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Figure 1: An illustration of how our online dynamic spatio-semantic memory DynaMem responds to open
vocabulary queries in a dynamic environment. During operation and exploration, DynaMem keeps updating its
semantic map in memory. DynaMem maintains a voxelized pointcloud representation of the environment, and
updates with dynamic changes in the environment by adding and removing points.

Abstract: Significant progress has been made in open-vocabulary mobile manip-2

ulation, where the goal is for a robot to perform tasks in any environment given a3

natural language description. However, most current systems assume a static en-4

vironment, which limits the system’s applicability in real-world scenarios where5

environments frequently change due to human intervention or the robot’s own ac-6

tions. In this work, we present DynaMem, a new approach to open-world mobile7

manipulation that uses a dynamic spatio-semantic memory to represent a robot’s8

environment. DynaMem constructs a 3D data structure to maintain a dynamic9

memory of point clouds, and answers open-vocabulary object localization queries10

using multimodal LLMs or open-vocabulary features generated by state-of-the-art11

vision-language models. Powered by DynaMem, our robots can explore novel12

environments, search for objects not found in memory, and continuously update13

the memory as objects move, appear, or disappear in the scene. We run extensive14

experiments on the Stretch SE3 robots in three real and nine offline scenes, and15

achieve an average pick-and-drop success rate of 70% on non-stationary objects,16

which is more than a 2× improvement over state-of-the-art static systems.17

1 Introduction18

Recent advances in robotics have made it possible to deploy robots in real world settings to tackle the19

open vocabulary mobile manipulation (OVMM) problem [1]. Here, the robots are tasked with nav-20

igating in unknown environments and interacting with objects following open vocabulary language21

instructions, such as “Pick up X from Y and put it in Z”, where X, Y, and Z could be any object name22

or location. The two most common approaches to tackling OVMM are using policies trained in sim-23
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ulation and deploying them in the real world [2, 3, 4], or training modular systems that combine open24

vocabulary navigation (OVN) [5, 6, 7, 8] with different robot manipulation skills [9, 10, 11, 12, 13].25

Modular systems enjoy greater efficiency and success in real-world deployment [14] as they can di-26

rectly leverage advances in vision and language models [9, 12], and are able to handle more diverse27

and out-of-domain environments with no additional training.28

However, as recent analysis has shown, the primary challenge in deploying modular OVMM is29

that limitations of a module propagate to the entire system [9]. One key module in any OVMM30

system is the open vocabulary navigation (OVN) module responsible for navigating to goals in the31

environment. While many such OVN systems have been proposed in the literature [1, 8, 5, 11,32

10, 9, 6, 7, 12, 13], they share a common limitation: they assume static, unchanging environments.33

Contrast this with the real world, where environments change and objects are moved by either robots34

or humans. Making such a restrictive assumption thus limits these systems’ applicability in real-35

world settings. The primary reason behind this assumption is the lack of an effective dynamic36

spatio-semantic memory that can adapt to both addition and removal of objects and obstacles in the37

environment online.38

In this work, we propose a novel spatio-semantic memory architecture, Dynamic 3D Voxel Memory39

(DynaMem), that can adapt online to changes in the environment. DynaMem maintains a voxelized40

pointcloud representation of an environment and adds or removes points as it observes the envi-41

ronment change. Additionally, it supports two different ways to query the memory with natural42

language: a vision-language model (VLM) featurized pointcloud, and a multimodal-LLM (mLLM)43

QA system. Finally, DynaMem enables efficient exploration in changing environments by offering a44

dynamic obstacle map and a value-based exploration map that can guide the robot to explore unseen,45

outdated, or query-relevant parts of the world.46

We evaluate DynaMem as a part of full open-vocabulary mobile manipulation stack in three real47

world environments with multiple rounds of changes and manipulating multiple non-stationary ob-48

jects, improving the static baseline by more than 2× (70% vs. 30%). Additionally, we identify49

an obstacle in efficiently developing dynamic spatio-semantic memory, namely the lack of dy-50

namic benchmarks, since many OVN systems use static simulated environments [15, 16] or static51

datasets [17, 18]. We address this by developing a new dynamic benchmark, DynaBench. It con-52

sists of 9 different environments, each changing over time. We ablate our design choices in this53

benchmark. To the best of our knowledge, DynaMem is the first spatio-semantic memory structure54

supporting both adding and removing objects.55

2 Method56

In this section, we define our problem setup, and then describe our online, dynamic spatio-semantic57

memory for open world, open vocabulary mobile manipulation. We introduce how to use this mem-58

ory to localize text query and how to navigate to the target object in Appendix 6 and 7 respectively.59

2.1 Problem Statement60

We create our algorithm, DynaMem, to solve open vocabulary mobile manipulation (OVMM) prob-61

lems in an open, constantly changing world. The goal in OVMM is for a mobile robot to execute a62

series of manipulation commands given arbitrary language goals. We assume the following require-63

ments for the memory module for dynamic, online operation:64

• Observations: The mobile robot is equipped with an on-board RGB-D camera, and unlike prior65

work [9], doesn’t start with a map of the environment. Rather, the robot explores the world and66

use the online observed sequence of posed RGB-D images to build its map.67

• Environment dynamism: The environment can change without the knowledge of the robot.68

2



• Localization queries: Given a natural language query (i.e. ”teddy bear”), the memory module69

has to return the 3D location of the object or determine that the object doesn’t exist in the scene70

observed thus far.71

• Obstacle queries: The memory module must determine whether a point in space is occupied by72

an obstacle. Both the location of the objects and obstacles can move, previous observations often73

contradict each other and must be resolved by the memory.74

2.2 Dynamic 3D Voxel Map75

Our answer to the challenge posed in the Section 2.1 is DynaMem. DynaMem is an evolving sparse76

voxel map with associated information stored at each voxel, as shown in Fig. 6. In each non-empty77

voxel, alongside its 3D location (x, y, z), we also store the observation count C (how many times78

that voxel was observed), source image ID I (which image the voxel was backprojected from), a79

high-dimensional semantic feature vector f coming from a VLM like CLIP [19] or SigLIP [20], and80

the latest observation time, t, in seconds.81

To make this data structure dynamic, we describe the process with which we add and update with82

new observations and remove outdated objects and associated voxels.83

Adding Points: When the robot receives a new set of observations, i.e. RGB-D images with global84

poses, we convert them to 3D coordinates in a global reference frame, and generate a semantic85

feature vector for each point. The global coordinates are calculated from the global camera pose86

and the backprojected depth image using the known camera transformation matrix. We calculate the87

point-wise image feature by first converting the images to object patches by using a segmentation88

model such as SAM-v2 [21], and then aggregating each patch feature over the output of a vision-89

language models like CLIP [19] or SigLIP [20]. For more details about image-to-feature vector90

mapping, we refer to earlier works [5, 9, 8]. Once we have calculated the points and associated91

features, we cluster the new points and assign them to the nearest voxel grids. In Fig. 7, we show92

how each voxel’s metadata is updated. The count keeps track of the total number of assigned points93

to each voxel grid, and the feature vector keeps track of the weighted average of all feature vectors94

assigned to that voxel. Finally, the observation time and image ID are updated to keep track of the95

latest observation contributing to a particular voxel. If a voxel was empty before assignment, we96

assume its count C = 0 and feature vector f =
−→
0 .97

Removing Points: When an object is moved or removed, its associated voxels in DynaMem may get98

removed. We use ray-casting to find the outdated voxels. The operation follows a simple principle:99

if a voxel falls within the frustum between the camera plane and the associated view point cloud,100

that voxel must be unoccupied. To reduce the impact of the depth noise at long range, we don’t101

consider any pixel whose associated depth value is over 2m.102

We illustrate a simplified 2D representation of this algorithm in Fig. 2. In practice, to speed up the103

intersection between the sparse voxelmap and the view frustum, we project each existing voxel to104

the camera plane and calculate the camera distance. If the image height and width are (H,W ), the105

depth image is D, and a certain voxel is projected to points (h,w) in the camera plane with depth d,106

it gets removed if both Eq. 1 and 2 hold.107

(h,w) ∈ [0, H]× [0,W ] (1)
d ∈

(
0,min(2,D

[
h,w

]
+ ϵ)

)
(2)

Where Eq. 1 ensures that the point falls within the camera view, and Eq 2 ensures that (a) the depth108

d > 0, or the object is in front of camera, (b) d < 2m, or the voxel isn’t too far away from the109

camera, and (c) d < D[h,w] denoting the voxel is between the camera and the currently visible110

object.111
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Figure 2: A high-level, 2D depiction of how adding
and removing voxels from the voxel map works. New
voxels are included which are in the RGB-D cameras
view frustum, and old voxels that should block the view
frustum but does not are removed from the map.

Query: “toy banana”

Top voxel match: V

Latest image index  : VI I235

Image 235

OwlV2 query: “toy banana”  
Found ✅

Query: “green blanket”

Top voxel match: V′ 

Latest image index  : V′ I I118
OwlV2 query: “green blanket”  

Not found = moved ❌

Image 118

Q2

Q1

Figure 3: Querying DynaMem with a natural lan-
guage query. First, we find the voxel with the highest
alignment to the query. Next, we find the latest image
of that voxel, and query with an open-vocabulary ob-
ject detector to confirm the object location or abstain.

3 Experiments112

We evaluate our method, DynaMem, on a Hello Robot: Stretch SE3 in real world environments. We113

also perform a series of ablation experiments in an offline benchmark in Appendix 8.114

3.1 Real-world Experiments115

As a baseline, we compare with OK-Robot [9], a state-of-the-art method for OVMM. OK-Robot116

uses a static voxelmap as its memory representation, and thus it highlights the importance of dy-117

namic memory for OVMM in a changing environment. For DynaMem, we run two variations of the118

algorithm in the real world: one with VLM-feature based queries and one with mLLM-QA based119

queries.120

We describe detailed experiment setup in Appendix 9.121

Results: Our experiments in three dynamic environments and with 30 queries is summarized in122

Fig. 4. We find that DynaMem with both VLM-feature based and mLLM-QA based queries have a123

total success rate of 70%. This is a significant improvement over the OK-Robot system, which has124

a total success rate of 30%. Notably, DynaMem is particularly adept at handling dynamic objects in125

the environment: only 6.7% of the trials failed due to our system not being able to navigate to such126

dynamic objects in the scene. This is in contrast to the OK-Robot system, where 53.3% of the trials127

failed because it could not find an object that moved in the environment. In contrast, navigating to128

static goals fails in only 10% of the cases for DynaMem with VLM-feature, 13.3% for OK-Robot129

and 20% for DynaMem with mLLM-QA.130

4 Conclusions131

In this work, we introduced DynaMem, a spatio-semantic memory for open-vocabulary mobile ma-132

nipulation that can handle changes to the environment during operation. We showed in three real133

world environments that DynaMem can navigate to, pick, and drop objects even while object and134

obstacle locations are changing.135
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Figure 4: Statistics of failure, broken down by failure modes, in our real robot experiments. Statistics are
collected over three environments and 30 open-vocabulary pick-and-drop queries on objects whose locations
change over time.

5 Related Works377

5.1 Open Vocabulary Mobile Manipulation (OVMM)378

Navigating to arbitrary goals in open ended environments and manipulating them has become a key379

challenge in robotic manipulation [22, 23]. This line of query follows Open-Vocabulary Navigation380

systems [5, 24], which builds upon prior object and point goal navigation literature [14, 25, 26, 27,381

28, 29, 30, 31, 12] which attempted navigation to points, or fixed set of objects and object categories.382

OVMM is a naturally harder challenge as it requires an ability to handle arbitrary queries, and383

“navigation to manipulation” transfer – which means unlike pure navigation, the robot needs to get384

close to the environment objective and obstacles. In the OVMM challenge [22], modular solutions385

such as [1, 32, 13] outperformed the competition. More recently, OK-Robot [9] performed extensive386

real-world evaluations of the challenges in OVMM and demonstrated a system that achieves 58.5%387

success rate in static home environments. We extend this work by enabling manipulation in changing388

environments.389

5.2 Spatio-semantic Memory390

Early works in spatio-semantic memory [33, 34, 35, 36, 37] created semantic maps for limited391

categories based on mostly ad-hoc deep neural networks. Later work builds upon representations392

derived from pre-trained vision language models, such as [38, 39, 40, 41, 42, 43, 6, 7]. These works393

use a voxel map or neural feature field as their map representation. Some recent models [44, 45]394

have used Gaussian splats [46] to represent semantic memory for manipulation. Most of these395

models show object localization in pre-mapped scenes, while CLIP-Fields [5], VLMaps [24], and396

NLMap-SayCan [41] show integration with real robots for indoor navigation tasks. Some recent397

works [47, 48, 10] extend this task to include an affordance model or manipulation primitives. Our398

work builds upon the voxel map based spatio-semantic memory literature and extends them to dy-399

namic environments where both objects and obstacles can change over time.400

5.3 Mapping and Navigating Dynamic Environments401

For robot navigation, Simultaneous Localization and Mapping (SLAM) [49] methods are crucial.402

However, practical SLAM instances based on voxels [50, 51], objects [52, 53], landmark [34, 54],403

NeRF [55, 56], and Gaussian splats [57, 58] tend to make the simplifying assumption that the world404

11



Kitchen

Game room

Meeting room
Figure 5: Real robot experiments in three different environments: kitchen, game room, and meeting room. In
each environment, we modify the environment thrice and run 10 pick-and-drop queries.
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is static. Some sparse SLAM methods improve on dynamic environments by estimating underlying405

state [59, 60, 61, 62, 63, 64, 65, 66, 67] or explicitly modeling moving objects [68, 69, 70]. Some406

methods also forego a map and rely on reactive policies to navigate dynamic environments [71, 72,407
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73, 74, 75], although they generally tackle local movement and not global navigation. Our work408

relies on SLAM systems that are stable under environment dynamics, and focuses on building a409

dynamic semantic memory based off of online exploration and observations.410

6 Querying DynaMem for Object Localization411

As described in Section 2.1, we define the object localization or 3D visual grounding problem as412

a function mapping a text query and posed RGBD images to either the 3D coordinate of the query413

object, or ∅ if the object is not in the scene. Unlike previous work, we abstain from returning a414

location when an object is not found. To enable this, we factor this grounding problem into two sub-415

problems. The first is finding the latest image where the queried object could have appeared. The416

second is identifying whether the object is actually present in that image. For the first sub-problem,417

we propose two alternate approaches of visual grounding: one using the intrinsic semantic features418

of DynaMem, and another using state-of-the-art multimodal LLMs such as GPT-4o [76] and Gemini419

1.5 Pro [77].420

Embedded Vision Language Features: Vision Language Models (VLMs) such as CLIP [19] and421

SigLIP [20] possess an ability to embed both images and languages into the same latent space, where422

the similarity between an image and a text object can be calculated by simply taking the dot product423

between the two latent representation vectors. We use this property of the embedding vectors to424

query our voxel map with open-vocabulary text queries.425

As described in Section 2.2, we convert the incoming images to point-wise image features, and426

embed them into our voxels. When we have a new language query, we calculate its latent embedding427

using the VLM text encoder, and find the voxel whose feature has the highest dot product with the428

text embedding. Once we find the right voxel, we simply retrieve its associated latest image from429

our data structure as shown in Fig. 3.430

As a bonus feature, we can also return n > 1 possible objects for a single query. We do this by using431

a DBSCAN clustering of voxels similar to [78], and returning the images associated with the most432

aligned voxel in top-n clusters.433

Multimodal Large Language Models (mLLMs): We note that the problem of finding the latest434

image where an object may appear is similar to the problem of visual question-answer (VQA) [79].435

Since we fully rely on pretrained models to build our map, we pose this multi-image VQA problem436

as an mLLM QA problem similar to OpenEQA [80].437

We show in Fig. 8 how we query the mLLMs to solve the visual grounding query. We give the438

model a sequence of our latest environment observations images and ask the model for the index of439

the last image where the queried object was observed. We additionally instruct the model to respond440

“None” if the object was not observed in any image. Note that, unlike OpenEQA [80], we only pass441

the RGB images to the mLLM, and not the depth or camera pose. Similarly, we only ask for an442

image index, and not a full textual answer.443

Handling Absence of Object: Several previous methods [5, 8, 9] assume that the queried object is444

always present in the scene, and always responds with the object that is the best match to the query.445

However, this often results in high false-positive failure cases. For example, in a scene with no red446

cups and a blue cup, the method may respond with the location of the blue cup in response to the447

query “red cup”.448

For this reason, we locate objects in two stages. First, we find the best candidate image where the449

object may have been seen (Section 6). Then, we use an open-vocabulary object detector model such450

as OWL-v2 [81] to search that image for the queried object (Fig. 3). If we don’t find the queried451

object, we assume that the object has either moved, or the response from the voxelmap or mLLM452

was inaccurate, and respond with “object not found”. If OWL-v2 returns an object bounding box,453

we find the median pixel from the object mask and return its 3D location.454
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For object query I give, you need to find timestamps of images 
that the object is shown, without any unnecessary explanation or 
space. If the object never exist, please output the object name and 

the word "None" for timestamps.

Brown teddy bear: 244

DynaMem Multimodal LLM (gemini-1.5-pro)

…

The object you need to find is “brown teddy bear”

245244218216 217

Figure 8: The prompting system for querying multimodal LLMs such as GPT-4o or Gemini-1.5 for the image
index for an object query.

One important hyperparameter for this mLLM query is the maximum number of images included in455

the prompt. Longer context needs longer processing time and potentially includes outdated informa-456

tion, while short context might not include all information and thus will miss objects. We optimize457

the context by excluding completely outdated images: all images I with no voxel pointing to them458

are deleted. This filtering increases mLLM context utilization. We set Gemini as our base model459

and 60 as our query image limit since Gemini context can fit 60 images, which is twice as many as460

GPT-4o.461

7 Robot Navigation and Exploration462

To navigate in a real-world environment, robots use an obstacle map in conjunction with a navigation463

algorithm like A* in [24, 9]. We use a simple voxel-projection strategy to build an obstacle map. Due464

to the depth observation noise, we simply set a threshold for the ground (0.2m for our experiments),465

and project all the voxels above that z-threshold as the obstacles in our map. The voxels below the466

threshold are projected into the 2D obstacle map as navigable points. Finally, the points in the map467

that are not marked as either obstacle or navigable are marked as explorable points.468

Exploration Primitives: Since our robot does not start with an environment map, it explores the469

environment with frontier based methods to build the map. We can further accelerate this process470

by providing exploration guidance. Based on the current status of the map, DynaMem provides an471

exploration value function to accelerate the exploration process both for building and updating the472

map.473

We provide two value-based exploration maps: one time-based, and one semantic-similarity-474

based [82]. The time-based value map prioritizes the least-recently seen points. If the current time475

is T , and the last-seen time of voxel (x, y, z) is tx,y,z , the temporal value map VT is expressed as:476

T∗[x, y] = max
z

(T − tx,y,z)

VT [x, y] = σ
(
−βT

(
T∗[x, y]− µT

))
where βT , µT are hyper-parameters and σ is the sigmoid function. Similarly, if the VLM feature at477

voxel (x, y, z) is fx,y,z , and the VLM feature for the language query is fq , then the similarity-based478
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value map VS is be expressed as:479

S∗[x, y] = max
z

(fq · fx,y,z)

VS [x, y] = σ
(
−βS

(
S∗[x, y]− µS

))
where once again βS , µS are hyperparameters. We may also linearly combine VT ,VS to balance480

our exploration between last seen time and semantic similarity.481

Finally, since the environment may be dynamic, we convert our navigation algorithm from open-loop482

to closed-loop. The robot, instead of executing the entire navigation plan generated by A*, stops483

after the first seven waypoints (approx. 0.7 to 1 meters). Then, the robot scans the environment,484

updates the map, and moves according to a new plan. The robot repeats these steps until its distance485

to the target is lower than a predefined threshold.486

8 Ablations on an Offline Benchmark487

Running real robot OVMM experiments can be expensive and time-consuming. So, we developed488

an offline benchmark called DynaBench to easily evaluate dynamic 3D visual grounding algorithms489

on dynamic environments and perform algorithmic ablations. The benchmark isolates the query-490

response part of the dynamic semantic memory without robot navigation, exploration, and manipu-491

lation.492

8.0.1 Data Collection493

In the real world, the robot collects its own map-building data by exploring the environments. Fol-494

lowing this, we collect the robot’s runtime sensor data from three environments. To further enrich495

our benchmark, we simulate this process by taking posed RGB-D images on an iPhone Pro in six496

more environments. In all cases, we emulate environment dynamics by moving objects and obstacle497

locations in three successive rounds.498

8.0.2 Data Labelling and Evaluation499

We manually annotate queries and responses in the dataset. Each query has an associated natural500

language label q, object location X⃗ = (x, y, z), and an object radius ϵ. Since the environment is501

dynamic, each query also has an associated time t. For evaluation, at time t (i.e. after the memory502

algorithm has observed all the input data points with timestamp < t), we query the model with q. If it503

predicts an object location X⃗ ′ = (x′, y′, z′), it’s a success if ||X−X ′||2 ≤ ϵ and a failure otherwise.504

Since the robot may also encounter queries for objects it has not observed yet, we emulate negative505

queries by adding queries for objects (a) that have not been observed yet, or (b) that have been506

observed but were subsequently removed. For both of these query types, the model must respond507

with not found; otherwise it’s counted as a failure.508

8.0.3 Evaluation Results509

Using our offline benchmark, we ablate design decisions of DynaMem as discussed in Section 2.510

Among these design decisions, the primary are: using feature embedding-based vs. mLLM-QA511

based language grounding, ablating components such as point removal or abstentiation from the512

algorithm, and trying different mLLMs. Due to API costs, we only evaluate Gemini models on the513

benchmark. We present our results in Table 1.514

We see that performance of VLM-features and mLLM-QA follows the same order in the real world515

in the benchmark, corroborating the benchmark design. The best design choices are to both add and516

remove points, and to cross check with OWL-v2 on top of similarity thresholding for VLM-feature517

based grounding. For mLLM-QA based grounding, Gemini Pro outperforms Gemini Flash, and518

voxelmap based image filtering benefits the method.519
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Table 1: Ablating the design choices for our query methods for DynaMem on the offline DynaBench bench-
mark. We also present results from five human participants to ground the performances.

Query type Variant Success rate

Human (average over five participants) 81.9%
VLM-feature default (adding and removing points) 70.6%

only adding points 67.8%
no OWL-v2 cross-check 59.2%
no similarity thresholding 66.8%

mLLM-QA default (Gemini Pro 1.5) 67.3%
Gemini Pro 1.5, no voxelmap filtering 66.8%
Gemini Flash 1.5 63.5%

9 Experiment Setup520

We evaluate DynaMem and its impact on open-vocabulary mobile manipulation in three real-world521

dynamic environments (Fig. 5). In each environment, we set up multiple objects as potential manip-522

ulation targets, change the environment in three rounds, and execute 10 pick-and-drop queries over523

the rounds We use the Hello Stretch SE3 as our mobile robot platform, and use its head-mounted524

Intel RealSense D435 RGB-D camera to collect the input data.525

To build a complete pick-and-drop system around DynaMem, we follow the system architecture in526

OK-Robot [9]. In particular, we use the AnyGrasp [83] based open-vocabulary grasp system and527

use the heuristic based dropping system. However, we use DynaMem’s exploration primitives let528

the robot build the map of the environment and allow the robot to explore when an object is not529

found in the memory.530
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