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Abstract001

Existing reinforcement learning (RL) strategies002
based on outcome supervision have proven ef-003
fective in enhancing the performance of large004
language models (LLMs) for code generation.005
While reinforcement learning based on process006
supervision shows great potential in multi-step007
reasoning tasks, its effectiveness in the field008
of code generation still lacks sufficient explo-009
ration and verification. The primary obstacle010
stems from the resource-intensive nature of011
constructing a high-quality process-supervised012
reward dataset, which requires substantial hu-013
man expertise and computational resources. To014
overcome this challenge, this paper proposes015
a "mutation/refactoring-execution verification"016
strategy. Specifically, the teacher model is used017
to mutate and refactor the statement lines or018
blocks, and the execution results of the com-019
piler are used to automatically label them, thus020
generating a process-supervised reward dataset.021
Based on this dataset, we have carried out a022
series of RL experiments. The experimental023
results show that, compared with the method024
relying only on outcome supervision, reinforce-025
ment learning based on process supervision per-026
forms better in handling complex code gener-027
ation tasks. In addition, this paper for the first028
time confirms the advantages of the Direct Pref-029
erence Optimization (DPO) method in the RL030
task of code generation based on process super-031
vision, providing new ideas and directions for032
code generation research.033

1 Introduction034

Automatic code generation refers to the process of035

automatically writing code through algorithms or036

programs. Traditionally, automatic code generation037

has relied primarily on rule-driven programming038

tools and template-based code generators (Little039

and Miller, 2007; Gvero and Kuncak, 2015). These040

tools are typically only capable of handling sim-041

ple, highly repetitive tasks, and require develop-042

ers to precisely define rules and logic. In recent 043

years, with the emergence of LLMs based on deep 044

learning and natural language processing (such as 045

GPT (Brown, 2020; Floridi and Chiriatti, 2020; 046

Achiam et al., 2023) and LLaMA (Touvron et al., 047

2023a,b; Dubey et al., 2024)), the capabilities of 048

automatic code generation have been substantially 049

improved. These models can understand natural 050

language descriptions and automatically generate 051

the corresponding code (Li et al., 2023), even solv- 052

ing complex programming problems (Allamanis 053

et al., 2018; Zan et al., 2022), thus greatly improv- 054

ing development productivity. 055

To better align models with complex hu- 056

man demands, reinforcement learning (RL) has 057

played a crucial role by integrating human feed- 058

back (Ouyang et al., 2022; Lee et al., 2023). The 059

strength of RL lies in its ability to indirectly 060

optimize non-differentiable reward signals, such 061

as CodeBLEU scores (Ren et al., 2020) and hu- 062

man preferences (Wu et al., 2023), through pol- 063

icy optimization and value function approxima- 064

tion (Williams et al., 2017; Dhingra et al., 2016). 065

However, obtaining the required human feedback 066

often requires significant human effort and re- 067

sources (Casper et al., 2023). In code generation 068

tasks, RL demonstrates unique advantages: lan- 069

guage models can automatically utilize compiler 070

feedback from unit tests as reward signals, reduc- 071

ing excessive reliance on human feedback (Zhang 072

et al., 2023; Le et al., 2022; Wang et al., 2022; Sho- 073

jaee et al., 2023). This approach not only efficiently 074

optimizes the output but also significantly enhances 075

the model’s performance in code generation tasks. 076

Although these methods have achieved great suc- 077

cess, they predominantly rely on compiler feed- 078

back signals from entire code segments to train the 079

reward model, raising the issue of sparse reward 080

space (Russell and Norvig, 2016; Amodei et al., 081

2016), where the policy has no idea how well it per- 082

forms during training before reaching the ultimate 083
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Figure 1: Illustrating a comparison of three methods: supervised training, outcome-supervised reinforcement
learning, and the process-supervised reinforcement learning proposed in this study.

output. In this context, the Process-Supervised084

Reward Model (PRM) (Uesato et al., 2022; Light-085

man et al., 2023) offers a new perspective. This086

model provides step-level feedback for multi-step087

reasoning results generated by language models,088

helping to identify and correct errors in intermedi-089

ate steps, rather than focusing solely on the final090

outcome. However, current PRM has only been val-091

idated in the field of logical reasoning and has yet092

to demonstrate its effectiveness in code generation.093

Moreover, given the high cost of manual labeling094

required to construct datasets for PRM training, ef-095

ficiently building a corresponding dataset tailored096

for code generation remains a critical challenge.097

In this paper, we propose PRLCoder, an im-098

proved framework for code generation based on099

process-supervised reinforcement learning. Fig-100

ure 1 presents presents a comparison of three meth-101

ods. We critically design a "mutation/refactoring-102

execution verification" strategy to enable automatic103

generation of process-supervised data. Specifically,104

for each statement line or block in the code, we105

employ a teacher model to perform mutation and106

refactoring operations. Mutation generates code107

snippets that serve different functions from the orig-108

inal statement line or block, while refactoring aims109

to maintain functionality as much as possible. The110

modified code is then verified by a compiler. Based111

on the outcome of test cases, the samples are la-112

beled as either "Chosen" or "Rejected". On this113

basis, a series of reinforcement learning experi-114

ments are conducted using the constructed process- 115

supervised reward dataset. This approach not only 116

significantly reduces the time and cost required 117

for manual annotation in traditional process su- 118

pervision, but also eliminates errors and biases in 119

manual annotation. Furthermore, the precision of 120

fine-grained rewards enables the model to explore 121

the environment more efficiently, improving the 122

stability of the training process. 123

The proposed method is evaluated on the high- 124

quality dataset APPS+. The experimental results 125

indicate that PRLCoder improved the pass rate by 126

8.8% compared to the base model and by 2.7% 127

compared to the best outcome-supervised reinforce- 128

ment learning method, with more significant per- 129

formance gains in tasks involving complex code 130

generation. In addition, to verify the generalization, 131

we also conduct tests on some widely used bench- 132

mark datasets, further confirming the effectiveness 133

of the method. In summary, our main contributions 134

are as follows: 135

1) We apply multiple process-supervised RL 136

methods to the coding domain, exploring their 137

potential to improve the performance of code 138

generation. Furthermore, we first confirm the 139

superiority of the DPO method in RL based 140

on process supervision in the code domain. 141

2) To address the challenge of the resource- 142

intensive manual labeling process, we in- 143

troduce a "mutation/refactoring verification" 144
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strategy to automatically generate a high-145

quality process-supervised reward dataset.146

3) Empirically, we demonstrate that process su-147

pervision surpasses outcome supervision in148

code generation, with particularly notable im-149

provements observed on complex tasks.150

2 Related Work151

2.1 Pretrained LLMs for Code152

In the domain of code generation, LLMs, trained153

on extensive corpora of code and natural language,154

are capable of generating code that is coherent both155

syntactically and semantically (Jiang et al., 2024;156

Guo et al., 2020; Li et al., 2022; Nijkamp et al.,157

2022). Among them, encoder models like Code-158

BERT (Feng et al., 2020) focus on understanding159

code structure and semantic relationships, encoder-160

decoder models like CodeT5 (Wang et al., 2021)161

specialize in translating high-level language de-162

scriptions into concrete code, while decoder-only163

models like DeepSeekCoder (Guo et al., 2024) gen-164

erate syntactically correct and semantically coher-165

ent code through autoregressive methods. Further-166

more, researchers in the coding community have167

applied instructional tuning to their models. Wang168

et al. (2023) fine-tuned CodeT5+ using 20,000 in-169

struction data generated by InstructGPT, resulting170

in InstructCodeT5+ with enhanced generalization171

capabilities. However, these models largely over-172

look the unique sequential features of code, ex-173

hibiting limited performance in handling complex174

issues and in cross-task generalization and scalabil-175

ity (Zhang et al., 2024a).176

2.2 RL based on Compiler177

Reinforcement learning (RL) is a method aiming to178

allow an agent to interact with the environment and179

receive rewards to guide behavior and maximize180

cumulative rewards (Mnih, 2013; Mnih et al., 2015;181

Van Hasselt et al., 2016). Given the requirement for182

both syntactic and functional correctness in code183

generation tasks, leveraging compiler feedback sig-184

nals from unit tests for RL has become a more185

competitive strategy. PPOCoder (Shojaee et al.,186

2023) utilizes the Proximal Policy Optimization187

(PPO) architecture, which jointly optimizes the pol-188

icy model and the value model, and makes use of189

the compiler feedback signals as reward signals.190

RLTF (Liu et al., 2023) uses compiler-generated191

error messages and locations to provide more fine-192

grained feedback. It constructs an online reinforce-193

ment learning framework, generating data in real- 194

time during the training process. StepCoder (Dou 195

et al., 2024) introduces two components, CCCS and 196

FGO, which are respectively used to handle long 197

sequence problems and determine whether a code 198

snippet is executed. However, despite the progress 199

made by these outcome-supervised reinforcement 200

learning methods, they still face challenges such as 201

sparse reward space and training instability. 202

2.3 Process Supervision 203

Outcome supervision focuses on the final out- 204

put, while process supervision provides guidance 205

through intermediate steps (Uesato et al., 2022; Luo 206

et al., 2024; Wang et al., 2024; Wu et al., 2024). 207

Lightman et al. (2023) collected a large amount of 208

process-supervised data and built the PRM800K 209

dataset. The results demonstrated that process su- 210

pervision significantly outperformed outcome su- 211

pervision in solving problems in the MATH dataset. 212

In the coding domain, Ma et al. (2023) modified 213

atomic operators by employing AST to train a re- 214

ward model, which was applied in multi-step rea- 215

soning and proven effective. Dai et al. (2024) uti- 216

lized LLM to generate completions for code pre- 217

fixes and evaluated their correctness. With this, 218

they determined whether the prefixes were cor- 219

rect and then automatically generated a process- 220

supervised dataset, exploring the effectiveness of 221

process supervision. Compared with the work we 222

performed during the same period, there are differ- 223

ences in the core aspect of automatically creating 224

the process-supervised dataset. Moreover, for the 225

first time, we verified that the DPO method outper- 226

forms the PPO method in the context of process- 227

supervised reinforcement learning for code genera- 228

tion. 229

3 Approach 230

In this section, we elaborate on the technical de- 231

tails of the PRLCoder method. By designing a 232

more fine-grained reward mechanism, PRLCoder 233

enables multiple reinforcement learning algorithms 234

to achieve more precise exploration and optimiza- 235

tion in code generation tasks. 236

3.1 Process-Supervised Dataset Construction 237

Similar to the field of mathematical logic reasoning, 238

collecting fine-grained human feedback through 239

manual annotation to construct step-level reward 240

datasets often requires significant human and ma- 241

terial resources. To address this, we propose an 242
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Figure 2: The schematic diagram of the method for automatically constructing the reward dataset for process
supervision in the field of code generation. The bolded portions represent code segments that have been mutated or
refactored by DeepSeek-V3, and the subsequent content will undergo mask processing.

innovative approach that leverages a teacher model243

and compiler feedback to automatically construct a244

process-supervised reward dataset for the domain245

of code generation. Figure 2 illustrates a schematic246

of the dataset generation process.247

Formally, let D = {di, wi}Ni=1 denotes the code248

generation training dataset, where di represents the249

i-th problem description and wi is the correspond-250

ing canonical solution. Initially, we leverage the251

canonical solution to construct positive samples.252

Specifically, we divide the canonical solution into253

k segments according to lines or blocks. Then for254

each segment of the code, all subsequent content255

is masked, and we directly mark the corresponding256

label for the segment as "chosen". In other words,257

the original canonical solution can be reformulated258

directly as positive samples for process supervision259

with the format: {"prompt" : (di), "chosen" :260

wij|j≤p; p = 1, · · · , k}Ni=1.261

Positive samples generated from the canonical262

solution are insufficient for training reward models;263

therefore, we design a novel strategy to construct264

negative samples. Specifically for each segment265

of code, we employ a teacher model to perform266

mutation and refactoring operations using specific267

prompt examples detailed in Figure 2. The mod-268

ified segment, along with the remaining code, is269

then validated through the compiler. Based on the270

compiler feedback, it is labeled as "chosen" if it271

passes all test cases, or "rejected" otherwise.272

During the dataset construction process, we 273

find that several canonical solutions in the APPS+ 274

dataset are not suitable for the construction require- 275

ments of this study. Therefore, we make targeted 276

modifications to these canonical solutions, and the 277

specific details are provided in the Appendix B. 278

3.2 Reward Model Training 279

Outcome-Supervised Reward Model. ORM 280

adopts a holistic reward approach, mapping the 281

overall quality and reliability metrics correspond- 282

ing to the problem description d and the generated 283

code w into a single scalar reward. Typically, this 284

reward is only assigned to the final token in the 285

generated sequence and is defined as follows: 286

rOt =

{
RO(d,w; θ), t = T

0, otherwise
(1) 287

where θ represents the parameters of ORM RO. 288

We first use the dataset constructed in the previ- 289

ous section to train a basic ORM. However, rely- 290

ing solely on this dataset to train the ORM has 291

limitations: the active learning strategy exhibits a 292

strong bias towards incorrect answers in the dataset, 293

thereby diminishing the overall performance of 294

the model. Thus, we refer to methods such as 295

PPOCoder mentioned earlier. We introduce the 296

compiler as a source of supervision signals and 297

use four types of feedback signals generated by 298

the compiler to optimize the generator model, thus 299
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Figure 3: Training of two types of outcome supervision.

constructing a compiler-based ORM. Figure 3 il-300

lustrates the structures of these two ORM models.301

Process-Supervised Reward Model. Our PRM302

rewards the quality of each code segment, allow-303

ing for finer adjustments and feedback at each step.304

We divide the code sequence w into k segments305

(w1, w2, ..., wk), where wi represents the preced-306

ing part of the code sequence. The synchronous307

execution concludes at time Ti. Within this frame-308

work, the reward model assigns a reward to each309

input segment (d,wi), distributing the highest re-310

ward to the final segment of w. Finally, the reward311

rt is defined as:312

rPt =

k∑
i=1

RP (d,wi;ϕ) · 1(t = Ti) (2)313

where ϕ represents the parameters of PRM RP .314

3.3 Reinforcement Learning Algorithm315

Proximal Policy Optimization (PPO) is a reinforce-316

ment learning algorithm based on policy gradi-317

ents. Its core idea is to limit the magnitude of318

changes between old and new policies to prevent319

excessively rapid updates (Schulman et al., 2017;320

Huang et al., 2024). In code generation tasks,321

PPO first interacts with the environment using322

the current policy πθ to obtain the state d, gen-323

erate a code wi, and receives a reward rt and324

other data. Subsequently, the advantage function325

At =
∑

t′>t γ
t′−t(rt′ + γVψ(dt′+1) − Vψ(dt′))326

is calculated for each time step, where the value327

function Vψ(d) represents the expected cumulative328

rewards from state d. In addition, we adopt the329

method from (Wu et al., 2021) to add a divergence 330

penalty kl = log πθ(wi|d)− log πref(wi|d) to each 331

token, representing the ratio of the current and ref- 332

erence policies. our reward function becomes: 333

rt =

{
−β · kl, t ̸= Ti

−β · kl + rPt , t = Ti
(3) 334

We also conduct research on the recently pro- 335

posed Direct Policy Optimization (DPO) algo- 336

rithm. The core idea of DPO is to directly opti- 337

mize the policy using a discriminative approach, 338

focusing on maximizing the relative preference 339

between different policies without explicitly es- 340

timating the reward function (Rafailov et al., 2023; 341

Zhang et al., 2024b). During the reinforcement 342

learning training process, we first use the Bradley- 343

Terry model to convert preference information into 344

scores, which is expressed as p(wic > wir|d) = 345

σ(r(d,wic)−r(d,wir)). wherewic andwir denote 346

the i-th chosen and rejected code segment, respec- 347

tively, and d represents their prefix. By introduc- 348

ing the partition function Z(x) =
∑

wi
πref(wi | 349

d) exp
(

1
β r(d,wi)

)
, we reparameterize the reward 350

function to obtain: 351

rt = β log
πθ(wi | d)
πref(wi | d)

(4) 352

See Appendix C for more details. 353

4 Experiments 354

4.1 Benchmarks 355

APPS+. To construct the process-supervised re- 356

ward dataset, we select APPS+ as the seed dataset, 357

which is an improved version of the popular bench- 358

mark APPS. APPS+ covers three difficulty levels: 359

Introductory (2,889), Interview (3952), and Com- 360

petition (572). Each instance is annotated with at- 361

tributes marking the start and end positions of state- 362

ment blocks in the standard solution. To ensure 363

comparability with the original paper, we adopt 364

the same dataset partitioning strategy, randomly 365

sampling approximately 25% of instances for the 366

validation set and another 25% for the test set. 367

HumanEval consists of 164 original program- 368

ming problems, with some problems being com- 369

parable in difficulty to fundamental software in- 370

terview questions. MBPP consists of a test set 371

of 500 crowd-sourced Python programming prob- 372

lems. Each problem includes a task description, a 373
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code solution, and three automated test cases. Live-374

CodeBench provides holistic and contamination-375

free evaluation of the coding capabilities of LLMs.376

In particular, LiveCodeBench continuously collects377

new problems over time from contests across three378

competition platforms. We select release_v5 with379

problems released between May 2023 and Jan 2025380

containing 880 problems.381

4.2 Settings382

Evalution Metric. Following the method proposed383

by Kulal et al. (2019); Chen et al. (2021), we em-384

ploy the pass@1 metric to evaluate the correctness385

of functions, generating only one code sample per386

problem for assessment. The prompts used for code387

generation are listed in Appendix A388

Implementation Details. We select deepseek-389

coder-6.7b-instruct as the base model. During the390

SFT phase, training is conducted over 3 epochs391

with a learning rate of 2e-5 using eight NVIDIA392

A800 80G GPUs. For the PPO, MiniCPM-2B (Hu393

et al., 2024) is chosen as the reward model, main-394

taining the same learning rate configuration and395

completing 10 training epochs. In sample gener-396

ation, four code snippets are generated for each397

sample using nucleus sampling with a temperature398

of 0.6, top-p set to 0.95, and a maximum token399

limit of 1024. During DPO training, the learning400

rate is adjusted to 5e-6 for 3 epochs, incorporating401

a linear scheduler and warm-up. In the decoding402

phase, we use greedy search decoding for code403

generation.404

Training Data. In this study, all training data405

are constructed based on the APPS+ training set.406

For SFT and compiler-based outcome supervision407

methods, we directly train on the APPS+ training408

set. For basic outcome supervision methods, we409

use a dataset generated by mutating and refactor-410

ing entire canonical solutions. For PPO and DPO,411

we constructed process-supervised reward datasets412

through line-by-line and block-by-block mutation413

and refactoring on the APPS+ training set, respec-414

tively. Although there are differences in the training415

data for different methods, the training sets gener-416

ated from the same seed set all reflect the optimal417

results under each training method.418

4.3 Experimental Results419

4.3.1 Results on APPS+420

To evaluate the performance of our PRLCoder in421

code generation, we perform comprehensive exper-422

iments on the APPS+ dataset, and the experimental423

results are presented in Table 1. 424

Comparison with LLMs. For the baseline, we 425

select multiple code Instruct models (Roziere et al., 426

2023; Hui et al., 2024) with varying parameter 427

scales. Under the same experimental conditions, 428

the performance of these models on the APPS+ test 429

set is evaluated to ensure the fairness and consis- 430

tency of the comparison process. The experimental 431

results show that, compared with the baseline mod- 432

els, our model achieves a higher pass rate on the 433

test set with a smaller parameter scale. 434

Comparison with ORMs. We further conduct a 435

comparative evaluation of our method against mul- 436

tiple outcome-supervised reinforcement learning 437

(RL) approaches. We select basic outcome super- 438

vision and compiler-based outcome supervision 439

as comparison objects and carry out experiments 440

on APPS+ to ensure the fairness of the evaluation. 441

Given that the RL-related code in PPOCoder and 442

StepCodr is not open-sourced, the analysis in this 443

section adopts the experimental results reported in 444

their original papers. The results show that our 445

method achieves significant performance improve- 446

ments across tasks of varying difficulty levels, with 447

particularly prominent advantages in medium and 448

hard problems. This indicates that process super- 449

vision can provide more detailed guidance on the 450

model’s rewards in complex tasks, leading to the 451

generation of more accurate code snippets. 452

We also compare the differences between ap- 453

plying PPO and DPO in the PRLCoder frame- 454

work. Experimental results show that DPO ex- 455

hibits more significant advantages, while the per- 456

formance of PPO is even slightly lower than that 457

of the StepCoder method. Our analysis suggests 458

that this may be attributed to insufficient gener- 459

alization and robustness in constructing line-by- 460

line process-supervised reward datasets or training 461

process-supervised reward models, leading to de- 462

graded performance of PPO. In contrast, DPO can 463

more effectively learn the quality of code genera- 464

tion by leveraging statement blocks with specific 465

functions, without being affected by reward models. 466

We provide a more detailed analysis in Section 4.4. 467

4.3.2 Results on Popular Benchmarks 468

To further assess the generalization performance 469

of PRLCoder, we test the performance of multiple 470

methods on several mainstream benchmarks, with 471

specific experimental results detailed in Table 2. 472

PRLCoder demonstrats superior performance com- 473

pared to supervised fine-tuning (SFT) and outcome- 474
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Models Size
Pass@1

Introductory Interview Competition Overall
Supervised Fine-tuning Models

InstructCodeT5+ 16B 15.4 9.6 0.9 11.1
CodeLlama 13B 32.1 11.7 1.2 18.7
Qwen2.5-Coder 7B 53.6 22.6 7.8 33.3
Deepseek-Coder 6.7B 48.2 19.3 4.0 29.1
SFT on APPS+ 6.7B 49.1 19.9 6.8 30.0

Reinforcement Learning Models with Outcome Supervision

Basic 6.7B 53.1 18.7 5.7 30.8
PPOCoder 6.7B 54.4 20.3 6.4 32.1
RLTF 6.7B 55.3 20.1 6.0 32.4
StepCoder 6.7B 59.7 23.5 8.6 36.1

Reinforcement Learning Models with Process Supervision

PRLCoder(Ours)
with PPO 6.7b 57.4 23.4 8.0 35.2
with DPO 6.7b 61.9 26.4 11.8 38.8

Table 1: Performance results for various models on APPS+ testing set. In the experimental results of the supervised
fine-tuning models, we uniformly adopt Instruct models. "SFT on APPS+" indicates that DeepSeek-Coder is
subjected to supervised fine-tuning on the APPS+ training set as the control group. "Basic" represents the basic
outcome supervision.

Model Humaneval MBPP
LiveCodeBench

(Overall)
Deepseek-Coder-Instruct 77.4 64.0 20.3
SFT on APPS+ 71.9 60.3 17.8

Basic 76.3 64.0 19.6
PPOCoder 76.8 63.8 -
RLTF 77.9 64.5 21.4
StepCoder 78.7 67.0 -

PRLCoder(Ours)
with PPO 77.8 67.6 22.6
with DPO 79.5 69.4 24.2

Table 2: Quantitative results on popular benchmark.

supervised methods. It is worth noting that we475

find a slight decline in the performance of the base476

model on the HumanEval and MBPP benchmarks477

after SFT on APPS+. This phenomenon aligns with478

the characteristics of "negative transfer," a com-479

mon issue in SFT, and it is hypothesized that its480

cause may be related to differences in input formats481

across datasets. In contrast, RL-based methods can482

effectively enhance the model’s overall code gener-483

ation ability and generalization capability.484

4.4 Analysis 485

We systematically analyze the combinations of dif- 486

ferent code segmentation strategies and reinforce- 487

ment learning (RL) algorithms, comparing their 488

post-training performance on the test set, as well 489

as the efficiency and stability of the models during 490

the RL training process. 491

Row-level and Block-level Code Segmentation. 492

We systematically investigate different code par- 493

titioning strategies and train using the DPO algo- 494

rithm on process supervision reward datasets con- 495

structed via line-by-line mutation or refactoring. 496

Experimental results are detailed in Table 3. The 497

study reveals that the block-based code partitioning 498

strategy significantly outperforms line-wise par- 499

titioning in training effectiveness. Furthermore, 500

we train a reward model for the PPO algorithm 501

using this dataset, with relevant results shown in 502

Figure 4. During the training phase, the overall ac- 503

curacy of the model is approximately 75%, which 504

may explain the relatively lower performance of 505

the line-wise partitioning strategy. In-depth analy- 506
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Figure 4: Quantitative analysis of the process-
supervised reward model for the PPO.

Methods strategy
Pass@1

Introductory Interview Competition Overall
PPO Row-level 57.4 23.4 8.0 35.2
DPO Row-level 60.2 24.2 8.4 36.7
DPO Block-level 61.9 26.4 11.8 38.8

Table 3: Quantitative results on APPS+ testing set with
different code segmentation strategies.

sis identifies two issues with line-by-line mutation507

or refactoring: first, some non-critical lines in the508

dataset easily interfere with the training of the re-509

ward model; second, when processing the latter510

part of the text, excessively long prefixes hinder511

the reward model from accurately learning reward512

allocation. In conclusion, we argue that only by513

combining block-based code partitioning strategies514

with more advanced DPO algorithms can the advan-515

tages of process-supervised reinforcement learning516

in code generation tasks be fully realized.517

Training process. When training the model us-518

ing RL algorithms, we compare the training loss519

curves under three different supervision methods,520

as shown in Figure 5. The experimental results521

demonstrate that the DPO algorithm based on pro-522

cess supervision exhibits a faster convergence rate523

during training, and both process-supervised rein-524

forcement learning methods show higher stability525

compared to the outcome-supervised method. This526

phenomenon indicates that process supervision not527

only improves the training efficiency of the code528

generation model but also significantly enhances529

the stability of the training process.530

5 Conclusion531

In this paper, we present PRLCoder, a novel ap-532

proach that explores enhancing the effectiveness of533

code generation through process-supervised rein-534

forcement learning (RL) with intermediate reward535

Figure 5: The loss curves of the reinforcement learning
under three different supervision methods.

signals. For the first time, we introduce the more 536

efficient Direct Policy Optimization (DPO) algo- 537

rithm into the code generation domain. To address 538

the challenge of high labeling costs, we design 539

an innovative step-level dataset construction strat- 540

egy that leverages teacher models and compiler 541

feedback to automatically generate code datasets 542

for process-supervised RL training. Experimental 543

results on APPS+ and multiple widely-used bench- 544

mark datasets demonstrate that our method signif- 545

icantly improves code generation quality, particu- 546

larly in complex tasks. Furthermore, this work vali- 547

dates the superiority of process-supervised RL over 548

outcome-supervised approaches in code generation, 549

most notably eliminating the need for resource- 550

intensive manual labeling. 551

6 Limitations 552

Looking ahead, several aspects of PRLCoder can 553

be further optimized and expanded. First, the cur- 554

rent seed dataset has limited diversity, which may 555

hinder the generalization of the trained model. Fu- 556

ture research could consider utilizing more diverse 557

datasets to better cover various scenarios and re- 558

quirements. In addition, current experiments with 559

PRLCoder have only been conducted on DeepSeek- 560

Coder, and future work could explore its appli- 561

cability and performance across more types and 562

larger-scale code generation models. Furthermore, 563

our proposed "mutation/refactoring verification" 564

strategy is not only applicable to code genera- 565

tion but also has the potential to establish process- 566

supervised mechanisms for other reasoning or plan- 567

ning tasks. Future studies could further investigate 568

the applicability and advantages of this strategy in 569

other fields, especially its potential in addressing 570

complex reasoning and planning challenges. 571
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A Prompt Design841

To eliminate the interference of comments on842

process-supervised reinforcement learning, we uni-843

formly added the instruction "Do not add com-844

ments when generating" at the end of the prompt.845

The specific prompts used by Deepseek-Coder-846

Instruct for the APPS+ code generation task are847

as follows:848

< |begin_of_sentence| >You are an AI program-849

ming assistant, utilizing the Deepseek Coder model,850

developed by Deepseek Company, and you only an-851

swer questions related to computer science. For852

politically sensitive questions, security and privacy853

issues, and other non-computer science questions,854

you will refuse to answer855

### Instruction:856

QUESTION:857

{task description}858

class Solution: def minEatingSpeed(self, piles:859

List[int], H: int) -> int:860

ANSWER: Do not add comments when generat-861

ing.862

### Response:863

B Dataset Specification864

To construct a more standardized process-865

supervised reward dataset, we first regularized the866

solutions by uniformly standardizing the use of867

‘\t’ to ensure code format consistency and verify868

that each canonical solution passes the test cases.869

Second, we revise approximately 20 canonical so-870

lutions with enumeration-based expressions. For871

example, in the "integer partition" problem, the872

original canonical solution enumerated combina-873

tions for each positive integer sequentially, which874

was unsuitable for constructing the process super-875

vision reward dataset. Therefore, we adapt these876

solutions accordingly. An example of modifica-877

tions to the APPS+ dataset is shown in Figure 6.878

C RL Algorithm879

The PPO and DPO algorithms in PRLCoder are880

detailed in Algorithms 1 and 2, respectively.881

D Error Distribution882

To validate the effectiveness of our proposed strat-883

egy, we conduct an error distribution analysis on884

the automatically constructed reward dataset and885

the code generated by the baseline model. As886

shown in Figure 7, the error distributions of the887

two code sets exhibit significant overlap, demon- 888

strating that the reward dataset constructed using 889

this strategy effectively captures common error pat- 890

terns in the code generation process. Furthermore, 891

when this dataset is used to train the base model 892

within a reinforcement learning framework, it sig- 893

nificantly enhances the model’s ability to supervise 894

code generation. 895
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Algorithm 1 Process-Supervised Reinforcement Learning for Code Generation With PPO

Input: initial policy model Pθinit ; initial value model Vψinit ; PRM Rϕ trained from step-level datasets;
code task prompts D; hyperparameters ϵ, β

Output: Pθ
1: policy model Pθ ← Pθinit , reference model Pref ← Pθinit value model Vψ ← Vψinit

2: for step = 1, . . . ,M do
3: Sample a batch Db from D
4: Sample output sequence of program wn ∼ Pθ(· | xn) for each prompt xn ∈ Db
5: Compute rewards {rnt }

|wn|
t=1 for each sampled output wn by running Rϕ and Pref

6: Compute advantages {At}|w
n|

t=1 and value targets {V tar(st)}|w
n|

t=1 for each wn with Vψ
7: for PPO iteration = 1, . . . , µ do
8: Update the policy model using PPO objective:

θ ← argmax
θ

1

|Db|

|Db|∑
n=1

1

|wn|

|wn|∑
t=1

min

(
Pθ(at | st)
Pθold(at | st)

At, clip(
Pθ(at | st)
Pθold(at | st)

, 1− ϵ, 1 + ϵ)At

)

9: Update the value model by minimizing a square-error objective:

ψ ← argmin
ψ

1

|Db|

|Db|∑
n=1

1

|wn|

|wn|∑
t=1

(
Vψ(st)− V tar(st)

)2
10: end for
11: end for

Algorithm 2 Process-Supervised Reinforcement Learning for Code Generation With DPO

Input: initial policy model Pθinit ; Process-supervised reward dataset D; hyperparameters β
Output: Pθ

1: policy model Pθ ← Pθinit , reference model Pref ← Pθinit

2: for step = 1, . . . ,M do
3: Sample a batch Db from D
4: Sample output sequence of chosen program wnc and rejected program wnr for each prompt xn ∈ Db

5: for DPO iteration = 1, . . . , µ do
6: Update the policy model using DPO objective:

θ ← argmax
θ

1

|Db|

|Db|∑
n=1

1

|wn|

|wn|∑
t=1

[
log σ

(
β log

Pθ(wc | d)
Pref (wc | d)

− β log Pθ(wr | d)
Pref (wr | d)

)]
7: end for
8: end for
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Figure 6: An example of the modifications we made to APPS+ to align with our method

Figure 7: Some examples of the same error distribution generated by the reward dataset and the base model.
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