Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

A Recurrent Control Neural Network for
Data Efficient Reinforcement Learning

Anton Maximilian Schaefer
Department of Optimisation and Operations Research
University of Ulm, 89069 Ulm, Germany
Email: Schaefer.Anton.ext@siemens.com
Telephone: +49-89-636-45698
Fax: +49-89-636-49767

Abstract—In this paper we introduce a new model-based ap-
proach for a data-efficient modelling and control of reinforcement
learning problems in discrete time. Our architecture is based on
a recurrent neural network (RNN) with dynamically consistent
overshooting, which we extend by an additional control network.
The latter has the particular task to learn the optimal policy.
This approach has the advantage that by using a neural network
we can easily deal with high-dimensions and consequently are
able to break Bellman’s curse of dimensionality. Further due
to the high system-identification quality of RNN our method is
highly data-efficient. Because of its properties we refer to our
new model as recurrent control neural network (RCNN).

The network is tested on a standard reinforcement learning
problem, namely the cart-pole balancing, where it shows espe-
cially in terms of data-efficiency outstanding results.

I. INTRODUCTION

Reinforcement learning problems basically consist of an
agent and an environment, with which the agent interacts
by carrying out different actions. For each interaction the
agent gets a reward, which it uses to optimise its policy, i.e.,
its future actions. In low dimensions reinforcement learning
problems are in general solved by table-based methods, where
the value of each action-state-combination is stored [1]. For
higher-dimension as well as continuous state or action spaces
these methods become unfeasible, among other things due
to Bellman’s curse of dimensionality [2]. Besides that, data
efficiency becomes more and more important as in most
real-world applications the amount of available data is very
limited. In both cases an optimal system identification of the
underlying dynamics is essential. For that reason model-based
reinforcement learning approaches experienced an increasing
interest during the last years.

In this paper we present a new model-based approach
to identify and control dynamical systems of reinforcement
learning problems in discrete time. Our method is based on a
recurrent neural network (RNN) with dynamically consistent
overshooting, i.e., which uses its own predictions as future
inputs. RNN allow for a data-efficient identification of dy-
namical systems in form of high-dimensional, nonlinear state
space models and are in principle able to approximate any
type of open dynamical system [3]. We extend the RNN by
an additional control neural network with the particular task

1-4244-0706-0/07/$20.00 ©2007 IEEE

Steffen Udluft and Hans-Georg Zimmermann
Department of Learning Systems
Information & Communications, Corporate Technology,
Siemens AG, 81739 Munich, Germany
Email: {Steffen.Udluft,
Hans_Georg.Zimmermann } @siemens.com

to learn the optimal policy, i.e., the optimal mapping from
states to actions, of the reinforcement learning problem. Fur-
thermore we adapt its structure to the reinforcement learning
environment, i.e., the mapping of Markov decision processes
(MDPs), by adding action and reward clusters. Because of its
properties we refer to our new network as recurrent control
neural network (RCNN).

There have already been a few attempts to combine rein-
forcement learning with different kinds of recurrent neural
networks, e.g. [4], [5], [6]. Schmidhuber’s approach [4] is
most similar to ours, but still differs potentially in the neural
network model and the algorithm used. Bakker [6] showed
remarkable results in combining reinforcement learning with
long short-term memory (LSTM)-networks [7]. In contrast
to these approaches, the recurrent neural network we use,
offers an explicit resemblance, in architecture and method, to
reinforcement learning and respectively MDPs [8]. Besides
that, our RCNN is trained in two subsequent phases. This has
the advantage that in the first step the network only focuses
on mapping the problem’s dynamics whereas in the second
step it concentrates on learning the optimal policy based on
the identified system. Furthermore our model not only learns
from data but also integrates prior knowledge and structure in
form of architectural concepts into the modeling. This provides
us with the possibility to learn and map efficiently the full
environment of a reinforcement learning problem, which is
essential for determining the optimal policy.

The paper consists of six parts. We start with a short
introduction into the modelling of open dynamical systems by
RNN, which we extend by dynamically consistent overshoot-
ing (sec. II). Further we illustrate how MDPs can be mapped
by RNN (sec. III). Based on this we develop the recurrent
control neural network (RCNN) and present its equations
and architecture (sec. IV). Subsequent we test the RCNN on
an application to the well-known cart-pole problem where it
shows especially in terms of data-efficiency outstanding results
and outperforms standard reinforcement learning methods by
far (sec. V). We conclude with a short summary and an outlook
on further research (sec. VI).

151

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

II. MODELLING OF OPEN DYNAMICAL SYSTEMS BY RNN
WITH DYNAMICALLY CONSISTENT OVERSHOOTING

Open dynamical systems in discrete time can be described
as a set of equations, consisting of a state transition and an
output equation

s¢ = g(st |, m) state transition "
yl, = h(sd) output equation

where g and h are measurable functions, xz; represents the
external inputs, s¢ the inner states and y¢ the outputs of the
system (t =1,...,7 and T € N) [9], [10].

Any of those open dynamical systems (eq. 1) can be
approximated by an RNN of the form [3]:

S¢ = tanh(As;—1 + Bz +0)

2
Y1 = Csy @
Here, the state transition equation s; is a nonlinear transfor-
mation of the previous state s;_; and the external influences
x; using weight matrices A and B of appropriate dimension
and a bias 6, which handles offsets in the input variables x;.
The network’s output y;1 is computed from the present state
s¢ employing matrix C'. It is therefore a nonlinear composition
applying the transformations A, B, and C. Note, that the state
space of the RNN, s;, in general does not have the same
dimension as the one of the open dynamical system s¢.
Training the RNN of equation 2 is equivalent to solving
a parameter optimisation problem, i.e., minimising the error
between the network’s output y; and the observed data yf
with respect to an arbitrary error measure, e.g.:

T

S (w -y — min 3)

A,B,C,0
t=1

It can be solved by finite unfolding in time using shared
weight matrices A, B, and C, which share the same memory
for storing their weights, i.e., the weight values are the same
at each time step 7 of the unfolding and for every pattern ¢
[9], [11]. This guarantees that we have the same dynamics in
every unfolded time step 7. By using unfolding in time the
RNN can be trained with error backpropagation through time
(BPTT) [12], which is a shared weights extension of standard
backpropagation [13].

In its simplest form RNN unfolded in time only provide
a one step prediction of the variable of interest, ;1. With
regard to reinforcement learning this is generally insufficient,
because we want to evaluate the system’s performance over
a certain period of time and therefore need a sequence of
forecasts as an output. For this reason we extend the au-
tonomous part of the RNN into the future (7 > t) by so-called
dynamically consistent overshooting , i.e., we iterate matrices
A and C a finite number of time steps in future direction and
use the network’s own predictions as future inputs [10], [11].
With overshooting we also increase the system approximation
ability of the RNN, as the learning is forced to place more
emphasis on modelling the autonomous dynamics of the

network, i.e., overshooting supports the extraction of useful
information from input vectors, which are more distant to the
output [10].

Dynamical consistency solves the problem of the unavail-
able external information z, in the overshooting, respec-
tively future, part (7 > ¢) of the network. Neglecting these
missing influences would be equivalent to the assumption
that the environment of the dynamics stays constant, i.e.,
that the external influences are not significantly changing,
when the network is iterated into future direction. Considering
external variables with a high impact on the dynamics of
interest, this becomes very questionable and might lead to bad
generalisation abilities. In RNN with dynamically consistent
overshooting we therefore use the network’s own predictions
as a replacement for the unknown future inputs. In doing so
we can, in an elegant manner, integrate assumptions about the
future development of the environment . into the modeling.
This implies that in an RNN with dynamically consistent
overshooting we do not only forecast the variables of interest
y< but all environment data . As a side effect this allows for
an integrated modeling of the dynamics of interest. Note, that
due to shared weights for dynamically consistent overshooting
no additional parameters are used. The RNN with dynamically
consistent overshooting can be described by the following
equations':

tanh(As,_1 + Bz, +0)
Try1 = CST

d .
S et~ i,
T

This can be easily represented in an architectural form
(fig. 1), where in the overshooting part (7 > ¢) of the network
the (dashed) connections between the outputs x, and the states
s, provide dynamical consistency. The dotted links indicate
that the network can be (finitely) further unfolded in past and
future.

Sr =

“4)

Fig. 1.

RNN with dynamically consistent overshooting

Besides its ability to approximate non-linear dynamical
systems RNN have the advantage that by using, in contrast to

!The parameter 7 is hereby always bounded by the length of the (past)
unfolding m and the length of the overshooting n, such that we have 7 €
{t—m,....,t +n} foral ¢t € {m,...,T —n} with T as the available
number of data patterns [11].

152

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

e.g. radial basis function (RBF) networks and support vector
machines (SVMs), global, sigmoid basis functions, e.g. the
hyperbolic tangens, they are well able to cope with higher
dimensions and therefore break the curse of dimensionality.

By choosing an appropriate dimension for the internal state
sr, RNN can also be used to reconstruct the state space
of a partially observable dynamical system or to reduce the
one of a high-dimensional problem. This has been already
successfully applied to solve partially observable Markov
decision problems (POMDPs) [8].

III. MAPPING MDPs BY RNN WITH DYNAMICALLY
CONSISTENT OVERSHOOTING

A Markov decision process (MDP) can be described by a
state space X, an action space A, a (stochastic) transition
function P(zt,a¢,x4q1) with @y, 241 € X and a; € A
that models the system’s development, and a reward or cost
function ¢ : X x A — R, where R is the space of rewards,
the agent receives for choosing action a; in state x;. The goal
is to determine an optimal policy 7* : X — A that maximises
the expected cumulated or average reward function c for each
state x;. In the following we consider deterministic MDPs in
discrete time with X and A continuous.

Modelling of an MDP with an RNN follows the idea of
mapping the process’s dynamics, i.e., the transition function
P(-), by a high-dimensional nonlinear system equation. We
therefore provide the RNN with the states x; of the MDP as
environmental variables and targets. The actions are given to
the network as separate inputs. In doing so we get, analogues
to the MDP, the sequence of the (environmental) states x,
and the subsequent actions a, on the input side of the RNN
finitely unfolded in time. In the equations of the RNN with
dynamically consistent overshooting this is implemented, also
with regard to the later extension to the recurrent control neural
network (sec. IV), by the inclusion of an additional internal
pre-state p,:

Sy = tanh(Ip; + Da, + 0)
Tr41 = CST (5)
with p, = As,._1+ Bz,

The pre-state p, aggregates the information from the previ-
ous internal state s,_; and the external MDP state x,. It has
the same dimension as the internal state s, and is connected
to it by a fixed identity matrix I, which is not learned during
training. s, has the action a, as an input and is used for the
calculation of the expected next state of the MDP x ;. Here
D is an additional matrix of appropriate dimension, which
handles the influence of the actions a, on the internal state
sr. The actions a, are also given to the RNN as future inputs
(7 > t) because they directly influence the MDP’s dynamics
but cannot or should not be learned by the network. Figure 2
depicts the resulting RNN architecture.

To ensure a good exploration of the state space X of the
MDP, the network should be trained with random actions a..

Fig. 2.

Mapping an MDP by an RNN with dynamically consistent
overshooting

Otherwise the learned dynamics can be dependent on a certain
policy 7 as the system only stays on the related trajectory.

IV. RECURRENT CONTROL NEURAL NETWORK (RCNN)

The Recurrent Control Neural Network (RCNN) is a re-
current neural network, which is able to identify and to
control the dynamics of a reinforcement learning or optimal
control problem. Its principal architecture is based on the RNN
with dynamically consistent overshooting (sec. III), which is
extended by an additional control network and an output layer,
which incorporates the reward function. Overall its integrated
structure follows the idea of mapping the complete reinforce-
ment learning problem, including the underlying MDP, within
one network.

The additional and integrated control network has the form
of a three layer (input, hidden, output) feedforward neural
network. Despite other (more extensive) topologies would be
possible, this already allows us to model any arbitrary control
function [14]. As we want to predict the optimal action a,, the
control network is only applied in the present and overshooting
part of the RCNN (7 > t) (fig. 3, dashed part). In the past
unfolding (7 < t) the RCNN is provided with the last actions
taken.

The control network uses the values of the pre-state p,
(sec. III), which combines the information of the previous state
s-—1 and the environmental observables z,, as inputs. As an
output it determines the next action or control variables a.
Putting this into equations the control network has the form
(V1 > t):

f(F tanh(Ep- + b))
As;_1+ Bx,

ar

with p, = ©)

where E and F' are weight matrices of appropriate dimension,
b is a bias and f an arbitrary activation function, which can
be used to scale or limit the output and accordingly the action
space. The hidden state (fig. 3) of the control network is
denoted by r, (= tanh(Ep, +b)).

The RCNN has to fulfill two different tasks, the identi-
fication of the problem’s dynamics and the optimal control,
and is hence trained in two consecutive steps. Note, that this
distinguishes our approach from other work on reinforcement

153

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

learning and recurrent neural networks, e.g. [6], where one
usually tries a combined learning of both tasks in one step.
Besides that, the training of our network is offline on the basis
of previous observations.

In the first step the RCNN is limited to the identification
and modeling of the dynamics of the underlying MDP. It is
consequently reduced to the RNN with dynamically consistent
overshooting (eq. 5 and fig. 2). Hence, the optimisation task
of step one takes on the following form:

Sy = tanh(Ip; + Da, + 0)
Try1 = CST
with p, = As,_1+ Bax, @)

gy
;Z(ZT T B

min

In the second step all connections coding the dynamics,
which have been learned in the first step, in particular matrices
A, B,C, and D and the bias 0, get fixed, i.e., their weights are
not changed during further training. In return the integrated
control network with the matrices E and F' and the bias b
is activated (fig. 3, dashed connections). These are the only
tuneable parameters in this training step. Besides that, as in
this step the RCNN’s task is to learn the optimal policy,
i.e., sequence of actions, it does not get any future actions
as external inputs (fig. 3). Furthermore in the past unfolding
(7 < t) the output-clusters are taken away, because they were
only needed for the identification of the system dynamics
in step one. In the present and future part (7 > t) of the
network the error-function (eq. 7) of the output clusters gets
replaced by the reward function. Architecturally this is realised
by additional reward clusters R, which are connected to the
output clusters by a problem specific, on the reward function
¢(-) dependent, and fixed matrix G, e.g. equations 9 and
10, as well as a possible activation function h within the
output clusters . In other words the RCNN maps the reward
function ¢(-) of the underlying reinforcement learning problem
by coding it in a neural architecture. This implies that R,
does not only have to be calculated on the basis of the output
cluster x; but can easily be extend to a more general setting,
which usually comes along with a more complicated network
architecture.?

The weights are now only adapted according to the back-
propagated reward from the reward clusters R, (17 > t).
This follows the idea that in the second step we do not want
to identify the problems dynamics but learn a policy, which
maximises the reward given the system dynamics modelled in
step one (eq. 7). Note that, in doing so the learning algorithm
changes from a descriptive to a normative error function.

Summarising, step two can be represented by the following
set of equations (eq. 8). Here, the control matrices, £ and

2As an alternative it is also possible to learn the reward function explicitly,
which is especially of interest in cases, where ¢(-) is not known or only
incompletely specified in the problem setting. This can be realised by a further
additional three layer neural network with the output of the RCNN as inputs.

F' and the related bias b, which are learned in this step, are
italicised.

Sy = tanh(Ip, + Da, +0)

Ry Gh(Cs;), VT >t
with p, = As;_1+ Bz, 8)
and a, = f(Ftanh(Ep, + b)) Vr>t (

YD elR) min

t >t

The architecture of the RCNN in the second step, i.e., during
learning of the optimal control, is depicted in figure 3.

Fig. 3. Learning the optimal policy by a Recurrent Control Neural Network

In both steps (eqs. 7 and 8) the RCNN is trained on the
identical set of training patterns 7' and with BPTT [12].
Concerning the second step this means in a metaphoric sense
that by backpropagating the error of the reward function ¢(-),
the algorithm fulfills the task of transferring the reward back
to the agent.

The RCNN ideally combines the advantages of an RNN
with dynamically consistent overshooting for identifying the
problem’s dynamics and a three layer control neural network
for learning the optimal policy. In doing so, we can benefit
from a high approximation accuracy and therefore control
complex dynamics in a very data-efficient way. Besides that,
we can easily scale into high-dimensions or reconstruct a
partial observable environment [8]. Furthermore, out of the
construction of the RCNN, it can well handle continuous state
and action spaces.

V. A DATA-EFFICIENT SOLUTION TO THE CART-POLE

The cart-pole problem has been extensively studied in
control and reinforcement learning theory. For more than 30
years it served as a benchmark for new ideas, as it is easy to
understand and also quite representative for related questions.
For simplicity we also use it as a first benchmark for our new
model.

The classical cart-pole problem consists of a cart, which is
able to move on a bounded track and trying to balance a pole

154

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

on its top. The system is fully defined through four variables
t=1,...,7)

Xt = horizontal cart position

Xt = horizontal velocity of the cart
o = angle between pole and vertical
Qy = angular velocity of the pole

The problem’s system dynamics is given by

M+m

ml cos ay Xt
ml cos o

mla,? sin oy
%le dt

F
mgl sin oy } - { 0 }
where M and m are the masses of the cart and pole respec-
tively, [is half the length of the pole, g the acceleration due
to gravity and F' the force applied to the cart.

The goal is to balance the pole for a preferably long
sequence of time steps without moving out of the limits.
Possible actions are to push the cart left or right with a constant
force F'. The pole tilts when its angle «; is larger than 12
degrees. Either then or when the cart hits one of the boundaries
the system is punished with a negativ reinforcement signal. In
all other cases the reward is zero.

The problem has been completely solved in the past, e.g. [1].
Still all successful methods need quite a large number of
training patterns to find a solution. In contrast, for real world
applications training data is in general very limited. Conse-
quently methods, which require less training data, i.e., which
are more data-efficient, to solve the problem, are preferable.
In the following experiment we put a special focus on data-
efficiency and show that the RCNN achieves outstanding
results. Similar tests have been reported in [15], but with a
slightly different dynamics and an extended action space.

A. Model description

We use an RCNN as described in section IV with an
unfolding of 10 steps into the past and 30 into the future. This
gives the network both, a memory length, which is sufficient
to identify the dynamics and an overshooting length, which
enables it to predict the consequences of its chosen actions.
The internal state dimension, dim(s), is set to 20 and the
hidden state of the control network, dim(c), to 40 neurons.
These dimensions are effectual to generate stable results in
terms of system identification and learning the optimal policy.
Larger networks in general only require more computational
time. Further, the hyperbolic tangens is implemented as an
activation function in the clusters a, of the integrated control
network (eq. 6). This limits the action space of the RCNN to
(-1,1).

For training the RCNN we generated data of different set
sizes where the actions were chosen randomly. Here, we varied
from the standard setting as we transformed the originally
episodic task into a continuous one by keeping the pole or
cart at their limits instead of starting a new episode when the
pole falls or the cart hits one of the boundaries. This implies
the use of a reward function of the form

c=>"% (g xr +ar)? ©

t 1>t

where g is a scaling factor, which balances the error values of
the two variables. In our experiment we set ¢ = 0.1. According
to this, matrix GG takes on the form

G:{O.l 0 0 0}’

0 010 (19)

the activation function h in the outputs z, is set to identity,
and the clusters R, get a squared error function with constant
targets of 0.

The adaption makes the time series more applicable for the
RCNN, in particular the learning with BPTT, but does not
simplify the problem; especially as the generated data is only
used for training. The learned policy is later tested on the
original system and consequently has to cope with the slightly
different setting. Here, also the continuous action space of the
network gets re-discretised on —1 and 1.

B. Results

We train the RCNN with different amounts of training data.
The learned policy is then tested on the original dynamics of
the cart-pole where the number of steps /N, which it is able
to balance the pole, is measured. We use respectively three
data sets with 300,1000, 3000, 10000, 30000, and 100000
training patterns. For each set we take the median of the
performance over 100 different random start initialisations of
the cart and pole during testing. The results are given for each
set size as the median and average over the values of the
respectively three different training data sets (tab. I). We set
the maximum number of steps balanced to maz = 100000,
which we consider as sufficient to demonstrate that the policy
has solved the problem.

We compare our results to the adaptiv heuristic critic
(AHC) algorithm [16], which shows, to our knowledge, very
competitive results on the cart-pole problem. As a second
benchmark we take (table-based) Q-learning [17], which is
one of the commonly used reinforcement learning methods.
In contrast to the RCNN we used for both algorithms the
standard setting of the cart-pole problem as their application
to the modified one (eq. 9) produced inferior results.

of RCNN AHC Q-Learning
obs median | average | median | average | median | average
300 61 100 74 56 61 52
1000 387 33573 124 150 121 121
3000 max 66912 334 312 111 116
10000 max max 1033 1554 148 163
30000 max max 2988 9546 193 501
100000 max max max 75393 503 624
TABLE I

MEDIAN AND AVERAGE NUMBER OF STEPS THE POLE WAS BALANCED BY
THE RCNN, THE AHC, AND THE Q-LEARNING POLICY GIVEN DIFFERENT
NUMBERS OF OBSERVATIONS (OBS).

The results (tab. I) clearly indicate that the RCNN can
solve the cart-pole problem very data-efficiently. With only
1000 training patterns the average number of steps balanced

155

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

is very high. On one of the tested training data sets with 1000
observations even an optimal policy has been learned. With
already 10000 observations the maximum number of steps
balanced is achieved on the basis of all tested three data sets.
In comparison, the AHC needed at least a 100000 observations
for finding a satisfying solution. Q-learning required even
more observations, as it still failed to balance the pole with
the maximum number of observations tested. Consequently by
applying the RCNN we can reduce the number of necessary
observations by more than 90%. Figures 4 and 5 illustrate the
results for the median and average number of steps balanced.

—_
(=}
w

o]

Number of steps balanced
=

—_
(=]
w

Number of observations

Fig. 4. Numbers of steps balanced with respect to the number of observations
taken the median over the different tested data sets. The RCNN (solid line)
clearly outperforms the AHC (dotted line) and Q-Learning (dashed line).

10°F

104F

Number of steps balanced

R - b

102

M|
10° 10t 10°
Number of observations

Fig. 5. Number of steps balanced with respect to the number of observations
averaged over the different tested data sets. Again the RCNN (solid line)
clearly outperforms the AHC (dotted line) and Q-Learning (dashed line).

To examine the stability of the RCNN policy we put a
uniform noise on the force F' of the action. The task is
particularly difficult because the network has not seen any
noise during training but its policy has to cope with it during
the test on the original dynamics. We take the median and
average of the performance over a hundred different random
start initialisations of the cart and pole. Table II shows the
results for different noise levels on a RCNN policy trained
with 10000 observations. It demonstrates that even with a noise
level of a 100% the RCNN policy balances the pole in median
for the maximum number of steps. Note, that a noise level of
more than 100% means that the cart can be pushed into the
reverse direction of the one, intended by the policy. This also
explains the sharp decrease in performance after increasing
the noise to more than 100%. Figure 6 illustrates the robust
performance of the RCNN policy.

noise level | # of steps balanced
on F median | average
10% max max
20% mazx mazx
30% max 99953
40% max 97337
50% max 98019
60% mazx 96937
70% max 92886
80% mazx 88181
90% max 84191
100% mazxr 74554
110% 55154 53775
120% 16519 27730
130% 8238 12476
140% 2961 5294
150% 1865 2863
160% 1008 1503
170% 557 939
180% 173 555
190% 76 344
200% 83 242

TABLE II

MEDIAN AND AVERAGE NUMBER OF STEPS BALANCED WITH DIFFERENT
NOISE LEVELS ON THE FORCE F' BY AN RCNN TRAINED WITH 10000
OBSERVATIONS. EVEN WITH A NOISE OF A 100% THE RCNN IS ABLE TO
BALANCE THE POLE THE MAXIMUM NUMBER OF TIME STEPS.

VI. CONCLUSION AND OUTLOOK

In this paper we presented a new model-based reinforcement
learning approach. It is based on an RNN with dynamically
consistent overshooting, which we briefly introduced. Because
of its properties we called it recurrent control neural network
(RCNN). Its equations and architecture were described in
detail. Here we especially explained the two step learning
algorithm. We also pointed out its similarity in structure to
MDPs and argued that the combination of an RNN and a three
layer neural network is ideal for solving high-dimensional
reinforcement learning problems with continuous state and
action spaces. On this note the RCNN also offers a good
approach to break Bellman’s curse of dimensionality [2].

156

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

10 7 F

104F

Number of steps balanced

10%F

0 20 40 60 80 100 120 140 160 180 200

Noise level in %

Fig. 6. Median (solid line) and average (dotted line) number of steps balanced
with different noise levels on the force F' by an RCNN trained with 10000
observations.

The application to the classical cart-pole problem demon-
strated the capabilities of the RCNN. Especially in terms of
data-efficiency it showed outstanding results and outperformed
common reinforcement learning algorithms by far. The policy
developed by the RCNN also proved to be very robust, as
even with a very high noise level the performance did not
deteriorate.

While applying the RCNN to more elaborated industrial and
economic problems, further research is done on the network
architecture, in particular on a reduction or aggregation of the
several different matrices, and an extension of the method to
on-line learning. Here we will also refer to higher developed
neural network architectures like dynamical consistent neural
networks [11]. Besides that we will further analyse and if
necessary adapt the RCNN for an application to stochastic
problems.

ACKNOWLEDGMENT

Our computations were performed on the Neural Network
modeling software SENN (Simulation Environment for Neural
Networks), which is a product of Siemens AG.

2

(3]

[4

[9

[10]

[11]

[12]

[14]

[15

[16]

[17]

157

REFERENCES

R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). Cambridge, MA: MIT
Press, 1998.

R. E. Bellman, Adaptive Control Processes: A Guided Tour.
NIJ: Princeton University Press, 1961.

A. M. Schaefer and H. G. Zimmermann, “Recurrent neural networks
are universal approximators,” in Proceedings of the International Con-

Princton,

ference on Artificial Neural Networks (ICANN-06), Athens, 2006.

J. Schmidhuber, “Reinforcement learning in markovian and non-
markovian environments,” in Advances in Neural Information Process-
ing Systems, D. S. Lippman, J. E. Moody, and D. S. Touretzky, Eds.
San Mateo, CA: Morgan Kaufmann, 1991, vol. 3, pp. 500-506.

F. Gomez, “Robust non-linear control through neuroevolution,” Ph.D.
dissertation, University of Texas, Austin, 2003.

B. Bakker, “The state of mind: Reinforcement learning with recurrent
neural networks,” Ph.D. dissertation, Leiden University, 2004.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 17351780, 1997.

A. M. Schaefer and S. Udluft, “Solving partially observable rein-
forcement learning problems with recurrent neural networks,” in Re-
inforcement Learning in Non-Stationary Environments, ser. Workshop
Proceedings of the European Conference on Machine Learning (ECML-
05), 2005.

S. Haykin, Neural Networks: A Comprehensive Foundation. New York:
Macmillan, 1994.

H. G. Zimmermann and R. Neuneier, “Neural network architectures for
the modeling of dynamical systems,” in A Field Guide to Dynamical
Recurrent Networks, J. F. Kolen and S. Kremer, Eds. IEEE Press,
2001, pp. 311-350.

H. G. Zimmermann, R. Grothmann, A. M. Schaefer, and C. Tietz,
“Identification and forecasting of large dynamical systems by dynamical
consistent neural networks,” in New Directions in Statistical Signal
Processing: From Systems to Brain, S. Haykin, J. Principe, T. Sejnowski,
and J. McWhirter, Eds. MIT Press, 2006, pp. 203-242.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in The Microstructure of Cognition, D. E. Rumelhart
and J. L. M. et al., Eds. Cambridge, MA: MIT Press, 1986, vol. 1, pp.
318-362.

P. J. Werbos, The Roots of Backpropagation. From Ordered Derivatives
to Neural Networks and Political Forecasting. New York: John Wiley
& Sons, 1994,

K. Hornik, M. Stinchcombe, and H. White, “Multi-layer feedforward
networks are universal approximators,” in Artificial Neural Networks :
Approximation and Learning Theory, H. W. et al., Ed. ~Cambridge:
Blackwell, 1992.

M. Riedmiller, “Neural fitted q iteration - first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:
ECML 2005, ser. Lecture Notes in Artificial Intelligence, J. G. et al.,
Ed., no. 3720. Springer, 2005, pp. 317-328.

R. S. Sutton, A. Barto, and C. Anderson, “Neuron-like adaptive elements
that can solve difficult learning control problems,” IEEE Transactions
on Systems, Man, and Cybernetics, no. 13, pp. 834-846, 1983.

C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Uni-
versity of Cambridge, 1989.

