

Isabelle Drake, a woman grap-
pling with the traumatic dis-
appearance of her son Mason,
navigates a complex web of
grief, guilt, and suspicion. As
she becomes entangled with
true crime enthusiasts and in-
vestigators, including podcast
host Waylon and Detective
Dozier, Isabelle’s quest for
truth reveals unsettling fam-
ily secrets and personal betray-
als. Her journey is marked
by strained relationships, par-
ticularly with her ex-husband
Ben and his connections to
other women, including Valerie
and Allison. Throughout the
narrative, themes of mother-
hood, mental health, and so-
cietal judgment are explored,
culminating in a deeper under-
standing of the pressures and
expectations faced by women.

Isabelle Drake, plagued by in-
somnia and guilt, is desperate
to find her missing son, Ma-
son. She suspects her husband,
Ben, and his new partner, Va-
lerie. With Waylon’s help, she
discovers Abigail Fisher, ma-
nipulated by Valerie, took Ma-
son believing she was rescuing
him.

The narrative follows Isabelle,
dealing with Mason’s disap-
pearance. She works with
podcaster Waylon, uncovering
links to Ben’s deceased wife,
Allison.

Isabelle, struggling with grief
and insomnia, joins a grief
counseling group. She meets
Valerie and collaborates with
Waylon, but becomes wary af-
ter finding unsettling informa-
tion on his laptop.

Continued on next page

24

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Continued from previous page

Story Ti-
tle

Minions

GPT-40

BM25

Embedding

A Living
Remedy:
A Memoir

Nicole Chung, a Korean Amer-
ican adoptee, reflects on her
complex relationships with her
adoptive parents, her identity,
and the challenges of navigat-
ing life as a minority in a pre-
dominantly white community
in Oregon. Her memoir ex-
plores themes of family, loss,
and resilience, as she recounts
her father’s death from kidney
failure, and her mother’s battle
with cancer. Amidst these per-
sonal challenges, Chung grap-
ples with her own grief, fi-
nancial struggles, and the im-
pact of the COVID-19 pan-
demic, while finding solace in
her family, faith, and writing.
Her journey is marked by a
deep appreciation for her par-
ents’ sacrifices, the support of
her husband and children, and
the enduring legacy of love
and forgiveness instilled by her
mother.

Nicole Chung’s memoir ex-
plores her journey after the loss
of her adoptive parents. As
a Korean adoptee, she reflects
on family’s financial struggles,
parents’ health battles, and
their deaths’ impact on her
identity. She finds solace in
writing and her own family.

The protagonist struggles with
visiting her dying mother dur-
ing the COVID-19 pandemic.
The story explores grief, fam-
ily responsibility, and cherish-
ing life amidst adversity.

A woman reflects on her par-
ents’ illnesses and deaths, bal-
ancing her role as a daughter
and mother. She finds solace
in childhood memories and the
legacy of her parents’ love.

A House
with Good
Bones

Samantha, a 32-year-old ar-
chaeoentomologist, returns to
her childhood home on Lam-
mergeier Lane in North Car-
olina, where she confronts
her family’s dark past, in-
cluding her grandmother Gran
Mae’s mysterious and malevo-
lent legacy. As Samantha nav-
igates her mother’s strange be-
havior and the eerie presence
of vultures, she uncovers se-
crets involving ritual magic, a
jar of human teeth, and the su-
pernatural underground chil-
dren.” With the help of her
friend Gail and handyman Phil,
Samantha faces the haunting
manifestations of her family’s
history. The novel explores
themes of family, memory, and
the supernatural, blending ele-
ments of horror and fantasy.

Samantha Montgomery returns
home to find her mother act-
ing strangely and the house de-
void of insects. She uncov-
ers a dark history involving her
great-grandfather, a sorcerer,
and her grandmother, who used
roses to wield power. With
help from Gail and Phil, she
confronts the terrifying “under-
ground children,” using rose
power to banish threats.

The protagonist returns to their
grandmother’s unchanged gar-
den, filled with roses but myste-
riously devoid of insects. They
uncover unsettling truths about
their grandmother’s past and
their mother’s current state of
mind. The narrative explores
themes of family legacy and
the passage of time.

Samantha, an archaeoentomol-
ogist, returns to her childhood
home and finds herself investi-
gating insect collections. Deal-
ing with sleep paralysis and
memories of her grandmother,
she discovers the peculiar ab-
sence of insects in the garden.
She navigates family dynamics
and her mother’s anxiety amid
an eerie atmosphere.

F PROMPTS

F.1

RemoteLM

MINION

25

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

We need to answer the following question based on a {doc-type}.

Question
{query}

Instructions
You will not have direct access to the {doc_type}, but can chat with a small language
model which has read the entire thing.

Feel free to think step-by—step, but eventually you must provide an output
in the format below:

<think step by step here>
‘“‘json

{
oS

”message”: "<your message to the small language model>"

LocalLM

~

You will help a user answer the following question based on a {doc_type}.

Read the {doc_-type} below and prepare to answer questions from an expert user.
{doc_type}
{context}

Question
{query}

Conversation

Here is the response from the small language model:

Response
{response}

Instructions
Analyze the response and think-step-by—step to determine if you have enough
information to answer the question.

If you have enough information, provide a final numeric answer in the format
below .

<think step by step here>

e

json
”decision”: "provide_final_answer”,
“answer”: "<your answer>"

e

Otherwise , request additional information from the small language model by
outputting the following:

<think step by step here>

e

json
{{
”decision”: “request_additional_info”,
”message”: "<your message to the small language model>"
s
F.2 MINIONS

MINIONS: FINANCEBENCH

Decompose

26

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Decomposition Round #{step_-number}

You do not have access to the raw document(s), but instead can assign tasks to small
and less capable language models that can read the document(s).

Note that the document(s) can be very long, so each task should be performed only over
a small chunk of text.

Write a Python function that will output formatted tasks for a small language model.
Make sure that NONE of the tasks require calculations or complicated reasoning.
Any information you mentioned in your task should be given an extraction task.

Please use chunks of {pages_per_chunk} pages using the ‘chunk_on_multiple_pages(doc =
context, pages_per_chunk ={pages_per_chunk})‘ function.

If you have multiple tasks, consider using nested for—loops to apply a set of tasks to
a set of chunks. Though it’s not required to have more than one task.

{ADVANCED_STEPS_INSTRUCTIONS }

Assume a Pydantic model called ‘JobManifest(BaseModel)‘ is already in global scope. For
your reference , here is the model:

e

{manifest_source}

P

Assume a Pydantic model called ‘JobOutput(BaseModel)‘ is already in global scope. For
your reference , here is the model:

{output_source}

P

DO NOT rewrite or import the model in your code.

The function signature will look like:

‘e

{signature_source}

You can assume you have access to the following chunking function(s). Do not
reimplement the function, just use it.

e

{chunking_-source}

P

‘Worker

27

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Your job is to complete the following task using only the context
below. The context is a chunk of text taken arbitrarily from a
document, it might or might not contain relevant information to
the task.

Document
{context}

Task
{task}

{advice}

Return your result in JSON with the following keys: “explanation”,
”citation”, and “answer”.

— 7explanation”: A concise statement of your reasoning or how you
concluded your answer.

— Vcitation”: A direct snippet of the text that supports your
answer. If nothing is found, put “None”.

— 7answer”: The extracted answer. If nothing is found, put “None”.

Be certain to only rely on the provided text. If you cannot
determine the information confidently from this chunk, respond
with ”None” for all fields.

Synthesize

28

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Now synthesize the findings from multiple junior workers (LLMs).
Your task is to finalize an answer to the question below =*xif and

only ifs#x you have sufficient, reliable information.
Otherwise , you must request additional work.

Inputs
1. Question to answer:
{question}

2. Collected Job Outputs (from junior models):
{extractions}

First think step-by-step and then answer the question using the
exact format below.

ANSWER GUIDELINES
1. #xDetermine if the collected Job Outputs provide enough
trustworthy , consistent evidence to confidently answer the
question .
— If the data is incomplete or contradictory , do NOT guess.
Instead , specify what is missing.
— If the evidence is sufficient, provide a final answer.

2. #xBe conservative .x* When in doubt, ask for more information.

3. xxAddress conflicts.*x If multiple jobs give different answers,
rely on whichever is best supported by a valid “explanation” and
“citation”.

— If you need more information from the conflicting jobs you
could request additional work from those specific jobs (be
sure to mention the specific job IDs in your additional_info
field) .

— Then, in the next round you can make a smaller set of jobs to
determine which answer is correct.

4. xxRequired JSON Outputs*=*: You must output a JSON object with
these keys:

— 7decision”: Must be either "provide_final_answer” OR ”
request_additional_info ”.

— Use "provide_final_answer” if you have enough information.
— Use "request_additional_info” if you cannot conclusively
answer .

— 7explanation”: A short statement about how you arrived at your
conclusion or what is still missing.

— “answer”: The final answer string if “decision”="
provide _final _answer”, or null otherwise. Should contain ONLY
the final answer, without additional calculations or
explanations .

Here is the template for your JSON response (with no extra text
outside the JSON):

<think step-by-step here>
‘ffjson

{{ L

”decision”: R
”explanation”: ”...”,
“answer”: ”... or null”, # Good answer format: 70.56”; Bad answer

format: “The ratio is calculated as 1-0.27%2 = 0.56”
H

¢«

x Important #x:

— If there is not enough informat?(?n, set “answer” to null, set
decision” to “request_-additional_info”, and specify exactly what
else you need in ”"missing_info” and from which job IDs.

”

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

MINIONS: LONGHEALTH

Decompose

Decomposition Round #{step_number}

You do not have access to the raw document(s), but instead can assign tasks to small and less
language models that can read the document(s).

of text.

Write a Python function that will output formatted tasks for a small language model.
Make sure that NONE of the tasks require multiple steps. Each task should be atomic!
Consider using nested for-loops to apply a set of tasks to a set of chunks.

combination of task and chunk.
Use the conversational history to inform what chunking strategy has already been applied.

{ADVANCED_STEPS_INSTRUCTIONS }

Assume a Pydantic model called ‘JobManifest(BaseModel)‘ is already in global scope. For your
reference , here is the model:

{manifest_source}

here is the model:

{output_source}
DO NOT rewrite or import the model in your code.

The function signature will look like:

{signature_source}

, just use it.

{chunking_source}

Here is an example

task_id = 1 # Unique identifier for the task

for doc-id, document in enumerate(context):
if you need to chunk the document into sections
chunks = chunk._by_section(document)
or if you need to chunk the document into pages
chunks = chunk_by_page (document)

for chunk_.id, chunk in enumerate (chunks):
Create a task for extracting mentions of specific keywords
task = (
”Extract all mentions of the following keywords:
”’Cal9-9°, ’tumor marker’, ’September 2021°, 'U/ml’, ’Mrs. Anderson’.”

)
job_manifest = JobManifest(
chunk_id=f"doc-id_-chunk_.id”,
task_id=task_-id ,
chunk=chunk ,
task=task ,
advice="Focus on extracting the specific keywords related to Mrs. Anderson’s tumor
levels .”
)

job_manifests.append(job_manifest)

capable

Note that the document(s) can be very long, so each task should be performed only over a small chunk

The same ‘task-id ° should be applied to multiple chunks. DO NOT instantiate a new ‘task_id ° for each

Assume a Pydantic model called ‘JobOutput(BaseModel)‘ is already in global scope. For your reference ,

You can assume you have access to the following chunking function(S). Do not reimplement the function

marker

Pworker

30

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Your job is to complete the following task using only the context below. The context is
a chunk of text taken arbitrarily from a document, it might or might not contain
relevant information to the task.

Document
{context}

Question you are trying to answer:
{question}

You have been instructed to extract information pertaining to the following concepts:
\"Date of visit\”, {task}

Format your response as follows:

”Date of visit” : ”‘direct quote extracted text ‘",
"<keyword_1>” : ”‘direct quote extracted text ‘”,
"<keyword.2>” : ”‘direct quote extracted text ‘7,

Can you please extract the relevant sections from the document that are related to the
concepts provided? Extract direct quotes or sentences. If concept is not mentioned
, leave it out.

Your Answer:

Psynthesize

Answer the following by the synthesizing findings from multiple junior workers (LLMs).

Inputs
1. Question to answer:
{question}

2. Collected Job Outputs (from junior models):
{extractions}

First think step-by-step and then answer the question using the exact format below.
ANSWER GUIDELINES

#kRequired JSON Output#:x: You must output exactly one JSON object with these keys:
— 7decision”: Must be ”“provide_final_answer”.
— “explanation”: A short statement about how you arrived at your conclusion or what
is still missing.
— “answer”: The final answer string (that matches one of the provided options) if
decision”="provide_final_answer”, or null otherwise.

2

Here is the template for your JSON response:

<think step-by-step here>

”decision”: ”...”,
”explanation”: 7...7,

”» 2

“answer ”: RN

b}

Now, carefully inspect the question, think step-by—step and perform any calculations
before outputting the JSON object. If answer choices are provided, your answer
must #xexactlys*s match one of the answer choices.

Question :
{question}

Your Answer:

31

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

MINIONS: QASPER

Pdecompose

Decomposition Round #{step_-number}

You do not have access to the raw document(s), but instead can assign tasks to small
and less capable language models that can read the document(s).

Note that the document(s) can be very long, so each task should be performed only over
a small chunk of text.

Write a Python function that will output formatted tasks for a small language model.

Make sure that NONE of the tasks require multiple steps. Each task should be atomic!

Consider using nested for—loops to apply a set of tasks to a set of chunks.

The same ‘task-id * should be applied to multiple chunks. DO NOT instantiate a new
task_id * for each combination of task and chunk.

Use the conversational history to inform what chunking strategy has already been
applied .

{ADVANCED_STEPS_INSTRUCTIONS }

Assume a Pydantic model called ‘JobManifest(BaseModel)‘ is already in global scope. For
your reference , here is the model:

e

{manifest_source}
Assume a Pydantic model called ‘JobOutput(BaseModel)‘ is already in global scope. For
your reference , here is the model:

e

{output_source}

P

DO NOT rewrite or import the model in your code.

The function signature will look like:

e

{signature_source}

P

You can assume you have access to the following chunking function(S). Do not
reimplement the function, just use it.

‘6

{chunking_source}

P

Here is an example

task_id = 1 # Unique identifier for the task

for doc-id, document in enumerate(context):
if you need to chunk the document into sections
chunks = chunk_by_section (document)
or if you need to chunk the document into pages
chunks = chunk_by_page (document)

for chunk_id, chunk in enumerate (chunks):
Create a task for extracting mentions of specific keywords
task = (
"Extract all mentions of the following keywords:
”’Cal9-9’, ’tumor marker’, ’September 2021’, ’U/ml’, *Mrs. Anderson’.”

2

)
job_manifest = JobManifest(
chunk_id=f"doc_id_-chunk_id”,
task_id=task_id ,
chunk=chunk ,
task=task ,
advice="Focus on extracting the specific keywords related to Mrs. Anderson’
s tumor marker levels.”
)

job_manifests.append(job_manifest)

Pworker

32

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Your job is to complete the following task using only the context below. The context is
a chunk of text taken arbitrarily from a document, it might or might not contain
relevant information to the task.

Document
{context}

Question you are trying to answer:
{question}

You have been instructed to extract information pertaining to the following concepts:
\"Date of visit\”, {task}

Format your response as follows:

”Date of visit” : ”‘direct quote extracted text ‘",
"<keyword_1>” : ”‘direct quote extracted text ‘”,
"<keyword.2>” : ”‘direct quote extracted text ‘7,

Can you please extract the relevant sections from the document that are related to the
concepts provided? Extract direct quotes or sentences. If concept is not mentioned
, leave it out.

Your Answer:

Psynthesize

Answer the following by the synthesizing findings from multiple junior workers (LLMs).

Inputs
1. Question to answer:
{question}

2. Collected Job Outputs (from junior models):
{extractions}

First think step-by-step and then answer the question using the exact format below.
ANSWER GUIDELINES

=% Required JSON Output#:x: You must output exactly one JSON object with these keys:
— 7decision”: Must be "provide_-final_answer” or ”need more information”
— ”explanation”: A short statement about how you arrived at your conclusion or what
is still missing.
— “answer”: a final answer that is a text span pulled directly from the job output
citations .

Here is the template for your JSON response:
<think step-by—step here>

”decision”: 7...”,
”explanation”: ”...7,
P

“answer”: T...,7,

b}

Now, carefully inspect the question, think step-by—step and perform any calculations
before outputting the JSON object.

— If answer choices are provided, your answer must #xexactly=* match one of the answer
choices .

— Don’t paraphrase the final answer ——- extract text directly from the document(s) or
previous job outputs.

Question:
{question}

Your Answer:

33

	Introduction
	Related Work
	Preliminaries
	Minion: A naïve communication protocol
	Analysis

	MinionS: A simple, decomposition-based communication protocol
	Protocol description
	Protocol hyper-parameters

	Results
	Experimental setup
	Model choice
	Scaling parallel workloads on-device
	Scaling sequential communication
	Retrieval augmented generation in the context of local-remote compute

	Discussion
	Extended Related Work
	Extended Description of Experimental Setup
	Dataset Details
	Model Details

	Extended Discussion of Cost Model
	Background on language model inference
	Latency models for all protocols: Remote-only, Minion, MinionS
	Remote-only
	Minion
	MinionS

	MinionS vs. remote-only comparison

	Extended discussion of methods
	Extended description of Minion
	Information Bottleneck Perspective

	Extended Results
	Model Analysis
	MinionLocalLM Analysis
	Relationship with Retrieval-Augmented Generation
	Comparison of MinionS and RAG on FinanceBench
	Comparison of MinionS and RAG (Embeddings + BM25) on Summarization Tasks

	Prompts
	Minion
	MinionS

