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ABSTRACT

Time series forecasting plays a pivotal role in various domains, facilitating opti-
mized resource allocation and strategic decision-making. However, the scarcity
of training samples often hinders the accuracy of the forecasting task. To address
this, we explore the potential of leveraging information from different modali-
ties that are commonly associated with time series data. In this paper, we intro-
duce MoAT, a novel multi-modal augmented time series forecasting approach that
strategically integrates both feature-wise and sample-wise augmentation methods
to enrich multi-modal representation learning. It further enhances prediction ac-
curacy through joint trend-seasonal decomposition across all modalities and fuses
the information for the final prediction. Extensive experiments show that MoAT
outperforms state-of-the-art methods, resulting in a substantial reduction in mean
squared error ranging from 6.5% to 71.7%, which demonstrates the effective-
ness and robustness in addressing the limitations imposed by data scarcity. The
datasets and code are available at https://anonymous.4open.science/
r/MoAT-201E.

1 INTRODUCTION

Time series forecasting is a fundamental task with widespread applications across various domains,
including finance, healthcare, energy management, and environmental monitoring (Sawhney et al.,
2020; Chou & Tran, 2018; Ong et al., 2016). Accurate time series forecasting is essential for mak-
ing informed decisions, optimizing resource allocation, and enhancing strategic planning. Notable
progress has been achieved by various time series forecasting models (Wu et al., 2021; Zhou et al.,
2022b; Nie et al., 2022; Zhang & Yan, 2022) following recent advancements in deep learning. How-
ever, in numerous scenarios, time-series data suffer from a scarcity of training samples, posing sig-
nificant challenges in predicting future trends (Zhou et al., 2022c). Recall the COVID-19 outbreak,
where accurate predictions of confirmed cases, fatalities, and recoveries were crucial in public health
responses and resource allocation. Nevertheless, due to the limited amount of data available at the
time, it was extremely challenging to make reliable predictions about future epidemic occurrences
solely from time-series data, despite its critical importance (Gothai et al., 2021).

To address this limitation, leveraging the information from other modalities that associated with
time series data emerges as a potential solution. For example, within the healthcare domain, clinical
notes have been used to enhance the accuracy of predicting patient mortality (Deznabi et al., 2021;
Yang et al., 2021). In the financial domain, leveraging text data from social media has proven to be
effective in enhancing the accuracy of predicting individual stock movements (Du & Tanaka-Ishii,
2020; 2022; Sawhney et al., 2020). Another motivative example is evident in Fig. 1 which provides
a visual representation of how distinct data modalities can shed light on similar dynamics. We can
observe two prominent drops in the time series data marked as 1 and 2 in Fig. 1a, which correspond
to significant changes in the similarity of text embeddings depicted in Fig. 1b. Expanding the scope
of the training dataset becomes possible when taking into account both data sources, as shown in a
2D space in Fig. 1c. These findings suggest the potential of using text data to enhance the precision
of time series forecasting.

The aforementioned studies that aid the time-series modeling by exploiting knowledge from other
modalities, mostly from text data, can be formulated as data augmentation which is widely used to
improve the model performance by enlarging the distribution covered by training dataset (Qin et al.,
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Figure 1: (a) Visualization of the Stock-Index dataset’s time series data used in this study; (b) Cor-
responding similarity heatmap of financial news embedding, and (c) Visualization of the augmented
training dataset. In the time series plot (a), there are two noticeable drops indicated by circled 1 and
2, which coincide with significant changes in text embedding similarity shown in (b). While these
two data modalities are synchronized in time, they offer distinct information, as illustrated in a 2D
space using t-SNE (c), thereby expanding the coverage of the training dataset.
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Figure 2: The architecture of MoAT. Time series and text data are jointly decomposed into trend and
seasonal components. These components are fed to the multi-modal augmented encoder which in-
corporates both sample-wise and feature-wise multi-modal data augmentation. The resulting outputs
are decoded using component-specific decoders. Finally, the predictions for trend and seasonality
are combined through a cross-modal fusion scheme to generate the final predictions.

2020; Zhou et al., 2022a; Baltrušaitis et al., 2018). Data augmentation can be approached from two
distinct angles, each offering unique benefits. The first method involves sample-wise augmentation,
treating samples originating from different modalities as additional training examples (Xing et al.,
2019; Pahde et al., 2021; Lin et al., 2023). The second method integrates supplementary information
from diverse modalities into each individual sample (Sun et al., 2019; Guo et al., 2020; Zheng
et al., 2021; Shi et al., 2021). Each approach improves model performance and robustness in its
distinct way. This motivates us to strategically integrate both augmentation techniques, allowing us
to leverage the unique advantages offered by both augmentation approaches.

Notably, the aforementioned studies utilizing text data for time series tasks have primarily concen-
trated on classification tasks (e.g., predicting whether a patient will survive or not, or the trend of
stock movements). In this work, we present MoAT, a general multi-modal augmented framework de-
signed to enhance forecasting accuracy by integrating information from various sources. Illustrated
in Fig. 2, our approach comprises three main components: multi-modal augmentation, cross-modal
fusion, and trend-seasonal decomposition. The augmentation encoder integrates both sample-wise
and feature-wise multi-modal data augmentation techniques to enhance the quality and diversity of
the training data. The resulting outputs are decoded using component-specific decoders. MoAT then
facilitates the fusion of decoded representations from different modalities, enabling a more com-
prehensive understanding of the underlying processes governing time series behavior. To further
enhance its capabilities, MoAT incorporates a joint trend-seasonal decomposition module, which
generates distinct embedding to capture trend and seasonal dynamics from both time series and
text information. Through extensive experiments, MoAT demonstrates substantial improvements,
achieving a 6.5%-71.7% reduction in mean square error (MSE). In summary, this paper makes the
following contributions:

• We introduce MoAT, a multi-modal augmented time series forecasting framework that addresses
data scarcity issues by employing both sample-wise and feature-wise multi-modal augmentation
and cross-modal fusion to enhance training data quality and diversity.
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• MoAT further enhances forecasting accuracy through joint trend-seasonal decomposition module,
which extracts distinct embedding to capture trend and seasonal patterns from both time series
and text information.

• Extensive experiments on six multi-modal datasets confirm the effectiveness and robustness of
our proposed model. Furthermore, we release all compiled multi-modal time series datasets1 to
facilitate further research in this domain.

2 RELATED WORK

Time series forecasting. Given its significant importance, time series forecasting has been ex-
tensively researched over a long period. In its early stages, classical deep learning methods were
commonly applied. For example, TCN (Lea et al., 2017) uses CNN, and DeepAR (Salinas et al.,
2020) utilizes RNN to capture temporal dependencies within time series. In addition, LSTnet (Lai
et al., 2018) integrates both CNN and RNN in its approach. Recently, inspired by the success
of Transformers (Vaswani et al., 2017) in various domains, including natural language processing
(NLP) (Devlin et al., 2019), computer vision (CV) (Dosovitskiy et al., 2020), and speech process-
ing (Dong et al., 2018), they have been actively used for time series forecasting. Informer (Zhou
et al., 2021) is based on an efficient ProbSparse self-attention for capturing cross-time dependen-
cies. Autoformer (Wu et al., 2021) uses time series decomposition and auto-correlation to forecast
time series. FEDformer (Zhou et al., 2022b) uses Fourier or wavelet transforms to apply attention in
the frequency domain. Despite these advancements, comparative evaluations have shown that these
methods can be outperformed by DLinear (Zeng et al., 2023), a very simple linear model, shedding
light on the limitations of Transformer-based time series forecasting models. However, this claim is
contradicted by recent patch-level (or segment-level) Transformer models. Inspired by the effective-
ness of patching in NLP (Devlin et al., 2019) and CV (Dosovitskiy et al., 2020; Bao et al., 2021),
PatchTST (Nie et al., 2022) and Crossformer (Zhang & Yan, 2022) employ time series patches as
the input for the Transformer encoder. Utilizing time series patching allows the model to capture
temporal dependencies beyond individual data points, facilitating a comprehensive understanding of
time series patterns and leading to more accurate forecasting.

Multi-modal data augmentation. Data augmentation is widely used to improve the model perfor-
mance by enlarging the distribution covered by training data. An extensive literature on uni-modal
data augmentation exists across diverse domains including images (Shorten & Khoshgoftaar, 2019),
texts (Feng et al., 2021), and time series Wen et al. (2021). Here, we summarize the augmenta-
tion methods applied to multi-modal datasets, which aggregate data from multiple distinct sources.
One approach involves incorporating additional training samples from different modalities, which
is especially beneficial when the specific modality of interest has limited available data. This can
be achieved by simply using samples from other modalities as extra training data (Lin et al., 2023;
Pahde et al., 2021), or by generating synthetic training samples through transformations from mul-
tiple sources (Hao et al., 2023). An alternative and orthogonal approach is to enrich the information
within each sample by integrating additional data from different modalities. A simple and direct
method is to concatenate features from multiple modalities and feed them collectively into the Trans-
former encoder, allowing for cross-modal learning (Sun et al., 2019; Zheng et al., 2021; Shi et al.,
2021). In summary,

• Sample-wise augmentation in multi-modal data treats samples originating from different modali-
ties as additional samples to train the model (Xing et al., 2019; Pahde et al., 2021; Lin et al., 2023).
This approach is particularly advantageous when different modalities contribute complementary
information, each capturing unique aspects of the underlying concept. For example, incorporating
samples from text data can assist in clarifying the decision boundary of the image classifier.

• Feature-wise augmentation integrates additional information from different modalities into each
sample (Sun et al., 2019; Guo et al., 2020; Zheng et al., 2021; Shi et al., 2021). Enriching each
sample by incorporating features from diverse sources enables the model to understand complex
relationships and patterns within the data, leading to more accurate predictions or classifications.
For example, concatenating text features with image features can assist in adjusting the weights
of the image classifier.

1https://anonymous.4open.science/r/MoAT-201E
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Multi-modal for time series. Additional information, mostly in textual data, has been leveraged to
solve time series tasks, primarily within specific domains. For example, within the healthcare do-
main, clinical notes have been used to enhance the accuracy of predicting patient mortality (Deznabi
et al., 2021; Yang et al., 2021) or to optimize the management of patients’ ICU stays (Khadanga
et al., 2019). In the financial domain, leveraging text data from social media has proven to be effec-
tive in enhancing the accuracy of predicting individual stock movements (Du & Tanaka-Ishii, 2020;
2022; Sawhney et al., 2020). Importantly, previous studies that utilize text data for time series tasks
have primarily concentrated on classification tasks (e.g., predicting whether a patient will survive
or not, or whether the stock price will increase or decrease the following day), differing from our
specific focus on forecasting. In this work, we propose MoAT, a general time series forecasting
model that integrates text information to enhance prediction accuracy.

3 PROPOSED METHOD

We propose MoAT, a multi-modal time series forecasting model that leverages information from
different modalities to improve the accuracy of the forecasting task, as illustrated in Fig. 2.

3.1 PROBLEM STATEMENT

The problem of multivariate time series forecasting is defined as predicting the future T steps of
time-series values X = (xL+1, ..., xL+T ) ∈ RT×C , based on the past L steps of time series data
Y = (x1, ..., xL) ∈ RL×C , where C represents the dimension or the number of channels of the time
series data. At each historical time step t = 1, ..., L, there is a set Dt = {Dt,1, ...,Dt,|Dt|} of data
available from other modalities, which has the potential to improve forecasting accuracy.

3.2 MOAT: MULTI-MODAL AUGMENTED TIME SERIES FORECASTING

Here, we describe our framework for time-series forecasting using text data as an example. This
approach can readily be expanded to include other modalities such as image and audio data.

Patch-wise embedding. Beyond point-wise, analyzing time series data at the segment level provides
richer insights for understanding its underlying dynamic patterns. For example, when examining
stock price movements, it becomes crucial to analyze how prices change over time, rather than
focusing on the individual price on a specific day. The effectiveness of patching time series data
has been well-demonstrated, particularly in transformer-based forecasting models (Nie et al., 2022;
Zhang & Yan, 2022), and thus MoAT also adopts this approach. In our approach, we represent both
time series and text as an identical number of patches, as described below.

To patch time series x(i) = (x
(i)
1 , ..., x

(i)
L ) ∈ RL of the i-th channel, we segment it into multiple

(non-)overlapping patches. Precisely, given the patch length P and the stride S, we segment x(i)

into N patches, each of length P , denoted as p(i) = (p
(i)
1 , ...,p

(i)
N ) ∈ RN×P where two consecutive

patches share S values. Here, the number N of patches is ⌊L−P
S ⌋+ 2 if we pad the last value of the

time series S times before patching. Then, we map these patches into a d-dimensional latent space
using a learnable linear projection Wtime ∈ RP×d, i.e., z(i)time = p(i)Wtime ∈ RN×d.

To patch text data, we require a different approach due to the variability in the number of texts and
their unordered nature at each timestep. Specifically, we are given a sequence D = (D1, ...,DL) of
sets of documents, where at each timestep t, we have a set Dt = {Dt,1, ...,Dt,|Dt|} of an arbitrary
number of texts. Firstly, we use the pretrained language model (denoted as “PLM” below) to rep-
resent each text Dt,j as a d′-dimensional embedding vector, i.e., dt,j = PLM(Dt,j) ∈ Rd′

. This
yields an embedding matrix dt = [dt,1, ...,dt,|Dt|] ∈ R|Dt|×d′

of texts at each timestep t.

Following the segmentation approach similar to that of the time series, we segment text data into
multiple patches, each spanning P timesteps. To represent a text patch covering the time span from
ta to tb, where tb − ta + 1 = P , our goal is to aggregate text embeddings within this interval
into a single embedding. To this end, we collect text embeddings spanning from ta to tb, dta:tb =

dta ⊕ · · · ⊕ dtb ∈ R|Dta:tb
|×d′

, where ⊕ is the vertical concatenation operation. Since various
documents may hold different degrees of significance, we apply attentive pooling to aggregate their
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Figure 3: Key components of MoAT. (a) The multi-modal augmented encoder is utilized across six
distinct input patches, labeled 1 to 6, which are obtained by augmenting multi-modal inputs either
in a sample-wise or feature-wise manner. Note that inputs 1 to 6 are processed independently with
the shared encoder. (b) Using the eight different representations derived from trend and seasonal
components, MoAT generates multiple predictions through cross-fusion. These predictions are then
aggregated to generate the final prediction using an offline synthesis approach.

embeddings while assigning varying weights as follows:

Softmax
(

tanh(dta:tbW
(i) + b(i))V(i)

)
dta:tb ∈ Rd′

(1)

where W(i) ∈ Rd′×d, b(i) ∈ Rd, and V(i) ∈ Rd×d are learnable weights specific to the i-th channel.
It is important to note that we utilize channel-specific parameters when applying attention, which
enables us to generate text patches that are unique to each channel. Consider financial markets
as an example, where the importance and relevance of documents can vary for different stocks or
companies. After mapping the patches into a d-dimensional latent space using a trainable linear
projection Wtext ∈ Rd′×d, we obtain embeddings of text patches z(i)text ∈ RN×d of the i-th channel.
These patch embeddings temporally align with the time series patches, z(i)time.

Multi-modal augmented encoder. Now that we have obtained patch embeddings, z(i)time for time
series and z

(i)
text for text data, in the i-th channel, we proceed to feed them into the shared encoder

illustrated in Fig. 3a. In this step, we leverage multi-modal data augmentation strategies from two
distinct angles, each providing unique benefits, all with a common goal of forecasting time series.

Commonly, we introduce modality-specific learnable positional embeddings Wpos
time ∈ RN×d and

Wpos
text ∈ RN×d for time series and text, respectively. In addition, we employ a vanilla Transformer

encoder (denoted as “Encoder” below) equipped with multi-head attention. The encoder yields patch
representations equivalent to the number of input patches, and we assume that these representations
are then flattened into a single embedding vector.

To employ the sample-wise augmentation, we use embeddings from the two modalities as inde-
pendent training samples. Specifically, we pass them separately to the shared encoder, preventing
any explicit interactions between patches across modalities:

ẑ
(i)
time = Encoder

(
z
(i)
time +Wpos

time

)
∈ RNd and ẑ

(i)
text = Encoder

(
z
(i)
text +Wpos

text

)
∈ RNd (2)

As a result, the encoder processes twice the number of training samples, enriching diversity within
the training data, which potentially improves generalization and robustness in the model. We refer
to these embeddings as single-modal representations as they originate from individual modalities.

To employ the feature-wise augmentation, we feed the encoder with the concatenated embeddings
derived from time series and text, allowing cross-modal interactions across modalities:

ẑ
(i)
joint = Encoder

(
z
(i)
time +Wpos

time ∥ z
(i)
text +Wpos

text

)
∈ R2Nd (3)

where ∥ is the concatenation operator. Note that, since the input comprises of 2N patches, the
output ẑ(i)joint is the concatenation of 2N patches. We subsequently split it into two halves to obtain

z̃
(i)
time ∈ RNd and z̃

(i)
text ∈ RNd, i.e., ẑ(i)joint = z̃

(i)
time ∥ z̃

(i)
text. We refer to these embeddings as cross-modal

representations as they result from joint interactions across patches from different modalities.

Remarks. Our multi-modal augmented encoder yields two distinct types of representations, single-
modal (i.e., modality-specific) and cross-modal (i.e., modality-fused), each contributing unique in-
formation. While most existing works tend to utilize either one of these aspects (Lin et al., 2023;
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Shi et al., 2021), MoAT leverages both perspectives of the multi-modal data, which strategically
broadens its learning spectrum. In addition, the usefulness of these representations may vary across
datasets, and in the subsequent descriptions, we describe how MoAT adaptively utilizes them to
achieve accurate time series forecasting.

Joint trend-seasonal decomposition. This technique is one of the most valuable techniques for im-
proving the predictability of raw time series data (Cleveland et al., 1990; Hamilton, 2020). Notably,
recent forecasting models have incorporated time series decomposition into their frameworks due to
its effectiveness (Wu et al., 2021; Zhou et al., 2022b; Zeng et al., 2023). Specifically, the seasonal-
trend decomposition employs a moving average kernel on the input time series to extract the trend-
cyclic component of the data. Then, the seasonal component is derived as the difference between
the original input time series and the extracted trend component. Inspired by its effectiveness, we
enhance the method by employing time series decomposition.

To decompose time series, we use the seasonal-trend decomposition to yield trend part x(i)
T and

seasonal part x(i)
S , each of which explain different aspects of the time series. From each component,

we compute patch embeddings z(i)time,T and z
(i)
time,S using the aforementioned approach.

To decompose text data, we employ two distinct and independent sets of attention parameters,
θ
(i)
T = {W(i)

T , b
(i)
T ,V

(i)
T } and θ

(i)
S = {W(i)

S , b
(i)
S ,V

(i)
S } in Eq. 6 to obtain aggregated text em-

beddings for trend and seasonal components, respectively. This allows us to derive distinguished
embeddings for capturing trend and seasonal dynamics from text information, highlighting docu-
ments differently. From each set of text embeddings, we derive two distinct sets of text patches,
z
(i)
text,T and z

(i)
text,S, representing trend-related and seasonal-related text information, respectively.

Once we obtain two sets of patch embeddings, z(i)time,M and z
(i)
text,M, for each component M ∈ {T,S},

we utilize the shared multi-modal augmented encoder described above. As shown in Fig. 3a,
we feed time series and text patches from each component independently into the shared encoder,
resulting in the following two sets, Z(i)

T and Z
(i)
S , of representations:

Z
(i)
T = {ẑ(i)time,T, ẑ

(i)
text,T, z̃

(i)
time,T, z̃

(i)
text,T} and Z

(i)
S = {ẑ(i)time,S, ẑ

(i)
text,S, z̃

(i)
time,S, z̃

(i)
text,S} (4)

These representations originate from either single-modal or cross-modal inputs, granting us four
unique information for both trend and seasonal components. This notably enriches the variety of
training samples that the decoder can utilize to predict future time series.

Multi-modal cross fusion. Since we have decomposed the data into its trend and seasonal compo-
nents, the next step involves recombining them to generate predictions. While a straightforward
approach would be combining corresponding representations from Z

(i)
T and Z

(i)
S (e.g., combining

ẑ
(i)
time,T and ẑ

(i)
time,S or z̃(i)text,T and z̃

(i)
text,S) to yield four predictions, we propose to use a richer strategy.

Instead of limiting the combinations to the corresponding pairs, we propose to aggregate all possible
combinations of representations from Z

(i)
T and Z

(i)
S as shown in Fig. 3b. Thus, we minimize:

L(i) =
∑

z
(i)
T ∈Z

(i)
T

∑
z
(i)
S ∈Z

(i)
S

∥∥∥z(i)T WT
dec + z

(i)
S WS

dec −Y(i)
∥∥∥2
2

(5)

where WT
dec ∈ RNd×T and WS

dec ∈ RNd×T are the single-layer linear decoders for the trend and
seasonal representations, respectively. The overall loss L is computed by the average of the C
individual losses from the C channels, i.e., L = 1

C

(
L(1) + ...+ L(C)

)
. This approach yields a

total of 16 different combinations, each contributing to a distinguished prediction. Predicting from
a wider range of representation combinations allows us to unravel a comprehensive understanding
of the interplay between the trend and seasonal components.

Discussion 1: How is multi-modality fused? To improve forecasting accuracy by integrating various
modalities, it is essential to effectively fuse the information acquired from these sources. Initially, an
implicit fusion of time series and text occurs in Eq. 3 by jointly passing patches from both modalities
to the shared Transformer encoder, enabling cross-modal interactions among them. Cross-fusion,
on the other hand, is an explicit fusion approach aimed at facilitating interactions between these
modalities. By systematically combining all feasible pairs from Z

(i)
T and Z

(i)
S to make predictions,

this approach explicitly considers all potential cross-modal fusions.
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Table 1: Time series forecasting accuracy (in terms of MSE) in six real-world datasets. With ef-
fective integration of text information, MoAT provides the most accurate predictions for future time
series. The best results are in bold and the second best are underlined. The average improvements
(%) and ranks are reported on the right.

Method Fuel Metal Bitcoin Stock-Index Covid Stock-Tech Improv. Rank

LightTS 0.1930 ± 0.0828 0.1829 ± 0.2065 0.3109 ± 0.2528 1.6765 ± 0.6564 0.4504 ± 0.1746 1.0780 ± 1.3709 71.67 9.66
DLinear 0.1916 ± 0.0346 0.0757 ± 0.0462 0.0822 ± 0.0213 0.8250 ± 0.0542 0.2513 ± 0.1221 0.3546 ± 0.1006 43.81 7.33
Autoformer 0.1599 ± 0.0266 0.0529 ± 0.0084 0.0757 ± 0.0038 0.7856 ± 0.0408 0.2597 ± 0.0213 0.2115 ± 0.0314 34.92 6.00
FEDformer 0.1088 ± 0.0151 0.0488 ± 0.0041 0.0743 ± 0.0068 0.8004 ± 0.0375 0.2366 ± 0.0179 0.1369 ± 0.0074 24.22 4.50
Pyraformer 0.1366 ± 0.0289 0.2494 ± 0.0590 1.3467 ± 0.1913 0.9558 ± 0.3773 1.5176 ± 0.2595 11.0625 ± 1.5610 71.46 9.83
Crossformer 0.0962 ± 0.0049 0.1110 ± 0.0344 0.4256 ± 0.0398 1.5374 ± 0.3410 0.5700 ± 0.0912 7.0709 ± 1.0786 65.92 8.83
PatchTST 0.0913 ± 0.0055 0.0278 ± 0.0005 0.0527 ± 0.0017 0.8612 ± 0.0315 0.1774 ± 0.0077 0.1215 ± 0.0026 6.46 3.33

MM-Linear 0.1127 ± 0.0212 0.0504 ± 0.0045 0.0525 ± 0.0050 1.5321 ± 0.3410 0.1906 ± 0.0129 0.2680 ± 0.1163 32.48 5.66
MM-LSTM 0.1947 ± 0.0014 0.0607 ± 0.0004 0.0628 ± 0.0014 0.8571 ± 0.0252 0.1943 ± 0.0088 0.1665 ± 0.0017 30.45 6.33
MM-TST 0.0902 ± 0.0023 0.0285 ± 0.0009 0.0522 ± 0.0018 0.8919 ± 0.0322 0.1804 ± 0.0162 0.1201 ± 0.0025 6.65 3.16

MoAT 0.0816 ± 0.0016 0.0257 ± 0.0004 0.0494 ± 0.0006 0.8134 ± 0.0959 0.1727 ± 0.0020 0.1176 ± 0.0019 - 1.33

Discussion 2: Why independent predictions? In our loss function (Eq. 5), we compute the loss
for each of the 16 independent predictions, which are then summed to compute the final loss L(i).
An intuitively different approach would be to aggregate the representations themselves and forecast
time series as a united prediction. However, our choice of the objective exploits a larger number
of training samples, enabling the model to effectively capture a diverse set of input patterns. Infor-
mation from different modalities may provide complementary insights (Xing et al., 2019; Mu et al.,
2020; Wortsman et al., 2022), and thus utilizing each prediction independently could lead to a more
comprehensive understanding of the underlying dynamics.

Prediction synthesis. In the inference phase, our primary objective is to generate a singular, defini-
tive prediction from a set of multiple predictions generated by MoAT. While simply taking the mean
of the 16 predictions appears as a straightforward approach, the reliability and accuracy of each
prediction can vary across datasets, depending on the quality of the input modalities. Thus, in-
stead, we implement a simple offline linear aggregation module consisting of 16 weight parameters
λ1, · · · , λ16, along with an intercept b, that assign varying weights to the predictions, as shown in
Fig. 3b. Note that this synthesis module is trained offline, separately from the main module (e.g.,
encoder and decoder), and thus gradients are not shared.

Discussion 3: Why offline synthesis? One might hypothesize that jointly learning λ1, · · ·λ16 along
with the main module in an end-to-end manner could yield better results. However, in such a case,
the model serves two roles: (1) accurately forecasting time series and (2) synthesizing predictions
by learning their weights based on their importance. We disentangle the model’s two functionalities
by training the synthesis module offline. This allows MoAT to dedicate itself to generating accurate
forecasts, while the offline module learns the weights associated with the generated predictions.
The disentanglement of functionalities has been proven to enhance the modularity and efficiency of
multi-modal models (Liang et al., 2022).

4 EXPERIMENTS

In this section, we evaluate MoAT by answering the following questions: Q1. Accuracy: Does
MoAT accurately forecast time series? Q2. Effectiveness: Does each component of MoAT im-
prove the performance? and Q3. Versatility: Does MoAT perform well in other settings as well?
Supplementary results can be found in Appendix D.

4.1 SETTINGS

We first share the experimental settings where the experiments are conducted.

Datasets. We evaluate the performance of MoAT across six multi-modal datasets: Fuel, Gold,
Stock-Index, Stock-Tech, Bitcoin, and Covid. These datasets, which will be made publicly available,
consist of multivariate time series data ranging from daily to monthly resolution. Additionally,
each dataset is accompanied by a collection of documents associated with each timestep. For more
detailed descriptions of each dataset (e.g., statistics and preprocessing steps), refer to Appendix B.1.

Baselines. To evaluate our proposed method, we compare it with both uni-modal and multi-
modal time series forecasting methods. As for uni-modal baselines, we consider linear models,
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Table 2: The effects of (1) incorporating multi-modal data, (2) employing dual multi-modal aug-
mentation schemes, and (3) considering other design choices discussed in Section 3. All components
contribute collectively to improve the performance of MoAT.

Method Fuel Metal Bitcoin Stock-Index Covid Stock-Tech Improv. (%)

MoATtime 0.0802 ± 0.0015 0.0264 ± 0.0007 0.0501 ± 0.0005 1.1879 ± 0.0354 0.1763 ± 0.0032 0.1223 ± 0.0018 6.613
MoATtext 0.1044 ± 0.0003 0.0310 ± 0.0002 0.0516 ± 0.0001 1.1750 ± 0.0293 0.1806 ± 0.0004 0.1501 ± 0.0010 16.696

MoATsample 0.0814 ± 0.0016 0.0256 ± 0.0008 0.0491 ± 0.0005 0.8405 ± 0.0269 0.1748 ± 0.0026 0.1191 ± 0.0023 0.724
MoATfeature 0.0819 ± 0.0018 0.0262 ± 0.0013 0.0496 ± 0.0007 0.8383 ± 0.0302 0.1756 ± 0.0031 0.1200 ± 0.0035 1.532

MoATw.o.JD 0.0823 ± 0.0013 0.0261 ± 0.0010 0.0501 ± 0.0005 0.7986 ± 0.0614 0.1754 ± 0.0026 0.1212 ± 0.0016 1.113
MoATw.o.CF 0.0853 ± 0.0013 0.0290 ± 0.0005 0.0513 ± 0.0004 0.8565 ± 0.0840 0.1801 ± 0.0021 0.1263 ± 0.0023 5.938
MoATw.o.IP 0.0855 ± 0.0018 0.0260 ± 0.0013 0.0539 ± 0.0016 0.8555 ± 0.0745 0.1864 ± 0.0053 0.1165 ± 0.0017 4.264
MoATw.o.OS 0.0898 ± 0.0027 0.0258 ± 0.0008 0.0548 ± 0.0022 0.8196 ± 0.0709 0.1833 ± 0.0046 0.1180 ± 0.0030 4.387

MoAT 0.0816 ± 0.0016 0.0257 ± 0.0004 0.0494 ± 0.0006 0.8134 ± 0.0959 0.1727 ± 0.0020 0.1176 ± 0.0019 -

LightTS (Zhang et al., 2022) and DLinear (Zeng et al., 2023), as well as Transformer-based models
including Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022b), Pyraformer (Liu et al.,
2021), Crossformer (Zhang & Yan, 2022), and PatchTST (Nie et al., 2022). Regarding multi-modal
baselines, we include MM-Linear, MM-LSTM, and MM-TST. MM-Linear and MM-TST are de-
signed based on extensions of DLinear and PatchTST, respectively, to integrate text information for
time series forecasting. MM-LSTM is developed by modifying the multi-modal time series classifi-
cation method (Deznabi et al., 2021) for forecasting purposes. For more details, refer to Appendix C.

Experimental setup. We partitioned each dataset into train/validation/test sets with a ratio of 6:2:2.
Unless otherwise stated, MoAT and its baselines predicted the immediate subsequent step (i.e., T =
1) based on the preceding 8 timesteps (i.e., L = 8), while MoAT can forecast over longer durations
(see Appendix D). By default, we used a hidden dimension of 64 and 4 attention heads for the
Transformer encoder. For more specific configuration information, refer to Appendix B.4.

4.2 Q1. ACCURACY

We begin by evaluating the accuracy of MoAT in time series forecasting. As shown in Table 1,
MoAT achieves a significant performance advantage over both uni-modal and multi-modal baselines.
Specifically, MoAT achieves the lowest MSE across five out of six datasets, exhibiting improvements
ranging from 6.455% to 71.688%, on average. This demonstrates the effectiveness of incorporating
multi-modal data into the model, as well as the careful design choices incorporated into MoAT. For
additional experimental results, refer to Appendix D.

4.3 Q2. EFFECTIVENESS

Next, we conduct ablation studies to validate the effectiveness of the design choices made in MoAT.
The results are summarized in Table 2. For further details on each variant, refer to Appendix C.3.

Effectiveness of multi-modality. We study the effects of incorporating multi-modal data into time
series forecasting. To this end, we examine two variants of MoAT, each utilizing one of the modal-
ities: (1) MoATtime uses only the time series modality as input, and (2) MoATtext uses only the text
modality as input. As shown in Table 2, MoAT outperforms both variants, enhancing the accuracy of
MoATtime by 6.613% and MoATtext by 16.696%, on average. This demonstrates that under MoAT,
both the time series and text modalities contribute to accurate time series forecasting.

Effectiveness of dual augmentation. MoAT consists of a multi-modal augmented encoder that
utilizes dual augmentation methods on the input multi-modal data. To investigate the effectiveness
of the augmentation schemes, we consider two variants: (1) MoATsample augments the data in the
sample space yielding single-modal representations ẑtime and ẑtext, and (2) MoATfeature augments the
data in the feature space generating cross-modal representations z̃time and z̃text. As shown in Table 2,
MoAT, which incorporates both augmentation schemes, forecasts time series more accurately than
MoATsample and MoATfeature by 0.724% and 1.532%, respectively, on average. This implies that both
augmentation methods are effective, and adopting both provides the best performance.

Effectiveness of other design choices. We conduct ablation studies to verify other design com-
ponents of MoAT including the discussions outlined in Section 3. To this end, we consider four
variants: (1) MoATw.o.JD (w.o. joint decomposition) forecasts without trend-seasonal decomposi-
tion, (2) MoATw.o.CF (w.o. cross-fusion) removes the cross-fusion scheme from MoAT, only com-
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Figure 5: (a) MoAT accurately predicts future Bitcoin price compared to the uni-modal PatchTST
and multi-modal MM-TST time series forecasting models. (b) MoAT consistently outperforms its
baselines for various forecasting lengths. (c) MoAT maintains superior performance over its base-
lines even when trained with a reduced number of training samples.

bining the corresponding representations from each component, (3) MoATw.o.IP (w.o. independent
predictions) averages the representations in each component and makes a united prediction, and (4)
MoATw.o.OS (w.o. offline synthesis) combines the prediction synthesis module into the main model,
training its parameters in an end-to-end manner. More details about each variant can be found in
Appendix C.3. As shown in Table 2, MoAT outperforms these variants, improving them by 1.113%,
5.938%, 4.264%, and 4.387%, respectively, confirming the effectiveness of each design choice.
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Figure 4: Augmentation space of MoAT. Multi-modal data
augmentation expands the representation space, leading to
more accurate forecasting of temporal dynamics.

We conduct a visual analysis of the
distributions of representations ob-
tained by MoAT using the Bitcoin
dataset. Fig. 4 illustrates the dis-
tribution of eight distinct represen-
tations (Eq. 4) across the timesteps
of the test set, in a 2D space using
t-SNE (Van der Maaten & Hinton,
2008). It is evident that these eight
independent representations cover a
broader space compared to the united
representation obtained by averaging.
This observation provides insight into
why MoAT outperforms its variant,
MoATw.o.IP, which aggregates the representations for making a single prediction. Furthermore, it is
noteworthy that the representations originating from the trend and seasonal components are clearly
distinguishable, implying their complementary roles in making predictions.

4.4 Q3. VERSATILITY

We evaluate MoAT across different settings. In Fig. 5, we illustrate our results using the Bit-
coin dataset as a case study. As shown in Fig. 5a, MoAT provides more accurate predictions of
future Bitcoin prices compared to its strongest uni-modal and multi-modal competitors, PatchTST
and MM-TST. In addition, as seen in Fig. 5b, MoAT consistently exhibits superior performance
compared to its baselines when forecasting over longer future timesteps, specifically 2, 4, and 8
timesteps ahead. Moreover, Fig. 5c shows that MoAT maintains its superiority over its baselines
even when trained with a reduced number of training samples, demonstrating the robustness and
adaptability of MoAT across varying data availability scenarios. These results emphasize MoAT as
a reliable choice for accurate time series forecasting in diverse settings.

5 CONCLUSIONS

This paper presents MoAT, a novel multi-modal augmented approach for time series forecasting
aimed at overcoming data scarcity challenges. MoAT efficiently integrates information from various
sources, including textual data, by combining both sample-wise and feature-wise multi-modal aug-
mentation and fusion. Additionally, it enhances prediction accuracy through trend-seasonal decom-
position using both data modalities. Extensive experiments conclusively demonstrate that MoAT
surpasses existing methods, confirming its effectiveness and robustness in addressing data scarcity
issues within the realm of time series forecasting.
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Figure 6: Trend-seasonal decomposition of time series and text data. For time series, MoAT applies
the standard decomposition method, utilizing the moving average kernel and the residual component
from the input time series. For text data, MoAT utilizes distinct attention parameters to aggregate
text embeddings, allowing for varied emphasis on documents.

A FURTHER DETAILS OF MOAT

In this section, we provide additional details of the architecture of MoAT.

Instance Normalization. We employ the instance normalization scheme for the input time series, a
choice inspired by its proven effectiveness in PatchTST (Nie et al., 2022). This involves computing
the mean mi and standard deviation σi for the input time series x(i) of the i-th channel. Subse-
quently, we normalize the time series using these values, i.e., (x(i) − mi)/σi. After obtainint the
prediction ŷ(i), we reverse this process through de-normalization using σiŷ

(i) + mi. MoAT takes
an additional step to account for the temporal locality within the time series. Specifically, instead of
using the mean value mi, it opts for (mi + x

(i)
L )/2, which is the average between the mean value

and the last value of the input time series x(i). This adjustment enables the method to better capture
the temporal locality during the forecasting process.

Channel Independence. Building upon previous studies such as CNN (Zheng et al., 2014), DLin-
ear (Zeng et al., 2023), and PatchTST Nie et al. (2022), we incorporate the concept of channel-
independence within the MoAT framework. In this approach, instead of mixing information across
channels, we consider each channel as an independent data sample that shares the projection weight
parameters and Transformer encoder weights. Thus, each input time series sample is considered a
univariate time series along with its corresponding specialized text embeddings. We plan to explore
channel-dependent version of MoAT in our future work.

Trend-Seasonal Decomposition. As described in Section 3, we adopt trend-seasonal decomposi-
tion of both time series and text in MoAT, as illustrated in Fig. 6.

For time series, we use the standard trend-seasonal decomposition method. This involves utilizing
the moving average kernel on the input time series x(i) to extract the trend component x(i)

T , while
the residual becomes the seasonal component x(i)

S . Thus, x(i) = x
(i)
T + x

(i)
S holds.

For text data, we introduce two independent sets of attention parameters θ(i)T = {W(i)
T , b

(i)
T ,V

(i)
T }

and θ
(i)
S = {W(i)

S , b
(i)
S ,V

(i)
S } to extract trend-related and seasonal-related text information, respec-

tively. More precisely, given a set of text embeddings dta:tb ∈ R|Dta:tb
|×d′

ranging from ta to tb,
we apply attention pooling using θ

(i)
M to aggregate the embeddings as follows:

Softmax
(

tanh(dta:tbW
(i)
M + b

(i)
M )V

(i)
M

)
dta:tb (6)

for each component M ∈ {T,S}. By using distinct sets of attention parameters, MoAT can selec-
tively emphasize documents to extract information pertaining to trend and seasonal dynamics.
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B EXPERIMENTAL DETAILS

In this section, we share more detailed information about the experimental settings.

B.1 DATASETS

In this subsection, we detail our preprocessing methods for the multi-modal datasets employed in
our experiments. To the best of our knowledge, currently, there is no benchmark time series dataset
accompanied by textual information for each timestep. Thus, we collected and processed the raw
datasets, and they will be released to the public.

Fuel is a monthly dataset consisting of gas 2 and oil 3 prices, spanning from January 2000 to Septem-
ber 2022. For each month, we extracted news articles from The New York Times 4 that contain
relevant keywords {brent crude, crude oil, energy policy, gas demand, gas market, gasoline price,
natural gas, oil demand, oil market, oil price, OPEC}, as suggested by ChatGPT.

Metal is a monthly dataset consisting of gold 5 and silver 6 prices, spanning from January 2000
to August 2022. For each month, we extracted news articles from The New York Times that con-
tain relevant keywords {coinage, COMEX, currency strength, exchange market, exchange rate, Fort
Knox, gold and silver, gold coin, gold industry, gold market, gold mining, gold price, gold reserves,
gold silver, gold standard, hedging, inflation, karat, LBMA, mining output, precious metal, quantita-
tive easing, recession, safe-heaven asset, silver coins, silver industry, silver institute, silver market,
silver price, sterling silver, supply chain disruptions, world gold council}, as suggested by ChatGPT.

Stock-Index is a monthly dataset consisting of the commodity price index7 ranges from March
2010 to Feburary 2022. The news articles related to each month are gathered from S&P Global
Commodity Insights.

Stock-Tech is a weekly dataset of Microsoft (MSFT) and Apple (AAPL) stock prices ranging from
December 1, 2006 to November 30, 2016. For each week, we aggregated news articles featuring
these two companies retrieved from The New York Times API 8.

Bitcoin is a daily dataset consisting of Bitcoin (BTC), Ethereum (ETH), Tether (USDT), and Bi-
nance Coin (BNB) prices 9, spanning from November 13, 2017 to November 23, 2019. For each
day, we filtered tweets about Bitcoins 10 that received at least 100 likes and 50 retweets.

Covid is a daily dataset consisting of the number of confirmed COVID-19 cases in 10 countries:
China, the United States, Italy, Singapore, South Korea, Georgia, Japan, Canada, Russia, and Aus-
tralia 11, spanning from January 22, 2020 to July 27, 2020. For each day, we used news content
that is related to Coronavirus which was aggregated, analyzed, and enriched by AYLIEN using the
AYLIEN’s News Intelligence Platform. Among a large number of articles, we filtered 20 articles
per day based on the number of times the articles were shared on social media platforms including
Facebook, LinkedIn, Reddit, and Google Plus.

B.2 HYPERPARAMETER SEARCH

We report the hyperparameter search space for each method, including MoAT. By default, a hidden
dimension of 64 is used, and if needed, dropout with a probability of 0.2 is applied. We search for
the optimal learning rate from {0.00005, 0.0001} and weight decay from {0.0001, 0.001}.

In the case of attention-based models (Autoformer, FEDformer, Pyraformer, Crossformer,
PatchTST, MM-TST, and MoAT), we use 2 attention layers and explore the number of attention

2
https://www.kaggle.com/datasets/psycon/historical-natural-gas-data-from-2000-to-202204

3
https://www.kaggle.com/datasets/psycon/historical-brent-oil-price-from-2000-to-202204

4
https://www.kaggle.com/datasets/aryansingh0909/nyt-articles-21m-2000-present

5
https://www.kaggle.com/datasets/psycon/daily-gold-price-historical-data

6
https://www.kaggle.com/datasets/psycon/daily-silver-price-historical-data

7
https://www.indexmundi.com/commodities/

8
https://www.kaggle.com/datasets/BidecInnovations/stock-price-and-news-realted-to-it

9
https://www.kaggle.com/datasets/sudalairajkumar/cryptocurrencypricehistory

10
https://www.kaggle.com/datasets/alaix14/bitcoin-tweets-20160101-to-20190329

11
https://www.kaggle.com/datasets/imdevskp/corona-virus-report
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Table 3: Summary of dataset statistics, including time series and text data. “Timesteps” refers to
the time series length, “# of Channels” indicates the number of channels in the time series, and
“Resolution” denotes the temporal granularity. “Min,” “Max,” and “Avg” represent the minimum,
maximum, and average number of texts at each timestep, respectively.

Time Series Text
Dataset Timesteps # of Channels Resolution Min. Max Avg.

Fuel 273 2 Month 1 117 21.758
Metal 272 2 Month 3 187 34.033
Stock-Index 144 10 Month 12 518 289.611
Stock-Tech 522 2 Week 1 10 7.019
Bitcoin 741 4 Day 2 369 53.896
Covid 188 10 Day 20 20 20.000

heads from {4, 16}. For models utilizing time series decomposition (Autoformer, FEDformer, and
MoAT), we search for the moving average for obtaining the trend component from {3, 5}. In patch-
based methods (PatchTST, Crossformer, MM-TST, and MoAT), we used the patch length P = 4
and stride S = 2.

We determined the best configuration that resulted in the highest accuracy (i.e., lowest MSE) in
the validation set. Using this identified hyperparameter setting, we report the average performance
along with its standard deviation, calculated across performance from 10 random seeds.

B.3 IMPLEMENTATION DETAILS

Base Implementation. We developed MoAT and its variants based on the open source implementa-
tion for time series forecasting 12. We used the Ridge regression provided by scikit-learn (Pedregosa
et al., 2011) for the prediction synthesis module of MoAT.

Channel Independence. Following PatchTST, we employ a channel-independent approach for time
series forecasting by considering each input time series as a univariate time series. Given a batch
of B samples sized B × C × L, where C is the number of channels and L is the number of past
observable timesteps, we reshape the input as (B · C) × L so that each channel within the batch
is treated independently. After segmenting each univariate time series into N patches, the input is
reshaped to (B ·C)×N×d, which can be readily utilized by any standard Transformer architecture.

Pretrained Language Model. To generate embeddings for each text, we used the pretrained lan-
guage model. Specifically, we used the sentence transformer provided by Hugging Face with the
pretrained model named all-mpnet-base-v2 13, which is trained on a 1B sentence pairs dataset
using contrastive loss.

B.4 TRAINING DETAILS

Data Split. For each dataset, we split the time series and text data based on their temporal order into
train, validation, and test sets using a 6:2:2 ratio. Following Zhou et al. (2021), the entire time series
data is normalized using the mean and standard deviation of the training set.

Training Epochs. The total number of training epochs is set to 200. But, if the validation loss fails
to decrease for 10 consecutive epochs, we stop the training process early. For the Steel dataset, we
limit the training to just 1 epoch due to its small size.

Offline Prediction Synthesis. Our offline prediction synthesis module is trained separately from the
main forecasting model. We utilize a Ridge regression approach, incorporating 16 weight parameters
and an intercept for aggregating the 16 predictions from the decoder. During each training epoch, a
Ridge regression is trained from scratch using the training set. Then, the model’s learned parameters
are utilized to evaluate validation and test sets.

12
https://github.com/thuml/Time-Series-Library

13
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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C BASELINES AND VARIANTS

In this section, we describe the baseline methods that are compared with MoAT in Section 4. Each
method is either uni-modal or multi-modal models.

C.1 UNI-MODAL BASELINE METHODS

We first describe the uni-modal baselines we used to evaluate MoAT in Section 4.

LightTS (Zhang et al., 2022) is a simple MLP-based time series forecasting model. Specifically, it
utilizes MLP-based structures to effectively capture two significant patterns, short-term and long-
term temporal dependencies within the time series.

DLinear (Zeng et al., 2023) is a recent non-Transformer model that argues that the Transformer-
based models have difficulty in capturing ordering information within the time series. It consists of
two distinct linear layers which are independently applied to the trend and seasonal components of
the input time series. The resulting outputs are then summed to generate the final prediction.

Autoformer (Wu et al., 2021) is a Transformer-based method that incorporates time series decompo-
sition, inspired by classical time series analysis methods. In addition, it integrates an auto-correlation
mechanism, which replaces the conventional self-attention layer within the Transformer.

FEDformer (Zhou et al., 2022b) is a Transformer-based method that also uses a time series de-
composition scheme. Motivated by the fact that time series tend to have sparse representations, it
is based on a frequency-enhanced Transformer, which offers linear complexity to the length of the
input time series.

Pyraformer (Liu et al., 2021) is a Transformer-based method incorporating a pyramidal attention
module. Specifically, the module consists of inter-scale connections that summarize features at
various resolutions and intra-scale connections that capture temporal dependencies across diverse
ranges. Moreover, it scales linearly to the length of the input time series.

Crossformer (Zhang & Yan, 2022) is a Transformer-based method that utilizes cross-dimension
dependency for time series forecasting. Specifically, it segments the input time series into patches
and trains a module that captures cross-time and cross-dimension dependencies among them.

PatchTST (Nie et al., 2022) is a Transformer-based method that adopts an independent learning
approach for each channel using a shared encoder. This model demonstrates that Transformers are
effective when the input time series is segmented into patches at the subseries level.

C.2 MULTI-MODAL BASELINE METHODS

In this subsection, we describe MM-Linear, MM-LSTM, and MM-TST, baseline models designed
to compare against MoAT. MM-Linear and MM-TST extend DLinear (Zeng et al., 2023) and
PatchTST (Nie et al., 2022), respectively to integrate multi-modal data within their framework. MM-
LSTM is an adapted version of a time series classification method (Deznabi et al., 2021), designed
for mortality prediction within the healthcare domain.

Commonly, these models are given with a time series x(i) = (x
(i)
1 , · · · , x(i)

L ) ∈ RL of the i-
th channel and a set of texts Dt = {Dt,1, · · · ,Dt,|Dt|} at each timestep t = 1, · · · , L. Us-
ing the pretrained language model, each set of texts is represented as a set of text embeddings
dt = {dt,1, · · · ,dt,|D,t|} ∈ R|Dt|×d′

where dt,j = PLM(Dt,j) ∈ Rd′
.

MM-Linear is a multi-modal method that extends DLinear, a simple linear method for time series
forecasting. The input time series x(i) is decomposed into the trend part x(i)

T and the seasonal part
x
(i)
S from the seasonal-trend decomposition. For the text data, the method applies attention pooling

(Eq. 6) to each set of texts at each timestep t to derive a single aggregated text embedding z
(i)
text,t.

Then, these text embeddings are averaged to obtain z
(i)
text = (z

(i)
text,1 + · · ·+ z

(i)
text,L)/L ∈ Rd′

, which
represents the general textual information associated with the i-th channel. Finally, it concatenates
time series and text embeddings, x(i)

T ∥ z
(i)
text ∈ RL+d′

and x
(i)
S ∥ z

(i)
text ∈ RL+d′

, which represent
the multi-modal embeddings of the trend and seasonal dynamics, respectively. Following this, two

16



Under review as a conference paper at ICLR 2024

independent one-layer linear layers are individually applied to each component and summed to
derive the final prediction, consistent with the original DLinear.

MM-LSTM is inspired by the time series classification model for patients’ mortality prediction. It
employs LSTM to capture the temporal dependencies within the time series x, resulting in ztime =

LSTM(x) ∈ Rd′′
. For text data, it averages all the text embeddings at timestep t = 1, · · · , L to

obtain ztext ∈ Rd′
. Upon concatenating ztime and ztext to yield z ∈ Rd′+d′′

, an independent one-
layer linear layer is applied for each channel to generate a unique prediction for each channel. To
ensure forecasting stability, the input time series is normalized with zero mean and unit standard
deviation, and they are added back to the output prediction.

MM-TST is an extension of the Transformer-based time series forecasting model, PatchTST. In
line with the original PatchTST, it produces patch-wise time series embeddings z

(i)
time ∈ RN×d. In

addition, it computes patch-wise text embeddings z
(i)
text ∈ RN×d, employing the same approach as

in MoAT. Next, temporally aligned patches from the two modalities are concatenated, forming a
2d-dimensional patch at each timestep. Following this, a single linear-layer decoder is employed on
the flattened output patches to predict T future timesteps.

C.3 VARIANTS OF MOAT

We provide the details of the variants of MoAT that are used to evaluate the effectiveness of the
design components of MoAT in Section 4.3.

Effectiveness of multi-modality. To assess the effectiveness of integrating multi-modal datasets, we
examine two variants of MoAT. The first, MoATtime exclusively utilizes the time series modality and
incorporates trend-seasonal decomposition. On the other hand, MoATtext mainly relies on the text
modality to forecast time series. Given the challenge of accurately predicting one modality using
another, MoATtext leverages hints from time series data normalization described in Appendix A. That
is, the generated prediction is de-normalized by the mean, the last value, and the standard deviation
of the input time series. As these variants operate as single-modal methods, neither multi-modal
augmentation nor cross-fusion can be applied.

Effectiveness of dual augmentation. To evaluate the effectiveness of the multi-modal data aug-
mentation schemes, we explore two variants, MoATsample and MoATfeature. These variants integrate
both time series and text data in their approach. First, MoATsample employs sample-wise augmenta-
tion to generate ẑtime and ẑtext. Second, MoATfeature utilizes feature-wise augmentation to generate
z̃time and z̃text. In each variant, two representations are generated for each trend and seasonal com-
ponent, resulting in four predictions from cross-fusion. In contrast, MoAT generates 16 predictions
by considering more representations for the trends and seasonal components by incorporating both
augmentation schemes.

Effectiveness of other design choices. To validate the effectiveness of the key design choices dis-
cussed in Section 3, we examine three variants of MoAT: MoATw.o.CF, MoATw.o.IP, and MoATw.o.OS.

• MoATw.o.JD removes the trend-seasonal decomposition module from MoAT. Consequently, it gen-
erates four representations instead of eight, and the cross-fusion scheme is removed as well.

• MoATw.o.CF removes the cross-fusion scheme utilized in MoAT. That is, instead of considering
all 16 combinations of aggregations of representations from Z

(i)
T and Z

(i)
S , it only aggregates the

corresponding representations. Specifically, it aggregates ẑ
(i)
time,T & ẑ

(i)
time,S, ẑ(i)text,T & ẑ

(i)
text,S, z̃(i)time,T

& z̃
(i)
time,S, and z̃

(i)
text,T & z̃

(i)
text,S, resulting in four predictions.

• MoATw.o.IP generates a single prediction by aggregating the representations. More specifically, it
computes a united representation for the trend and seasonal components, denoted as z̄(i)T and z̄

(i)
S :

z̄
(i)
T =

ẑ
(i)
time,T + ẑ

(i)
text,T + z̃

(i)
time,T + z̃

(i)
text,T

4
and z̄

(i)
S =

ẑ
(i)
time,S + ẑ

(i)
text,S + z̃

(i)
time,S + z̃

(i)
text,S

4
.

Using these unified representations of both trend and seasonal components, it generates a singular,
united prediction by summing them:

L(i) =
∥∥∥z̄(i)T WT

dec + z̄
(i)
S WS

dec −Y(i)
∥∥∥2
2
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Table 4: Time series forecasting accuracy (in terms of MSE) in six real-world datasets for a predic-
tion length of T = 2. The best results are in bold and the second best are underlined. The average
improvements (%) and ranks are reported on the right. MoAT performs the best on average.

Method Fuel Metal Bitcoin Stock-Index Covid Stock-Tech Improv. Rank

LightTS 0.1707 ± 0.0318 0.1609 ± 0.1045 0.1853 ± 0.0943 1.6850 ± 0.3808 0.4022 ± 0.1285 0.7412 ± 0.3926 58.72 8.66
DLinear 0.2335 ± 0.0390 0.0870 ± 0.0262 0.0911 ± 0.0199 0.8116 ± 0.0500 0.2783 ± 0.0950 0.4051 ± 0.0919 37.54 7.16
Autoformer 0.1948 ± 0.0220 0.0669 ± 0.0066 0.0957 ± 0.0055 0.8549 ± 0.0181 0.2672 ± 0.0175 0.2905 ± 0.242 31.82 6.50
FEDformer 0.1464 ± 0.0055 0.0579 ± 0.0027 0.0897 ± 0.0091 0.8487 ± 0.0181 0.2438 ± 0.0126 0.1808 ± 0.0059 19.10 4.83
Pyraformer 0.1783 ± 0.0229 0.2918 ± 0.1485 1.4690 ± 0.2101 1.3141 ± 0.5165 1.6353 ± 0.2116 11.8653 ± 1.4095 73.03 9.83
Crossformer 0.1330 ± 0.0042 0.1686 ± 0.1029 0.5108 ± 0.0511 1.6567 ± 0.3210 0.5584 ± 0.0371 8.2583 ± 0.8155 64.50 8.50
PatchTST 0.1375 ± 0.0056 0.0410 ± 0.0013 0.0624 ± 0.0010 0.8666 ± 0.0178 0.1966 ± 0.0087 0.1723 ± 0.0041 5.33 3.16

MM-Linear 0.1915 ± 0.0126 0.0547 ± 0.0096 0.0588 ± 0.0023 1.7323 ± 0.0609 0.2121 ± 0.0194 0.3559 ± 0.0774 29.94 6.00
MM-LSTM 0.2174 ± 0.0128 0.0686 ± 0.0004 0.0621 ± 0.0023 0.8720 ± 0.0139 0.2170 ± 0.0013 0.3201 ± 0.0494 25.95 6.16
MM-TST 0.1369 ± 0.0028 0.0402 ± 0.0008 0.0628 ± 0.0016 0.9076 ± 0.0573 0.2050 ± 0.0156 0.1731 ± 0.0049 6.59 3.83

MoAT 0.1215 ± 0.0024 0.0370 ± 0.0004 0.0583 ± 0.0005 0.8319 ± 0.0496 0.2011 ± 0.0032 0.1682 ± 0.0020 - 1.33

It is important to note that this approach differs from MoAT’s loss function in Eq. 5, where each
representation is used independently to derive the loss, and the losses are averaged instead of
averaging the representations themselves.

• MoATw.o.OS optimizes the weight parameters λ1, · · · , λ16 in an end-to-end fashion, concurrently
with the training of the encoder and decoder. In this integrated training approach, the same op-
timizer is employed, enabling the model to simultaneously serve both the time series forecasting
and prediction aggregating functionalities. Specifically, given the synthesized prediction Ŷ(i)

using λ1, · · · , λ16, the final loss is the sum of Eq. 5 and the MSE loss of the synthesized one:

L(i) =
∑

z
(i)
T ∈Z

(i)
T

∑
z
(i)
S ∈Z

(i)
S

∥∥∥z(i)T WT
dec + z

(i)
S WS

dec −Y(i)
∥∥∥2
2
+
∥∥∥Ŷ(i) −Y(i)

∥∥∥2
2

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present supplementary experimental results that are not included in the main
content due to space constraints.

Varying prediction lengths. In Section 4, we utilized a default prediction length of 1. In this
section, we present the experimental results for varying prediction lengths, specifically at lengths of
2, 4, and 8. The forecasting accuracy of MoAT and its baselines when predicting future 2, 4, and
8 timesteps is depicted in Tables 4, 5, and 6, respectively. These results demonstrate that MoAT
accurately predicts both short-term and longer-term future time series.

Temporal alignment. In Figure 7, we observe temporal similarities among representations across
different timesteps in the Bitcoin dataset. It is noticeable that the similarity heatmaps for trend
and seasonal representations exhibit comparable patterns, implying the temporal alignment within
each trend and seasonal component. In addition, we can clearly see that heatmaps are distinguished
between the two components, suggesting that each component offers unique temporal information
that is potentially beneficial for accurate time series forecasting.
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Table 5: Time series forecasting accuracy (in terms of MSE) in six real-world datasets for a predic-
tion length of T = 4. The best results are in bold and the second best are underlined. The average
improvements (%) and ranks are reported on the right. MoAT performs the best on average.

Method Fuel Metal Bitcoin Stock-Index Covid Stock-Tech Improv. Rank

LightTS 0.1865 ± 0.0101 0.1833 ± 0.1259 0.1519 ± 0.0503 1.8960 ± 0.3034 0.4079 ± 0.0737 1.3437 ± 1.0994 49.80 8.16
DLinear 0.3001 ± 0.0310 0.1307 ± 0.0222 0.1326 ± 0.0337 0.9719 ± 0.0603 0.3465 ± 0.0499 0.5073 ± 0.0469 36.95 7.66
Autoformer 0.2459 ± 0.0144 0.0853 ± 0.0062 0.1132 ± 0.0027 0.9969 ± 0.0270 0.2986 ± 0.0097 0.4003 ± 0.0213 25.36 6.16
FEDformer 0.1990 ± 0.0084 0.0814 ± 0.0062 0.1085 ± 0.0068 1.0194 ± 0.0329 0.2814 ± 0.0151 0.2805 ± 0.0261 16.16 5.00
Pyraformer 0.2247 ± 0.0259 0.4750 ± 0.2248 1.6298 ± 0.1754 1.7009 ± 0.1172 1.7994 ± 0.2905 13.1298 ± 1.5395 72.98 10.00
Crossformer 0.1998 ± 0.0059 0.3736 ± 0.1157 0.6778 ± 0.0672 1.6747 ± 0.1742 0.6559 ± 0.0431 9.2539 ± 0.6315 65.48 9.00
PatchTST 0.1981 ± 0.0027 0.0616 ± 0.0010 0.0791 ± 0.0010 0.9279 ± 0.0236 0.2427 ± 0.0126 0.2660 ± 0.0017 3.33 2.50

MM-Linear 0.2384 ± 0.0102 0.0888 ± 0.0258 0.0743 ± 0.0022 1.8208 ± 0.0548 0.3018 ± 0.0273 0.5122 ± 0.0694 29.52 7.00
MM-LSTM 0.2576 ± 0.0022 0.0855 ± 0.0006 0.0836 ± 0.0064 0.9416 ± 0.0034 0.2625 ± 0.0018 0.4312 ± 0.0015 20.11 5.50
MM-TST 0.1973 ± 0.0040 0.0596 ± 0.0008 0.0788 ± 0.0012 1.0192 ± 0.0181 0.2709 ± 0.0169 0.2731 ± 0.0054 6.41 3.33

MoAT 0.1687 ± 0.0014 0.0582 ± 0.0008 0.0728 ± 0.0007 0.9228 ± 0.0343 0.2508 ± 0.0065 0.2807 ± 0.0086 - 1.66

Table 6: Time series forecasting accuracy (in terms of MSE) in six real-world datasets for a predic-
tion length of T = 8. The best results are in bold and the second best are underlined. The average
improvements (%) and ranks are reported on the right. MoAT performs the best on average.

Method Fuel Metal Bitcoin Stock-Index Covid Stock-Tech Improv. Rank

LightTS 0.3006 ± 0.0118 0.2504 ± 0.0500 0.2573 ± 0.0528 2.0410 ± 0.1924 0.5448 ± 0.0416 2.1131 ± 0.6886 50.09 8.16
DLinear 0.3966 ± 0.0301 0.2160 ± 0.0430 0.2041 ± 0.0125 0.9518 ± 0.0393 0.5294 ± 0.0644 0.6941 ± 0.0383 34.04 8.00
Autoformer 0.3461 ± 0.0092 0.1265 ± 0.0064 0.1398 ± 0.0051 1.0202 ± 0.0184 0.3886 ± 0.0139 0.5799 ± 0.0101 18.22 6.33
FEDformer 0.3316 ± 0.0089 0.1100 ± 0.0000 0.1438 ± 0.0075 1.0138 ± 0.0396 0.3724 ± 0.0235 0.4907 ± 0.0533 12.70 4.66
Pyraformer 0.3068 ± 0.0201 0.6715 ± 0.0863 1.7596 ± 0.1932 1.3721 ± 0.4393 1.9689 ± 0.2832 14.6437 ± 1.4263 67.71 9.16
Crossformer 0.3318 ± 0.0175 0.4295 ± 0.1315 0.7878 ± 0.0876 1.4830 ± 0.2267 0.6923 ± 0.0796 10.6312 ± 0.8214 61.33 9.16
PatchTST 0.3358 ± 0.0050 0.0928 ± 0.0010 0.1072 ± 0.0006 0.8777 ± 0.0270 0.3645 ± 0.0131 0.4630 ± 0.0115 2.84 3.33

MM-Linear 0.3334 ± 0.0236 0.1441 ± 0.0950 0.1850 ± 0.0550 1.8349 ± 0.0064 0.4321 ± 0.0390 0.6679 ± 0.0403 31.96 7.50
MM-LSTM 0.3349 ± 0.0012 0.1287 ± 0.0006 0.1157 ± 0.0082 0.9423 ± 0.0372 0.3696 ± 0.0009 0.5770 ± 0.0150 13.44 5.00
MM-TST 0.3273 ± 0.0033 0.0919 ± 0.0011 0.1069 ± 0.0011 0.9359 ± 0.0462 0.4107 ± 0.0167 0.4673 ± 0.0053 5.37 3.16

MoAT 0.2740 ± 0.0029 0.0867 ± 0.0003 0.0994 ± 0.0005 0.8741 ± 0.0177 0.3644 ± 0.0087 0.5355 ± 0.0088 - 1.50
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(b) ẑ(i)text,T

0 20 40 60 80 100 120 140
Timestep

0

20

40

60

80

100

120

140

Ti
m

es
te

p

0.5

0.6

0.7

0.8

0.9

1.0

(c) z̃(i)time,T

0 20 40 60 80 100 120 140
Timestep

0

20

40

60

80

100

120

140

Ti
m

es
te

p

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(d) z̃(i)text,T

0 20 40 60 80 100 120 140
Timestep

0

20

40

60

80

100

120

140

Ti
m

es
te

p

0.2

0.4

0.6

0.8

1.0
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Figure 7: Pairwise cosine similarities between different timesteps for each of the eight representa-
tions. The representations of the trend component (Z(i)

T = {ẑ(i)time,T, ẑ
(i)
text,T, z̃

(i)
time,T, z̃

(i)
text,T}) and those

of the seasonal component (Z(i)
S = {ẑ(i)time,S, ẑ

(i)
text,S, z̃

(i)
time,S, z̃

(i)
text,S}) exhibit distinctive temporal simi-

larities, effectively capturing specific aspects essential for accurate time series forecasting.
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