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ABSTRACT

Black-box query-based attacks constitute significant threats to Machine Learning
as a Service (MLaaS) systems since they can generate adversarial examples with-
out accessing the target model’s architecture and parameters. Traditional defense
mechanisms, such as adversarial training, gradient masking, and input transfor-
mations, either impose substantial computational costs or compromise the test
accuracy of non-adversarial inputs. To address these challenges, we propose an
efficient defense mechanism, MATT, that employs random patch-wise purifica-
tions with an ensemble of lightweight purification models. These models leverage
the local implicit function and rebuild the natural image manifold with low in-
ference latency. Our theoretical analysis suggests that this approach slows down
the convergence of query-based attacks while preserving the average robustness
improvement by combining randomness and purifications. Extensive experiments
on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-
based defense mechanism, demonstrating significant improvements in classifier
robustness against query-based attacks.

1 INTRODUCTION

Deep neural networks (DNNs), while presenting remarkable performance across various applica-
tions, are mostly leaning to become subject to adversarial attacks, where even slight perturbations
to the inputs can severely compromise their predictions (Szegedy et al., 2014). This notorious vul-
nerability significantly challenges the inherent robustness of DNNs and could even make the sit-
uation much worse when it comes to security-critical scenarios, such as facial recognition (Dong
et al., 2019) and autonomous driving (Cao et al., 2019). Accordingly, attackers have devised both
white-box attacks if having full access to the DNN model and black-box attacks in case the model is
inaccessible. While black-box attacks appear to be more challenging, it is often considered a more
realistic threat model, and its state-of-the-art (SOTA) could leverage a limited number of queries
to achieve high successful rates against closed-source commercial platforms, i.e., Clarifai (Clarifai,
2022) and Google Cloud Vision API (Google, 2022), presenting a disconcerting situation.

Defending black-box query-based attacks in real-world large-scale Machine-Learning-as-a-Service
(MLaaS) systems calls for an extremely low extra inference cost. This is because business com-
panies, such as Facebook (VentureBeat, 2022), handle millions of image queries daily and thereby
increase the extra cost for defense a million-fold. This issue prohibits testing time defenses to
run multiple inferences to achieve certified robustness (Cohen et al., 2019; Salman et al., 2020b).
Moreover, training time defenses, i.e., retraining the DNNs with large datasets to enhance their ro-
bustness against adversarial examples (e.g., adversarial training (Madry et al., 2018) and gradient
masking (Tramèr et al., 2018)), impose substantial economic and computational costs attributed to
the heavy training expense. Therefore, there is a critical need for a lightweight yet effective strategy
to perform adversarial purifications to enable one inference cost for achieving robustness.

Given the aforementioned challenges, recent research efforts have been devoted to either eliminating
or disturbing adversarial perturbations prior to the forwarding of the query image to the classifier.
Nevertheless, the existing methods that include both heuristic transformations and neural network-
based adversarial purification models have certain limitations in removing adversarial perturbations.
While heuristic transformation methods cause minimal impact on cost, they merely disrupt adver-
sarial perturbations and often negatively impact the testing accuracy of non-adversarial inputs Xu
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et al. (2018); Qin et al. (2021). Moreover, purification models aiming to completely eradicate ad-
versarial perturbations can even exceed the computational burden of the classifier itself Carlini et al.
(2023). Consequently, there have been no effective defense mechanisms that can achieve both high
robustness and low computational cost against query-based attacks.

In this paper, we propose a novel random patch-wise image purification mechanism leveraging the
local implicit function to improve the robustness of the classifier against query-based attacks. The
idea of local implicit function is first proposed for super-resolution tasks (Lim et al., 2017; Zhang
et al., 2018), and has recently been showing potentiality in defending against white-box attacks with
low computational cost (Ho & Vasconcelos, 2022). Nonetheless, we find that the naive local implicit
function combined with the classifier forms a new black-box system that is still vulnerable to query-
based attacks (6.8% robust accuracy on ImageNet datasets under strong attack), and our theoretical
analysis attributes this to the lack of randomness inside the purifier. Although randomness can be
introduced using an ensemble of purifiers, the inference cost of encoding-querying structure within
the local implicit function almost increases linearly with the number of purifiers. To address these
challenges, we design an end-to-end purification model and only approximate the local implicit
function in a local patch using a randomly chosen purifier from a diversified pool. Our method
allows a significant diversity gain with more purifiers while keeping almost the same inference cost.
Our theoretical analysis shows that our system is more robust with more different purifiers and slows
down the convergence of the query-based attacks.

Our contributions are summarized as follows:

• We propose a novel defense mechanism using the local implicit function to randomly purify
patches of the image to improve the robustness of the classifier. Our work is the first to
extend the local implicit function to defend against query-based attacks.

• We provide a theoretical analysis on the effectiveness of our proposed purifier-based de-
fense mechanism based on the convergence of black-box attacks. Our theoretical analysis
points out the potential vulnerabilities of deterministic transformation functions and sug-
gests the robustness of our system increase with the number of purifiers.

• Our theoretical investigation reveals the connection between the attack’s convergence rate
and transformation function used under the black-box setting, offering a new perspective
on understanding the efficacy of defense mechanisms employed at the preprocessing stage.

• We conduct extensive experiments on CIFAR-10 and ImageNet on current SOTA query-
based attacks and verify the effectiveness of our methods in defending query-based attacks.

2 RELATED WORK

Query-based Attacks. Query-based attacks, continually querying the models to generate adver-
sarial examples, are categorized as either score-based or decision-based, based on their access to
confidence scores or labels, respectively.

Score-based attacks perceive the MLaaS model, inclusive of pre-processors, the core model, and
post-processors, as a black-box system. The objective function, in this case, is the marginal loss
of the confidence scores, as depicted in Equation (1). Black-box optimization techniques, such as
gradient estimation and random search, can be harnessed to tackle this issue. Ilyas et al. (2018)
developed the pioneering limited query score-based attack using Natural Evolutionary Strategies
(NES) for gradient estimation. This sparked a flurry of subsequent studies focusing on gradient
estimation, including ZO-SGD (Liu et al., 2019) and SignHunter (Al-Dujaili & O’Reilly, 2020).
The current cutting-edge score-based attack, Square attack (Andriushchenko et al., 2020), utilizes
random search through localized patch updates. It is frequently cited as a critical benchmark in
evaluating model robustness (Croce et al., 2021). Other attack algorithms like SimBA (Guo et al.,
2019) also employ random search but not as effectively as the Square attack.

Regarding decision-based attacks, the label information typically serves as a substitute since confi-
dence values are not provided. An early work by Ilyas et al. (2018) uses NES to optimize a heuristic
proxy with limited queries. The gradient estimation method for decision-based attacks evolves to
be more efficient by forming new optimization-based problems (e.g., OPT (Cheng et al., 2019)) and
utilizing the sign of the gradient instead of the estimated value (e.g., Sign-OPT (Cheng et al., 2020)
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Figure 1: Illustration of the MLaaS system with defense mechanism within preprocessor under attack. The
attackers can query the model with input x and get the returned information M(x) which can be the confidence
scores or the predicted label.

and HopSkipJump (Chen et al., 2020)). While direct search used in Boundary Attack (Brendel et al.,
2018) is the first decision-based attack, the HopSkipJump Attack is currently considered the most
advanced attack.

Adversarial Purification. Recently, the employment of testing-time defenses has witnessed a sig-
nificant surge, primarily for the purpose of adversarial purification in order to improve the model’s
robustness. Yoon et al. (2021) leverages a score-based generative model to eliminate the adversarial
perturbations. Techniques in self-supervised learning like contrastive loss are used by Mao et al.
(2021) to purify the image. Subsequent to the success attained by diffusion models, they have been
deployed for the development of certified robustness for image classifiers (Nie et al., 2022; Carlini
et al., 2023). Nonetheless, due to the vast number of parameters contained within diffusion models,
they suffer from much lower inference speed compared to classifiers. Recently, the introduction of
the local implicit function model for defending white-box attacks has been noted (Ho & Vasconcelos,
2022). However, they only apply the purifier model trained on a handful of white-box attacks, and
haven’t established a resilient defense system with any theoretical assurance for defending black-
box attacks. In our paper, we have redesigned the network structure by eliminating multi-resolution
support, resulting in inference time acceleration by a factor of four. Moreover, the design of our de-
fense mechanism ensure the inference speed does not increase linearly with the number of purifier
models, which is the case for DISCO (Ho & Vasconcelos, 2022) when randomness is introduced.
Furthermore, we offer a theoretical analysis emphasizing the efficacy of our proposed purifier-based
defense mechanism against query-based attacks, centering around the convergence of black-box at-
tacks. We provide more detailed background information on other general defense mechanism for
the readers interest in Appendix A.

3 PRELIMINARIES

3.1 THREAT MODEL

In the context of black-box query-based attacks, our threat model presumes that attackers possess
only a limited understanding of the target model. Their interaction with the model, which is typically
hosted on cloud servers, is restricted to querying the model and receiving the resultant data in the
form of confidence scores or labels. They lack additional insight into the model or the datasets used.
An illustration of the MLaaS system under attack is shown in Figure 1.

3.2 QUERY-BASED ATTACKS

3.2.1 SCORE-BASED ATTACKS

Assume a classifier M : X → Y is hosted on a cloud server, where X is the input space and Y is
the output space. Attackers can query this model with an input x ∈ X and obtain the corresponding
output M(x) ∈ Y . In scenarios where the model’s output, frequently in the form of a confidence
score, is directly returned to the attackers, this is identified as a score-based attack.
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Table 1: List of heuristic transformations and SOTA purification models. Randomness is introduced
in DISCO (Ho & Vasconcelos, 2022) by using an ensemble of DISCO models to generate features
for random coordinate querying, which is of high computational cost.

Method Randomness Type Inference Cost

Bit Reduction (Xu et al., 2018) ✗ Heuristic Low
Local Smoothing (Xu et al., 2018) ✗ Heuristic Low
JPEG Compression (Raff et al., 2019) ✗ Heuristic Low
Random Noise (Qin et al., 2021) ✓ Heuristic Low
Score-based Model (Yoon et al., 2021) ✓ Neural High
DDPM (Nie et al., 2022) ✓ Neural High
DISCO (Ho & Vasconcelos, 2022) ✗ / ✓ Neural Median / High
MATT (Ours) ✓ Neural Median

In this setting, attackers generate an adversarial example xadv based on the clean example x with
the true label y, aiming to solve the following optimization problem to execute an untargeted attack:

min
xadv∈NR(x)

f(xadv) = min
xadv∈NR(x)

(My(xadv)−max
j ̸=y

Mj(xadv)). (1)

Here, NR(x) = {x′|∥x′ − x∥p ≤ R} represents a ℓp ball around the original example x. In the
case of targeted attacks, j is fixed to be the target label instead of the index of the highest confidence
score excluding the true label. The attack is deemed successful if the value of the objective function
is less than zero.

While projected gradient descent algorithm is used in white-box attacks, the attackers under black-
box setting do not have access to the gradient information. Thus, black-box algorithms usually
leverage the following techniques to estimate the function descent direction: gradient estimation
and heuristic search. Further details of these techniques are included in Appendix B.

3.2.2 DECISION-BASED ATTACKS

Attackers have explored various ways of forming optimization problems for decision-based attacks,
since the landscape of the objective function is discontinuous Cheng et al. (2019). For example,
Ilyas et al. (2018) uses a proxy of the objective function, Cheng et al. (2020) and Aithal & Li (2022)
forms new problems based on geometry, and Chen et al. (2020) deal with the original problem but
with the sign of the gradient. Our theoretical analysis can be also applied to decision-based attacks
as they employ similar techniques in solving this black-box optimization problem.

3.3 ADVERSARIAL PURIFICATION

Adversarial purification has recently emerged as a central wave of defense against adversarial at-
tacks, which aims to remove or disturb the adversarial perturbations via heuristic transformations
and purification models. We have provided a list of widely heuristic transformations and SOTA
purification models in Table 1.

Heuristic Transformations. Heuristic transformations are unaware of the adversarial perturbations
and aim to disturb the adversarial perturbations by shrinking the image space (Bit Reduction and
Local Smoothing etc.) or deviating the gradient estimation (Random Noise).

Purification Models. Powerful purification models are trained to remove the adversarial perturba-
tions and project the adversarial images back to the natural image manifold. Popular purification
models include Score-based Model (Yoon et al., 2021) and DDPM (Nie et al., 2022), and local im-
plicit purification models, such as DISCO (Ho & Vasconcelos, 2022). Among them, only the local
implicit purifier has moderate inference cost and be suitable for defending query-based attacks.

With defense mechanisms deployed as pre-processors in the MLaaS system as shown in Figure 1, the
attackers need to break the whole MLaaS pipeline to achieve a successful attack. While randomness
is considered as a key factor of improving the robustness of such systems (Raff et al., 2019; Sitawarin
et al., 2022), naively introducing them by ensembling multiple purifiers (DISCO) will lead to a linear
increase in the inference cost.
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Figure 2: An illustration of repairing a pixel with our end-to-end purification model. The encoder diffuse
nearby information of the pixel into its high-dimensional feature. Then the decoder reconstruct its RGB value
with respect to this feature information. Note that the inference of pixels of one image patch can be performed
in parallel in a batch.

4 RANDOM LOCAL IMPLICIT PURIFICATION

4.1 OUR MOTIVATION

While purifiers can execute adversarial purification on incoming images, our research, as eluci-
dated in section 4.3 and substantiated in section 5.2, suggests that a single deterministic purifier
cannot enhance the system’s robustness. A straightforward ensembling method, albeit theoretically
sound, increases the inference cost linearly with the number of purifiers, rendering it nonviable for
real-world MLaaS systems. We address this issue by developing an end-to-end purification model
applying local implicit function to process input images of any dimension. We further introduce a
novel random patch-wise purification algorithm that capitalizes on a group of purifiers to counter
query-based attacks. Our theoretical findings illustrate that the augmented robustness of our system
is directly proportional to the number of the purifiers. Importantly, this approach maintains a fixed
inference cost, regardless of the number of purifiers, aligning well with practical real-world MLaaS
systems (refer to Appendix C for details).

4.2 IMAGE PURIFICATION VIA LOCAL IMPLICIT FUNCTION

Under the hypothesis that natural images lie on a low-dimensional manifold in the high-dimensional
image space, adversarial perturbations can be viewed as a deviation from the natural manifold.
Assume that we have a purification model m(x) : X → X that can project the adversarial images
back to the natural manifold. If the attackers are generating adversarial examples x′ from the original
images x randomly drawn from the natural image manifold distribution D, the purification model
m(x) can be trained to minimize the following loss:

L = ED∥x−m(x′)∥+ λED∥x−m(x)∥, (2)

where λ controls the trade-off between the two terms. A larger λ means a lower deviation from
clean images. In practice, the second term is often ignored.

Efficient Unique Design. Based on prior works on local implicit function, we design an end-to-end
purification model that can be trained with the above loss function, shown in Figure 2. Different from
the first attempt of using an implicit function for defending white-box attack (Ho & Vasconcelos,
2022), we remove the multi-scale support by eliminating the positional encoding (structure level)
and local ensemble inference (implementation level). By doing so, we achieve a 4x inference time
speedup. The detailed introduction of this speed up can be found in Appendix F.1.

Random Patch-wise Purification. Aside from the unique design of the purification model, our
main contribution lies in random patch-wise reconstruction. Although the purification model can
take in images of any size and reconstruct a local area of the image, the former practice reconstructs
the pixel by encoding the whole image and perform random selection from the output features to
introduce randomness, as shown in Figure 3. However, since the encoder is the bottleneck of the
whole model, this practice leads to a almost linear increase in the inference time with the number
of purifiers. In contrast, we propose to reconstruct the pixel only using nearby pixels and introduce
randomness by using a pool of purifiers. We have validated this inference speedup in Appendix C.

The comparison of encoding process from the previous method and our method is shown in Figure 3.
Although each purifier can be deterministic, the randomness is introduced by randomly picking
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age (3 attack algorithms and N purifiers). Fi-
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using ℓ1 loss

a purifier from the pool and performing purification on randomly selected image patches. This
practice enables us to largely increase the diversity of purifiers and maintain a moderate inference
time. Moreover, it allows us to actually use the purifier from a larger purification function space, if
we view the combinations of used purifiers as a new purifier. The full training process is shown in
Figure 4. More on the training details can be found in Appendix F.

4.3 THEORETICAL ANALYSIS AGAINST GRADIENT-BASED ATTACKS

Assume we have K+1 purifiers {m0, . . . ,mK}, the output of the new black-box system containing
the i-th purifier is defined as F (i)(x) = f(mi(x)). Without loss of generality, we now perform
analysis on breaking the system of the purifier m0, denoted as F (x) = f(m0(x)). Our following
analysis utilizes the ℓ2-norm as the distance metric, which is the most commonly used norm for
measuring the distance between two images.

Suppose the index of two independently drawn purifiers in our defense are k1 and k2, the attacker
approximate the gradient of the function F (x) with the following estimator:

Gµ,K =
f(mk1

(x+ µu))− f(mk2
(x))

µ
u. (3)

The above gradient estimator provides an unbiased estimation of the gradient of the function:

Fµ,K(x) =
1

K + 1

K∑
k=0

fµ(mk(x)), (4)

where fµ is the gaussian smoothing function of f . The detailed definition of the gaussian smoothing
function is included in Appendix G.1. So now we can see that the convergence of the black-box
attack is moving towards an averaged optimal point of the functions of the systems formed with
different purifiers, which suggests an averaged robustness across different purifiers.

Now we assume the purifiers has the following property:

∥mi(x)−mj(x)∥ < ν, ∀i, j ∈ {0, . . . ,K − 1} (5)

where ν can reflect the diversity of the purifiers. We cannot directly measure ν, but we intuitively
associate it with the number of purifiers. The larger the number of purifiers, the larger ν is.

We have the following assumptions for the original function f(x):

Assumption 1. f(x) is Lipschitz-continuous, i.e.,, |f(y)− f(x)| ≤ L0(f)∥y − x∥.
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Assumption 2. f(x) is continuous and differentiable, and ∇f(x) is Lipschitz-continuous, i.e.,,
|∇f(y)−∇f(x)| ≤ L1(f)∥y − x∥.

For the purifiers, we assume each dimension of their output also has the property in Assumption 1
and Assumption 2. Then, we denote L0(m) = maxi L0(mi) and L1(m) = maxi L1(mi), where
mi is the i-th dimension of the output of the purifier m.

Notations. We denote the sequence of standard Gaussian noises used to approximate the gradient
as Ut = {u0, . . . ,ut}, with t to be the update step. The purifier index sequence is denoted as
kt = {k0, . . . , kt}. The generated query sequence is denoted as {x0,x1, . . . ,xQ}. d = |X | as the
input dimension.

With the above definitions and assumptions, we have Theorem 1 for the convergence of the gradient-
based attacks. The detailed proof is included in Appendix G.2.

Theorem 1. Under Assumption 1, for any Q ≥ 0, consider a sequence {xt}Qt=0 generated us-
ing the update rule of gradient-based score-based attacks, with constant step size, i.e.,, η =√

2Rϵ
(Q+1)L0(f)3d2 ·

√
1

L0(m0)γ(m0,ν)
, with γ(m0, ν) =

4ν2

µ2 + 4ν
µ L0(m0)d

1
2 +L0(m0)

2d. Then, the
squared norm of gradient is bounded by:

1

Q+ 1

Q∑
t=0

EUt,kt [∥∇Fµ,K(xt)∥2] ≤

√
2L0(f)5Rd2

(Q+ 1)ϵ
·
√

γ(m0, ν)L0(m0)3 (6)

The lower bound for the expected number of queries to bound the expected squared norm of the
gradient of function Fµ,K of the order δ is

O(
L0(f)

5Rd2

ϵδ2
γ(m0, ν)L0(m0)

3) (7)

Single Deterministic Purifier. Setting ν to 0, we have γ(m0, 0)L0(m0)
2 = L0(m0)

5, which is
the only introduced term compared to the original convergence rate (Nesterov & Spokoiny, 2017)
towards f(x). Meanwhile, the new convergence point becomes F ∗

µ(x). We have the following
conclusion for the convergence of the attack:

• Influence of L0(m0): For input transformations that shrink the image space, since their
L0(m0) < 1, they always allow a faster rate of convergence for the attack. For neural
network purifiers, the presence of this term means their vulnerabilities is introduced into
the black-box system, making it hard to quantify the robustness of the system.

• Optimal point F ∗
µ(x): By using a deterministic transformations, the optimal point of

the attack is changed from f∗ to F ∗
µ(x). If we can inversely find an adversarial image

x∗ = m(x∗), the robustness of the system is not improved at all. No current work can
theoretically eliminate this issue. This may open up a new direction for future research.

Research implications. From the above analysis, we can see that a single deterministic purifier may 1)
accelerate the convergence of the attack, and 2) cannot protect the adversarial point from being exploited.

Pool of Deterministic Purifiers. The introduced term γ(m0, ν)L0(m0)
2 increase quadratically

with ν. This along with our intuition mentioned above suggests that the robustness of the system
increases with the number of purifiers. While adversarial optimal points persist, the presence of
multiple optimal points under different purifiers serve as the first trial to enhance the robustness of
all purification-based methods.

To validate our theoretical analysis, we first conduct experiments on a subset of the CIFAR-10
dataset (Krizhevsky, 2009) with a ResNet-18 model (Dadalto, 2022) as the classifier. The general
settings are the same as used in section 5. We use the Square Attack (Andriushchenko et al., 2020)
as the attack algorithm. The convergence of the attack against our model and other input transforma-
tions is shown in Figure 5. We can see a clear acceleration of the convergence of the attack with the
introduction of transformations that shrink the image space and powerful deterministic models fails
to improve the robustness of the system. Another validation of our theoretical analysis is shown in
Figure 6 for proving the robustness of the system increases with the number of purifiers (associated
with ν).

7



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Iterations 1e3

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k 

Su
cc

es
s R

at
e

None
FeatureSqueezing

SpatialSmoothing
DISCO

MATT
Rand

Figure 5: The convergence of the Square Attack
on CIFAR-10 using different heuristic transfor-
mations and purifiers.
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4.4 THEORETICAL ANALYSIS AGAINST GRADIENT-FREE ATTACKS

The heuristic direction of random search becomes:

HK(x) = f(mk1
(x+ µu))− f(mk2

(x+ µu)). (8)

Theorem 2. Under Assumption 1, using the update in Equation (8),

P (Sign(H(x)) ̸= Sign(HK(x))) ≤ 2νL0(f)

|H(x)|
(9)

A similar increase in the robustness as Theorem 1 can be observed with the increase of ν. The
detailed proof is included in Appendix G.3. This ensures the robustness of our defense against
gradient-free attacks.

5 EVALUATION

5.1 EXPERIMENT SETTINGS

Datasets and Classification Models. For a comprehensive evaluation of MATT, we employ two
widely used benchmark datasets for testing adversarial attacks: CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009). Our evaluation is conducted on two balanced subsets, which contain
1,000 and 2,000 correctly classified test images from CIFAR-10 and ImageNet, respectively. These
images are uniformly spread across 10 classes in CIFAR-10 and 200 randomly selected classes in
ImageNet. For classification models, we adopt models from the RobustBench (Croce et al., 2021).
For standardly trained models, WideResNet-28-10 (Zagoruyko & Komodakis, 2016) with 94.78%
for CIFAR-10 and ResNet-50 (He et al., 2016) with 76.52% for ImageNet are used. For adversarially
trained models, we use the WideResNet-28-10 model with 89.48% trained by Gowal et al. (2020)
for CIFAR-10 and ResNet-50 model with 64.02% trained by Salman et al. (2020a) for ImageNet.

Attack and Defense Methods. We consider 5 SOTA query-based attacks for evaluation: NES (Ilyas
et al., 2018), SimBA (Guo et al., 2019), Square (Andriushchenko et al., 2020), Boundary (Brendel
et al., 2018), and HopSkipJump (Chen et al., 2020). Comprehensive descriptions and configurations
of each attack can be found in Appendix D. The perturbation budget of ℓ∞ attacks is set to 8/255
for CIFAR-10 and 4/255 for ImageNet. For ℓ2 attacks, the perturbation budget is set to 1.0 for
CIFAR-10 and 5.0 for ImageNet. For defense mechanism, adversarially trained models are used as
a strong robust baseline. Moreover, we include SOTA deterministic purification model DISCO Ho
& Vasconcelos (2022) and spatial smoothing (Xu et al., 2018) for direct comparison. Finally, widely
used random noise defense (Qin et al., 2021) serve as a baseline for introducing randomness. The
detailed settings of each defense method are described in Appendix E. We report the robust accuracy
of each defense method against each attack with 200/2500 queries for CIFAR-10/ImageNet.
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Table 2: Evaluation results of MATT and other defense methods on CIFAR-10 and ImageNet under
5 SOTA query-based attacks. The robust accuracy under 200/2500 queries is reported. The best
defense mechanism under 2500 queries are highlighted in bold and marked with gray.

Datasets Methods Acc. NES(ℓ∞) SimBA(ℓ2) Square(ℓ∞) Boundary(ℓ2) HopSkipJump(ℓ∞)

CIFAR-10
(WideResNet-28)

None 100.0 88.0/12.6 51.8/3.16 28.1/0.90 93.2/62.0 75.9/76.6
AT 90.2 88.4/83.1 87.5/79.0 81.7/71.0 89.3/88.8 90.0/88.6

Smoothing 80.6 53.5/8.00 45.0/5.50 6.00/0.00 74.6/42.0 68.1/66.1
Input Rand. 81.4 78.8/75.0 75.4/69.6 67.6/63.8 78.5/80.6 74.9/78.2

DISCO 91.1 87.6/36.6 82.0/16.6 22.1/2.20 88.7/69.6 85.4/86.2
MATT (Ours) 88.7 88.8/86.3 85.6/78.5 81.5/71.5 87.4/87.4 87.0/89.4

MATT-AT (Ours) 89.2 88.3/85.6 87.9/85.0 86.0/83.0 89.0/88.7 88.9/88.7

ImageNet
(ResNet-50)

None 100.0 95.3/80.0 85.6/66.4 49.2/6.80 92.4/84.8 89.3/86.3
AT 75.2 68.2/66.8 71.2/66.3 69.2/61.2 74.7/74.5 75.1/74.9

Smoothing 89.1 93.5/77.7 80.2/36.8 37.7/3.00 86.9/78.9 84.2/84.2
Input Rand. 84.6 83.6/82.4 80.6/76.2 81.4/78.5 85.4/84.8 84.7/85.6

DISCO 88.5 86.2/79.6 79.8/33.6 45.1/6.70 86.2/82.8 87.6/84.4
MATT (Ours) 87.2 85.6/82.2 82.5/80.1 85.0/77.2 87.0/85.3 86.5/86.3

MATT-AT (Ours) 75.5 73.2/71.5 70.6/69.9 72.4 /69.5 74.2/74.7 74.3/73.3

5.2 OVERALL DEFENSE PERFORMANCE

Our numerical results on the effectiveness of the defense mechanisms are shown in Table 2.

Clean Accuracy. One major concern about performing input transformations is that they may com-
promise the accuracy of non-adversarial inputs. We observe that MATT achieves comparable clean
accuracy to the standardly trained model on both CIFAR-10 and ImageNet. Moreover, we observe
that MATT can be combined with adversarially trained models to improve its clean accuracy for
free. Detailed information on the influence of MATT on clean accuracy can be found in Appendix I.

Failure of Deterministic Purification. As suggested in our theoretical analysis, deterministic trans-
formations, face the risk of introducing extra vulnerability and accelerating the attacks. As shown in
Table 2, spatial smoothing always accelerating the attack and DISCO suffer from a significant drop
in robust accuracy under 2500 queries against strong attack (Square Attack). These results reflect
the importance of introducing randomness in purification.

Effectiveness of MATT. Our mechanism, built upon adversarial purification, achieves moderate
clean accuracy to be the highest or the second to be the highest. This desired property allows for
getting trustworthy results. Moreover, it achieves the highest robust accuracy under 2500 queries on
CIFAR-10 and ImageNet almost for all the attacks. Surprisingly, the random noise defense performs
well on natural images from ImageNet datasets, while MATT achieves a comparable results when
random noise defense achieved the best results. This suggests that MATT can be used as a general
defense mechanism for both ℓ∞ and ℓ2 attacks.

6 CONCLUSION

This paper introduces a novel theory-backed image purification mechanism utilizing local implicit
function to defend deep neural networks against query-based adversarial attacks. The mechanism
enhances classifier robustness and reduces successful attacks whilst also addressing vulnerabilities
of deterministic transformations. Its effectiveness and robustness, which increase with the addition
of purifiers, have been authenticated via extensive tests on CIFAR-10 and ImageNet. Our work
highlights the need for dynamic and efficient defense mechanisms in machine learning systems.
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training-time and testing-time defenses present significant limitations for deployment in real-world
MLaaS systems. For training-time defense, the aim is to improve the worst-case robustness of the
models. Adversarial training (AT) has been considered as one of the fundamental practices of train-
ing time defense, where models are trained on augmented datasets with specially-crafted samples
to ensure robustness of the models (Madry et al., 2018). Other training-time examples like gradient
masking (Tramèr et al., 2018) and defensive distillation Papernot & McDaniel (2016) are also pro-
posed to improve the robustness of the models. Nonetheless, such methods are unsuitable for MLaaS
systems because of the extensive training costs and potential for decreased accuracy on clean exam-
ples. With regards to testing-time defense, a prominent defense from white-box attacks, randomized
smoothing, can ensure the robustness of the model within a certain confidence level (Yang et al.,
2020), a feature known as certified robustness. Another example for multiple inference to improve
the robustness is called random self-ensemble Liu et al. (2018). However, the inference speed of
randomized smoothing is too slow to be deployed on real-world MLaaS systems. Other testing-time
defenses tend towards randomization of the input or output. Rand noise defense proposed by Qin
et al. (2021) leverages Gaussian noises as the input to the model to disturb the gradient estima-
tion. Yet, the defense is ineffective against strong attack methods and hurts the clean accuracy. The
output-based defense, like confidence poisoning (Chen et al., 2022) influences the examples on the
classification boundary and cannot defend against the decision-based attacks.

B SEARCH TECHNIQUES FOR BLACK-BOX ATTACKS

Projected Gradient Descent A common approach of performing adversarial attacks (often white-
box) is to leverage projected gradient descent algorithm (Carlini & Wagner, 2017):

xt+1 = ProjNR(x)(x− ηtg(x)t). (10)

Gradient Estimation While there can be various gradient estimators, we consider the following
gradient estimator in our theoretical analysis:

g(x) =
f(x+ µu)− f(x)

µ
u. (11)

Heuristic Search For heuristic search, the main issue is to determine the search direction. One
commonly used search direction can be:

s(x) = I(h(x) < 0) · µu, where h(x) = f(x+ µu)− f(x), (12)

where I is the indicator function. The search direction is determined by the sign of the objective
function. If the objective function is negative, the search direction is the gradient direction. Oth-
erwise, the search direction is the opposite of the gradient direction. The corresponding updating
direction will be Equation (10) with −ηtg(x)t replaced by s(xt).

C COMPARISON OF THE INFERENCE SPEED

We have tested the inference speed of DISCO and MATT using a workstation with a single NVIDIA
RTX 4090 GPU. We set the batch size of inference to be 1 and vary the number of the purifiers from 1
to 10. We record the time of the last 900 inferences of a total of 1000 iterations. Moreover, to ensure
a fair comparison on the inference mechanism, we use the same encoder and decoder for DISCO
and MATT so that they only differ in the way of inference. Note that any software and services that
may affect the test has been turned off. We use the same standardly and adversarially trained models
as section 5 as the baseline of the comparison. The results for CIFAR-10 and ImageNet datasets are
shown in Figure 7 and Figure 8, respectively. While our mechanism does not increase inference cost
with the increase of the purifiers, the inference cost of DISCO almost increase linearly. Moreover,
we have noticed that on ImageNet datasets, the inference speed of MATT is even faster than the
baseline model, which makes our mechanism suitable for real-world MLaaS systems.
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Figure 7: The inference speed of DISCO and
MATT on CIFAR-10 dataset.

1 2 3 4 5 6 7 8 9 10
Number of Purifiers

0.01

0.02

0.03

0.04

L
at

en
cy

 (s
)

Adv Std MATT DISCO

Figure 8: The inference speed of DISCO and
MATT on ImageNet dataset.

D DETAILS OF THE ATTACKS

We utilize 5 SOTA query-based attacks for evaluation: NES (Ilyas et al., 2018), SimBA (Guo
et al., 2019), Square (Andriushchenko et al., 2020), Boundary (Brendel et al., 2018), and Hop-
SkipJump (Chen et al., 2020). The category of them is listed below in Table 3.

Table 3: The category of the attacks along with the techniques they use.

Gradient Estimation Random Search

Score-based NES Square, SimBA
Decision-based Boundary HopSkipJump

Implementation For Boundary Attack and HopSkipJump Attack, we adopt the implementation
from Foolbox (Rauber et al., 2020). For Square Attack and SimBA, we use the implementation from
ART library (Nicolae et al., 2018). For NES, we implement it under the framework of Foolbox.

Hyperparameters The hyperparameters used for the attacks are listed below for full reproducibility.
Table 4: The hyperparameters used for NES.

CIFAR-10 ImageNet

η (learning rate) 0.01 0.0005
q (number of points used for estimation) 100 100

Table 5: The hyperparameters used for SimBA.

CIFAR-10 ImageNet

η (step size) 0.2 0.2

Table 6: The hyperparameters used for Square.

CIFAR-10 ImageNet

µ (Fraction of Pixel Changed) 0.05 ∼ 0.5 0.05 ∼ 0.5

Table 7: The hyperparameters used for Bound-
ary Attack.

CIFAR-10 ImageNet

ηsph (Spherical Step) 0.01 0.01
ηsrc (Source Step) 0.01 0.01
ηc (Source Step Converge) 1E-7 1E-7
ηa (Step Adaptation) 1.5 1.5

Table 8: The hyperparameters used for Hop-
SkipJump Attack.

CIFAR-10 ImageNet

n (number for estimation) 100 100
γ (Step Control Factor) 1 1

E DETAILED INFORMATION FOR THE DEFENSE

We compare our algorithm with three types of baseline defense. For random noise defense, we
use a Gaussian noise with σ = 0.041 as the input to the classifier. For the spatial smoothing
transformations, we set the size of the kernel filter to be 3. For DISCO model, we implement a naive
version without randomness using pre-trained models from the official implementation. We pick
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the pre-trained model under PGD attack (Madry et al., 2018) as the core local implicit model for
DISCO.

F DETAILS FOR MATT

F.1 EFFICIENT STRUCTURE FOR INFERENCE SPEED UP

After we delve into the local implicit function implementation Chen et al. (2021), we find that the
local ensemble mechanism that used to improve the performance of the local implicit function in
super-resolution tasks is not necessary for our task. A conceptual illustration of this technique is
shown in Figure 9. As image purification is a one-to-one pixel mapping task, the local ensemble
mechanism inference the same pixel four times and take the average value, which is meaningless for
our task. Therefore, we remove this mechanism and only use the local implicit function to purify
the image. This modification accelerates the inference speed by a factor of four.

Low-Res Pixel H-Res Pixel

Figure 9: An illustration of the local ensemble mechanism in the local implicit function for multi-
resolution support. High resolution pixels are predicted based on high-level features from nearby
low resolution pixels.

F.2 TRAINING DIVERSIFIED PURIFIERS

For improving the diversity of the purifiers, we consider the following influence factors in Table 9
and use their combinations to train 12 different purification models for each dataset. For CIFAR-10,
we use a pre-trained ResNet-18 model (Dadalto, 2022) for generating adversarial examples. For
ImageNet, we use a pre-trained ResNet-50 model (Torchvision, 2023) for generating adversarial
examples.

Table 9: The factors that are considered when training diversified models for MATT.

Hyperparameter Value

Attack Tyep
FGSM (Goodfellow et al., 2015)

PGD (Madry et al., 2018)
BIM Kurakin et al. (2017)

Encoder Structure RCAN (Zhang et al., 2018), EDSR
Feature Depth 32, 64

We diversify the purifiers from the following aspects:

• Structural Diversity: By leveraging different structures of encoders and decoders, we can
diversify the purifiers.

• Random Patch-wise Diversity: By performing random patch-wise purification, we are
actually combining different purifiers to form a new purifier.
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G SUPPLEMENTARY MATERIALS FOR THEORETICAL ANALYSIS

G.1 IMPORTANT DEFINITIONS

Definition 1. The Gaussian-Smoothing function corresponding to f(x) with µ > 0,u ∼ N (0, I)
is

fµ(x) =
1

(2π)d/2

∫
f(x+ µu)e−

∥u∥2
2 du (13)

G.2 PROOF OF THEOREM 1

The essential lemmas are given as follows, the complete proofs are shown in Nesterov & Spokoiny
(2017).
Lemma 1. Let f(x) be the Lipschitz-continuous function, |f(y)− f(x)| ≤ L0(f)∥y − x∥. Then

L1(fµ) =
d

1
2

µ
L0(f)

We define the p-order moment of normal distribution as Mp. Then we have
Lemma 2. For p ∈ [0, 2], we have

Mp ≤ d
p
2

If p ≥ 2, the we have two-side bounds

d
p
2 ≤ Mp ≤ (p+ d)

p
2

Lemma 3. Let f(x) be the Lipschitz-continuous function, |f(y) − f(x)| ≤ L0(f)∥y − x∥. And
m(x) is Lipschitz-continuous for every dimension. Then

L0(f ◦m) ≤ L0(f)L0(m)

where L0(m) is defined as L0(m) = maxi L0(mi).

Proof.
|f(m(y))− f(m(x))| ≤ L0(f)∥m(y)−m(x)∥

= L0(f)

√√√√ d∑
i=1

L0(mi)2(yi − xi)2

≤ L0(f)L0(m)∥y − x∥

(14)

This is the proof for Theorem 1.

Proof. According to the property of Lipschitz-continuous gradient,

Fµ,K(xt+1) ≤ Fµ,K(xt)− ηt⟨∇Fµ,K(xt), Gµ,K(xt)⟩+
1

2
η2tL1(Fµ,K)∥Gµ,K(xt)∥2 (15)

The Gµ,K(xt) can be decomposed as

Gµ,K(xt) =
f(mkt1

(x+ µu))− f(mkt2
(x))

µ
ut

=
f(mkt1

(x+ µu))− f(m0(x+ µu)) + f(m0(x+ µu))− f(m0(x))

µ
ut

+
f(m0(x))− f(mkt2

(x))

µ
ut

(16)

The squared term ∥Gµ,K(xt)∥2 is bounded by

∥Gµ,K(xt)∥2 ≤ 4ν2

µ2
L0(f)

2∥ut∥2 +
4ν

µ
L0(F )L0(f)∥ut∥3 + L0(F )2∥ut∥4 (17)
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Take the expectation over ut, kt1, and kt2, use Lemma 2, we have

Fµ,K(xt+1) ≤ Fµ,K(xt)− ηt∥∇Fµ,K(xt)∥2

+
1

2
η2tL1(Fµ,K)(

4ν2

µ2
L0(f)

2d+
4ν

µ
L0(F )L0(f)(d+ 3)

3
2 + L0(F )2(d+ 4)2)

(18)
For L1(Fµ,K), we have:

L1(Fµ,K) =
1

K

K∑
k=1

L1(fµ(mk)) ≤
L0(F )d

1
2

µ
(19)

Use Lemma 1, and the dimension d is high, we have

Fµ,K(xt+1) ≤ Fµ,K(xt)− ηt∥∇Fµ,K(xt)∥2

+
1

2
η2t

L0(f)
3L0(m0)d

3
2

µ
(
4ν2

µ2
+

4ν

µ
L0(m0)d

1
2 + L0(m0)

2d)
(20)

We take the expectation over Ut, kt.

EUt,kt [Fµ,K(xt+1)] ≤ EUt−1,kt−1 [Fµ,K(xt)]− ηtEUt,kt [∥∇Fµ,K(xt)∥2]

+
1

2
η2t

L0(f)
3L0(m0)d

3
2

µ
(
4ν2

µ2
+

4ν

µ
L0(m0)d

1
2 + L0(m0)

2d)
(21)

Now consider constant step size ηt = η, and sum over t from 0 to Q, we have

1

Q+ 1

Q∑
t=0

EUt
[∥∇Fµ,K(xt)∥2] ≤

1

η
(
Fµ,K(x0)− F ∗

K

Q+ 1
)

+
1

2
η
L0(f)

3L0(m0)d
3
2

µ
(
4ν2

µ2
+

4ν

µ
L0(m0)d

1
2 + L0(m0)

2d)

(22)
Since the distance between the input variable should be bounded by R and use Lipschitz-continuous,
we have

∥Fµ,K(x0)− F ∗
K∥ ≤ 1

K
L0(f)

K∑
k=0

L0(mk)R ≤ L0(F )R (23)

Considering bounded µ ≤ µ̂ = ϵ

d
1
2 L0(F )

to ensure local Lipschitz-continuity, and set γ(m0, ν) =

4ν2

µ2 + 4ν
µ L0(m0)d

1
2 + L0(m0)

2d

1

Q+ 1

Q∑
t=0

EUt,kt [∥∇Fµ(xt)∥2] ≤
1

η
(
L0(F )R

Q+ 1
) +

1

2
η
L0(f)

4L0(m0)
2

ϵ
d2γ(m0, ν) (24)

Minimize the right hand size,

η =

√
2Rϵ

(Q+ 1)L0(f)3d2
·

√
1

L0(m0)γ(m0, ν)
(25)

And we get

1

Q+ 1

Q∑
t=0

EUt,kt [∥∇Fµ(xt)∥2] ≤

√
2L0(f)5Rd2

(Q+ 1)ϵ
·
√
γ(m0, ν)L0(m0)3 (26)

To guarantee the expected squared norm of the gradient of function Fµ of the order δ, the lower
bound for the expected number of queries is

O(
L0(f)

5Rd2

ϵδ2
γ(m0, ν)L0(m0)

3) (27)
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G.3 PROOF OF THEOREM 2

Proof.

P (Sign(H(x)) ̸= Sign(HK(x))) ≤ P (|HK(x)−H(x)| ≥ |H(x)|)

≤ E[|HK(x)−H(x)|]
|H(x)|

≤
√
E[(HK(x)−H(x)])2

|H(x)|

≤
√
E[2(f(mk1

(x+ µu))− f(m0(x+ µu)))2 + 2(f(mk2
(x))− f(m0(x)))2]

|H(x)|

≤ 2νL0(f)

|H(x)|
(28)

H ACCURACY CONVERTED USING THE BASE ACCURACY

As we have evaluated the performance of MATT on the correctly classified examples, the resulting
robust accuracy on these examples may seem higher than the test accuracy reported in other works.
To avoid confusion and ease the comparison of our work with other works, we have provided a
table of converted accuracy (original robust accuracy multiplies the base accuracy of the model) in
Table 10.

Table 10: The converted accuracy using results from Table 2.

Datasets Methods Acc. NES(ℓ∞) SimBA(ℓ2) Square(ℓ∞) Boundary(ℓ2) HopSkipJump(ℓ∞)

CIFAR-10
(WideResNet-28)

None 94.8 83.4/11.9 49.1/3.0 26.6/0.9 88.4/60.0 72.0/72.6
AT 85.5 83.8/78.8 83.0/74.9 77.5/67.3 84.7/84.2 85.3/84.0

Smoothing 76.4 50.7/7.6 42.7/5.2 5.7/0.0 70.7/39.8 64.6/62.7
Input Rand. 77.1 74.7/71.1 71.5/66.0 64.1/60.5 74.4/76.4 71.0/74.1

DISCO 86.3 83.0/34.7 77.7/15.7 21.0/2.1 84.1/66.0 81.0/81.7
MATT (Ours) 84.1 84.2/81.8 81.1/74.4 77.3/67.8 82.9/82.9 82.5/84.8

MATT-AT (Ours) 84.6 83.7/81.1 83.3/80.6 81.5/78.7 84.4/84.1 84.3/84.1

ImageNet
(ResNet-50)

None 76.5 72.9/61.2 65.5/50.8 37.6/5.2 70.7/64.9 68.3/66.0
AT 57.5 52.2/51.1 54.5/50.7 52.9/46.8 57.1/57.0 57.5/57.3

Smoothing 68.2 71.5/59.4 61.4/28.2 28.8/2.3 66.5/60.4 64.4/64.4
Input Rand. 64.7 64.0/63.0 61.7/58.3 62.3/60.1 65.3/64.9 64.8/65.5

DISCO 67.7 65.9/60.9 61.0/25.7 34.5/5.1 65.9/63.3 67.0/64.6
MATT (Ours) 66.7 65.5/62.9 63.1/61.3 65.0/59.1 66.6/65.3 66.2/66.0

MATT-AT (Ours) 57.8 56.0/54.7 54.0/53.5 55.4/53.2 56.8/57.1 56.8/56.1

I INFLUENCE ON CLEAN ACCURACY

One of the biggest advantage of local implicit purification is that it does not affect the clean accuracy
of the model. While the results for evaluation of our mechanism’s robust accuracy are shown in
Table 2 in section 5, we also provide the results for clean accuracy in figure 10. Moreover, we
have conducted extra experiments on the influence of the numbers of the image patches on the clean
accuracy. The results are shown in figure 11. The results are obtained using the whole test set of
CIFAR-10 and validation set of ImageNet.

Comaprison of Defense Mechanisms. We first test clean accuracy on each purification model
contained in DISCO and our method. The label name refers to the white-box attacks used to generate
adversarial examples for training the purification model. For MATT, a list of the purification model
and their according attack and encoder combination can be found in Table 11. For both datasets, all
the purification models have a better clean accuracy than adding random noise. Moreover, they all
achieve better clean accuracy than adversarially trained models on ImageNet dataset.

Influence of the Number of Patches. We then test the influence of the number of patches on
the clean accuracy. In MATT, we only use image patches for feature encoding and purification.
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Figure 10: Comparison of defense mechanisms and models on
clean accuracy.Upper Figure: CIFAR-10 dataset. Lower Figure:
ImageNet dataset.
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Figure 11: Influence of the number of
image patches in MATT.

Therefore, the number of patches is a hyperparameter that can be tuned. We test the influence of the
number of patches on the clean accuracy. The results are shown in figure 11. We can see that the
clean accuracy is not affected by the number of patches.

Table 11: The purification model used in MATT.

Model Type p0 p1 p2 p3 p4 p5

Attack Encoder BIM EDSR BIM RCAN FGSM EDSR FGSM RCAN PGD EDSR PGD RCAN
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