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ABSTRACT

While supervised learning assumes the presence of labeled data, we may have
prior information about how models should behave. In this paper, we formalize
this notion as learning from explanation constraints and provide a learning theo-
retic framework to analyze how such explanations can improve the learning of our
models. For what models would explanations be helpful? Our first key contribu-
tion addresses this question via the definition of what we call EPAC models (mod-
els that satisfy these constraints in expectation over new data), and we analyze this
class of models using standard learning theoretic tools. Our second key contribu-
tion is to characterize these restrictions (in terms of their Rademacher complexi-
ties) for a canonical class of explanations given by gradient information for linear
models and 2 layer neural networks. Finally, we provide an algorithmic solution
for our framework, via a variational approximation that achieves better perfor-
mance and satisfies these constraints more frequently, when compared to simpler
augmented Lagrangian methods to incorporate these explanations. We demon-
strate the benefits of our approach over synthetic and real-world experiments.

1 INTRODUCTION

There has been a considerable recent focus on generating explanations of complex black-box mod-
els so that humans may better understand their decisions. But what if humans were able to provide
explanations for how these models should behave? We are interested in the question of how to learn
models given such apriori explanations. We believe that learning from explanations is a natural char-
acterization for training machine learning models as it matches how humans learn. For example, we
learn math much better and more efficiently from a (good) teacher, who can explain the underlying
principles and rules. As labeled examples are provided by domain experts, we can also ask them to
provide explanations for their decisions. This requires effort from the domain expert but can signif-
icantly improve the standard learning process, reducing the required number of labeled data.

In this paper, we provide an analytical framework for learning from explanations. We first provide
a mathematical framework for model constraints given explanations. Casting explanations as func-
tionals g that take in a model h and input x, we can represent domain knowledge of how models
should behave as constraints on the values of such explanations. We can leverage these to then solve
a constrained ERM problem where we additionally constrain the model to satisfy these explanation
constraints. From an analysis standpoint, this poses challenges as these constraints are random; the
explanations and constraints are provided on randomly sampled inputs. To handle these stochastic
constraints, we draw from classical approaches in stochastic programming (Kall et al., 1994; Birge
& Louveaux, 2011). In particular, we formalize the class of what we term EPAC models, or models
that satisfy the explanation constraints (in expectation) up to some slack with high probability. Here,
the probability is with respect to the randomness of the models themselves. The high level idea is that
any model that satisfies the set of explanation constraints on the finite sample can, via standard statis-
tical learning theoretic arguments (Valiant, 1984), can be shown to satisfy the constraints in expecta-
tion up to some slack with high probability. Then, we can capture the benefit of learning with expla-
nation constraints by analyzing the generalization capabilities of this restricted class of EPAC mod-
els. This analysis builds off of a framework for semi-supervised learning (Balcan & Blum, 2010).

Another key contribution of our work is concretely analyzing this framework for a canonical class of
explanation constraints given by gradient information for linear models and 2 layer neural networks.
We focus on gradient constraints as we can represent many different notions of explanations, such
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Figure 1: A restricted hypothesis class Hϕ,τ (left). Our algorithmic solution to solve a proposed
variational objective in Section 3 (right).

as feature importance and ignoring background/spurious features as a (noisy) gradient constraint.
These corollaries clearly illustrate that restricting the hypothesis class via explanation constraints
can lead to fewer required labeled data.

Now that we have provided a learning theoretic framework for these explanation constraints, we
next consider the algorithmic question: how do we solve for these explanation-constrained models
to begin with? In general, these constraints are not necessarily well-behaved and are difficult to op-
timize. We draw from seminal work in posterior regularization (Ganchev et al., 2010), which has
also been studied in the capacity of model distillation (Hu et al., 2016), to provide a variational ob-
jective. Our first algorithmic ingredient is the use of surrogate explanation losses that quantify how
well a model satisfies an explanation constraint. Our second algorithmic ingredient relates to the
fact that constrained model estimation is much less scalable in general than unconstrained estima-
tion. One can use augmented Lagrangian approaches (Ross et al., 2017; Fioretto et al., 2021), or
simply regularized versions of our constrained problems (Rieger et al., 2020) (which however do
not in general solve the constrained problems for non-convex parameterizations). However, even
these pose challenges for complex models and increasingly complex explanations (where even sim-
ple instances of the latter can involve the model’s Jacobian). We propose a tractable alternative via
a variational objective that iteratively trains a model on the supervised data, and then approximately
projects this learnt model onto the set of those hypotheses that satisfy the explanation constraints.
Finally, we provide an extensive array of experiments that capture the benefits of learning from ex-
planation constraints in Appendix 4. These experiments clearly illustrate our generalization bounds
and also reveal fundamental tradeoffs about the design of explanation constraints.

2 LEARNING FROM EXPLANATION CONSTRAINTS

Let X be the instance space and Y be the label space. We focus on binary classification where
Y = {−1, 1}, but which can be naturally generalized. Let D be the joint data distribution over
(X ,Y) and DX the marginal distribution over X . For any classifier h : X → Y , we are interested
in its classification error err(h) := Pr(x,y)∼D(h(x) ̸= y), though one could also use other losses,
including surrogate losses to classification error. Our goal is to learn a classifier with small error from
a family of functions H. We draw from the explainable machine learning literature, and formalize
(local) explanations as functionals that take in a model and test input, and output a vector:

Definition 1 (Explanations). Given an instance space X , model hypothesis class H, and an expla-
nation functional g : H×X → Rr, we say g(h, x) is an explanation of h on point x induced by g.

In our notation, g represents a functional of interest on a classifier h ∈ H. For simplicity, we
consider the setting when g takes a single data point and model as input, but this can be naturally
extended to multiple data points and models. In practice, we need to combine these explanations
with additional human knowledge on how explanations at particular sample points should look like.
This can naturally be expressed in the form of explanation constraints.

Definition 2 (Explanation Constraint Set). For any instance space X , hypothesis class H, an expla-
nation functional g : H × X → Rr, and a family of constraint sets {C(x) ⊆ Rr | x ∈ X}, we say
that h ∈ H satisfies the explanation constraints with respect to C iff:

g(h, x) ∈ C(x), ∀x ∈ X .
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In our definition, C(x) represents values that we believe our explanations should take at a point x.
For example, “an input gradient of a feature 1 must be larger than feature 2” can be represented by
g(h, x) = ∇xh(x) and C(x) = {(x1, . . . , xd) ∈ Rd | x1 > x2}.

Note that we might not have access to such constraint set C(x) for each of the inputs x ∈ X . In
practice, human annotators will be able to provide such explanation constraints for a random sample
of say k data points SE = {x′

1, . . . , x
′
k}, which we assume will be drawn i.i.d. from DX . We then

say that any h ∈ H SE-satisfies the explanation constraints with respect to C iff:

g(h, x) ∈ C(x), ∀x ∈ SE .

It can be seen that the constraints are random since samples x′
i ∈ SE are drawn i.i.d. from DX .

Thus, even if h SE-satisfies the explanation constraints with respect to C, it likely does not hold that
h fully satisfies the explanation constraints with respect to C i.e. for all inputs x ∈ X . Here, we
can draw from stochastic programming as well as standard learning theoretic arguments to reason
about probably approximately satisfying the constraints in expectation. Before doing so we wish to
first consider the notion of explanation surrogate losses, which will allow us to generalize the setup
above to a form that is amenable to practical estimators.
Definition 3. (Explanation surrogate loss) An explanation surrogate loss ϕ : H × X → R upper
bounds the indicator function for whether (and in general quantifies how well) a model h satisfies
the explanation constraint g(h, x) ∈ C(x), so that for any h ∈ H, x ∈ X :

ϕ(h, x) ≥ 0, If g(h, x) ∈ C(x) then ϕ(h, x) = 0

For example, we could define ϕ(h, x) = 1{g(h, x) ∈ C(x)}. Given such a surrogate loss, we
can substitute the explanation constraint that g(h, x) ∈ C(x) with the surrogate ϕ(h, x) ≤ 0. We
now have the machinery to formalize how to reason about the random explanation constraints given
a random set of inputs. Consider the class of models that satisfy the explanation constraints with
respect to C, as mediated by the explanation surrogate loss ϕ:

Hϕ = {h ∈ H : ϕ(h, x) ≤ 0, ∀x ∈ X}.

And those models that only satisfy the explanation constraints on SE :

Hϕ,SE
= {h ∈ H : ϕ(h, x) ≤ 0, ∀x ∈ SE}.

How do we compare Hϕ,SE
to Hϕ? Towards addressing this question, consider the expected expla-

nation loss ϕ(h,D) := Ex∼D[ϕ(h, x)]. We can then define the class:

Hϕ,D,τ = {h ∈ H : ϕ(h,D) ≤ τ}.

It can be seen that this consists of models that satisfy the explanation constraints upto some slack τ
(i.e. approximately) and also in expectation. At times, we may suppress the dependence on the data
distribution in the notation above, and simply use Hϕ,τ to denote the class. We can see than for any
τ1 < τ2 we have Hϕ,τ1 ⊆ Hϕ,τ2 and Hϕ,∞ = H is the original concept class. We further refine
this to the class of what we term EPAC models (Explanation constraints Probably Approximately
Correct).
Definition 4 (EPAC model). We say that h is a τ - EPAC model w.r.t. data distribution D and a
surrogate loss ϕ if ϕ(h,D) ≤ τ .

Definition 5 (EPAC learnability). For any δ ∈ (0, 1), τ > 0, the sample complexity of (δ, τ) - EPAC
learning of H with respect to a surrogate loss ϕ, denoted M(τ, δ;H, ϕ) is defined as the smallest
m ∈ N for which there exists a learning rule A such that every data distribution DX over X , with
probability at least 1− δ over S ∼ Dm,

ϕ(A(S),D) ≤ inf
h∈H

ϕ(h,D) + τ.

If no such m exists, define M(τ, δ;H, ϕ) = ∞. We say that H is EPAC learnable in the agnostic
setting with respect to a surrogate loss ϕ if ∀δ ∈ (0, 1), τ > 0, M(τ, δ;H, ϕ) is finite.

One might wonder if a model that satisfies the random constraints in SE might also be an EPAC
model. In the proposition below, we use natural statistical learning theoretic arguments (see Ap-
pendix C) to show that that indeed is the case. We denote Rk(·) as a Rademacher complexity.
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Proposition 2.1. Suppose a model h SE-satisfies the explanation constraints so that h ∈ Hϕ,SE ,τ .
Then, with probability at least 1− δ:

ϕ(h,DX ) ≤ τ + 2Rk(G) +
√

ln(4/δ)

2k
,

when k = |SE | and G = {ϕ(h, ·) | h ∈ H}.

The class G contains all surrogate losses of any h ∈ H. Depending on the explanation constraints,
G can be extremely large. The question of which types of explanation constraints is EPAC learnable
might be of independent interest, and we further discuss this in Appendix E and give concrete cases
when explanations are learnable, even without knowing the exact value of C(x).

EPAC-ERM Objective. Let us next discuss combining the two sources of information: the expla-
nation constraints that we set up in the previous section, together with the usual set of labeled train-
ing samples S = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from D that informs the empirical risk. Com-
bining these, we get what we call EPAC-ERM objective:

min
h∈H

1

n

n∑
i=1

ℓ(h, xi, yi) s.t.
1

k

k∑
i=1

ϕ(h, x′
i) ≤ τ. (1)

2.1 GENERALIZATION BOUND

We assume that we are in a doubly agnostic setting when there is no classifier in the hypothesis
class H that perfectly labels (x, y). Instead, we hope to achieve the best error rate in the hypothesis
class, h∗ = argminh∈H errD(h). We also assume that h∗ may have ϕ(h∗, D) > 0. In our analysis,
we start by selecting classifiers that has lower empirical explanation risk than a threshold τ , then
perform a standard supervised learning with the remaining set of classifiers.
Theorem 2.2 (Generalization Bound for Agnostic Setting). Consider a hypothesis class H, distri-
bution D, and explanation loss ϕ. Let S = {(x1, y1), . . . , (xn, yn)} be drawn i.i.d. from D and
SE = {x′

1, . . . , x
′
k} drawn i.i.d. from DX . With probability at least 1− δ, for h ∈ H that minimizes

empirical risk errS(h) and has ϕ(h, SE) ≤ τ , we have

errD(h) ≤ errD(h∗
τ−εk

) + 2Rn(Hϕ,τ+εk) + 2

√
ln(4/δ)

2n
, εk = 2Rk(G) +

√
ln(4/δ)

2k
,

when G = {ϕ(h, x) | h ∈ H, x ∈ X} and h∗
τ = argminh∈Hϕ,τ

errD(h).

Proof. The largely follows Balcan & Blum (2010), using Rademacher complexity instead of VC-
entropy. We defer the full proof to Appendix H.

Our bound suggests that these constraints help with our learning by a reduction of the hypothesis
class H to Hϕ,τ+εk , reducing the required sample complexity. We can see that a smaller threshold
τ leads to a more restricted hypothesis class and a larger reduction. However, there is also a trade-
off between reduction and accuracy. In our bound, we compare against the best classifier h∗

τ−εk
∈

Hϕ,τ−εk instead of h∗. Since we may have ϕ(h∗,D) > 0, if τ is too small, we could reduce H to a
hypothesis class that does not contain any good classifiers. Recall that the generalization bound for
standard supervised learning — in the absence of explanation constraints — is given by

errD(h) ≤ errD(h∗) + 2Rn(H) + 2

√
ln(2/δ)

2n
.

We provide the bounds for gradient explanations constraint in Appendix B

3 ALGORITHMS FOR LEARNING FROM EXPLANATION CONSTRAINTS

Although we have analyzed learning with explanation constraints, algorithms to solve this con-
strained optimization problem are non-trivial. In this setting, we assume that we have access to
n labeled data {(xi, yi)}ni=1, m unlabeled data {xn+1, . . . , xn+m}, and k data with explanations
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{(xi, ϕ(·, xi))}n+m+k
i=n+m+1. We argue that in many cases, n labeled data are the most expensive to an-

notate. The k data points with explanations also have non-trivial cost; they require an expert to pro-
vide the annotated explanation or provide a surrogate loss ϕ. If the surrogate loss is specified then
we can evaluate it on any unlabeled data, otherwise these data points with explanations could be ex-
pensive. However, the m data points can cheaply be obtained as they are completely unlabeled. We
now consider approaches to incorporate explanation information into a machine learning pipeline.

EPAC-ERM: Recall our EPAC-ERM objective from equation 1:

min
h∈H

1

n

n∑
i=1

1{h(xi) ̸= yi} s.t.
1

k

n+m+k∑
j=n+m+1

ϕ(h, xj) ≤ t

for some constant t. This constraint in general requires more complex optimization techniques (e.g.,
running multiple iterations and comparing values of t) to solve algorithmically.

Augmented Lagrangian objectives:

min
h∈H

1

n

n∑
i=1

1[h(xi) ̸= yi] +
λ

k

n+m+k∑
j=n+m+1

ϕ(h, xj)

As is done in prior work (Rieger et al., 2020), we can consider an augmented Lagrangian objective.
However, this does not exactly fit into our analytical framework.

While these approaches are viable, they do not necessarily scale well to larger (deep) models. As a
consequence, we propose a new variational objective

min
h∈H

(1− τ) E
(x,y)∼D

[ℓ(h(x), y)] + τ inf
f∈Hϕ,τ

E
x∼DX

[ℓ(h(x), f(x))] ,

where ℓ is some loss function and τ ≥ 0 is some threshold. We can see that there are two models
in the objective: the main “student” model h, and a “teacher” model f which serves as a projection
of h onto a set of EPAC models Hϕ,t. We approximate this objective with the following iterative
technique, drawing inspiration from prior work in posterior regularization (Ganchev et al., 2010; Hu
et al., 2016). We remark that we can replace Hϕ,t with a simpler class of teacher models for greater
efficiency. Specifically, we iteratively: fix the current student model iterate ht,ϕ, and learn the
explanation-regularized teacher function ft+1,ϕ (that aims to project ht,ϕ onto the set of explanation
constrained models); and then fix that to obtain the next iterate ht+1,ϕ of the student model that aims
to match the outputs of ft+1,ϕ on unlabeled data in addition to the labeled samples:

ft+1,ϕ =argmin
h∈H

1

m

n+m∑
i=n+1

ℓ(h(xi), ht(xi)) + λmax

(
0,

1

k

n+m+k∑
i=n+m+1

ϕ(h, xi)− τ

)

ht+1,ϕ =argmin
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi) +
1

m

n+m∑
i=n+1

ℓ(h(xi), ft+1,ϕ(xi)),

given some initialization h0. This is related to self-training, although it can be seen that we also use
the predictions of our student model to pseudolabel m unlabeled data to train our teacher model.

4 EXPERIMENTS

We provide both synthetic and real-world experiments to support our theoretical results and clearly
illustrate interesting tradeoffs of incorporating explanations. In our experiments, we compare our
method against 3 baselines: (1) a standard supervised learning approach, (2) a simple Lagrangian
regularized method (that directly penalizes the surrogate loss ϕ), and (3) a self-training approach
that propagates its own predictions over a set of unlabeled data. These experiments also demonstrate
that our new variational approach is preferable to simple Lagrangian methods and other supervised
methods in many cases. More extensive ablations are deferred to Appendix O, and code to replicate
our experiments will be released publicly with the full paper.
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Figure 2: Comparison of MSE on regressing a linear model. Results are averaged over 5 seeds.
m = 1000, k = 20.
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Figure 3: Comparison of MSE on regressing a 2 layer neural network (left). Comparison of ℓ2
distance over input gradients on the test data as we vary the amount of labeled data n (right). Results
are averaged over 5 seeds. m = 1000, k = 20.

4.1 REGRESSION TASK WITH EXACT GRADIENT INFORMATION

In our synthetic experiments, we focus on a regression task where we try to learn some underlying
model in our hypothesis class. Our data is given by X = Rd, and we try to learn a target function
h∗ : X → R. Our data distribution is given by X ∼ N (0, σ2I), where I is a d× d identity matrix.
We generate h∗ by randomly initializing a model in the specific hypothesis class H. We assume that
we have n labeled data, m unlabeled data, and k data with explanations.

We first present a synthetic experiment for learning with a perfect explanation, meaning that
ϕ(h∗, S) = 0. We consider the case where we have the exact gradient of h∗. Here, let H be a linear
classifier and note that the exact gradient gives us the slope of the linear model, and we only need to
learn the bias term. Incorporating these explanation indeed helps as both methods that include ex-
planation constraints (Lagrangian and ours) perform much better (Figure 2).

We also demonstrate incorporating this information for 2 layer neural networks. We observe a clear
difference between the simpler Lagrangian approach and our variational objective (Figure 3 - left).
Our method is clearly the best in the setting with limited labeled data and matches the performance of
the strong self-training baseline with sufficient labeled data. We note that this is somewhat expected,
as these constraints primarily help in the setting with limited labeled data; with enough labeled data,
standard PAC bounds suffice for strong performance.

We also analyze how strongly the approaches enforce these explanation constraints on new data
points that are seen at test time (Figure 3 - right) for 2 layer NNs. We observe that our variational
objective approaches have input gradients that more closely match the ground-truth target network’s
input gradients. This demonstrates that, in the case of 2 layer NNs with gradient explanations, our
approach best achieves both good performance and satisfying the constraints. Standard self-training
achieves similar performance in terms of MSE but has no notion of satisfying the explanation con-
straints. The Lagrangian method does not achieve the same level of satisfying these explanations as
it is unable to generalize and satisfy these constraints on new data.

4.2 TASKS WITH IMPERFECT EXPLANATIONS

Assuming access to perfect explanations may be unrealistic in practice, so we present experiments
when our explanations are imperfect. We present classification tasks (Figure 4) from a weak super-
vision benchmark (Zhang et al., 2021). In this setting, we obtain explanations through the approxi-
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Figure 4: Comparison of accuracy on the YouTube (left) and the Yelp (right) datasets. Here, we let
m = 1500, k = 150, T = 2, t = 1. Results are averaged over 5 seeds.
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Figure 5: Comparison of MSE on regressing a 2 Layer Neural Network with explanations of noisy
gradients. m = 1000, k = 20, T = 10. Results are averaged over 5 seeds.

mate gradients of a single weak labeler, as is done in (Sam & Kolter, 2022). We note that this differs
from the standard setting of the benchmark, as we assume access to some labeled data and only use
gradient information as our explanations (and not the noisy classifiers).

We observe that our variational objective achieves better performance than all other baseline ap-
proaches, across varying amounts of labeled data. We remark that the explanation in this dataset is a
noisy gradient explanation along two feature dimensions, yet this still improves upon methods that
do not incorporate this explanation constraint. Indeed, our method outperforms the Lagrangian ap-
proach, showing the benefits of iterative rounds of self-training over the unlabeled data.

In addition to our real-world experiments, we present synthetic experiments in the same regression
setting as above. To generate an imperfect explanation, we use ∇xh

∗(x) + ϵ, where ϵ ∼ N (0, σ2).
In our experiments, we add fixed, randomly sampled noise for each of our k data annotated with
explanations. We provide results for a regression task on 2-layer neural networks in Figure 5 and
under additional levels of noise in Appendix M.1. This reveals that our method tolerates noisy
explanations far better than the Lagrangian approach. Our method also performs comparably to the
methods that do not use noisy explanations.

5 DISCUSSION

Our work proposes a new learning theoretic framework that provides insight into how apriori expla-
nations of desired model behavior can benefit the standard machine learning pipeline. We provide
instantiations of our analysis for the canonical class of gradient explanations, which captures many
explanations of feature importance and not using spurious correlations. It would be of interest to
provide corollaries for other types of explanations in future work. As mentioned before, the gener-
ality of our framework has larger implications towards incorporating constraints that are not consid-
ered as “standard” explanations. For example, this work can be leveraged to incorporate more gen-
eral notions of side information and inductive biases. As a whole, our paper supports using further
information (e.g., explanation constraints) in the standard learning setting.
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A RELATED WORK

Recent advances in deep learning have led to models that achieve high performance but which are
also highly complex (LeCun et al., 2015; Goodfellow et al., 2016). Understanding these complex
models is crucial for safe and reliable deployments of these systems in the real-world. One approach
to improve our understanding of a model is through explanations. This can take many forms such
as feature importance (Ribeiro et al., 2016; Smilkov et al., 2017; Lundberg & Lee, 2017; Sundarara-
jan et al., 2017), high level concepts (Kim et al., 2018; Yeh et al., 2020), counterfactual examples
(Wachter et al., 2017; Goyal et al., 2019; Mothilal et al., 2020), or influential training samples (Koh
& Liang, 2017; Yeh et al., 2018).

In contrast to generating post-hoc explanations of a given model, we aim to learn models given apri-
ori explanations. There has been some recent work along such lines. Koh et al. (2020); Zarlenga
et al. (2022) incorporates explanations within the model architecture by requiring a conceptual bot-
tleneck layer. Ross et al. (2017); Rieger et al. (2020) use explanations to modify the learning proce-
dure for any class of models: they incorporate explanations as a regularizer, penalizing models that
do not exhibit apriori given explanations; Ross et al. (2017) penalize input gradients, while Rieger
et al. (2020) penalize a Contextual Decomposition score (Murdoch et al., 2018). Some of these
suggest that constraining models via explanations leads to higher accuracies and more robustness
to spurious correlation, but do not provide analytical guarantees. On the theoretical front, Li et al.
(2020) show that models that are easier to explain locally also generalize well.

Our contribution is to provide an analytical framework for learning from explanations that quantifies
the benefits of explanation constraints. Our analysis is closely related to the framework of learning
with side information. Balcan & Blum (2010) shows how unlabeled data can help in semi-supervised
learning through a notion of compatibility between the data and the target model. This seminal work
studies classical notions of side information (e.g., margin, smoothness, and co-training). Subsequent
papers have adapted this learning theoretic framework to study the benefits of representation learning
(Garg & Liang, 2020) and transformation invariance (Shao et al., 2022). On the contrary, our paper
focuses on the more recent notion of explanations. Rather than focus on the benefits of unlabeled
data, we characterize the quality of different explanations.

There is also prior work proposing learning objectives that incorporate rules into deep neural net-
works (Hu et al., 2016; Fioretto et al., 2021; Seo et al., 2021). While (Hu et al., 2016) also leverages
variational objectives, their method specifically concerns itself with logic rules and over probability
distributions using KL divergence projections. On the contrary, our approach handles more general
forms of explanations and that naturally conforms to our theoretical framework. Our work can also
be connected to the self-training literature (Chapelle et al., 2009; Xie et al., 2020; Wei et al., 2020;
Frei et al., 2022), where we could view our variational objective as comprising a regularized (poten-
tially simpler) teacher model that encodes these explanation constraints into a student model.

B GRADIENT EXPLANATIONS FOR PARTICULAR HYPOTHESIS CLASSES

In this section, we further quantify the usefulness of explanation constraints on different concrete ex-
amples and characterize the Rademacher complexity of the restricted hypothesis classes. In particu-
lar, we consider an explanation constraint of a constraint on the input gradient. For example, we may
want our model’s gradient to be close to that of some h′ ∈ H. This translates to g(h, x) = ∇xh(x)
and C(x) = {x ∈ Rd | ∥x−∇xh

′(x)∥ ≤ τ} for some τ > 0.

B.1 GRADIENT EXPLANATIONS FOR LINEAR MODELS

Theorem B.1 (Rademacher complexity of linear models with gradient constraint, uniform distribu-
tion on a sphere). Let DX be a uniform distribution on a unit sphere in Rd, let H = {h : x 7→
⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B} be a class of linear models with weights bounded by a constant
B. Let ϕ(h, x) = θ(wh, wh′) be a surrogate loss where θ(u, v) is an angle between u, v. We have

Rn(Hϕ,τ ) ≤
B√
n

(
sin(τ) · p+ 1− p

2

)
,

where p = erf
(√

d sin(τ)√
2

)
and erf(x) = 2√

π

∫ x

0
e−t2dt is the standard error function.
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Figure 6: Visualization of the piecewise constant function of ∇xh(x) − ∇xh
′(x) when h is a 2

Layer NNs with 1 node. Background colors represent regions with non-zero value.

Proof. We defer the proof to Appendix J.

The standard upper bound on the Rademacher complexity of linear models is B√
n

. Our bound has a

nice interpretation; we shrink our bound by a factor of ( 1−p
2 +sin(τ)p). We remark that d increases,

we observe that p → 1, so the term sin(τ)p dominates this factor. As a consequence, we get that our
bound is now scaled by sin(τ) ≈ τ and the the Rademacher complexity scales down by a factor of
τ . This implies that given n labeled data, to achieve a fast rate O( 1n ), we need τ to be O( 1√

n
).

B.2 GRADIENT EXPLANATIONS FOR 2 LAYER NNS

Theorem B.2 (Rademacher complexity of 2 layer neural networks (m hidden nodes) with gradient
constraint). Let X be an instance space and DX be a distribution over X with a large enough
support. Let H = {h : x 7→

∑m
j=1 wjσ(u

⊤
j x)|wj ∈ R, uj ∈ Rd,

∑m
j=1 |wj |∥uj∥2 ≤ B} be a class

of two layer neural networks with a ReLU activation function and bounded weight. Assume that
there exists some constant C > 0 such that Ex∼DX [∥x∥22] ≤ C2. Consider explanation loss

ϕ(h, x) =∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}

for some τ > 0. Then, we have that

Rn(Hϕ,τ ) ≤
3τmC√

n

Proof. (Sketch) The key ingredient is to identify the impact of the gradient constraint and the form
of class Hϕ,τ . We provide an idea when we have m = 1 node. We write h(x) = wσ(u⊤x) and
h′(x) = w′σ(u′⊤x) when ∥u∥ = ∥u′∥ = 1. We have

∇xh(x)−∇xh
′(x) = wu1{u⊤x > 0} − w′u′1{(u′)⊤x > 0}

is a piecewise constant function (Figure 6). Assume that the probability mass of each region is non-
negative, our gradient constraint implies that the norm of each region cannot be larger than τ .

1. If u, u′ have different directions, we have 4 regions in ∇xh(x)−∇xh
′(x) and can conclude

that |w| < τ, |w′| < τ .

2. If u = u′ have the same direction, we only have 2 regions in ∇xh(x) −∇xh
′(x) and can

conclude that ∥wu− w′u′∥ = |w − w′| < τ .

The gradient constraint enforces a model to have the same node boundary (u = u′) with a small
weight difference |w−w′| < τ or that node would have a small weight |w| < τ . This finding allows
us to determine the restricted class Hϕ,τ , and we can use this to bound the Rademacher complexity
accordingly. For full details, see Appendix K.

We compare this with the standard Rademacher complexity of a two layer neural network (Ma, 2022)

Rn(H) ≤ 2BC√
n

.
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We can do better than this standard bound if τ < 2B
3m . One interpretation for this is that we have a

budget at most τ to change the weight of each node and for total m nodes, we can change the weight
by at most τm. We compare this to B which is an upper bound on the total weight

∑m
j=1 |wj |∥uj∥ ≤

B. Therefore, we can do better than a standard bound when we can change the weight by at most
two thirds of the average weight 2B

3m for each node. We note that our bound does not depend on
D as we choose a strong explanation loss that guarantees that the gradient constraint holds almost
everywhere. Extending to a weaker loss such as ϕ(h, x) = ∥∇xh(x)−∇xh

′(x)∥ is a future research
direction. We also assume that there exists x with a positive probability density at any partition
created by ∇xh(x). In contrast, our result for linear models uses a weaker explanation loss and
depends on D (see Theorem J.1).

C UNIFORM CONVERGENCE VIA RADEMACHER COMPLEXITY

A standard tool for providing performance guarantees of supervised learning problems is a gener-
alization bound via uniform convergence. We will first define the Rademacher complexity and its
corresponding generalization bound.
Definition 6. Let F be a family of functions mapping X → R. Let S = {x1, . . . , xm} be a set of
examples drawn i.i.d. from a distribution DX . Then, the empirical Rademacher complexity of F is
defined as

RS(F) = E
σ

[
sup
f∈F

(
1

m

m∑
i=1

σif(xi)

)]
where σ1, . . . , σm are independent random variables uniformly chosen from {−1, 1}.
Definition 7. Let F be a family of functions mapping X → R. Then, the Rademacher complexity of
F is defined as

Rn(F) = E
S∼Dn

X

[RS(F)] .

The Rademacher complexity is the expectation of the empirical Rademacher complexity, over n
samples drawn i.i.d. from the distribution DX .
Theorem C.1 (Rademacher-based uniform convergence). Let DX be a distribution over X , and F
a family of functions mapping X → [0, 1]. Let S = {x1, . . . , xn} be a set of samples drawn i.i.d.
from DX , then with probability at least 1− δ over our draw S,

|ED[f(x)]− ÊS [f(x)]| ≤ 2Rn(F) +

√
ln(2/δ)

2n
.

This holds for every function f ∈ F , and ÊS [f(x)] is expectation over a uniform distribution over S.

This bound on the empirical Rademacher complexity leads to the standard generalization bound for
supervised learning.
Theorem C.2. For a binary classification setting when y ∈ {±1} with a zero-one loss, for H ⊂
{h : X → {−1, 1}} be a family of binary classifiers, let S = {(x1, y1), . . . , (xn, yn)} is drawn
i.i.d. from D then with probability at least 1− δ, we have

|errD(h)− êrrS(h)| ≤ Rn(H) +

√
ln(2/δ)

2n
,

for every h ∈ H when
errD(h) = Pr

(x,y)∼D
(h(x) ̸= y)

and

êrrS(h) =
1

n

n∑
i=1

1[h(xi) ̸= yi]

is the empirical error on S.

For a linear model with a bounded weights in ℓ2 norm, the Rademacher complexity is O( 1√
n
). We

refer to the proof from Ma (2022) for this result.
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Theorem C.3 (Rademacher complexity of a linear model ((Ma, 2022))). Let X be an instance space
in Rd, let DX be a distribution on X , let H = {h : x → ⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B} be a
class of linear model with weights bounded by some constant B > 0 in ℓ2 norm. Assume that there
exists a constant C > 0 such that Ex∼DX [||x||22] ≤ C2. For any S = {x1, . . . , xn} is drawn i.i.d.
from DX , we have

RS(H) ≤ B

n

√√√√ n∑
i=1

||xi||22

and

Rn(H) ≤ BC√
n
.

Many of our proofs require the usage of Talgrand’s lemma, which we now present.

Lemma C.4. [Talgrand’s Lemma (Ledoux & Talagrand, 1991)] Let ϕ : R → R be a k-Lipschitz
function. Then for a hypothesis class H = {h : Rd → R}, we have that

RS(ϕ ◦ H) ≤ kRs(H)

where ϕ ◦ H = {f : z 7→ ϕ(h(z))|h ∈ H}.

D EPAC LEARNABLE CONSTRAINTS

We know that constraints C(x) capture human knowledge about how explanations at a point x
should behave. For any constraints C(x) that are known apriori for all x ∈ X , we can evaluate
whether a model satisfies the constraints at a point x ∈ X . This motivates us to discuss the ability of
models to generalize from any finite samples SE to satisfy these constraints over X with high prob-
ability. Having access to C(x) is equivalent to knowing how models should behave over all possi-
ble data points in terms of explanations, which may be too strong of an assumption. Nevertheless,
many forms of human knowledge can be represented by a closed-form function C(x). For example,

1. An explanation has to take value in a fixed range can be represented by C(x) =
Πr

i=1[ai, bi],∀x ∈ X .

2. An explanation has to stay in a ball around x can be represented by C(x) = {u ∈ Rd |
||u− x||2 ≤ r}.

3. An explanation has to stay in a rectangle around x
3 can be represented by C(x) = {u ∈

Rd | xi

3 − ai ≤ ui ≤ xi

3 + bi, i = 1, . . . , d}.

ball around 

fixed interval

rectangle around 

Figure 7: Illustration of examples of explanation constraints, given from some learnable class C(x).
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In this case, there always exists a surrogate loss that represents the explanation constraints C(x);
for example, we can set ϕ(h, x) = 1{g(h, x) ∈ C(x)}. On the other hand, directly specifying
explanation constraints through a surrogate loss would also imply that C(x) is known apriori for all
x ∈ X . The task of generalization to satisfy the constraint on unseen data is well-defined in this
setting. Furthermore, if a surrogate loss ϕ is specified, then we can evaluate ϕ(h, x) on any unlabeled
data point without the need for human annotators which is a desirable property.

On the other hand, we usually do not have knowledge over all data points x ∈ X ; rather, we may
only know these explanation constraints over a random sample of k data points SE = {x′

1, . . . , x
′
k}.

If we do not know the constraint set C(x), it is unclear what satisfying the constraint at an unseen
data point x means. Indeed, without additional assumptions, it may not make sense to think about
generalization. For example, if there is no relationship between C(x) for different values of x, then
it is not possible to infer about C(x) from C(x′

i) for i = 1, . . . , k. In this case, we could define

ϕ(h, x) = 1{g(h, x) ∈ C(x)}1{x ∈ SE},

where we are only interested in satisfying these explanation constraints over the finite sample SE .
For other data points, we have ϕ(h, x) = 0. This guarantees that any model with low empirical
explanation loss would also achieve loss expected explanation loss, although this does not have any
particular implication on any notion of generalization to new constraints. Regardless, we note that
our explanation constraints still reduce the size of the hypothesis class from H to Hϕ,τ , leading to
an improvement in sample complexity.

The more interesting setting, however, is when we make an additional assumption that the true
(unknown) surrogate loss ϕ exists and, during training, we only have access to instances of this
surrogate loss evaluated on the sample ϕ(·, x′

i). We can apply a uniform convergence argument to
achieve

ϕ(h,DX ) ≤ ϕ(h, SE) + 2Rk(G) +
√

ln(4/δ)

2k

with probability at least 1− δ over SE , drawn i.i.d. from DX and G = {ϕ(h, ·)|h ∈ H}, k = |SE |.
Although the complexity term Rk(G) is unknown (since ϕ is unknown), we can upper bound this
by the complexity of a class of functions Φ (e.g., neural networks) that is large enough to well-
approximate any ϕ(h, ·) ∈ G, meaning that Rk(G) ≤ Rk(Φ). Comparing to the former case when
C(x) is known for all x ∈ X apriori, the generalization bound has a term that increases from Rk(G)
to Rk(Φ), which may require more explanation-annotated data to guarantee generalization to new
data points. We note that the simpler constraints lead to a simpler surrogate loss, which in turn
implies a less complex upper bound Φ. This means that simpler constraints are easier to learn.

Nonetheless, this is a more realistic setting when explanation constraints are hard to acquire and we
do not have the constraints for all data points in X . For example, Ross et al. (2017) considers an
image classification task on MNIST, and imposes an explanation constraint in terms of penalizing
the input gradient of the background of images. In essence, the idea is that the background should
be less important than the foreground for the classification task. In general, this constraint does not
have a closed-form expression, and we do not even have access to the constraint for unseen data
points. However, if we assume that a surrogate loss ϕ(h, ·) can be well-approximated by two layer
neural networks, then our generalization bound allows us to reason about the ability of model to
generalize and ignore background features on new data.

E EXAMPLES FOR EPAC LEARNABLE CONSTRAINTS

In this section, we look at the Rademacher complexity of G for different explanation constraints to
characterize how many samples with explanation constraints are required in order to generalize to
satisfying the explanation constraints on unseen data. We remark that this is a different notion of
sample complexity; these unlabeled data require annotations of explanation constraints, not standard
labels. In practice, this can be easier and less expertise might be necessary if define the surrogate loss
ϕ directly. First, we analyze the case where our explanation is given by the gradient of a linear model.

Proposition E.1 (Learning a gradient constraint for linear models). Let D be a distribution over Rd.
Let H = {h : x 7→ ⟨wh, x⟩ | wh ∈ Rd, ∥wh∥2 ≤ B} be a class of linear models that pass through
the origin. Let ϕ(h, x) = θ(wh, wh′) be a surrogate explanation loss. Let G = {ϕ(h, ·) | h ∈ H},
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then we have
Rn(G) ≤

π

2
√
m
.

Proof. For a linear separator, ϕ(h, ·) is a constant function over X . The Rademacher complexity is
given by

Rn(G) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈G

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi

)
θ(wh, wh′)

]]

= E
x∼D

[
E
σ

[(
1

m

m∑
i=1

σi

)
sup
h∈H

θ(wh, wh′)

]]

=
π

2
E
σ

[∣∣∣∣∣ 1m
m∑
i=1

σi

∣∣∣∣∣
]

≤ π

2
√
m
.

We compare this with the Rademacher complexity of linear models which is given by Rm(H) ≤
B√
m

. The upper bound does not depend on the upper bound on the weight B. In practice, we know
that the gradient of a linear model is constant for any data point. This implies that knowing a gradient
of a single point is enough to identify the gradient of the linear model.

We consider another type of explanation constraint that is given by a noisy model. Here, we could
observe either a noisy classifier and noisy regressor, and the constraint could be given by having
similar outputs to this noisy model. This is reminiscent of learning with noisy labels (Natarajan
et al., 2013) or weak supervision (Ratner et al., 2016; 2017; Pukdee et al., 2022). In this case, our
explanation g is simply the hypothesis element h itself, and our constraint is on the values that h(x)
can take. We first analyze this in the classification setting.
Proposition E.2 (Learning a constraint given by a noisy classifier). Let D be a distribution over Rd.
Consider a binary classification task with Y = {−1, 1}. Let H be a hypothesis class. Let ϕ(h, x) =
1[h(x) ̸= h′(x)] be a surrogate explanation loss. Let G = {ϕ(h, ·) | h ∈ H}, then we have

Rn(G) =
1

2
Rn(H).

Proof.

Rn(G) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈G

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(
1− h(x)h′(x)

2
)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(
h(x)h′(x)

2
)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(
h(x)

2
)

)]]

=
1

2
Rn(H).
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Here, to learn the restriction of G is on the same order of Rn(H). For a given noisy regressor, we
observe slightly different upper bound.

Proposition E.3 (Learning a constraint given by a noisy regressor). Let D be a distribution over
Rd. Consider a regression task with Y = R. Let H be a hypothesis class that ∀h ∈ H,−h ∈ H. Let
ϕ(h, x) = |h(x)− h′(x)| be a surrogate explanation loss. Let G = {ϕ(h, ·) | h ∈ H}, then we have

Rn(G) ≤ 2Rn(H).

Proof.

Rn(G) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈G

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi|h(xi)− h′(xi)|

)]]

= E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi max(0, h(xi)− h′(xi)) +
1

m

m∑
i=1

σi max(0, h′(xi)− h(xi))

)]]

≤ E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi max(0, h(xi)− h′(xi))

)]]
+

E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi max(0, h′(xi)− h(xi))

)]]

≤ E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(h(xi)− h′(xi))

)]]
+ E

x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(h
′(xi)− h(xi))

)]]
,

where in the last line, we apply Talgrand’s lemma C.4 and note that the max function max(0, h(x))
is 1-Lipschitz; in the third line, we note that we break up the supremum as both terms by definition
of the max function are non-negative. Then, noting that we do not optimize over h′(x), we further
simplify this as

Rn(G) ≤ E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σih(xi)

)]]
+ E

x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(−h(xi))

)]]
≤ 2Rn(H).

As mentioned before, knowing apriori surrogate loss ϕ might be too strong. In practice, we may
only have access to the instances ϕ(·, xi) on a set of samples S = {x1, . . . , xk}. We also consider
the case when ϕ(h, x) = |h(x)− h′(x)| when h′ is unknown and h′ belongs to a learnable class C.

Proposition E.4 (Learning a constraint given by a noisy regressor from some learnable class C).
Assume D is a distribution over Rd. Let H and D be hypothesis classes. Let ϕh′(h, x) = |h(x) −
h′(x)| be a surrogate explanation loss of a constraint corresponding to h′. Let GC = {ϕh′(h, ·)|h ∈
H, h′ ∈ C}, then we have

Rn(GC) ≤ 2Rn(H) + 2Rn(C).
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Proof.

Rn(GC) = E
x∼D

[
E
σ

[
sup

ϕ(h,·)∈GC

(
1

m

m∑
i=1

σiϕ(h, xi)

)]]

= E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi|h(xi)− h′(xi)|

)


≤ E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi max(0, h(xi)− h′(xi))

)
 +

E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi max(0, h′(xi)− h(xi))

)


≤ E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi(h(xi)− h′(xi))

)
 +

E
x∼D

E
σ

 sup
h∈H,
h′∈C

(
1

m

m∑
i=1

σi(h
′(xi)− h(xi))

)


where the lasts line again holds by an application of Talgrand’s lemma. In this case, we indeed are
optimizing over h′, so we get that

Rn(GC) ≤ 2 · E
x∼D

[
E
σ

[
sup
h∈H

(
1

m

m∑
i=1

σi(h(xi))

)]]
+ 2 · E

x∼D

[
E
σ

[
sup
h′∈C

(
1

m

m∑
i=1

σi(h
′(xi))

)]]
= 2Rn(H) + 2Rn(C).

We remark that while this value is much larger than that of Rn(H), we only need information about
ϕ(h, x) and not the true label. Therefore, in many cases, this is preferable and not as expensive to
learn.

F PROOF OF THEOREM 2.2

We consider the agnostic setting of Theorem 2.2. Here, we have two notions of deviations; one is
deviation in a model’s ability to satisfy explanations, and the other is a model’s ability to generalize
to correctly produce the target function.

Proof. From Rademacher-based uniform convergence, for any h ∈ H, with probability at least
1− δ/2 over SE

|ϕ(h,D)− ϕ(h, SE)| ≤ 2Rk(G) +
√

ln(4/δ)

2k
= εk

Therefore, with probability at least 1 − δ/2, for any h ∈ Hϕ,t−εk we also have ϕ(h, SE) ≤ t and
for any h with ϕ(h, SE) ≤ t, we have h ∈ Hϕ,t+εk . In addition, by a uniform convergence bound,
with probability at least 1− δ/2, for any h ∈ Hϕ,t+εk

|errD(h)− errS(h)| ≤ Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n
.
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Now, let h′ be the minimizer of errS(h) given that ϕ(h, SE) ≤ t. By previous results, with proba-
bility 1− δ, we have h′ ∈ Hϕ,t+εk and

errD(h
′) ≤ errS(h

′) +Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n

≤ errS(h
∗
t−εk

) +Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n

≤ errD(h
∗
t−εk

) + 2Rn(Hϕ,t+εk) + 2

√
ln(4/δ)

2n
.

G A GENERALIZATION BOUND IN THE REALIZABLE SETTING

In this section, we assume that we are in the doubly realizable Balcan & Blum (2010) setting where
there exists h∗ ∈ H such that errD(h∗) = 0 and ϕ(h∗,D) = 0. The optimal classifier h∗ lies in H
and also achieve zero expected explanation loss. In this case, we want to output a hypothesis h that
achieve both zero empirical risk and empirical explanation risk.
Theorem G.1 (Generalization bound for the doubly realizable setting). For a hypothesis class H, a
distribution D and an explanation loss ϕ. Assume that there exists h∗ ∈ H that errD(h∗) = 0 and
ϕ(h∗,D) = 0. Let S = {(x1, y1), . . . , (xn, yn)} is drawn i.i.d. from D and SE = {x′

1, . . . , x
′
k}

drawn i.i.d. from DX . With probability at least 1 − δ, for any h ∈ H that errS(h) = 0 and
ϕ(h, SE) = 0, we have

errD(h) ≤ Rn(Hϕ,εk) +

√
ln(2/δ)

2n
when

εk = 2Rk(G) +
√

ln(2/δ)

2k

when G = {ϕ(h, x) | h ∈ H, x ∈ X}.

Proof. We first consider only classifiers than has low empirical explanation loss and then perform
standard supervised learning. From Rademacher-based uniform convergence, for any h ∈ H, with
probability at least 1− δ/2 over SE

ϕ(h,D) ≤ ϕ(h, SE) + 2Rk(G) +
√

ln(2/δ)

2k

when G = {ϕ(h, x) | h ∈ H, x ∈ X}. Therefore, for any h ∈ H with ϕ(h, SE) = 0, we have
h ∈ Hϕ,εk with probability at least 1− δ/2. Now, we can apply the uniform convergence on Hϕ,εk .
For any h ∈ Hϕ,εk with errS(h) = 0, with probability at least 1− δ/2, we have

errD(h) ≤ Rn(Hϕ,εk) +

√
ln(2/δ)

2n
.

Therefore, for h ∈ H that ϕ(h, SE) = 0, errS(h) = 0, we have our desired guarantee.

We remark that, since our result relies on the underlying techniques of the Rademacher complexity,
our result is on the order of O( 1√

n
). In the (doubly) realizable setting, this is somewhat loose, and

more complicated techniques are required to produce tighter bounds. We leave this as an interesting
direction for future work.

H PROOF OF THE GENERALIZATION BOUND

We consider the agnostic setting of Theorem 2.2. Here, we have two notions of deviations; one is
deviation in a model’s ability to satisfy explanations, and the other is a model’s ability to generalize
to correctly produce the target function.
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Proof. From Rademacher-based uniform convergence, for any h ∈ H, with probability at least
1− δ/2 over SE

|ϕ(h,D)− ϕ(h, SE)| ≤ 2Rk(G) +
√

ln(4/δ)

2k
= εk

Therefore, with probability at least 1 − δ/2, for any h ∈ Hϕ,t−εk we also have ϕ(h, SE) ≤ t and
for any h with ϕ(h, SE) ≤ t, we have h ∈ Hϕ,t+εk . In addition, by a uniform convergence bound,
with probability at least 1− δ/2, for any h ∈ Hϕ,t+εk

|errD(h)− errS(h)| ≤ Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n
.

Now, let h′ be the minimizer of errS(h) given that ϕ(h, SE) ≤ t. By previous results, with proba-
bility 1− δ, we have h′ ∈ Hϕ,t+εk and

errD(h
′) ≤ errS(h

′) +Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n

≤ errS(h
∗
t−εk

) +Rn(Hϕ,t+εk) +

√
ln(4/δ)

2n

≤ errD(h
∗
t−εk

) + 2Rn(Hϕ,t+εk) + 2

√
ln(4/δ)

2n
.

I REALIZABLE SETTING

In this section, we assume that we are in the doubly realizable Balcan & Blum (2010) setting where
there exists h∗ ∈ H such that errD(h∗) = 0 and ϕ(h∗,D) = 0. The optimal classifier h∗ lies in H
and also achieve zero expected explanation loss. In this case, we want to output a hypothesis h that
achieve both zero empirical risk and empirical explanation risk.
Theorem I.1 (Generalization bound for the doubly realizable setting). For a hypothesis class H, a
distribution D and an explanation loss ϕ. Assume that there exists h∗ ∈ H that errD(h∗) = 0 and
ϕ(h∗,D) = 0. Let S = {(x1, y1), . . . , (xn, yn)} is drawn i.i.d. from D and SE = {x′

1, . . . , x
′
k}

drawn i.i.d. from DX . With probability at least 1 − δ, for any h ∈ H that errS(h) = 0 and
ϕ(h, SE) = 0, we have

errD(h) ≤ Rn(Hϕ,εk) +

√
ln(2/δ)

2n
when

εk = 2Rk(G) +
√

ln(2/δ)

2k
when G = {ϕ(h, x) | h ∈ H, x ∈ X}.

Proof. We first consider only classifiers than has low empirical explanation loss and then perform
standard supervised learning. From Rademacher-based uniform convergence, for any h ∈ H, with
probability at least 1− δ/2 over SE

ϕ(h,D) ≤ ϕ(h, SE) + 2Rk(G) +
√

ln(2/δ)

2k
when G = {ϕ(h, x) | h ∈ H, x ∈ X}. Therefore, for any h ∈ H with ϕ(h, SE) = 0, we have
h ∈ Hϕ,εk with probability at least 1− δ/2. Now, we can apply the uniform convergence on Hϕ,εk .
For any h ∈ Hϕ,εk with errS(h) = 0, with probability at least 1− δ/2, we have

errD(h) ≤ Rn(Hϕ,εk) +

√
ln(2/δ)

2n
.

Therefore, for h ∈ H that ϕ(h, SE) = 0, errS(h) = 0, we have our desired guarantee.

We remark that, since our result relies on the underlying techniques of the Rademacher complexity,
our result is on the order of O( 1√

n
). In the (doubly) realizable setting, this is somewhat loose, and

more complicated techniques are required to produce tighter bounds. We leave this as an interesting
direction for future work.
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J RADEMACHER COMPLEXITY OF LINEAR MODELS WITH A GRADIENT
CONSTRAINT

Now, we present the theorem and proof for learning a linear model under a gradient constraint.

Theorem J.1 (Empirical Rademacher complexity of linear models with a gradient constraint). Let
X be an instance space in Rd, let DX be a distribution on X , let H = {h : x → ⟨wh, x⟩ | wh ∈
Rd, ||wh||2 ≤ B} be a class of linear model with weights bounded by some constant B > 0 in ℓ2
norm. Assume that there exists a constant C > 0 such that Ex∼DX [||x||22] ≤ C2. Assume that we
have an explanation constraints in term of gradient constraint; we want the gradient of our linear
model to be close to the gradient some linear model h′. Let ϕ(h, x) = θ(wh, wh′) be an explanation
surrogate loss when θ(u, v) is an angle between u, v. For any S = {x1, . . . , xn} is drawn i.i.d. from
DX , we have

RS(Hϕ,τ ) =
B

n
Eσ [∥v∥f(v)] .

when v =
∑n

i=1 xiσi and

f(v) =


1 when θ(v, w′) ≤ τ

cos(θ(v, w′)− τ) when τ ≤ θ(v, w′) ≤ π
2 + τ

0 when θ(v, w′) ≥ π
2 + τ.

Proof. Recall that Hϕ,τ = {h : x → ⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B, θ(wh, wh′) ≤ τ}. For a set
of sample S, the empirical Rademacher complexity of Hϕ,τ is given by

RS(Hϕ,τ ) =
1

n
Eσ

[
sup

h∈Hϕ,τ

n∑
i=1

h(xi)σi

]

=
1

n
Eσ

 sup
∥wh∥2≤B

θ(wh,wh′ )≤τ

n∑
i=1

⟨wh, xi⟩σi


=

1

n
Eσ

 sup
∥wh∥2≤B

θ(wh,wh′ )≤τ

⟨wh,

n∑
i=1

xiσi⟩

 .

For a vector w′ ∈ Rd with ∥w′∥2 = 1, and a vector v ∈ Rd, we will claim the following,

1. If θ(v, w′) ≤ τ , we have
sup

∥w∥2≤B
θ(w,w′)≤τ

⟨w, v⟩ = B∥v∥.

2. If π
2 + τ ≤ θ(v, w′) ≤ π, we have

sup
∥w∥2≤B

θ(w,w′)≤τ

⟨w, v⟩ = 0.

3. If τ ≤ θ(v, w′) ≤ π
2 + τ , we have

sup
∥w∥2≤B

θ(w,w′)≤τ

⟨w, v⟩ = B∥v∥ cos(θ(v, w′)− τ)

For the first claim, we can see that if θ(v, w′) ≤ τ , we can pick w = Bv
∥v∥ and achieve the optimum

value. For the second claim, we use the fact that θ(·, ·) satisfies a triangle inequality and for any w
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Figure 8: Illustration of different value of a function f(v).

that θ(w,w′) ≤ τ , we have

θ(v, w) + θ(w,w′) ≥ θ(v, w′)

θ(v, w) ≥ θ(v, w′)− θ(w,w′)

θ(v, w) ≥ π

2
+ τ − τ =

π

2
.

This implies that for any w that θ(w,w′) ≤ τ , we have ⟨w, v⟩ = ∥w∥∥v∥ cos(θ(v, w)) ≤ 0 and
the supremum is given by 0 where we can set ∥w∥ = 0. For the third claim, we know that ⟨w, v⟩
is maximum when the angle between v, w is the smallest. From the triangle inequality above, we
must have θ(w,w′) = τ to be the largest possible value so that we have the smallest lower bound
θ(v, w) ≥ θ(v, w′)−θ(w,w′). In addition, the inequality holds when v, w′, w lie on the same plane.
Since we do not have further restriction on w, there exists such w and we have

sup
∥w∥2≤B

θ(w,w′)≤τ

⟨w, v⟩ = B∥v∥ cos(θ(v, w′)− τ)

as required. One can calculate a closed form formula for w by solving a quadratic equation. Let
w = Bw̃

∥w̃∥ when w̃ = v + λw′ for some constant λ > 0 such that θ(w,w′) = τ . With this we have
an equation

⟨w̃, w′⟩
∥w̃∥

= cos(τ)

⟨v + λw′, w′⟩
∥v + λw′∥

= cos(τ)

Let µ = ⟨v, w′⟩, solving for λ, we have

µ+ λ√
∥v∥2 + 2λµ+ λ2

= cos(τ)

µ2 + 2µλ+ λ2 = cos2(τ)(∥v∥2 + 2λµ+ λ2)

sin2(τ)λ2 + 2 sin2(τ)µλ+ µ2 − cos2(τ)∥v∥2 = 0

λ2 + 2µλ+
µ2

sin2(τ)
− cot2(τ)∥v∥2 = 0

Solve this quadratic equation, we have

λ = −µ± cot(τ)
√

∥v∥2 − µ2.

22



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Since λ > 0, we have λ = −µ+ cot(τ)
√
∥v∥2 − µ2. We have

w̃ = v + λw′

= v + (−µ+ cot(τ)
√
∥v∥2 − µ2)w′

= v − ⟨v, w′⟩w′ + cot(τ)w′
√
∥v∥2 − µ2.

With these claims, we have

RS(Hϕ,τ ) =
1

n
Eσ

 sup
∥wh∥2≤B

θ(wh,wh′ )≤τ

⟨wh,

n∑
i=1

xiσi⟩


=

B

n
Eσ

[
∥v∥1{θ(v, w′) ≤ τ}+ ∥v∥1{τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]
=

B

n
Eσ [∥v∥f(v)] .

Figure 9: Benefits of an explanation constraints also depends on the data distribution. We represent
data points xi with red squares (Left). The possible regions for v =

∑n
i=1 xiσi are shaded area

(Right). When the data is highly correlated with w′, v would lie in a region where f(v) is large (Top).
When the data is almost orthogonal to w′, v would lie in a region with a small value of f(v) (Bottom)

.

As mentioned before, our restrictions may not be beneficial if the underlying data distribution is
already concentrated about this restricted class of hypothesis. The bound above gives us a result that
depends on the given linear model w′. In the case when θ(v, w′) ≤ τ , we have that v =

∑n
i=1 xiσi

is highly correlated with w′. In essence, this means that the data concentrated around the area
of w′, and the gradient constraint of being close to w′ does not actually tell us much information
(Figure 9 (Top)). This is illustrated by our bound not changing here, remaining as a factor of ∥v∥.
However, in the case when θ(v, w′) ≥ τ , we observe that the data is concentrated in regions other
than near w′. This implies that many linear models, including those not close in angle to w′ are
valid. In this setting, the gradient information indeed restricts the H effectively (Figure 9 (Bottom)).
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This is manifested in our bound, now on the order of cos(θ(v, w′) − τ) · ∥v∥. We remark that
cos(θ(v, w′) − τ) is the angle between v and a linear model that is within angle τ of w. As this
increases (to the value of π

2 ), we have a smaller upper bound.

We now consider the case of a uniform distribution on a sphere to make these benefits more concrete.
We utilize the symmetry of the uniform distribution over a sphere to derive an upper bound on the
Rademacher complexity.
Theorem J.2 (Rademacher complexity of linear models with gradient constraint, uniform distribu-
tion on a sphere). Let X be an instance space in Rd, let DX be a uniform distribution on a unit
sphere in Rd, let H = {h : x → ⟨wh, x⟩ | wh ∈ Rd, ||wh||2 ≤ B} be a class of linear model with
weights bounded by some constant B > 0 in ℓ2 norm. Assume that there exists a constant C > 0
such that Ex∼DX [||x||22] ≤ C2. Assume that we have an explanation constraints in term of gradient
constraint; we want the gradient of our linear model to be close to the gradient some linear model
h′. Let ϕ(h, x) = θ(wh, wh′) be an explanation surrogate loss when θ(u, v) is an angle between
u, v. We have

Rn(Hϕ,τ ) =
B√
n

(
sin(τ) · p+ 1− p

2

)
,

where

p = erf

(√
d sin(τ)√

2

)
.

Proof. From Theorem J.1, we have that

Rn(Hϕ,τ ) = E[RS(Hϕ,τ )]

=
B

n
ED

[
Eσ

[
∥v∥1{θ(v, w′) ≤ τ}+ ∥v∥1{τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]]
=

B

n
ED

[
Eσ

[
∥v∥1{θ(v, w′) ≤ π

2
− τ}+ ∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]]
when v =

∑n
i=1 xiσi. Because xi is drawn uniformly from a unit sphere, in expectation θ(v, w′)

has a uniform distribution over [0, π] and the distribution ∥v∥ for a fixed value of θ(v, w′) are the
same for all θ(v, w′) ∈ [0, π]. From Trigonometry, we note that

cos(
π

2
− 2τ + a) + cos(

π

2
− a) = sin(2τ − a) + sin(a) ≤ 2 sin(τ).

By the symmetry property and the uniformity of the distribution of θ(v, w′) and ∥v∥.

ED

[
Eσ

[
∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} cos(θ(v, w′)− τ)

]]
= ED

[
Eσ

[
∥v∥1{0 ≤ θ(v, w′) ≤ 2τ} cos(π

2
+ θ(v, w′)− τ)

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{τ ≤ θ(v, w′) ≤ 2τ} cos(π

2
+ θ(v, w′)− τ))

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{0 ≤ 2τ − θ(v, w′) ≤ τ} cos(π

2
− (2τ − θ(v, w′))))

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{0 ≤ θ̃(v, w′) ≤ τ} cos(π

2
− θ̃(v, w′)))

]]
= ED

[
Eσ

[
∥v∥(1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
+ θ(v, w′)− τ) + 1{0 ≤ θ(v, w′) ≤ τ} cos(π

2
− θ(v, w′)))

]]
≤ ED

[
Eσ

[
∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} sin(τ)

]]
when θ̃(v, w′) = π

2 − θ(v, w′). We have

Rn(Hϕ,τ ) ≤
B

n
ED

[
Eσ

[
∥v∥1{θ(v, w′) ≤ π

2
− τ}+ ∥v∥1{π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ} sin(τ)

]]
=

B

n
ED [Eσ [∥v∥]] (Pr(θ(v, w′) ≤ π

2
− τ) + Pr(

π

2
− τ ≤ θ(v, w′) ≤ π

2
+ τ) sin(τ))
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The last equation follows from the symmetry and uniformity property. We can bound the first
expectation

ED[Eσ∥v∥]] = ED[Eσ∥
n∑

i=1

xiσi∥]]

≤ ED[

√√√√Eσ∥
n∑

i=1

xiσi∥2]]

= ED[

√√√√Eσ

n∑
i=1

∥xi∥2σ2
i ]]

≤ C
√
n.

Next, we can simply note that, since our data is distributed over a unit sphere, each data has norm
no greater than 1. Therefore, we know that C = 1 is indeed an upper bound on Ex∼DX [||x||22]. For
the probability term, we note that in expectation v has the same distribution as a random vector u
drawn uniformly from a unit sphere. We let this be some probability p:

p = Pr
(π
2
− τ ≤ θ(v, w′) ≤ π

2
+ τ
)
= Pr (|⟨u,w′⟩| ≤ sin(τ)) .

We know that the projection ⟨u,w′⟩ ∼ N (0, 1
d ). Then, we have that |⟨u,w′⟩| is given by a Folded

Normal Distribution, which has a CDF given by

Pr (|⟨u,w′⟩| ≤ sin(τ)) =
1

2

[
erf

(√
d sin(τ)√

2

)
+ erf

(√
d sin(τ)√

2

)]

= erf

(√
d sin(τ)√

2

)
.

We then observe that

Pr
(
θ(v, w′) ≤ π

2
− τ
)
=

1

2

(
1− Pr

(π
2
− τ ≤ θ(v, w′) ≤ π

2
+ τ
))

=
1− p

2

Plugging this in yields the following bound

Rn(Hϕ,τ ) =
B√
n

(
sin(τ) · p+ 1− p

2

)
,

where

p = erf

(√
d sin(τ)√

2

)
.

K RADEMACHER COMPLEXITY FOR TWO LAYER NEURAL NETWORKS WITH
A GRADIENT CONSTRAINT

Here, we present the full proof of the generalization bound for two layer neural networks with
gradient explanations. In our proof, we use two results from Ma (2022). One result is a technical
lemma, and the other is a bound on the Rademacher complexity of two layer neural networks.
Lemma K.1. Consider a set S = {x1, ..., xn} and a hypothesis class F ⊂ {f : Rd → R}. If

sup
f∈F

n∑
i=1

f(xi)σi ≥ 0 for any σi ∈ {±1}, i = 1, ..., n,
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then, we have that

Eσ

[
sup
f∈F

|
n∑

i=1

f(xi)σi|

]
≤ 2Eσ

[
sup
f∈F

n∑
i=1

f(xi)σi

]
.

Theorem K.2 (Rademacher complexity for two layer neural networks Ma (2022)). Let X be an
instance space and DX be a distribution over X . Let H = {h : x 7→

∑m
i=1 wiσ(u

⊤
i x)|wi ∈ R, ui ∈

Rd,
∑m

i=1 |wi|∥ui∥2 ≤ B} be a class of two layer neural networks with m hidden nodes with a
ReLU activation function σ(x) = max(0, x). Assume that there exists some constant C > 0 such
that Ex∼DX [∥x∥22] ≤ C2. Then, for any S = {x1, . . . , xn} is drawn i.i.d. from DX , we have that

RS(H) ≤ 2B

n

√√√√ n∑
i=1

||xi||22

and
Rn(H) ≤ 2BC√

n
.

We defer interested readers to Ma (2022) for the full proof of this result. Here, the only requirement
of the data distribution is that Ex∼DX [∥x∥22] ≤ C2. We now present our result in the setting of two
layer neural networks with one hidden node m = 1 to provide clearer intuition for the overall proof.
Theorem K.3 (Rademacher complexity for two layer neural networks (m = 1) with gradient con-
straints). Let X be an instance space and DX be a distribution over X . Let H = {h : x 7→
wσ(u⊤x)|w ∈ R, u ∈ Rd, |w| ≤ B, ∥u∥ = 1}. Without loss of generality, we assume that ∥u∥ = 1.
Assume that there exists some constant C > 0 such that Ex∼DX [∥x∥22] ≤ C2. Our explanation con-
straint is given by a constraint on the gradient of our models, where we want the gradient of our
learnt model to be close to a particular target function h′ ∈ H. Let this be represented by an expla-
nation loss given by

ϕ(h, x) = ∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}
for some τ > 0. Let h′(x) = w′σ((u′)⊤x) the target function, then we have

Rn(Hϕ,τ ) ≤
τC√
n

if |w′| > τ,

Rn(Hϕ,τ ) ≤
3τC√

n
if |w′| ≤ τ.

Proof. Our choice of ϕ(h, x) guarantees that, for any h ∈ Hϕ,τ , we have that ∥∇xh(x) −
∇xh

′(x)∥ ≤ τ almost everywhere. We note that for h(x) = wσ(u⊤x), the gradient is given by
∇xh(x) = wu1{u⊤x > 0}, which is a piecewise constant function over two regions (i.e., u⊤x >
0, u⊤x ≤ 0), captured by Figure K.

We now consider ∇xh(x)−∇xh
′(x), and we have 3 possible cases.

Case 1: θ(u, u′) > 0
This implies that the boundaries of ∇x(h) and ∇xh

′(x) are different. Then, we have that ∇xh(x)−
∇xh

′(x) is a piecewise constant function with 4 regions, taking on values

∇xh(x)−∇xh
′(x) =


wu− w′u′ when u⊤x > 0, (u′)⊤x > 0

wu when u⊤x > 0, (u′)⊤x < 0

−w′u′ when u⊤x < 0, (u′)⊤x > 0

0 when u⊤x < 0, (u′)⊤x < 0

If we assume that each region has probability mass greater than 0 then our constraint ∥∇xh(x) −
∇xh

′(x)∥2 ≤ τ implies that |w| = |w|∥u∥ ≤ τ, |w′| = |w′|∥u′∥ ≤ τ, ∥wu− w′u′∥ ≤ τ .

Case 2: θ(u, u′) = 0
This implies that the boundary of ∇xh(x) and ∇xh

′(x) are the same. Then, ∇xh(x)−∇xh
′(x) is

a piecewise constant over two regions
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Figure 10: Visualization of the piecewise constant function of ∇xh(x)−∇xh
′(x) over 4 regions.

∇xh(x)−∇xh
′(x) =

{
wu− w′u′ when u⊤x > 0

0 when u⊤x < 0

This gives us that |w − w′| = ∥wu− w′u′∥ ≤ τ .

Case 3: θ(u, u′) = π
Here, we have that the decision boundaries of ∇xh(x) and ∇xh

′(x) are the same but the gradients
are non-zero on different sides. Then, ∇xh(x)−∇xh

′(x) is a piecewise constant on two regions

∇xh(x)−∇xh
′(x) =

{
wu when u⊤x > 0

−w′u′ when u⊤x < 0

This gives us that |w| ≤ τ and |w′| ≤ τ .

These different cases tell us that the constraint ∥∇xh(x)−∇xh
′(x)∥ ≤ τ reduces H into a class of

models follows either

1. u = u′ and |w − w′| < τ .

2. u ̸= u′ and |w| < τ . However, this case only possible when |w′| < τ .

If |w′| > τ , we know that we must only have the first case. Now, we can calculate the Rademacher
complexity of our restricted class Hϕ,τ . We will again do this in separate cases.

Case 1: |w′| > τ
For any h ∈ Hϕ,τ , we have that u = u′ and |w − w′| < τ . For a sample S = {x1, ..., xn},

Rs(Hϕ,τ ) =
1

n
Eσ

[
sup

h∈Hϕ,τ

n∑
i=1

h(xi)σi

]

=
1

n
Eσ

[
sup
w

n∑
i=1

wσ((u′)⊤xi)σi

]
( as u = u′)

=
1

n
Eσ

[
sup
w

w

(
n∑

i=1

σ((u′)⊤xi)σi

)]
.
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Since, |w − w′| < τ ,
w′ − τ < w < w′ + τ

Then, we can compute the supremum over w as

w =

{
w′ − τ if

(∑n
i=1 σ((u

′)⊤xi)σi

)
< 0

w′ + τ if
(∑n

i=1 σ((u
′)⊤xi)σi

)
≥ 0

Therefore, we have

sup
w

w

(
n∑

i=1

σ((u′)⊤xi)σi

)
=

(
w′ + τ sign

(
n∑

i=1

σ((u′)⊤xi)σi

))
·

(
n∑

i=1

σ((u′)⊤xi)σi

)
.

Now, we can calculate the Rademacher complexity as

RS(Hϕ,τ ) =
1

n
Eσ

[
w′

(
n∑

i=1

σ((u′)⊤xi)σi

)
+ τ |

n∑
i=1

σ((u′)⊤xi)σi|

]

=
τ

n
Eσ

[
|

n∑
i=1

σ((u′)⊤xi)σi|

]

≤ τ

n

√√√√Eσ

[
∥

n∑
i=1

σ((u′)⊤xi)σi∥2
]

(Jensen’s inequality)

=
τ

n

√√√√Eσ

[
n∑

i=1

σ((u′)⊤xi)2σ2
i

]
(since σi, σj are independent with mean 0)

≤ τ

n

√√√√ n∑
i=1

((u′)⊤xi)2

≤ τ

n

√√√√ n∑
i=1

∥xi∥2.

Combining this with the fact that E
[
∥x∥2

]
≤ C2, we have

Rn(Hϕ,τ ) = E[RS(Hϕ,τ )]

≤ τ

n
E[

√√√√ n∑
i=1

∥xi∥2]

≤ τ

n

√√√√E[
n∑

i=1

∥xi∥2] (Jensen’s inequality)

≤ τC√
n
.

Case 2: |w′|∥u′∥ < τ .
We know that Hϕ,τ = H(1)

ϕ,τ

⋃
H(2)

ϕ,τ when

H(1)
ϕ,τ = {h ∈ H|h : x → wσ(u⊤x), u = u′, |w − w′| < τ}

H(2)
ϕ,τ = {h ∈ H|h : x → wσ(u⊤x), ∥u∥ = 1, u ̸= u′, |w| < τ}
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We have

RS(Hϕ,τ ) =
1

n
Eσ

[
sup

h∈Hϕ,τ

n∑
i=1

h(xi)σi

]

≤ 1

n
Eσ

 sup
h∈H(1)

ϕ,τ

n∑
i=1

h(xi)σi + sup
h∈H(2)

ϕ,τ

n∑
i=1

h(xi)σi


= RS(H(1)

ϕ,τ ) +RS(H(2)
ϕ,τ )

The second line holds as supx∈A∪B f(x) ≤ supx∈A f(x) + supx∈B f(x) when supx∈A f(x) ≥ 0
and supx∈B f(x) ≥ 0. We know that both of these supremums be greater than zero, as we can
recover the value of 0 with w = 0. From Case 1, we know that

Rn(H(1)
ϕ,τ ) ≤

τC√
n
.

We also note that H(2)
ϕ,τ is a class of two layer neural networks with weights with norms bounded by

τ . From Theorem K.2, we have that

Rn(H(2)
ϕ,τ ) ≤

2τC√
n
.

Therefore, in Case 2,

Rn(Hϕ,τ ) ≤
3τC√

n
.

as required.

Now, we consider in the general setting (i.e., no restriction on m).
Theorem K.4 (Rademacher complexity for two layer neural networks with gradient constraints ).
Let X be an instance space and DX be a distribution over X with a large enough support. Let
H = {h : x 7→

∑m
j=1 wjσ(u

⊤
j x)|wj ∈ R, uj ∈ Rd, ∥uj∥2 = 1,

∑m
j=1 |wj | ≤ B}. Assume that

there exists some constant C > 0 such that Ex∼DX [∥x∥22] ≤ C2. Our explanation constraint is given
by a constraint on the gradient of our models, where we want the gradient of our learnt model to be
close to a particular target function h′ ∈ H. Let this be represented by an explanation loss given by

ϕ(h, x) = ∥∇xh(x)−∇xh
′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh

′(x)∥ > τ}
for some τ > 0. Then, we have that

Rn(Hϕ,τ ) ≤
3τmC√

n
.

To be precise,

Rn(Hϕ,τ ) ≤
(2m+ q)τC√

n
.

when q is the number of node j of h′ such that |w′
j | < τ .

We note that this result indeed depends on the number of hidden dimensions m; however, we note
that in the general case (Theorem K.2), the value of B is O(m) as it is a sum over the values of each
hidden node. We now present the proof for the more general version of our theorem.

Proof. For simplicity, we first assume that any h ∈ H has that ∥uj∥ = 1,∀j. Consider h ∈ H, we
write h =

∑m
j=1 w

′
jσ((u

′
j)

⊤x) and let h′(x) =
∑m

j=1 w
′
jσ((u

′
j)

⊤x) be a function for our gradient
constraint. The gradient of a hypothesis h is given by

∇xh(x) =

m∑
j=1

wjuj · 1{u⊤
j x > 0},
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which is a piecewise constant function over at most 2m regions. Then, we consider that

∇xh(x)−∇xh
′(x) =

m∑
j=1

wjuj · 1{u⊤
j x > 0} −

m∑
j=1

w′
ju

′
j · 1{(u′

j)
⊤x > 0},

which is a piecewise constant function over at most 22m regions. We again make an assumption
that each of these regions has a non-zero probability mass. Our choice of ϕ(h, x) guarantees that
the norm of the gradient in each region is less than τ . Similar to the case with m = 1, we will show
that the gradient constraint leads to a class of functions with the same decision boundary or neural
networks that have weights with a small norm.

Assume that among u1, ..., um there are k vectors that have the same direction as u′
1, ..., u

′
m. Without

loss of generality, let uj = u′
j for j = 1, ..., k. In this case, we have that ∇xh(x) − ∇xh

′(x) is
a piecewise function over 22m−k regions. As each region has non-zero probability mass, for each
j ∈ {1, ..., k}, we know that ∃x such that

u⊤
j x = (u′

j)
⊤x > 0, u⊤

i x < 0 for i ̸= j, (u′
i)

⊤x < 0 for i ̸= j.

In other words, we can observe a data point from each region that uniquely defines the value of a
particular wj , uj . In this case, we have that

∇xh(x)−∇xh
′(x) = wjuj − w′

ju
′
j

= (wj − w′
j)u

′
j .

From our gradient constraint, we know that ||∇xh(x) − ∇xh
′(x)|| ≤ τ,∀x, which implies that

|wj − w′
j | ≤ τ for j = 1, ..., k.

On the other hand, for the remaining j = k + 1, ...,m, we know that there exists x such that

u⊤
j x > 0, u⊤

i x < 0 for i ̸= j, (u′
i)

⊤x < 0 for i = 1, ...,m.

Then, we have that ∇xh(x) = wjuj , and our constraint implies that |wj |∥uj∥ = |wj | ≤ τ . Sim-
ilarly, we have that |w′

j |∥u′
j∥ = |w′

j | < τ, for j = k + 1, ...,m. We can conclude that Hϕ,τ is
a class of two layer neural networks with m hidden nodes (assuming ∥ui∥ = 1) that for each node
wjσ(u

⊤
j x) satisfies

1. There exists l ∈ [m] that uj = u′
l and |wj − w′

l| < τ .

2. |wj | < τ

We further note that for a node w′
lσ((u

′
l)
⊤x) in h′(x) that has that a high weight |w′

l| > τ , there
must be a node wjσ(u

⊤
j x) in h with the same boundary uj = ul. Otherwise, there is a contradiction

with |w′
l| < τ for all nodes in h′ without a node in h with the same boundary. We can utilize this

characterization of the restricted class Hϕ,τ to bound the Rademacher complexity of the class. Let

H′ = {h : x 7→
m∑
j=1

w′
jσ((u

′
j)

⊤x)aj | aj ∈ {0, 1} and for j that |w′
j | > τ, aj = 1}.

This is a class of two layer neural networks with at most m nodes such that each node is from h′.
We also have a condition that if the weight of the j-th node in h′ is greater than τ , the j-th node
must be present in any member of this class. Let

H(τ) = {h : x 7→
m∑
j=1

wjσ((uj)
⊤x)aj | wj ∈ R, uj ∈ Rd, |wj | < τ, ∥uj∥ = 1}.

be a class of two layer neural networks with m nodes such that the weight of each node is at most
τ . We claim that for any h ∈ Hϕ,τ there exists h1 ∈ H′, h2 ∈ H(τ) that h = h1 + h2. For any
h ∈ Hϕ,τ , let ph : [m] → [m] ∪ {0} be a function that match a node in h with the node with the
same boundary in h′. Formally,

ph(j) =

{
l when uj = u′

l

0 otherwise.
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The function ph maps j to 0 if there is no node in h′ with the same boundary. Let w′
0 = 0, u′

0 =
[0, . . . , 0], we can write

h(x) =

m∑
j=1

wjσ(u
⊤
j x)

=

m∑
j=1

wjσ(u
⊤
j x)− w′

ph(j)
σ((u′)⊤ph(j)

x) + w′
ph(j)

σ((u′)⊤ph(j)
x)

=
∑

ph(j) ̸=0

(wj − w′
ph(j)

)σ((u′)⊤ph(j)
x) +

∑
ph(j)=0

wjσ(u
⊤
j x)︸ ︷︷ ︸

∈H(τ)

+
∑

p(j)̸=0

w′
ph(j)

σ((u′)⊤ph(j)
x)

︸ ︷︷ ︸
∈H′

.

The first term is a member of H(τ) because we know that |wj −w′
p(j)| < τ or |wj | < τ . The second

term is also a member of H′ since for any l that |w′
l| > τ , there exists j that ph(j) = l. Therefore,

we can write h in terms of a sum between a member of H′ and H(τ). This implies that

Rn(Hϕ,τ ) ≤ Rn(H′) +Rn(H(τ)).

From Theorem K.2, we have that

Rn(H(τ)
ϕ,τ ) ≤

2τmC√
n

.

Now, we will calculate the Rademacher complexity of H′. For S = {x1, . . . , xn},

RS(H′) =
1

n
Eσ

[
sup
h∈H′

n∑
i=1

h(xi)σi

]

=
1

n
Eσ

 sup
h∈H′

n∑
i=1

(

m∑
j=1

w′
jσ((u

′
j)

⊤xi)aj)σi


=

1

n
Eσ

 sup
h∈H′

n∑
i=1

(
∑

|w′
j |<τ

w′
jσ((u

′
j)

⊤xi)aj +
∑

|w′
j |>τ

w′
jσ((u

′
j)

⊤xi))σi


=

1

n
Eσ

 sup
aj∈{0,1}

n∑
i=1

∑
|w′

j |<τ

w′
jσ((u

′
j)

⊤xi)ajσi


=

1

n
Eσ

 sup
aj∈{0,1}

∑
|w′

j |<τ

aj(w
′
j

n∑
i=1

σ((u′
j)

⊤xi)σi)

 .
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To achieve the supremum, if w′
j

∑n
i=1 σ((u

′
j)

⊤xi)σi > 0 we need to set aj = 1, otherwise, we need
to set aj = 0. Therefore,

RS(H′) =
1

n
Eσ

 sup
aj∈{0,1}

∑
|w′

j |<τ

aj(w
′
j

n∑
i=1

σ((u′
j)

⊤xi)σi)


=

1

n
Eσ

 ∑
|w′

j |<τ

σ(w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi)


=

1

2n
Eσ

 ∑
|w′

j |<τ

(w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi) + |w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi|

 (σ(x) =
x+ |x|

2
)

=
1

2n
Eσ

 ∑
|w′

j |<τ

|w′
j

n∑
i=1

σ((u′
j)

⊤xi)σi|


≤ 1

2n

 ∑
|w′

j |<τ

|w′
j |

Eσ

[
sup

∥u∥=1

|
n∑

i=1

σ(u⊤xi)σi|

]

≤ 1

n

 ∑
|w′

j |<τ

|w′
j |

Eσ

[
sup

∥u∥=1

n∑
i=1

σ(u⊤xi)σi

]
(Lemma K.1)

≤

 ∑
|w′

j |<τ

|w′
j |

 Eσ

[
1

n
sup

∥u∥=1

n∑
i=1

u⊤xiσi

]
︸ ︷︷ ︸

Empirical Rademacher complexity of a linear model

(Talagrand’s Lemma).

From Theorem B.1, we can conclude that

Rn(H′) ≤
∑

|w′
j |<τ

|w′
j |

C√
n
≤ qτC√

n
≤ mτC√

n

when q is the number of nodes j of h′ such that |w′
j | < τ . Therefore,

Rn(H′) ≤ (2m+ q)τC√
n

≤ 3mτC√
n

.

A tighter bound is given by (2m+q)τC√
n

when q is the number of w′
j that |w′

j | < τ . As τ → 0, we

also have q → 0. This implies that we have an upper bound of 2mτC√
n

if τ is small enough. When

comparing this to the original bound 2BC√
n

, we can do much better if τ ≪ B
m . We would like to point

out that our bound does not depend on the distribution D because we choose a strong explanation loss
ϕ(h, x) = ∥∇xh(x)−∇xh

′(x)∥2 +∞ · 1{∥∇xh(x)−∇xh
′(x)∥ > τ}

which guarantees that ∥∇xh(x)−∇xh
′(x)∥2 ≤ τ almost everywhere. We also assume that we are

in a high-dimensional setting d ≫ m and there exists x with a positive probability density at any
partition created by ∇xh(x).

L ALGORITHMIC RESULTS FOR 2 LAYER NNS WITH A GRADIENT
CONSTRAINT

Now that we have provided generalization bounds for the restricted class of 2 layer neural networks,
we also present an algorithm that can identify the parameters of a 2 layer neural network (up to
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a permutation of the weights). In practice, we might solve this via our variational objective or
other simpler regularized techniques. However, we also provide a theoretical result for the required
amount of data (given some assumptions about the data distribution) and runtime for an algorithm
to exactly recover the parameters of these networks under gradient constraints.

We again know that the gradient of 2 layer neural networks with ReLU activations can be written as

∇xfw,U (x) =

m∑
i=1

wiui · 1{uT
i x > 0},

where we consider ||ui|| = 1. Therefore, an exact gradient constraint given of the form of pairs
(x,∇xf(x)) produces a system of equations.
Proposition L.1. If the values of ui’s are known, we can identify the parameters wi with exactly m
fixed samples.

Proof. We can select m datapoints, which each achieve value 1 for the indicator value in the gradient
of the 2 layer neural network. This would give us m equations, which each are of the form

∇xfw,U (xi) = wiui.

Therefore, we can easily solve for the values of wi, given that ui is known.

To make this more general, we now consider the case where ui’s are not known but are at least
linearly independent.
Proposition L.2. Let the ui’s be linearly independent. Assume that each region of the data (when
partitioned by the values of ui) has non-trivial support > p. Then, with probability 1 − δ, we can
identify the parameters wi, ui with O

(
2m +

m+log( 1
δ )

log( 1
1−p )

)
data points and in O(22m) time.

Proof. Let us partition X into regions satisfying unique values of the binary vector (1{uT
1 x >

0}, ..., 1{uT
mx > 0}), which by our assumption each have at least some probability mass p. First,

we calculate the probability that we observe one data point with an explanation from each region
in this partition. This is equivalent to sampling from a multinomial distribution with probabilities
(p1, ..., p2m), where pi ≥ p,∀i. Then,

Pr(observe all regions in n draws) = 1− Pr(∃i s.t. we do not observe region i)

= 1− 2m(1− p)n.

Setting this as no less than 1− δ leads to that n ≥ m+log( 1
δ )

log( 1
1−p )

.

Given O(2m +
m+log( 1

δ )

log( 1
1−p )

) pairs of data and gradients, we will observe at least one pair from each

region of the partition. Then, identifying the values of ui’s and wi’s is equivalent to identifying
the datapoints that correspond to a value of the binary vector where only one indicator value is 1.
These values can be identified in O(23m) time; the algorithm is given in Algorithm L.1. These
results demonstrate that we can indeed learn the parameters (up to a permutation) of a 2 layer neural
network given exact gradient information.

L.1 ALGORITHM FOR IDENTIFYING REGIONS

We first note that identifying the parameters ui’s and wi’s of a 2 layer neural network is equivalent to
identifying the values {x1, ..., xm} from the set {

∑
x∈C x|C ∈ P({x1, ..., xm})}, where P denotes

the power set. We also assume that x1, ..., xm are linearly independent, so that we cannot create
xi from any linear combination of xj’s with j ̸= i. Then, we can identify the set {x1, ..., xm} as
follows:

This algorithm runs in O(23m) time as it iterates through each point in M and computes the over-
lapping set O and resulting updated sum S, which takes O(22m) time. From the resulting set B, we
can exactly compute values ui and wi up to a permutation.
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Algorithm 1 Algorithm for identifying parameters of a 2 layer neural network, given exact gradient
constraints

1: Input: We are given M = {
∑

x∈C x|C ∈ P({x1, ..., xm})}, with {x1, ..., xm} linearly inde-
pendent

2: Output: The set of basis elements {x1, ..., xm}
3: function
4: B = {}, S = {} {Set for basis vectors and set for a current sum of at least 2 elements}
5: for x ∈ M do
6: if x ∈ S then
7: pass
8: else
9: B = B ∪ {x}

10: if |B| = 2 then
11: S = {y1 + y2}, where B = {y1, y2}
12: else
13: S = S ∪ {y + x|y ∈ S} {Updating sums from adding x}
14: end if
15: O = B ∩ S {Computing overlap between current basis and sums}
16: B = B \O {Removing elements contained in pairwise span}
17: S = {y − yo|y ∈ S, yo ∈ O} {Updating sums S from removing set O}
18: end if
19: end for
20: return B
21: end function
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M ADDITIONAL SYNTHETIC EXPERIMENTS

We now present additional synthetic experiments that demonstrate the performance of our approach
under settings with imperfect explanations and compare the benefits of using different types of ex-
planations.

M.1 VARIATIONAL OBJECTIVE IS BETTER WITH NOISY GRADIENT EXPLANATIONS

Here, we present the remainder of the results from the synthetic regression task of 5, under more
settings of noise ϵ added to the gradient explanation.
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Figure 11: Comparison of MSE on regressing a 2 Layer Neural Network with explanations of noisy
gradients. m = 1000, k = 20, λ = 10. For the iterative methods, T = 10. Results are averaged
over 5 seeds.

Again, we observe that our method does better than that of the Lagrangian approach and the self-
training method. Under high levels of noise, the Lagrangian method does poorly. On the contrary,
our method is resistant to this noise and also outperforms self-training significantly in settings with
limited labeled data.
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M.2 COMPARING DIFFERENT TYPES OF EXPLANATIONS

Here, we present synthetic results to compare using different types of explanation constraints. We
focus on comparing noisy gradients as before, as well as noisy classifiers, which are used in the
setting of weak supervision (Ratner et al., 2016). Here, we generate our noisy classifiers as h∗(x)+ϵ,
where ϵ ∼ N (0, σ2). We omit the results of self-training as it does not use any explanations, and
we keep the supervised method as a baseline. Here, t = 0.25.
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Figure 12: Comparison of MSE on regressing a 2 Layer Neural Network with explanations as a
noisy classifier (top) and noisy gradients (bottom). m = 1000, k = 20. For the iterative methods,
T = 10. Results are averaged over 5 seeds. ϵ represents the variance of the noise added to the noisy
classifier or noisy gradient.

We observe different trends in performance as we vary the amount of noise in the noisy gradient
or noisy classifier explanations. With any amount of noise and sufficient regularization (λ), this
influences the overall performance of the methods that incorporate constraints. With few labeled
data, using noisy classifiers helps outperform standard supervised learning. With a larger amount
of labeled data, this leads to no benefits (if not worse performance of the Lagrangian approach).
However, with the noisy gradient, under small amounts of noise, the restricted class of hypothesis
will still capture solutions with low error. Therefore, in this case, we observe that the Lagrangian
approach outperforms standard supervised learning in the case with few labeled data and matches it
with sufficient labeled data. Our method outperforms or matches both methods across all settings.
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We consider another noisy setting, where noise has been added to the weights of a copy of the target
2 layer neural network. Here, we compare how this information impacts learning from the direct
outputs (noisy classifier) or the gradients (noisy gradients) of that noisy copy (Figure 13).
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Figure 13: Comparison of MSE on regressing a 2 Layer Neural Network with explanations as a
noisy classifier (top) and noisy gradients (bottom). m = 1000, k = 20. For the iterative methods,
T = 10. Results are averaged over 5 seeds. ϵ represents the variance of the noise added to the noisy
classifier or noisy gradient.

N EXPERIMENTAL DETAILS

For all of our synthetic and real-world experiments, we use values of m = 1000, k = 20, T = 3, t =
0, λ = 1, unless otherwise noted. For our synthetic experiments, we use d = 100, σ2 = 5. Our 2
layer neural networks have hidden dimensions of size 10. They are trained with a learning rate of
0.01 for 50 epochs. We evaluate all networks on a (synthetic) test set of size 2000.

For our real-world data, our 2 layer neural networks have a hidden dimension of size 10 and are
trained with a learning rate of 0.1 (YouTube) and 0.1 (Yelp) for 10 epochs. λ = 0.01 and gradient
values computed by the smoothed approximation in (Sam & Kolter, 2022) has c = 1. Test splits
are used as follows from the YouTube and Yelp datasets in the WRENCH benchmark (Zhang et al.,
2021).
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We choose the initialization of our variational algorithm h0 as the standard supervised model, trained
using gradient descent.
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O ABLATIONS

We also perform ablation studies in the same regression setting as Section 4. We vary parameters
that determine either the experimental setting or hyperparameters of our algorithms.

O.1 NUMBER OF EXPLANATIONS

First, we vary the value of k to illustrate the benefits of our method over the existing baselines.
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Figure 14: Comparison of MSE on regressing a 2 layer neural networks over different amounts of
explanation annotated data k. m = 1000. For the iterative methods, T = 10. Results are averaged
over 5 seeds.

We observe that our variationa approach performs much better than a simple augmented Lagrangian
method, which in turn does better than supervised learning with sufficiently large values of k. Our
approach is always better than the standard supervised approach.

We also provide results for how well these methods satisfy these explanations over varying values
of k.

O.2 SIMPLER TEACHER MODELS CAN MAINTAIN GOOD PERFORMANCE

As noted before, we can use simpler teacher models to be regularized into the explanation-
constrained subspace. This can lead to overall easier optimization problems, and we synthetically
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Figure 15: Comparison of Input Gradient Distance when regressing a 2 layer neural network over
different values of k. m = 1000, T = 10. Results are averaged over 5 seeds.

verify the impacts on the overall performance. In this experimental setup, we are regressing a 2 layer
neural network with a hidden dimension size of 100, which is much larger than in our other synthetic
experiments. Here, we vary over simpler teacher models by changing their hidden dimension size.
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Figure 16: Comparison of MSE on regressing a 2 Layer Neural Network over simpler teacher models
(hidden dimension). Here, k = 20,m = 1000, T = 10. Results are averaged over 5 seeds.
We observe no major differences as we shrink the hidden dimension size by a small amount. For
significantly smaller hidden dimensions (e.g., 2 or 4), we observe a large drop in performance as
these simpler teachers can no longer fit the approximate projection onto our class of EPAC models
accurately. However, slightly smaller networks (e.g., 6, 8) can fit this projection as well, if not better
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in some cases. This is a useful finding, meaning that our teacher can be a smaller model and get
comparable results, showing that this simpler teacher can help with scalability without much or any
drop in performance.

O.3 NUMBER OF UNLABELED DATA

As a main benefit of our approach is the ability to incorporate large amounts of unlabeled data,
we provide a study as we vary the amount of unlabeled data m that is available. When varying
the amount of unlabeled data, we observe that the performance of self-training and our variational
objective improves at similar rates.
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Figure 17: Comparison of MSE on regressing a 2 layer neural network over different values of m.
k = 20, T = 10. Results are averaged over 5 seeds.
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O.4 DATA DIMENSION

We also provide ablations as we vary the underlying data dimension d. As we increase the dimen-
sion d, we observe that the methods seem to achieve similar performance, due to the difficulty in
modeling the high-dimensional data. Also, here gradient information is much harder to incorporate,
as the input gradient itself is d-dimensional, so we do not see as much of a benefit of our approach
as d grows.
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Figure 18: Comparison of MSE on regressing a 2 Layer Neural Network over different underlying
data dimensions d. m = 1000, k = 20. For the iterative methods, T = 10. Results are averaged
over 5 seeds.

42



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

O.5 HYPERPARAMETERS

First, we compare the different approaches over differnet values of regularization (λ) towards satis-
fying the explanation constraints. Here, we compare the augmented Lagrangian approach, the self-
training approach, the iterative self-training and variational approaches.
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Figure 19: Comparison of MSE on regressing a 2 Layer Neural Network over different values of λ.
m = 1000, k = 20. For the iterative methods, T = 10. Results are averaged over 5 seeds.

We observe that there is not a significant trend as we change the value of λ across the different
methods. Since we know that our explanation is perfect (our restricted EPAC class contains the
target classifier), increasing the value of λ should help, until this constraint is met.
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Figure 20: Comparison of MSE on regressing a 2 Layer Neural Network over different values of T
(left) and t (right) in our variational approach. m = 1000, k = 20, t = 10, T = 10, unless noted
otherwise. Results are averaged over 5 seeds.

Next, we compare different hyperparameter settings for our variational approach. Here, we ana-
lyze trends as we vary the values of T (number of iterations) and t (threshold before adding hinge
penalty). We note that the value of t does not significantly impact the performance of our method
while increasing values of T seems to generally benefit performance on this task.
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