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Abstract

Optimal Transport (OT) has recently emerged
as a powerful framework for learning minimal-
displacement maps between distributions.
The predominant approach involves a neural
parametrization of the Monge formulation
of OT, typically assuming the same space
for both distributions. However, the setting
across “incomparable spaces” (e.g., of different
dimensionality), corresponding to the Gromov-
Wasserstein distance, remains underexplored,
with existing methods often imposing restrictive
assumptions on the cost function. In this paper,
we present a novel neural formulation of the
Gromov-Monge (GM) problem rooted in one
of its fundamental properties: invariance to
strong isomorphisms. We operationalize this
property by decomposing the learnable OT map
into two components: (i) an approximate strong
isomorphism between the source distribution and
an intermediate reference distribution, and (ii) a
GM-optimal map between this reference and the
target distribution. Our formulation leverages and
extends the Monge gap regularizer of Uscidda &
Cuturi (2023) to eliminate the need for complex
architectural requirements of other neural OT
methods, yielding a simple but practical method
that enjoys favorable theoretical guarantees.
Our preliminary empirical results show that our
framework provides a promising approach to
learn OT maps across diverse spaces.

1. Introduction

Transforming samples between distributions lies at the core
of machine learning, with applications ranging from genera-
tive modeling (Creswell et al., 2018; Rezende & Mohamed,
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2015; Song et al., 2020) to domain adaptation (Courty et al.,
2017) and cell-genomics (Bunne et al., 2023). Optimal
transport (OT) provides an elegant, geometrically-driven
approach to address this challenge. Given a source mea-
sure u supported on a domain X and a target measure v
on Y, OT, in its fundamental form, aims at finding a map
T : X — ), which transports mass from p to v through
the push-forward operation T = v, while minimizing a
transportation cost (Santambrogio, 2015).

Most existing work on OT focuses either on defining mean-
ingful distances between distributions (Arjovsky et al., 2017;
Alvarez-Melis & Fusi, 2020; Bunne et al., 2019), or on de-
riving optimal couplings between discrete sets of unpaired
samples (Sebbouh et al., 2024; Alvarez-Melis et al., 2019;
Fickinger et al., 2021). In the latter case, the derived cou-
pling cannot generalise to out of distributions samples. To
this end, one has to derive the optimal transformation map
T in the continuous setting. Yet, its computation on high
dimensional settings is notoriously challenging.

An emerging area of work that aims to address this issue is
that of neural Optimal Transport, where the OT map T itself
is parameterized as a neural network, essentially learning
the actual solution T to the OT problem (Makkuva et al.,
2020; Korotin et al., 2023; Uscidda & Cuturi, 2023; Rout
et al., 2022; Korotin et al., 2020; Rout et al., 2022). Yet,
these methods impose a strict requirement: that the source
and target measures are supported on the same space, or
at the very least on different but ‘comparable’ spaces (i.e.,
those across which a meaningful distance can be defined).
In particular, they must be of the same dimensionality. This
amounts to solving the classic OT formulation of Monge
(1781), or the relaxed formulation by Kantorovich (2006),
where correspondences are defined as probabilistic cou-
plings. Despite their limitations, these formulations are
endowed with the richness of classical optimal transport
theory, which is utilized for the design of neural frameworks
with robust theoretical guarantees. These (notably) include
Brenier’s Theorem (Brenier, 1987; Makkuva et al., 2020),
cyclical monotonicity (Santambrogio, 2015; Uscidda & Cu-
turi, 2023) and duality (Santambrogio, 2015; Korotin et al.,
2023; Rout et al., 2022; Fan et al., 2023).

However, transforming samples between distributions that
live in incomparable spaces, e.g., of different dimensionality
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or structural form, is essential across a wide range of appli-
cations, such as aligning latent representations learned by
different models (Alvarez-Melis et al., 2019), or matching
samples across different modalities (Demetci et al., 2022;
Bunne et al., 2019). The challenge lies in the absence of
a meaningful transportation cost across spaces of different
dimensionality. To this end, the Gromov-Wasserstein (GW)
problem (Mémoli, 2011) has been proposed to generalize
OT to incomparable spaces. Instead of a cross inter-domain
costc: X x Y — Ry, GW computes individual costs
cx : XXX — Ryandcy : Y x Y — R, defined
within each space and solves a quadratic problem w.r.t the
space of couplings. Restricting the space of couplings to
an explicit (deterministic) transport map 7°, amounts to the
“hard-assignment” version of GW, the Gromov-Monge (GM)
problem (Mémoli & Needham, 2022).

Unlike the extensive work for comparable spaces, neural
frameworks for the GW and GM problems are largely un-
explored. An important challenge in this regard is that the
main theorems of classic OT do not apply to these versions
of the problem. In fact, to the best of our knowledge, the
only works in this direction are by Nekrashevich et al. (2023)
and Klein et al. (2024). Nekrashevich et al. (2023) restrict
their framework for the specific case of using inner product
inter-domain costs in GW, solving an equivalent min-max-
min problem, while Klein et al. (2024) propose a general
framework for the entropic GW using neural flow matching.
To the best of our knowledge, Neural frameworks for the
GM problem, for general inter-domain cost functions, have
yet to be explored.

Contributions. In this work, we propose a Neural Gromov-
Monge framework, that allows for any choice of inter-
domain costs. Just as Brenier’s Theorem is the theoretical
powerhouse of classic neural OT, we utilize a fundamental
property of the GM (and GW) problem: its invariance to
strong isomorphisms (Mémoli & Needham, 2022). We show
that this property can be utilized to estimate the optimal so-
Iution map T of the GM problem (the GM-optimal map)
with neural networks. Our main contributions are:

* We show that the solution to the general GM prob-
lem between two measures can be decomposed into
two maps: an isomorphism and a GM-optimal map
(Proposition 3.1, Figure 1).

* We show that by parameterizing each map by a neu-
ral network, their composition constitutes a universal
approximator of any transport map between incompa-
rable spaces (Theorem 4.1).

* We propose a neural algorithm for learning the afore-
mentioned neural composition. By extending the
Monge-gap regularizer of Uscidda & Cuturi (2023)
to the GM case, we showcase that if appropriately min-
imized, our proposed loss is guaranteed to recover true

GM-optimal maps.
* We empirically demonstrate that our algorithm can
recover known GM-optimal maps on synthetic data.

2. Preliminaries and Background
2.1. Metric measure spaces and Strong Isomorphism

We consider a compact metric space (X, cx ) endowed with
a continuous and measurable metric cy : X x X — R
Let 4 € P(X) be a Borel probability measure. That is,
w is fully supported on its domain, i.e supp(p) = X, and
1(X) = 1. Then the triplet (X, cy, pt) constitutes a metric
measure space (mm-space) (Mémoli, 2011). When it is
clear from the context, we will denote (X, cx, 1) as sim-
ply &,,. Following Vayer (2020), we denote the space of
all mm-spaces, with finite LP-size, as M, = {Xu =
(X,cx,p) | sizep(X,) < +oo}, where sizep(X,) =
Jowr cx(@ 2" )Pdp ® dp , with @ denoting the product
measure. Let ), := (), ¢y, v) be a second mm-space en-
dowed with the Borel probability measure v € P(})). To
this end, we introduce the concept of strong isomorphism
between two mm-spaces as:

Definition 2.1. [Strong Isomorphism] Two mm-spaces
X, £ (X,cx,p) € Myand Y, £ (V,cy,v) € M,
are strongly isomorphic, denoted as X,, =* ), if there
exists a bijective map ¢ : X — Y s.t:

1. ¢ is an isometry, ie., Vr,2' € X:

cy(9(z), p(a)).
2. ¢ pushes p forward to v, i.e., o = v.

CX(xvx/) =

Note that the push-forward of a measure through a map ¢, is
the measure ¢fp € P () satisfying pfpu(A) = u(T1(A))
for any measurable set A C X.

In essence, Definition 2.1 is a definition of equivalence,
both from a geometric (condition 1. of exact distance preser-
vation) and from a statistical perspective (condition 2. of
exact measure preservation). Intuitively, the existence of
an isometry between the metric spaces (X, cx),(Y, cy) en-
sures they have the same spacial configuration. On the other
hand, the push-forward condition ensures the corresponding
mm-spaces have the same probabilistic configuration, i.e
the probability mass in both spaces is distributed in exactly
the same manner. As such, any map ¢ that satisfies the con-
ditions in Definition 2.1, is a measure preserving isometry,
which we will refer to as an isomorphism.

2.2. The Gromov-Monge problem

In this section, we introduce the GM distance between two
mm-spaces. Here we consider X, and ), to be two arbi-
trary spaces, i.e not necessarily isomorphic. In the general
setting, the domains X and ) are incomparable. Consider
the collection of all possible measure preserving transport
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maps from X, to V),

T(,v)={T:X —)Y | Tiu=v} (1

The distortion (or more precisely, the p-distortion) induced
by any such map T € T (u,v) is defined as (Mémoli &
Needham, 2022):

disy (1) = [ [ lexoex) = ey (T, T due s
XXX

(@)

Following Mémoli & Needham (2022) we can re-write
eg. (2) in a more concise manner by using the LP norm of
the function spaces, i.e dis,(T')? := |lcx — cy||Lr(urour)-
Here, pp = (Id x T)fu is a measure on X x X and Id is
the identity map on X. We will resort to this form when it
is clear from the context. Essentially, eq. (2) captures the de-
gree to which the geometric structure of X, is altered during
the (exact) transportation of probability mass from p to v.
A lower distortion implies that 7" preserves the inter-domain
distances between points more accurately, i.e is closer to
being an isometry, in the p-norm sense. To this end, the
Gromov-Monge problem aims at finding the map which
induces the least amount of distortion (Mémoli & Needham,
2022):

GM, (1, v) = L dis, (T') 3)
GM-optimal maps. We will refer to the solution
of the optimization problem in eq. (3), i.e 7T* €
arg Ming 7, disp(T)% , as the GM-optimal map be-
tween the two spaces. Intuitively, eq. (3) tries to match the
probability distributions through an exact mapping, whilst
also minimizing structural deformity. Naturally, following
Definition 2.1, when X}, and ), are strongly isomorphic,
we have that GM,,(y,v) = 0 and T* will be an isomor-
phism (Mémoli & Needham, 2022). This means that the
GM distance between mm-spaces is invariant to strong
isomorphisms. In fact, according to Mémoli & Needham
(2022a) and Mémoli & Needham (2022b), GM defines a
Lawvere metric on M,

2.3. The Gromov-Wasserstein Problem

If instead of optimizing over the set of exact correspon-
dences (i.e, eq. (1)), we consider probabilistic correspon-
dences (i.e, couplings), we get the Gromov-Wasserstein
distance as proposed by Mémoli (2011):

GW,(u,v) = inf

di 4
mell(p,v) lsp(ﬂ—) “)

where the infimum is over the set of couplings be-
tween g and v, ie, I(u,v) = {m € PX x

Y) | w4 xY) = u4) ; w(X x B) =

v(B) for any measurable A C X', B C Y} and disj(7) =
[ lex(x,x") = cy(y,y’)|” dr ® m represents the dis-

(XxY)?

tortion induced by a coupling 7 € II(y, v).

In essence, the GM problem is the restricted (“hard” assign-
ment) version of the GW problem. The fact that it optimizes
over a set of exact point registrations, i.e functions, makes
the solution space of GM more suitable for parametrization
by neural networks.

Existence of solutions. Similar to the Monge problem for
comparable spaces (Monge, 1781), a solution to the GM
problem in eq. (3) might not always exist, i.e, the set of
transport maps in eq. (1) might be empty. In fact, theoreti-
cal guarantees for the existence of GM-optimal maps is an
ongoing area of research (Vayer, 2020; Sturm, 2020; Du-
mont et al., 2024; Salmona et al., 2021) and are restricted
to very specific conditions that are non-trivial to guarantee
in practice. In contrast, the Gromov-Wasserstein problem
between mm-spaces (i.e, eq. (4)) always admits a solution
(Vayer, 2020; Chowdhury & Mémoli, 2018)!, albeit not
necessarily unique , i.e, the set of couplings II(u, v) is al-
ways non-empty. Nevertheless, when a solution to eq. (3),
T*, does exist and the measures p and v are non-atomic,
the solutions to the two problems coincide (Theorem 2 in
Mémoli & Needham (2022a)), i.e, 7* = (Id,T*)fu and
GM (p,v) = GW (u,v).

3. GM-Optimal Map Decomposition

We will henceforth refer to the mm-spaces X, and ), as the
source and target space respectively and, as in section 2.2,
we consider them to be arbitrary (not necessarily isomor-
phic). Analogously, we refer to i and v as the source and
target measures and define their respective supports as com-
pact subsets of Euclidean spaces, i.e X C RP, )Y C R9. We
assume the general case, where p # ¢. Let Z, := (2, ¢z, p)
be a third space, with Borel probability measure p € P(Z)
and Z C RP compact, which we will refer to as the refer-
ence space. We consider Z, to be strongly isomorphic to
the source space according to Definition 2.1, i.e, X}, =° Z,,.
Note that we take the source and reference domains to be of
equal dimension p. This constitutes a necessary (albeit not
sufficient) condition for strong isomorphism.

In this section, we show that the solution of eq. (3) that
directly transports p onto v, can be decomposed into a
sequence of two maps: an isomorphism from p to the refer-
ence measure p followed by an optimal transport map from

"Here we are referring to Theorem 12 in Chowdhury & Mémoli
(2018) which considers the GW distance between measure net-
works (m-nets) but is directly applicable to mm-spaces (which are
a specific case of m-nets).
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¢ € (u,p)
Xl’« > Zp

7
T & i) T

N

Figure 1. A tripod structure between mm-spaces where X, =° Z,.
¢ € ®(u,p) represents the collection of isomorphisms, while

T (p,v) and T (p, v) are the sets of all transport maps between the
corresponding spaces.

ptov.

3.1. A tripod structure of mm-spaces

We denote as ®(u, p) the collection of all measure preserv-
ing isometries between X, and Z,. We now focus on the
GM distances (and corresponding GM-optimal maps) be-
tween the three mm-spaces. Naturally, between the source
and reference we have GM(u, p) = 0, where the corre-
sponding GM-optimal map is an isomorphism ¢ € ®(u, p).

Now let us focus on the following tripod structure:

T (u,v) T(p.v)
1 v o

where 7~'(p7 v) is the collection of all transport maps be-
tween Z, and )V,

Tpv)={T:2—Y|Ttp=v} (5)

and T (u,v) is given by eq. (1). Subsequently, the GM
problem GM,, (11, V) between the source and target spaces is
given by eq. (3). The GM distance between Z, and ), will
then be defined as:

GM,(p,v) = _inf dis,(T) (6)
TeT (p,v)
where disp(f)p = ez — eyllLr(popy), With pz =

(Id x T)tp € P(Z x Z). We denote as T* € T (p,v),
the solution to eq. (6). It can be easily shown that the GM
problems eq. (3) and eq. (6) are equivalent. Formally, we
introduce the following Proposition, which is a consequence
of the isomorphic invariance of the GM problem, as intro-
duced in section 2.2.

Proposition 3.1. Let X, Z,,), € M, such that X, =*
Z,. Then for p € [1,00) it holds that GM,(u,v) =
M, (p,v).

We provide the proof of Proposition 3.1 in Appendix A.1.

3.2. Optimal map decomposition

Now let us focus on the transport problem from the source
to the target space, i.e, &, — J,. Consider the struc-
ture illustrated in Figure 1. Instead of transporting mass
directly from X, to ), we introduce a “detour”, by first
mapping g onto p through an isomorphism ¢ € ®(u, p)
and subsequently mapping p onto v through a transport

map T S 7~'(p, v),ie, X, i) 2, i> Y,. This alternate
mapping can be expressed, naturally, as the composition
To¢: X — Y. Itis straightforward to show that since

X, =" Z,,ie ¢ = p, we have (T o ¢)iu = TH(¢tu) =

Ttp = v. As such, we can define the collection of all such
composition maps as:

I(pv) ={T: X = Y | Tip=v,

- S )
TE£To¢, pec®(up), TeT(pv)}
where Z(u,v) C T (u, v). Since we restrict the collection
of transport maps between the source and target space to
only those that can be decomposed as in eq. (7), the proposed
GM problem becomes a constrained version of eq. (3):

CGM,(u,v) =  inf

dis, (T 8
TeT(u) is, (T 3)

where dis,, (T') is given by eq. (2). Note that since the iso-
morphism ¢ € ®(u,p) is already a solution (albeit not
necessarily unique) to the GM(p, p) = 0 problem, it is
considered fixed. As such, we do not need to use a double
infinum in eq. (8). In other words, given any isomorphism
between the source and target space, we only need to opti-
mize over the set 7 (p, v), i.e finding the GM-optimal map
T what pushes p onto ¢fiu. To this end, eq. (8) can be
re-written as:

CGM,, (11, v) = _inf dis,(T o ¢) )
THp=v
where disp(f °o¢) = llex — Cy”Lp(U'foqs@/‘f‘oqb) with

Hiog = (1d, T o ¢). Then, using Proposition 3.1 we show
the following result.

Proposition 3.2. Assume problem eq. (3) admits at least
one solution, i.e 3 1™ € argminpcy(, ) disy(T). Then,
given a reference space s.t X,, =° Z, and any isomorphism
¢ € ®(u, p), there exists T* € arg ming ., dis,(T') s.t
the composition map T* o ¢ is also a solution to eq. (3).
That is, the optimization problems eq. (3) and eq. (9) are
equivalent, i.e, GMp(p,v) = CGM,(, v).

We provide the proof of Proposition 3.2 in Appendix A.2.
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Proposition 3.2, shows that we can decompose the search
for an optimal solution T* € T (u,v) to GM,(u, v) into
the search for an isomorphism ¢ € ®(u,p) and a map
T* € 7~'(p, v). It shows that we can effectively break the
complex problem of optimally transporting one measure
onto another into two structured sub-problems, without los-
ing GM-optimality. Note that, assuming non-unique op-
timality, the above result does not necessarily mean that
every GM-optimal map of eq. (3) can be decomposed in this
manner but that at least some are, which is sufficient for our
analysis.

Geometric Intuition. From a geometric perspective, we can
interpret Proposition 3.2 as follows: Any exact transporta-
tion of probability mass that aims to minimize distortion
from one mm-space onto another, can be represented as a
sequence of two geometric transformations. An isomorphic
transformation, which in Euclidean space includes rotations
reflections and translations and a geometric “deformation’
which represents the distortion of the initial geometry of the
source metric space, e.g shearing. This two-stage process
highlights the interplay in GM-optimal transport between
maintaining intrinsic geometric properties and adapting to
new probabilistic configurations.

>

4. Isomorphism Invariant Neural
Gromov-Monge

In this section, we introduce our neural framew0~rk for
approximating the GM-optimal composition map 7™ o ¢
in Proposition 3.2 for p = 2. We use neural networks
¢o X — Zand Ty : Z — Y to parameterize ¢ and
T™ respectively. For convenience, we will refer to ¢,, as the
isomorphism network and to Ty as the transport network.
To this end, in section 4.1, we prove the following theoreti-
cal result: that the composition of neural networks Ty o ¢,
can approximate any transport map between a source and a
target measure. Subsequently, in section 2.2, we present our
proposed learning procedure for approximating GM-optimal
maps, s.t Ty o ¢, = T o ¢.

4.1. Neural Network Compositions as Universal
Approximators of Transport Maps

Our analysis is inspired by Theorem 1 in Korotin et al.
(2023), which states that neural networks can approximate
any stochastic transport map in the L? norm.

Transport maps in the L? space. Note that the set of trans-
port maps between mm-spaces can include both continuous
and discontinuous functions. More formally, let L7 (X, Y)
be the space of quadratically integrable functions w.r.t p,
ie{f: X — V|| fllr2(u< +oc}, which is known to
include both continuous and irregular functions. Assuming
1 has a finite second moment, it can be shown that, for any

transport map 71" from &), to V,,, we have T' € Li(é’(, V)
(Korotin et al., 2023). As such, given a neural network ¢,
which is specifically modeled to approximate an isometry,
we aim to show that Ty o ¢,, is dense in the function space
Li(X , V). We base our analysis on the result by Kratsios
& Bilokopytov (2020) who show that the composition of
a continuous injective map ¢ with a ReLU neural network
is dense in the space of continuous functions. In our case,
since ¢ is an isomorphism, it inherently satisfies both con-
tinuity and injectivity (note that an isomorphism is also
bijective). We present our result in the following Theorem.

Theorem 4.1. Let T' € T (u, v) be a transport map between
w and v, where v has finite second moment. Then, there ex-
ists a feed-forward ReLU neural network Ty : Z — Y and
a neural network ¢, : X — Z with any nonaffine continu-
ous activation function which is continuously differentiable
at at least one point, such that, Ve > 0 we have:

IT = Tp o pullz<e (10)

We provide the full proof of Theorem 4.1 in Appendix A.3.

Intuition behind Theorem 4.1. In Kratsios & Bilokopytov
(2020), they consider ¢ to be a (continuous and injective)
feature map from a (possibly) non-Euclidean to a Euclidean
feature space. Their result shows that the presence of such
a map, in the initial layer of an architecture, does not com-
promise its approximation capabilities. Our result can be
viewed in a similar fashion. An isomorphism ¢ € ®(u, )
can be viewed as a ‘feature map’ from the source &), to
the reference space Z,. To this end, it can be interpreted
as a transformation that re-configures the source space into
a “canonical form”, i.e, a standardized representation that
retains the original geometric properties. Additionally, The-
orem 4.1 shows that if the true map ¢ is not available, we can
approximate it by the neural network ¢,, and still retain the
overall architecture’s universal approximation properties.

Note that, approximating T*o ¢ through fg o @,,, essentially
entails the individual approximation of two GM-optimal
maps 7 and ¢. Recall, that an isomorphism ¢ € ®(u, p) is,
itself, a solution to a GM problem, i.e GM(u, p). Thus, we
only need to define a single learning procedure for learning
GM-optimal maps, which can be used for both T and ¢,,,
adapted to their respective domains.

4.2. Learning GM-optimal maps

In this section, we start by introducing a general learning
framework to approximate any GM-optimal map between
two arbitrary mm-spaces. Subsequently, based on the afore-
mentioned framework, we introduce our learning procedure
for training networks T and ¢,,. We base our method on
the work by Uscidda & Cuturi (2023), who propose a loss
for approximating OT maps between comparable spaces, i.e,
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Monge maps. Here, we briefly summarize their contribution
and how our work is an extension of their framework to the
GM case.

The Monge Gap regularizer (Uscidda & Cuturi, 2023).
Note that, the Monge problem between a source p € P(2)
and target v € P(2) space, supported on the same domain
, is defined as (Monge, 1781):

M. (p,v) = T;I,if:,,

[ etx1)dnan
Q

where ¢ : {2 x ) — R, is an intra-domain cost. Given any
map T which is used to approximate a solution to eq. (11),
Uscidda & Cuturi (2023) propose a loss function which
quantifies its deviation from Monge optimality. Their loss
consists of two terms: a fitting loss and a regularizer referred
to as the Monge Gap. The fitting loss quantifies how well
T satisfies the constraint T = v. Conversely, the Monge
gap is defined as (Uscidda & Cuturi, 2023):

M(p, Thp) = /

Q

o(x,T(x))dp — Me(p, T#p)  (12)

In essence, eq. (12) quantifies the deviation of T from being
the c-optimal map between p and T4y, i.e, the map which
induces the least amount of ¢ cost, while performing the
push-forward operation Tu. Naturally, when Ty = v
is satisfied, i.e, when the fitting loss is zero, eq. (12) will
quantify the deviation of 7" from the solution of eq. (11).

The Gromov-Monge Gap regularizer. We can extend the
above elegant framework to the Gromov-Monge problem.
For a given map 7' : X — ), we define its induced
Gromov-Monge (GM) gap as follows:

GMP(p, Tip) = disp () — GMp(p, Tp) - (13)

where GMP (u, Tj1) is the p-GM distance between mea-
sures p and T4u. Note that eq. (13) is a direct extension
of eq. (12) to incomparable spaces. Intuitively, the first
term represents the distortion induced by 7" when moving
mass from g to Tu. The second term represents the dis-
tortion induced by the GM-optimal map between the mea-
sures ;4 and T'fu. Thus, as in the Monge gap case, when
GMP(u, Thu) = 0 and T = v, T is theoretically guar-
anteed to be the solution 7™ to eq. (3). Consequently, we
can utilise the GM gap of eq. (13) as a regularizer in a loss
function, designed to recover GM-optimal maps.

GM-optimality loss. Let Tj be any parameterized map.
Similar to the Monge-optimality loss proposed in Uscidda
& Cuturi (2023), we propose the GM-optimality loss defined
as:

L(0) == A(Tohu,v) + A GMP (1, Tytp)  (14)

where A(Tytp,v) is the fitting loss and A is a regular-
ization weight to stabilize training. We can use any
valid discrepancy between measures on comparable spaces,
such as the Sinkhorn divergence (Genevay et al., 2019),
i.e, Sce(p, Ttu) or the entropic Wasserstein distance, i.e,
We (@, THu). Naturally, we get £(6) = 0 when both terms
of eq. (14) are 0, i.e, when both probability mass and inter-
domain distances are preserved. As such, for any family of
parameterized maps {7} }¢ between two mm-spaces, we can
recover the GM-optimal map by solving the optimization
problem Ty := argmin,y £(6).

Optimization procedure. Following the tripod structure
of Figure 1, the networks ¢, and Ty should be trained such
that:

1. ¢, moves mass from y to p in a GM-optimal way.

2. Tg pushes forward the measure transformed by ¢,,, i.e,
o = P tu, onto v in a GM-optimal way.

Based on the GM-optimality loss of eq. (14), condition 1.
can be formulated as the following optimization problem:

oo := argmin Ao p, p) + A GM? (1, dufip)  (15)

where GM? (1, du,fip) = disa($w)? — GM3 (1, b fpt), with
disy(¢w)? := llex — czll22(u,_ @u.,,)- Analogously, con-
dition 2. can be formulated as:

Ty := arg min A(Tgﬁp’, v)+ A QMQ(p’,Tgﬁp’) (16)
6

where GM2(p/, Totp!) = disy(Ty)2 — GM2(p/, Tyttp),
with diSQ(fQ)2 = ||CZ — C))”Lz(p’f ®P/f ). Given the theo-
retical properties of the GM—optimBalityeloss and GM-gap,
achieving zero in the objective functions of eq. (15) and
eq. (16) theoretically ensures that their solutions, ¢,, and Tj,
are the GM-optimal maps ¢ and T, respectively. Conse-
quently, based on Theorem 4.1 and Proposition 3.1, it will
hold that Ty o ¢, ~ T o ¢, thus approximating a GM-
optimal map between &), and )),,. We present the detailed
learning procedure in Algorithm 1.

Estimation from samples. In practice, we have access

to finite sets of samples, assumed to be drawn iid from

the underlying, true, continuous distributions. As such,

we consider the following sets consisting of n number
iid , iid

of samples: {x;}7,, x; ~ pu, {yi}’y, yi ~ v and

{z;} 4, 2; Py p. For the corresponding push-forward

measures we have: {¢,, (%)}, ¢ (x:) " duip €

P(2) and {Tp(z}) Y1y, To(z)) = Tptp' € P(Y), where
zi = ¢ (x;) e oo = p'. The discrete empirical esti-
mates of each corresponding (continuous) measure will,
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Figure 2. (a) Isomorphic transformation of the source space. Depiction of the empirical source and reference spaces X := X},
and Z := Z;, respectively. We obtain Z through the rigid transformation of X, such that X, =° Z; . To this end, we have
Z = ¢(X) := RX +t, where R € {R € R**®* | R"R = RR” = I} is an orthogonal (rotation) matrix and t € R® a translation
vector. (b) Non-Isomorphic transformation of the reference space. Depiction of the empirical source and target spaces X := X,
and Y := Y, , respectively. The target point cloud Y is obtained through a non-rigid transformation of the reference space Z, i.e.,
Y = T*(Z) = AZ, where A € R3*3 is a shearing matrix. Unlike ¢, the transport map T™* introduces a distortion of the spacial
configuration of its input.

therefore, be: ,&n = LS Oxis On o= 2 Z? 1 Oyss
A =1 El 1 zla (bwﬁ//'n = ﬁZz 16¢w(x1) - pn and
Tgﬁ P = % iy 07, (z)- Given the above measure esti-
mates, we can re-write each term in eq. (15) and eq. (16)
in a discrete formulation. Specifically, we can define the 1: Data: Source p, target v and reference p measures

empirical estimate of the GM-gap G M2( 11, dufip) as: accessible through empirical estimates fi,,,0, and Dy,;
transport network Tj; isomorphism network ¢,,; cost

functions cx, cy and cz; regularization weight \; en-

Algorithm 1 GM composition map estimation

G /\/12([Ln, Gotiin) = d152( ¢w)2 . GW§ (fin, Gotiin) tlTopic regularizatiqn par'ameter €; learning ratf: 7; batch
(17) size m, number of iterations Kouter and Kinner;
2: Qutput: Estimated GM-optimal map 71" := Ty o ¢,,.
where, j: forlsc = 11, b ;Iﬁomi doA
& 2 _ 1y e 3, b (x:)))2 : ample batches i, oy,
1S2(¢w) n2 Zla] gc'x/()ihle) CZ(¢W(X1)7¢ (X]))) 5: Compute ﬁttlng IOSS A(¢wﬂﬂn7ﬁn)
Analogously, for GM*(p’, Tyfip’) we have: 6:  Compute regularizer GM> (i, ¢w2ﬁ/ln)
7 L¢(w) <~ A(‘bwﬁﬂmﬁn) +AGM (ﬂm ¢wﬁﬂn)
GM2(p! Tyt ) = dis (T 12— GW2(3! Tyt ) as) 8: Update w using 8L"’(w)
P 208Pn) = Q152120 2\Pn> L08Pn o fork—1,... K do
0 10: Re—sample batch fi,,
Where, : Set fy, < dutiin

disa(Ty)? = 2 0, (e m0,2y) — ey (Too), To(e,))

12: Sample batch 7, ~
. . . 13: Compute fitting loss A(Tp8p),, D)
In both cases we use the GW distance with entropic regular- . 2w
14: Compute regularizer GM (0L, Totipl,)
ization (Peyré et al., 2016; Solomon et al., 2016) to approxi- s i AT NGM2(5 Tots!
mate the GM distances GM2(y1, ¢, £p0) and GM2(p, Tptp!) 1> 7(0) < A( eﬁaﬁn’(;ﬂ) + A GM (D, Totph)
respectively. Note that according to Theorem 2 in Mémoli & 16: Update 6 using ==
Needham (2022a), the GW distance is equivalent to the GM 17: end for
only for non-atomic measures. Here we make the assump- 18: end for

tion that given enough samples n, the discrete entropic GW
will approximate its continuous non-atomic counterpart and
subsequently the corresponding GM distance.
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Figure 3. (a) Ground truth target samples. (b) Mapped samples using neural composition. Fitted samples using the learned
composition map, i.e, (Typ o @o, )t fin. We first train ¢, for 5,000 iterations as a direct map between the source and reference samples.

Then, using the pre-trained ¢ as initialization, we train the composition map fg o ¢, following Algorithm 1 for Koyter = 5 and
Kinner = 2,000 iterations. (c) Mapped samples using direct parameterization. Fitted samples using a direct map from the source to
the target space Ty #in, trained for 5,000 iterations. Unlike the direct map, the composition map clearly resembles the target distribution.

We use the squared Euclidean Sinkhorn divergence, i.e, Slg

s€?

with entropic regularization strength € = 0.1 as the quantitative evaluation

metric (i.e, evaluation fitting cost). We provide all details of our experimental framework in Appendix B.

5. Experiments

In this section, we evaluate the ability of our method to
recover GM-optimal maps on synthetic data. We implement
our framework using the OTT-JAX? package (Cuturi et al.,
2022).

Experimental tripod structure. We consider a controlled
setting, where the GM-optimal maps ¢ and T™* are known.
We generate samples {x;}" ; in R3, following the associ-
ated empirical measure [i,, as described in section 4.2. As
such, we define the empirical source mm-space X, as the
3D point cloud X := X, € R™*3. Following the tripod
structure of Figure 1, we apply a known isomorphism, i.e a
rigid transformation ¢ to X, to obtain the (empirical) ref-
erence mm-space, i.e, Z = ¢(X) := Z;, € R"*3 (Figure
2 (a)). Subsequently, we generate the empirical target space
by applying a non-rigid transformation, T, to the reference
point-cloud Z,i.e Y = T*(Z) := Y,, € R"*3 (Figure 2
(b)).

Results. Following Algorithm 1, we train neural networks
¢, and Ty on the empirical sample sets. Since the target
point cloud Y is the result of the GM-optimal transforma-
tion T o ¢, if Ty o ¢, approximates GM-optimality, we ex-
pect the mapped points to approximate Y, i.e Ty o ¢, (X) =
Y. We present the mapped samples of the learned com-
position in Figure 3 (b), and compare them to the ground
truth target samples (Figure 3 (a)). Indeed, the learned map
Ty o ¢, is able to fully match the ground truth target point
cloud. To validate the importance of learning a composition
instead of a direct approximation, we present the equivalent
results when learning a direct mapping Ty : X, — Vs,

*https://github.com/ott-jax/ott

from the source to the target point cloud (Figure 3 (c)). In

this case, we train 7 : X}, on a single loop using the

loss Ly (0) < A(Tptfin, on) + A GM? (jin, Thtfin). Un-
like the composition map, the direct mapping is unable to
accurately match the geometry of the target distribution.

6. Discussion

In this work, we introduce a theoretically grounded frame-
work to approximate optimal transport maps between incom-
parable spaces, based on the geometric property of invari-
ance to strong isomorphism. We show that the GM-optimal
map between a source and target distribution can be decom-
posed into an isomorphism and a subsequent GM-optimal
map, which can be adequately approximated by two sepa-
rate neural networks. Intuitively, this implies the hypothesis
that any geometrically informed transformation between
two distributions is a sequence of a rigid and a non-rigid
transformation. This suggests that by parameterizing (and
training) each transformation step independently, we more
effectively approximate the true optimal transportation map
between incomparable distributions. Empirical results on
toy data reinforce this hypothesis. We believe this could
open a new avenue to address the fundamental problem of
geometrically informed transformations of samples between
distributions.

References

Alvarez-Melis, D. and Fusi, N. Geometric dataset distances
via optimal transport. Advances in Neural Information
Processing Systems, 33:21428-21439, 2020.

Alvarez-Melis, D., Jegelka, S., and Jaakkola, T. S. Towards


https://github.com/ott-jax/ott

Strongly Isomorphic Neural Optimal Transport Across Incomparable Spaces

optimal transport with global invariances. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 1870-1879. PMLR, 2019.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning, pp. 214-223. PMLR, 2017.

Brenier, Y. Décomposition polaire et réarrangement mono-
tone des champs de vecteurs. CR Acad. Sci. Paris Sér. 1
Math., 305:805-808, 1987.

Bunne, C., Alvarez-Melis, D., Krause, A., and Jegelka, S.
Learning generative models across incomparable spaces.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 851-861. PMLR, 09-15 Jun 2019.
URL https://proceedings.mlr.press/v97/
bunnel9a.html.

Bunne, C., Stark, S. G., Gut, G., Del Castillo, J. S.,
Levesque, M., Lehmann, K.-V., Pelkmans, L., Krause,
A., and Ritsch, G. Learning single-cell perturbation re-
sponses using neural optimal transport. Nature Methods,
20(11):1759-1768, 2023.

Chowdhury, S. and Mémoli, F. The Gromov-Wasserstein
distance between networks and stable network invariants.
arXiv e-prints, art. arXiv:1808.04337, August 2018. doi:
10.48550/arXiv.1808.04337.

Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy,
A. Joint distribution optimal transportation for domain
adaptation. Advances in neural information processing
systems, 30, 2017.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K.,
Sengupta, B., and Bharath, A. A. Generative adversarial

networks: An overview. IEEE signal processing maga-
zine, 35(1):53-65, 2018.

Cuturi, M. Sinkhorn distances: Lightspeed computation of
optimal transportation distances, 2013.

Cuturi, M., Meng-Papaxanthos, L., Tian, Y., Bunne, C.,
Davis, G., and Teboul, O. Optimal transport tools (ott):
A jax toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Demetci, P., Santorella, R., Sandstede, B., Noble, W. S., and
Singh, R. Scot: single-cell multi-omics alignment with
optimal transport. Journal of computational biology, 29
(1):3-18, 2022.

Dumont, T., Lacombe, T., and Vialard, F.-X. On the exis-
tence of monge maps for the gromov—wasserstein prob-
lem. Foundations of Computational Mathematics, pp.
1-48, 2024.

Fan, J., Liu, S., Ma, S., Zhou, H., and Chen, Y. Neural
monge map estimation and its applications. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856.

Fickinger, A., Cohen, S., Russell, S., and Amos, B. Cross-
domain imitation learning via optimal transport. arXiv
preprint arXiv:2110.03684, 2021.

Folland, G. B. Real analysis: modern techniques and their
applications, volume 40. John Wiley & Sons, 1999.

Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G.
Sample complexity of sinkhorn divergences, 2019.

Kantorovich, L. V. On the translocation of masses. Journal
of mathematical sciences, 133(4):1381-1382, 2006.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Klein, D., Uscidda, T., Theis, F., and Cuturi, M. Entropic
(gromov) wasserstein flow matching with genot, 2024.

Korotin, A., Egiazarian, V., Asadulaev, A., Safin, A., and
Burnaev, E. Wasserstein-2 generative networks, 2020.

Korotin, A., Selikhanovych, D., and Burnaev, E. Neural
optimal transport. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=d8CBRIWNkgH.

Kratsios, A. and Bilokopytov, I. Non-euclidean universal ap-
proximation. Advances in Neural Information Processing
Systems, 33:10635-10646, 2020.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Makkuva, A. V., Taghvaei, A., Oh, S., and Lee, J. D. Opti-
mal transport mapping via input convex neural networks,
2020.

Mémoli, F. and Needham, T. Distance distributions and
inverse problems for metric measure spaces. Studies in
Applied Mathematics, 149(4):943-1001, 2022.

Monge, G. Mémoire sur la théorie des déblais et des rem-
blais. Mem. Math. Phys. Acad. Royale Sci., pp. 666704,
1781.

Mémoli, F. Gromov-wasserstein distances and the
metric approach to object matching. Founda-
tions of Computational Mathematics, 11(4):417-487,
2011. URL http://dblp.uni-trier.de/db/
journals/focm/focmll.html#Memolill.


https://proceedings.mlr.press/v97/bunne19a.html
https://proceedings.mlr.press/v97/bunne19a.html
https://openreview.net/forum?id=d8CBRlWNkqH
https://openreview.net/forum?id=d8CBRlWNkqH
http://dblp.uni-trier.de/db/journals/focm/focm11.html#Memoli11
http://dblp.uni-trier.de/db/journals/focm/focm11.html#Memoli11

Strongly Isomorphic Neural Optimal Transport Across Incomparable Spaces

Mémoli, F. and Needham, T. Comparison results
for gromov-wasserstein and gromov-monge distances,
2022a.

Mémoli, F. and Needham, T. Distance distributions and
inverse problems for metric measure spaces, 2022b. URL
https://arxiv.org/abs/1810.09646.

Nekrashevich, M., Korotin, A., and Burnaev, E. Neural
gromov-wasserstein optimal transport. arXiv preprint
arXiv:2303.05978, 2023.

Peyré, G., Cuturi, M., and Solomon, J. Gromov-wasserstein
averaging of kernel and distance matrices. In Interna-
tional conference on machine learning, pp. 2664-2672.
PMLR, 2016.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530-1538. PMLR, 2015.

Rout, L., Korotin, A., and Burnaev, E. Generative modeling
with optimal transport maps, 2022.

Salmona, A., Delon, J., and Desolneux, A. Gromov-
wasserstein distances between gaussian distributions.
arXiv preprint arXiv:2104.07970, 2021.

Santambrogio, F. Optimal Transport for Applied Mathe-
maticians: Calculus of Variations, PDEs, and Model-
ing. Progress in Nonlinear Differential Equations and
Their Applications. Springer International Publishing,
2015. ISBN 9783319208282. URL https://books.
google.ch/books?id=UOHHCgAAQBAJ.

Sebbouh, O., Cuturi, M., and Peyré, G. Structured trans-
forms across spaces with cost-regularized optimal trans-
port. In International Conference on Artificial Intelli-
gence and Statistics, pp. 586-594. PMLR, 2024.

Solomon, J., Peyré, G., Kim, V. G., and Sra, S. Entropic
metric alignment for correspondence problems. ACM
Transactions on Graphics (ToG), 35(4):1-13, 2016.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Sturm, K.-T. The space of spaces: curvature bounds and
gradient flows on the space of metric measure spaces,
2020.

Uscidda, T. and Cuturi, M. The monge gap: A regularizer
to learn all transport maps, 2023.

Vayer, T. A contribution to optimal transport on incompara-
ble spaces. arXiv preprint arXiv:2011.04447, 2020.

10


https://arxiv.org/abs/1810.09646
https://books.google.ch/books?id=UOHHCgAAQBAJ
https://books.google.ch/books?id=UOHHCgAAQBAJ

Strongly Isomorphic Neural Optimal Transport Across Incomparable Spaces

A. Proofs
A.1. Proof of Proposition 3.1

Since X, = Z,, 3 ¢ € ®(u, p), which is a bijection. Thus, 3 ¢~! € ®(p, 1), s.t GM (p, 1) = 0. Since GM defines a
Lawvere metric on M, (see Mémoli & Needham (2022b) and Theorem 1 in Mémoli & Needham (2022a)), following the
triangle inequality we have GM (i, ) < GM(y, p) + GM(p, v) and GM(p, v) < GM(p, ) + GM(u, ). Combining the
above inequalities and since GM(u, p) = 0, we get GM(p, v) = GM(p, v).

A.2. Proof of Proposition 3.2

Constraining the optimal transport plan to be within Z (1, v), will result in a constraint GM-problem:

comy) = it ([ Jete) ey @00, TGP duto) du(X'))l/p -

TeZ(p,v)
" (19)

in ( / /X o) = ey((T0 6)(0). (T 6) o)) P dp(x) du(X’)) v

(Tog)#u=v

Based on Definition 2.1, any isomorphism ¢ € ®(u, p) is an invertible bijective map. Thus, for every pair (z,z') € Z x Z
there exists a unique pair (x,x’) € X x X such that z = ¢(x) and z’ = ¢(x’). Additionally, ¢! : Z — X isalso a
bijective isometry. Consequently, for every z € Z there is a unique x € X s.t x = ¢~ !(z). Also, since ¢#u = p, it holds
for every B C Z that p(B) = u(¢~*(B)). Considering all the above, we are permitted to perform a change of variables
over the integral in eq. (19). Thus, we have:

~ - 1/p
COM, (1, v) = _inf ( //X X|cz<¢<x>,¢<x’>>—cy<<To¢>)<x>,<To¢><x'>>|ﬁdu<x>du<x'>) -

TH#p=v

i (//ZXZ"‘Z(Z’ZU — oy(T(@), T(2) du(s™(2)) du(dfl(z’))) "

TH#p=v (20)

fi:;,f:,, (//ZXZ|02(Z,Z’) — ey(T(z), T(2") P dp(z)) dp(zl)))l/p _
GM,(p, )

Then, following Proposition 3.1 we get CGM,, (11, v) = GM,,(p, v) = GM, (i, v).

A.3. Proof of Theorem 4.1

Since &), =° Z,,, there exists a measure preserving isometry ¢ € ®(u, p) between X’ and Z. Since ¢ is an isometry it will
be continuous and injective. According to Kratsios & Bilokopytov (2020), for any given continuous and injective function
¢ : X — Z, the collection of functions f o ¢ € C.(X,)), where f : Z — Y is a deep-forward ReLU neural network,
will be dense in C.(X,)). Following Proposition 7.9 in Folland (1999), C.(X, D) is dense in Li(X , V). Consequently,
the set of functions f o ¢ is also dense in Li(é’c’ ,)). Following the Proof of Theorem 1 in Korotin et al. (2023), it is
straightforward to show that since v has a finite second moment, for any transport T' € T (u, v) map between p and v we
have T € LZ%(X,)).

Thus, there exists a ReLU neural network fy s.t for any ¢ > 0 we have:
IT = fo 0 ¢llz2 < €/2 @1)

It holds that fp o ¢, fg o ¢, € Ce(X,Y) and ¢, ¢, € C.(X, Z). Continuous functions with compact support are also
p-integrable w.r.t any finite measure in their domain. Thus it holds: fy o ¢, fy 0 ¢, € Li(X, Y)and ¢, ¢, € Li()(, 2).
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Therefore, the norms |7 — f 0 du 2. [[fo © & — fo © ¢u|lz2 and [[¢ — ¢y || 2 are well-defined and for any 7" and ¢,, we
have:

1T = foodullLz= T — foo o+ food— foodullrz

(22)
ST = foodllrz+llfood— foo dullrz

where the inequality follows from Minkowski’s inequality.
We will now focus on deriving a bound for the term || fg o ¢ — fo 0 ¢ || r2 in inequality 22.

Every feed-forward ReLU neural network is Lipschitz continuous w.r.t the Lo norm. Thus, 3 a constant L > 0s.tVz, 2’ € Z:

1fo(2) = fo(2)l2< Lllz = 2|2 (23)

We have ¢, : X — Z and ¢ : X — Z, being two distinct mappings with the same domain and codomain.

Thus, Vo € X we have ¢(x), ¢, (z) € Z. Note that it doesn’t necessarily hold that ¢(z) = ¢, (x). As such, we can assign
z = ¢(x) and 2’ = ¢, (x) and based on inequlity 23 we get:

1o 0 d(x) = fo 0 du(@)l3< L2 |6() — dur ()3 24)

Integrating both sides of inequality 24 over X’ w.r.t ;x we get: (note that integration is permitted since we have already
established that all functions are p-integrable w.r.t. )

/ 1fo 0 ¢u(x) = fo 0 ¢(2)]3 du(x) < LQ/ [p(2) = pu ()15 du(=) (25)
reX zeX

€

which can be written as:

1fo 0 ¢ — fo 0 dll2 < L2 b — ¢l 12 (26)

Note that the above inequality, as well as inequality 22, holds for any neural network ¢, : X — Z with the above-
mentioned activation functions. In the Proof of Theorem 1 in Korotin et al. (2023), it is shown that neural networks of the
aforementioned form will be dense in Li(é’( , Z). As such, for convenience, we can choose a bound ¢/2L? s.t for any e,
there exists a neural network ¢,, s.t:

¢ — @ll2z < /2L 27)

Combining inequalities 26, 27 and 22 we get:

T — foodol<e (28)

which holds for any € > 0, thus concluding the proof.

B. Experimental details

Neural networks. We use vanilla MLPs with hidden sizes [128, 64, 64] and a ReLLU activation function for all perametriza-
tions, i.e for all ¢,,, Ty, T. Specifically for the isomorphism network ¢,, we add a residual connection from its first to
its last layer. Inspired by the initialization scheme in Uscidda & Cuturi (2023), this approach encourages the network to
learn an affine transformation between the source and reference samples. We initialize all networks using the orthogonal
initialization, i.e which uses uniformly distributed orthogonal matrices. We train ¢y with a learning rate of 7 = 10~2 and all
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other networks with 7 = 10~%. In all cases, we train our neural networks using the ADAM optimizer (Kingma & Ba, 2017),
with a batch size of n = 1024.

Loss functions. For the training of ¢,,, both during its pre-training phase and during the training of the composition
map, we use the Sinkhorn divergence with the squared Euclidean as its fitting loss, i.e Sz = A(Putfin, prn), with an

etropic regularization parameter of ¢ = 0.01. When training networks T, v and T}, we use the entropic Wasserstein distance
(Cuturi, 2013) with the Euclidean distance as the cross-domain cost. For all ﬁttirlg losses, we scale the cross-domain
cost matrix using mean scaling. For all regularizers GM? (fin, utfin ), GM?(pn, Totpn)s GM?(fin, Tytitn) we use the
quadratic entropic Gromov-Wasserstein distance (Peyré et al., 2016). We use the Euclidean distance for all inter-domain
costs cy = ¢y = cz = ||-||2 and scale them using max scaling. We use a regularization strength of Agys = 1 across all
losses. For all fitting losses and regularizers, we use an entropic regularization parameter of ¢ = 0.001.
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