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Abstract

Existing few-shot semantic segmentation meth-
ods typically rely on a one-way flow of category
information from support to query, ignoring the
impact of intra-class diversity. To address this,
drawing inspiration from cybernetics, we intro-
duce a Query Feedback Branch (QFB) to propa-
gate query information back to support, generat-
ing a query-related support prototype that is more
aligned with the query. Subsequently, a Query
Amplifier Branch (QAB) is employed to amplify
target objects in the query using the acquired sup-
port prototype. To further improve the model, we
propose a Query Rectification Module (QRM),
which utilizes the prediction disparity in the query
before and after support activation to identify chal-
lenging positive and negative samples from am-
biguous regions for query self-rectification. Fur-
thermore, we integrate the QFB, QAB, and QRM
into a feedback and rectification layer and incor-
porate it into an iterative pipeline. This config-
uration enables the progressive enhancement of
bidirectional reciprocative flow of category in-
formation between query and support, effectively
providing query-adaptive support information and
addressing the intra-class diversity problem. Ex-
tensive experiments conducted on both PASCAL-
5i and COCO-20i datasets validate the effective-
ness of our approach. The code is available at
https://github.com/LIUYUANWEI98/IFRNet.

Figure 1. Comparison between existing framework (a)&(b) and
our approach (c) for FSS. The red dotted line indicates the infor-
mation flow of category information. (a) The category information
is extracted from support and flows into the query to identify target
objects. (b) The category information simultaneously flows from
support and query into the intermediate representation. However,
in our method (c), the category information circulates bidirection-
ally between query and support, which could be more compatible
with target object in the query.

1. Introduction
Few-shot semantic segmentation (FSS) poses a significant
challenge in computer vision, aiming to segment objects in
images with a minimal number of labeled examples. This
concept aligns with the human capability to comprehend
new concepts based on limited instances, providing flexibil-
ity and practicality, particularly in scenarios where collect-
ing an extensive amount of annotated data is impractical.

Following a typical paradigm proposed by (Shaban et al.,
2017), most FSS methods (Zhang et al., 2021a; Li et al.,
2021; Liu et al., 2020b; Yang et al., 2020; Liu et al., 2022b;
Fan et al., 2022a; Gao et al., 2022; Moon et al., 2023; Tian
et al., 2020; MAO, 2022; Nguyen & Todorovic, 2019; Dong
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& Xing, 2018; Okazawa, 2022; Wang et al., 2019; Zhang
et al., 2019; Rakelly et al., 2018; Yang et al., 2021; Liu
et al., 2020a; Siam et al., 2019; Xie et al., 2021; Wang et al.,
2020; Fan et al., 2022a; Lang et al., 2022; Fan et al., 2022b;
Min et al., 2021; Hong et al., 2022; Shi et al., 2022; Zhang
et al., 2021b; Liu et al., 2023b) initially extract category
information from the support and subsequently employ it to
activate target objects in the query image using a matching
module, as depicted in Figure 1 (a). The flow path of the
category information in these methods is ‘support→ query’.
However, these approaches overlook the intra-class diver-
sity between the query and support, treating the support as
an idealized category representation, which is impractical.
Other methods (Liu et al., 2022c; Hu et al., 2019; Wu et al.,
2021) propose to collect the category information from sup-
port and query simultaneously, aggregating them into an
intermediate representation, as illustrated in Figure 1 (b).
The category information flow path is ‘support→ intermedi-
ate← query’. Although these methods can mitigate in-class
diversity by fusing both query and support information, the
provided support information is still derived from the orig-
inal support feature, whose intra-class diversity with the
query persists. As a consequence, the obtained category
information from support remains incompatible with the
query, making the intermediate representation sub-optimal.

To address the weakness discussed above, we draw inspi-
ration from cybernetics and tackle the FSS problem from
a new perspective. Specifically, we introduce information
feedback to create a network for facilitating a bidirectional
reciprocative flow of category information, as shown in
Figure 1 (c). In our framework, the category information
propagation path is ‘query→ support→ query→ support
→ ... → query’. As such, the support feature is no longer
an independent entity. Instead, it establishes a dependency
relationship with the query by feeding back the query infor-
mation. This allows the support to dynamically adjust and
focus more on parts related to the query, thereby producing
a more compatible activation signal.

Specifically, we achieve this by designing two parallel
branches: a Query Feedback Branch (QFB) and a Query
Amplifier Branch (QAB). In the QFB, the support feature
receives feedback information from the query and is used to
generate a query-related support prototype that incorporates
adaptive query knowledge. In the QAB, which operates in
parallel, the query-related support prototype is employed
as a control signal to activate the target objects once more.
This dual-branch design ensures a bidirectional and con-
structive exchange of category information, which initially
flows from the query to the support, and then back from the
support to the query.

After the QAB, the target objects in the query are signifi-
cantly activated. However, we noticed that some ambiguous

regions still pose challenges for accurate segmentation. To
address this, we introduce a Query Rectification Module
(QRM). The QRM identifies these regions by comparing
the differences between the predictions before and after
activation by the query-related support prototype. These
regions are categorized into hard positive and negative sam-
ples and are extracted as a supplementary prototype and an
exclusion prototype, respectively. By utilizing these two pro-
totypes, we further refine the query feature by reactivating
and suppressing corresponding regions, thereby enhancing
the segmentation accuracy.

By integrating the QFB, QAB, and QRM, we establish a
Feedback and Rectification Layer (FRL) as the foundation
of our model. We stack multiple FRLs to construct an In-
formation Feedback and Rectification Network (IFRNet),
facilitating the bidirectional reciprocative exchange of cat-
egory information between the support and query. This
process helps the support provide category information bet-
ter aligned with the query, and rectify the query by itself.

Our main contributions can be summarized as:

• We introduce the concept of bidirectional reciprocative
information communication into FSS based on cyber-
netics, aiming to reduce the intra-class gap between
query and support.

• We introduce a Query Feedback Branch (QFB) to feed
query information back to the support, and within the
Query Amplifier Branch (QAB), support information
is reciprocally transferred to the query. This establishes
a bidirectional information flow structure between sup-
port and query in our IFRNet.

• We leverage the prediction difference to identify am-
biguous regions and propose a Query Rectification
Module (QRM) for self-rectifying query features based
on inferred hard positive and negative samples.

• Extensive experiments on PASCAL-5i and COCO-
20i datasets demonstrate that our proposed framework
achieves state-of-the-art performance.

2. Related works
Few-shot semantic segmentation (FSS) aims to predict pixel
labels for new classes using only a few annotated support
images. PFENet (Tian et al., 2020) generates a prior mask
and designs a feature enrichment module for multi-level
feature matching. CWT (Lu et al., 2021) simplifies meta-
learning by focusing on the classifier, while SCL (Zhang
et al., 2021a) proposes self-guidance modules to retrieve
critical information that may have been lost. To address the
limitations of a single prototype, PPNet (Liu et al., 2020b)
and PMM (Yang et al., 2020) propose multi-prototype ap-
proaches. Furthermore, ASGNet (Li et al., 2021) suggests
an adaptive prototype learning strategy for FSS, using super
pixel-guided clustering to obtain multiple prototypes. SCCA
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(Xu et al., 2023) designs a patch alignment module to align
each query patch with its most similar support patch for
improved cross-attention. HDMNet (Peng et al., 2023) intro-
duces self-attention modules and matching modules to mine
pixel-level support correlation. MIANet (Yang et al., 2023)
leverages semantic word embeddings as general knowledge
for accurate segmentation. DPCN (Liu et al., 2022a) gen-
erates dynamic kernels from the support foreground and
then uses these kernels for information interaction through
convolution operations over the query.

However, certain works (Liu et al., 2022c; Hu et al., 2019;
Wu et al., 2021; Lu et al., 2023) may share similar high-
level ideas to ours, and we aim to provide clarification and
comparison. The proposal in (Hu et al., 2019) involves
aggregating query and support simultaneously into interme-
diate features across multiple scales, which are then used
for segmentation. Similarly, (Liu et al., 2022c) advocates
for collecting category information from both support and
query concurrently, aggregating them into an intermediate
representation. This representation subsequently replaces
the support prototype to match with the query. Meanwhile,
(Wu et al., 2021) introduces memory to gather meta-class
information from both query and support features simultane-
ously. After training, the memory encompasses information
from base classes and is transferred to novel classes during
inference. Distinctively, (Lu et al., 2023) utilizes the simi-
larity between query and support as a condition to guide the
support information.

In contrast, our approach draws inspiration from cybernetics
to establish a bidirectional reciprocative information ex-
change framework between query and support. This frame-
work achieves a category information propagation path of
’query→ support→ query→ support→ ... ← query’. Ad-
ditionally, we employ the prediction difference before and
after support activation to identify ambiguous regions and
achieve query self-rectification.

3. Method
3.1. Problem Definition
Our work follows the meta-learning pipeline with episodic
model training. The dataset is divided into a training set
Dtrain and a test set Dtest, with the base categories Ctrain
and the novel categories Ctest, respectively, where Ctrain ∩
Ctest = ∅. The model learns from Dtrain and is evaluated
onDtest. During training, episodes are created fromDtrain,
where K + 1 image-mask pairs of the same base category
form one episode. Among them, K pairs are treated as
the support set S, while the remaining pair is used as the
query set Q. The model uses both S and the query image
Iq to predict the mask of the query. Model parameters are
optimized under the supervision of the query mask Mq.
The testing phase is similar but uses data from Dtest, and

the query mask Mq is used to assess the model performance
on novel categories.

3.2. Overview
Here, we provide a brief overview of our IFRNet. As de-
picted in Figure 2, after extracting features from the back-
bone, both query and support features are passed through our
proposed Feedback and Rectification Layers (FRL), which
consists of three components: Query Feedback Branch
(QFB), Query Amplifier Branch (QAB), and Query Recti-
fication Module (QRM). The QFB gathers query category
information and feeds it back to the support to activate and
emphasize the foreground areas related to the query. We
utilize query-related mask pooling to extract query-related
category information from the support images and generate
a query-related support protoype. The QAB enhances query
category information and activates target objects using it-
self and the support prototype. Furthermore, we identify
challenging samples in ambiguous regions within the query
to enhance its own rectification in the QRM. Our iterative
feedback mechanism of stacking FRL progressively facil-
itates bidirectional reciprocative exchange of category in-
formation and query self-rectification, ultimately enhancing
segmentation performance.

3.3. Feedback and Rectification Layer
In contrast to previous works that employed a one-way
flow, our objective is to introduce an additional branch that
transfers category information from the query as feedback to
the support. This facilitates a bidirectional flow of category
information between the query and support.

The prerequisite for the feedback branch is to extract cate-
gory information from the query. For simplicity, we use the
query prototype to represent this information. Specifically,
given the query feature Xq

i ∈ RH×W×C from the i-th layer,
we initially generate a prediction using a basic segmentation
network Seg. This prediction is then used to generate a
query prototype P q

i ∈ R1×1×C via masked average pooling.
The process can be summarized as follows:

P q
i = Fpool(X

q
i ⊙ B(Seg(X

q
i ))), (1)

where Seg consists of two 3x3 convolutional layers with
a sigmoid activation function. The function B converts
predictions into binary values of either 0 or 1, by setting the
threshold as 0.5. Fpool means average pooling and⊙means
pixel-wise multiplication.

3.3.1. QUERY FEEDBACK BRANCH

Given the support feature Xs
i ∈ R1×1×C from the i-th

layer, we utilize the query prototype P q
i as category cues to

emphasize the shared category information in the support
feature and suppress dissimilar information. Furthermore,
we employ this activated support feature Xs

i+1 to segment
the target objects in the support using another Seg network.
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Figure 2. Overall architecture of the proposed IFRNet. Support and query images are first fed into the pre-trained backbone encoder
to extract initial features, denoted as Xs

1 and Xq
1. Then, we feed them and the support mask Ms into our feedback and rectification

layers (FRLs) to iteratively update support and query features. After L iterations, the final query feature Xq
L+1 is used to obtain the final

segmentation result.

These procedures can be summarized as:

Xs
i+1 = F1×1(X

s
i ⊕O(P

q
i )) +Xs

i , (2)
ys
i+1 = Seg(Xs

i+1), (3)

where F1×1(·) denotes a 1×1 convolutional layer that re-
duces the channel dimension from 2C to C, with the aim of
at activating the related objects with the prototype. Concate-
nation⊕ is performed along the channel dimension. O is an
expansion function defined as O: R1×1×C → RH×W×C .
Please note that the activated support feature Xs

i+1 will
be input to the next layer. In this way, a connection is es-
tablished between the query and support, reducing the gap
between them.

Query-Related Mask Pooling. The scores in the predic-
tion mask ys

i+1 ∈ (0, 1)H×W×1 not only represent the net-
work’s prediction probability for the support foreground
object, but also indicate the correlation of the category in-
formation associated with the query target objects present
in the support. We believe that this correlation can be in-
tuitively utilized to help gather query-compatible category
information from support.

To achieve this, we merge the prediction mask ys
i+1 with

the ground-truth mask M s ∈ {0, 1}H×W×1 of support to
generate a query-related mask. This mask considers the
correlation of the target object areas between the query and

support. A higher score signifies a stronger relevance to
the query, whereas a lower score suggests less relevance.
For the background, we set all pixels to 0 following the
ground truth, effectively ignoring the background region.
Subsequently, we utilize this query-related mask to average
pool the support feature, yielding a query-related support
prototype P s

i+1 ∈ R1×1×C . To summarize, the process can
be outlined as follows:

M̂ s
i+1 = ys

i+1 ⊙M s, (4)

P s
i+1 = Fpool(X

s
i+1 ⊙ M̂ s

i+1). (5)

As a result, we successfully provide category information
in the query to the support, and obtain a support prototype
P s

i+1 that is specifically tailored to the query.

3.3.2. QUERY AMPLIFIER BRANCH

Due to intra-object appearance variation, certain query pix-
els may contain ambiguous information, making it difficult
for P s

i+1 obtained from the feedback branch to effectively
control the activation of the target object in the query. There-
fore, we aim to reinforce the category information in the
query feature before being activated by P s

i+1.

Concretely, given the collected query information P q
i , we

first utilize it to stimulate the target object in the query
feature, which can be viewed as a self-activation mechanism.
The self-activated query feature X̃q

i is then inputted into a
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Figure 3. Illustration of the proposed query rectification mod-
ule. Given the ŷq

i and ỹq
i , we compare the disparity between them

and identify the challenging positive samples and negative samples,
respectively, to rectify the query feature.

segmentation network to generate a self-activated prediction
ỹq
i .

This procedure can be expressed as:

X̃q
i = F1×1(X

q
i ⊕O(P

q
i )) +Xq

i , (6)

ỹq
i = Seg(X̃q

i ). (7)

Furthermore, following (Zhang et al., 2021b), we suggest
incorporating deformable self-attention to enhance the repre-
sentation of the target object in X̃q

i . As a result, the category
information in the query is effectively enhanced.

Subsequently, P s
i+1 obtained from (5) is used as the category

cue to control the activation of query target objects within
it, resulting in a support-activated prediction ŷq

i :

X̂q
i = F1×1(X̃

q
i ⊕O(P s

i+1)) + X̃q
i , (8)

ŷq
i = Seg(X̂q

i ). (9)

As such, the category information is transferred back to
the query. Therefore, we successfully have constructed the
category information flow path ‘query→ support→ query’.
Please note that Seg in (9) and (7) do not share weights.

3.3.3. QUERY RECTIFICATION MODULE

Although the target objects in X̂q
i are significantly activated,

some regions are still difficult to segment. To enhance our
model’s performance, we utilize the difference between the
two masks (i.e., ỹq

i and ŷq
i ) generated from query features

before and after support activation to identify these regions
for further refinement of X̂q

i , as depicted in Figure 3. Our
module is designed assuming that ŷq

i is more accurate than
ỹq
i , and we demonstrate it in Section 4.4.3. Next, we analyze

this difference from two perspectives.

Supplement Prototype. When certain regions are pre-
dicted in ŷq

i but not captured in ỹq
i , they can be regarded

as hard positive samples since ŷq
i is assumed to be more

accurate than ỹq
i . We extract category information from the

query feature using these regions and create a supplement

prototype (SuP), which is used to compensate for regions
not identified as target objects in ỹq

i . Here’s a summary of
the entire process:

M q
su,i = Max{B(ŷq

i )− B(ỹ
q
i ), 0}, (10)

P q
su,i = Fpool(X̂

q
i ⊙M q

su,i), (11)

Xq
su,i = F1×1(X̂

q
i ⊕O(P

q
su,i)), (12)

where Max ignores negative values, focusing on predicted
regions in ŷq

i but not obtained in ỹq
i . P q

su,i ∈ R1×1×C is
used to activate the supplement regions in X̂q

i and obtain
the refined feature Xq

su,i ∈ RH×W×C .

Exclusion Prototype. On the other hand, certain regions
may be identified in ỹq

i but not in ŷq
i . These regions are

probably hard negative examples. They are often found
at the edges of the target objects and can lead to incorrect
activation and predictions. To mitigate this issue, we extract
an exclusion prototype (ExP) from the query feature using
these regions. The ExP is then used to suppress and exclude
query regions that are similar to it. This process can be
summarized as follows:

M q
ex,i = Max{B(ỹq

i )− B(ŷ
q
i ), 0}, (13)

P q
ex,i = Fpool(X̂

q
i ⊙M q

ex,i), (14)

Xq
ex,i = F1×1(X̂

q
i ⊕O(P

q
ex,i)), (15)

where M q
ex,i ∈ RH×W×1 indicates the regions that are

predicted in ỹq
i but do not appear in ŷq

i . Xq
ex,i ∈ RH×W×C

is obtained by activating Xq
i with P q

ex,i ∈ R1×1×C .

After combining Xq
su,i and Xq

ex,i, we obtain the rectified
query feature. The process is summarized in this equation:

Xq
i+1 = Xq

su,i +Xq
ex,i, (16)

where Xq
i+1 represents the final rectified query feature of

this layer and will be used in the next layer.

3.3.4. ITERATIVE QUERY INFORMATION FEEDBACK

One Feedback and Rectification Layer (FRL) integrates the
Query Feedback Branch (QFB), Query Amplifier Branch
(QAB), and Query Rectification Module (QRM) to complete
a two-way information exchange and query self-rectification.
By iteratively executing this process, we can enhance our
method further by facilitating bidirectional reciprocative
information exchange between query and support, progres-
sively rectifying the query feature, and ultimately achieving
superior segmentation results. Assuming we have L FRLs,
and for each layer i, we have:

Xq
i+1,X

s
i+1, ŷ

q
i , ỹ

q
i = FRL(Xq

i ,X
s
i ,M

s), (17)
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Table 1. Performance comparison on PASCAL-5i in terms of mIoU under 1-shot and 5-shot settings. The results of ‘Mean’ are the
averaged class mIoU scores of all four folds. Results in bold denote the best performance. ‘*’ denotes that we follow BAM (Lang et al.,
2022) and use the ensemble module to remove the impact of base classes.

1-shot 5-shotBackbone Method Venue fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean
PFENet(Tian et al., 2020) TPAMI’20 56.9 68.2 54.4 52.4 58.0 59.0 69.1 54.8 52.9 59.0
PMMs(Yang et al., 2020) ECCV’20 47.1 65.8 50.6 48.5 53.0 50.0 66.5 51.9 47.6 54.0
HSNet(Hu et al., 2018) ICCV’21 59.6 65.7 59.6 54.0 59.7 64.9 69.0 64.1 58.6 64.1

APANet(Chen et al., 2022) TMM’22 58.0 68.9 57.0 52.2 59.0 59.8 70.0 62.7 57.7 62.6
NTRENet(Liu et al., 2022b) CVPR’22 57.7 67.6 57.1 53.7 59.0 60.3 68.0 55.2 57.1 60.2

DPCN (Liu et al., 2022a) CVPR’22 58.9 69.1 63.2 55.7 61.7 63.4 70.7 68.1 59.0 65.3
IFRNet(ours) 64.9 72.4 67.6 66.2 67.8 67.0 73.9 69.0 69.2 69.8

BAM*(Lang et al., 2022) CVPR’22 63.2 70.8 66.1 57.5 64.4 67.4 73.0 70.6 64.0 68.8
FECANet*(Liu et al., 2023a) TMM’23 66.5 68.9 63.6 58.3 64.3 68.6 70.8 66.7 60.7 66.7
MIANet*(Yang et al., 2023) CVPR’23 65.4 73.6 67.7 61.6 67.1 69.0 76.1 73.2 69.6 72.0

InPNet*(Luo et al., 2023) SP’23 61.3 71.6 69.8 60.9 65.9 67.9 73.7 72.3 63.5 69.4
MVPNet*(Wang et al., 2023) APIN’23 60.6 69.5 65.1 56.3 62.9 65.6 72.8 69.7 64.7 68.2
HDMNet*(Peng et al., 2023) CVPR’23 64.8 71.4 67.7 56.4 65.1 68.1 73.1 71.8 64.0 69.3

VGG-16

IFRNet*(ours) 67.0 72.9 68.2 66.9 68.7 69.7 75.4 70.9 71.2 71.8
PMMs(Yang et al., 2020) ECCV’20 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PFENet(Tian et al., 2020) TPAMI’20 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9

HSNet(Hu et al., 2018) ICCV’21 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5
IPMT(Liu et al., 2022c) NeurIPS’22 72.8 73.7 59.2 61.6 66.8 73.1 74.7 61.6 63.4 68.2

DCAMA (Shi et al., 2022) ECCV’22 67.5 72.3 59.6 59.0 64.6 70.5 73.9 63.7 65.8 68.5
SCCAN(Xu et al., 2023) ICCV’23 67.5 72.6 67.2 60.5 67.0 69.9 74.3 70.1 66.9 70.3
MSI (Moon et al., 2023) ICCV’23 71.0 72.5 63.8 65.9 68.3 73.0 74.2 66.6 70.5 71.1

IFRNet(ours) 71.4 73.7 67.4 70.3 70.7 71.0 74.8 69.9 72.7 72.1
BAM*(Lang et al., 2022) CVPR’22 69.0 73.6 67.6 61.1 67.8 70.6 75.1 70.8 67.2 70.9

FECANet*(Liu et al., 2023a) TMM’23 69.2 72.3 62.4 65.7 67.4 72.9 74.0 65.2 67.8 70.0
MIANet*(Yang et al., 2023) CVPR’23 68.5 75.8 67.5 63.1 68.7 70.2 77.4 70.0 68.8 71.6
MVPNet*(Wang et al., 2023) APIN’23 70.0 73.4 67.2 65.2 68.9 70.7 75.6 70.2 68.9 71.4

InPNet*(Luo et al., 2023) SP’23 69.3 74.4 68.8 62.3 68.7 71.2 75.5 74.8 68.3 72.5
HDMNet*(Peng et al., 2023) CVPR’23 71.0 75.4 68.9 62.1 69.4 71.3 76.2 71.3 68.5 71.8

ResNet-50

IFRNet*(ours) 74.3 74.2 69.1 70.9 72.1 75.4 77.2 71.3 74.1 74.5

which can be broken down into the following steps:

P q
i = Fpool(X

q
i ⊙ B(Seg(X

q
i ))), (18)

P s
i+1,X

s
i+1 = QFB(P q

i ,X
s
i ,M

s), (19)

X̂q
i , ŷ

q
i , ỹ

q
i = QAB(P q

i ,X
q
i ,P

s
i+1), (20)

Xq
i+1 = QRM(X̂q

i , ŷ
q
i , ỹ

q
i ). (21)

After L iterations, the final query feature Xq
L+1 is used to

predict the segmentation result yq
final.

3.4. Total Loss
Our method generates multiple query predictions from seg-
mentation networks. To ensure the network learns as in-
tended, we calculate three binary cross-entropy losses that
supervise the predictions (yq

final, ỹ
q
i , ŷq

i , i ∈ {1, 2, ..., L}).
These losses guide the learning process and ensure the accu-
racy of the predictions.

L = βBCE(yq
final,M

q) + λ

L∑
i

BCE(ỹq
i ,M

q)

+ γ

L∑
i

BCE(ŷq
i ,M

q), (22)

where β, λ, and γ are used to balance the losses.

4. Experiment
4.1. Datasets and Evaluation Setting
Datasets. To ensure a fair assessment, our model is evalu-
ated on two benchmark datasets for FSS: the PASCAL-5i

dataset (Shaban et al., 2017) and the COCO-20i dataset
(Nguyen & Todorovic, 2019). The PASCAL-5i is built
upon the PASCAL VOC 2012 dataset (Everingham et al.,
2010) with additional annotations from SDS (Hariharan
et al., 2011), containing 20 categories across four folds. The
COCO-20i dataset, a larger dataset derived from MSCOCO
(Lin et al., 2014), consists of 80 categories divided into four
folds. Our model is trained on three folds and evaluated on
the remaining fold, enabling us to perform cross-validation.

Evaluation Metrics. To assess the effectiveness of the
model, we use the class mean intersection over union (mIoU)
as the primary metric, consistent with previous methods. We
also provide the foreground-background intersection over
union (FB-IoU) results in the appendix. This comparison
focuses on the target and non-target areas rather than on spe-
cific categories, providing a more comprehensive analysis.

4.2. Implementation Details
For a fair comparison with previous works, we use VGG-16
(Simonyan & Zisserman, 2014) and ResNet-50 (He et al.,
2016) as encoder backbones. These are initialized with
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Figure 4. Comparison between existing
method and our method for FSS. From left
to right: support images, MSI predictions, our
predictions, and query ground-truth.

Figure 5. Visualization of different ablative results. From left to right: Support images,
the results of baseline, the results of only using QFB, the results of using QFB+QAB, the
results of using QFB+QAB+QRM (i.e., full model), Ground truth.

weights pretrained on ImageNet and remain fixed during
the training process. All experiments are conducted using
PyTorch on an NVIDIA RTX 2080 TI GPU for PASCAL-5i,
and four GPUs for COCO-20i. We augment our training
dataset by utilizing a variety of techniques, including ran-
dom scaling, horizontal flipping, and random rotations be-
tween -10 and +10 degrees. Images and masks are randomly
cropped to a consistent size of 473× 473.

For training, we use the stochastic gradient descent (SGD)
optimizer, with a batch size of 4, a learning rate of 0.025,
a weight decay of 0.0001, and a momentum value of 0.9.
β, λ, and γ are all set as 1.0 for simplicity. The model is
trained for 200 epochs on PASCAL-5i and 50 epochs on
COCO-20i, with a polynomial annealing policy for learning
rate reduction, using a power factor of 0.9. During the
evaluation, we follow (Yang et al., 2021) and randomly
select 1000 support-query pairs from PASCAL-5i and 4000
pairs from COCO-20i.

4.3. Comparison with State-of-the-art Methods

4.3.1. QUANTITATIVE ANALYSIS

PASCAL-5i. In Table 1, our IFRNet outperforms all other
methods with VGG-16 and ResNet-50 backbones on the
PASCAL-5i dataset. In the 1-shot setting, our method
achieves an average mIoU of 67.8% and 70.7% with VGG-
16 and ResNet-50 backbones, exceeding previous state-of-
the-art by 6.1% and 2.4%, respectively. In the 5-shot setting,
it also attains state-of-the-art mIoU scores of 69.8% and
72.1% with VGG-16 and ResNet-50 backbones, outperform-
ing previous state-of-the-art by 4.5% and 1.0%, respectively.

In addition, we use the ensemble model (Lang et al., 2022)
to eliminate base class influence for a fair comparison with
BAM-based methods. In the 1-shot setting, average mIoU
results are 68.7% with VGG-16 and 72.1% with ResNet-50,
surpassing previous best performance by 3.6% and 2.7%
respectively. In the 5-shot setting, we exceed previous top
results by 2.5% with VGG-16 and 2.7% with ResNet-50.

COCO-20i. Our method also demonstrates impressive
performance on the COCO dataset. In Table 2, our method
surpasses the previous best methods in both 1-shot and 5-
shot settings. In the 1-shot setting, our method shows a
significant improvement, achieving 5.1% and 0.2% higher
mIoU compared to the previous best methods utilizing the
VGG-16 and Resnet-50 backbones, respectively. Further-
more, by eliminating the influence of base classes, our
method results in a further outperformance of the previ-
ous method by 4.0% and 1.7%, respectively. Similarly, in
the 5-shot setting, our method demonstrates a significant ad-
vancement, with 5.7% and 0.3% higher mIoU compared to
the previous best methods utilizing the VGG-16 and Resnet-
50 backbones, respectively. By removing base classes, it has
surpassed the previous methods by 3.0% and 2.5%, respec-
tively, further validating the effectiveness of our method.

4.3.2. QUALITATIVE COMPARISON

In Figure 4, we present the results of our prediction. We ob-
serve that our method reduces intra-class diversity, enabling
accurate segmentation even with very different support and
query (see rows 3 and 4). It is minimally affected by con-
fusing objects and achieves state-of-the-art performance.

4.4. Ablation Study
4.4.1. EFFECTIVENESS OF FRL
To assess the effectiveness of our FRL, including QFB,
QAB, and QRM, we conduct ablation studies on PASCAL-
5i using the 1-shot setting. A baseline model without these
modules is initially designed, directly segmenting the target
object using the support prototype.

Results presented in Table 4 demonstrate that integrating
QFB into the baseline yields a 3.1% mIoU improvement.
Moreover, replacing the original support matching process
with QAB can further enhance the results to 70.8% mIoU.
Additionally, we conduct separate experiments for QRM by
decomposing it into QRM-su and QRM-ex, which means
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Table 2. Performance comparison on COCO-20i in terms of mIoU under 1-shot and 5-shot settings. The results of ‘Mean’ are the
averaged class mIoU scores of all four folds. Results in bold denote the best performance. ‘*’ denotes that we follow BAM (Lang et al.,
2022) and use the ensemble module to remove the impact of base classes.

1-shot 5-shotBackbone Method Venue fold-0 fold-1 fold-2 fold-3 mean fold-0 fold-1 fold-2 fold-3 mean
PFENet(Tian et al., 2020) TPAMI’20 35.4 38.1 36.8 34.7 36.3 38.2 42.5 41.8 38.9 40.4
SAGNN (Xie et al., 2021) CVPR’21 35.0 40.5 37.6 36.0 37.3 37.2 45.2 40.4 40.0 40.7
APANet(Chen et al., 2022) TMM’22 35.6 40.0 36.0 37.1 37.2 40.1 48.7 43.3 40.7 43.2
DPCN (Liu et al., 2022a) CVPR’22 38.5 43.7 38.2 37.7 39.5 42.7 51.6 45.7 44.6 46.2

IFRNet(ours) 41.5 44.4 43.2 44.2 43.3 49.2 52.3 47.2 46.9 48.9
BAM*(Lang et al., 2022) CVPR’22 36.4 47.1 43.3 41.7 42.1 42.9 51.4 48.3 46.6 47.3

FECANet*(Liu et al., 2023a) TMM’23 34.1 37.5 35.8 34.1 35.4 39.7 43.6 42.9 39.7 41.5
InPNet*(Luo et al., 2023) SP’23 41.4 48.2 44.7 41.9 44.1 47.9 53.4 49.2 48.6 49.8

MIANet*(Yang et al., 2023) CVPR’23 40.6 50.5 46.5 45.2 45.7 46.2 56.1 52.3 49.5 51.0

VGG-16

IFRNet*(ours) 43.8 49.8 46.4 44.4 46.1 49.9 53.1 49.0 49.1 50.3
PFENet (Tian et al., 2020) TPAMI’20 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
PMMs(Yang et al., 2020) ECCV’20 29.5 36.8 28.9 27.0 30.6 33.8 42.0 33.0 33.3 35.5

APANet(Chen et al., 2022) TMM’22 37.5 43.9 39.7 40.7 40.5 39.8 46.9 43.1 42.2 43.0
DPCN(Liu et al., 2022a) CVPR’22 42.0 47.0 43.2 39.7 43.0 46.0 54.9 50.8 47.4 49.8
HSNet (Hu et al., 2018) ICCV’21 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9

NTRENet(Liu et al., 2022b) CVPR’22 36.8 42.6 39.9 37.9 39.3 38.2 44.1 40.4 38.4 40.3
IPMT(Liu et al., 2022c) NeurIPS’22 41.4 45.1 45.6 40.0 43.0 43.5 49.7 48.7 47.9 47.5

DCAMA(Shi et al., 2022) ECCV’22 41.9 45.1 44.4 41.7 43.3 45.9 50.5 50.7 46.0 48.3
SCCAN(Xu et al., 2023) ICCV’23 39.5 49.3 47.3 44.3 45.1 45.7 56.4 56.5 50.7 52.3
MSI (Moon et al., 2023) ICCV’23 42.4 49.2 49.4 46.1 46.8 47.1 54.9 54.1 51.9 52.0

IFRNet(ours) 42.6 50.9 47.9 46.5 47.0 48.9 57.3 50.3 52.7 52.3
BAM*(Lang et al., 2022) CVPR’22 43.4 50.6 47.5 43.4 46.2 49.3 54.2 51.6 49.6 51.2

FECANet*(Liu et al., 2023a) TMM’23 38.5 44.6 42.6 40.7 41.6 44.6 51.5 48.4 45.8 47.6
InPNet*(Luo et al., 2023) SP’23 44.8 50.4 49.7 44.9 47.5 50.9 55.8 52.9 50.1 52.4

MIANet*(Yang et al., 2023) CVPR’23 42.5 52.9 47.8 47.4 47.6 45.8 58.2 51.3 51.9 51.7
MVPNet*(Wang et al., 2023) APIN’23 42.6 52.9 47.4 43.8 46.7 48.7 56.3 52.8 48.6 51.6

ResNet-50

IFRNet*(ours) 44.4 54.1 48.8 46.5 48.4 51.4 59.4 53.2 52.2 54.1

using the supplement prototype and the exclusion proto-
type, respectively. Including QRM-su contributes another
0.7% mIoU improvement by helping segment challenging
positive pixels. Similarly, incorporating QRM-ex results in
a 0.8% mIoU improvement by suppressing difficult nega-
tive samples. The combination of QFB, QAB, and QRM
achieves an outstanding 72.1% mIoU, which gains a larger
margin over the baseline model. These findings confirm the
effectiveness of our proposed QFB, QAB, and QRM.

4.4.2. ABLATION ON DIFFERENT NUMBERS OF FRL
In this study, we investigate the impact of varying the num-
ber of FRL layers, ranging from 1 to 5, on the model’s per-
formance. The results in Table 5 indicate that the model’s
performance incrementally improves with an increase in the
number of layers. We can observe that increasing the num-
ber of layers from 1 to 2 results in a significant performance
improvement of 1.3% mIoU. However, adding more than 2
layers does not bring significant gains. Therefore, we use
2 layers for our final model due to the trade-off between
performance and computational costs.

4.4.3. ABLATION ON DIFFERENT PREDICTIONS IN FRL
In Section 3.3.3, we speculate that ŷq

i is more accurate than
ỹq
i . To demonstrate this assumption, we evaluate the mIoU

of both ŷq
i and ỹq

i in different layers, and the results are
presented in Table 7. The mIoU results obtained by ŷq

i

consistently outperform those of ỹq
i across all layers, thus

confirming the validity of our hypothesis.

4.4.4. EFFECTIVENESS OF QRMP
We propose a new technique called Query-Related Mask
Pooling (QRMP) to replace the traditional mask average
pooling (MAP) in QFB. To evaluate its effectiveness, we
conduct ablation studies on PASCAL-5i in the 1-shot setting
using QRMP and MAP respectively in QFB, while keeping
the remaining operations consistent with our full model. Re-
sults in Table 6 indicate that using QRMP outperforms using
traditional MAP in all folds, with a significant improvement
of 1.0% mIoU in fold 3.

4.4.5. QUALITATIVE COMPARISON

In Figure 5, we present additional visual results to showcase
the effectiveness of our QFB, QAB, and QRM modules.
Column 2 displays the baseline results, while Column 3
shows the results with QFB. A comparison of these two
columns clearly indicates that QFB improves segmentation.
Column 4 demonstrates that the addition of QAB further
enhances the results. The combined use of QFB, QAB, and
QRM in Column 5 results in even more accurate predictions
by leveraging the perception of challenging regions. These
results validate the effectiveness of our proposed modules.

4.4.6. PROTOTYPE COMPARISON WITH IPMT
In this section, we use the Euclidean distance to quantita-
tively calculate the distances between the original support
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Table 3. Intra-class diversity measured by Euclidean distances on PASCAL-5i. The results of ‘Mean’ are the averaged class mIoU
scores of all classes. We compare the distances between the original support prototypes and the query prototype (Dori), the distances
between the query-related support prototypes and the query prototype (Dour), and the distance (Dipmt) between the intermediate
prototypes and the query prototype in (Liu et al., 2022c). ∗: Please note that we retest the IPMT and normalize prototypes before
measurement to ensure fair comparison. Therefore, the reported results may differ from the original results in (Liu et al., 2022c).

class c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 Mean
Dori 6.52 4.35 6.98 3.10 3.35 7.88 4.44 4.16 4.03 3.51 5.58 4.37 5.28 3.67 3.94 7.82 4.01 5.48 3.87 4.76 4.86

Dipmt
∗ 5.86 2.66 3.77 3.77 4.04 6.32 3.02 4.17 3.27 3.94 4.24 2.81 4.91 3.52 3.58 4.46 3.20 5.19 3.51 4.59 4.04

Dour 3.56 2.38 3.70 2.19 3.33 2.76 2.29 3.03 3.16 3.14 3.09 2.54 2.86 3.29 2.98 2.80 2.55 2.80 2.81 4.54 2.99

Table 4. Ablation study on effectiveness of dif-
ferent modules in FRL. The results of ‘mIoU’
are the averaged class mIoU scores of all four
folds on the PASCAL-5i dataset.

QFB QAB QRM-su QRM-ex mIoU
66.8

! 69.9
! ! 70.8
! ! ! 71.5
! ! ! 71.6
! ! ! ! 72.1

Table 5. Performance comparison of varying
the number of FRL layers.

Layers 1 2 3 4 5
mIoU 70.8 72.1 72.5 72.8 73.0

Pars.(M) 10.6 16.3 22.0 27.7 33.4
GFlops 290.0 310.5 322.5 334.5 350.8

Table 6. Ablation study on the effectiveness of
Query-related Mask Pooling.

Fold-0 Fold-1 Fold-2 Fold-3 mIoU
MAP 73.8 74.1 68.5 69.9 71.5

QRMP 74.3 74.2 69.1 70.9 72.1

Table 7. Performance com-
parison of different predic-
tions in FRL.

Layers ỹq
i ŷq

i ∆
1 55.9 62.0 6.1
2 64.4 69.7 5.3

prototypes and the query prototype (Dori) and the distances
between the query-related support prototypes and the query
prototype (Dour), and compare it with the distance (Dipmt)
between the intermediate prototypes and the query proto-
type in (Liu et al., 2022c). From Table 3, we observe that
Dour is smaller than both Dori and Dipmt for all classes,
indicating that our query-related support prototype is more
similar to the query prototype than both the original support
prototype and the intermediate prototype of IPMT. This fur-
ther strengthens the effectiveness of our method in reducing
the intra-class diversity between the support and the query.

5. Conclusion
In this paper, we propose IFRNet to address the intra-class
diversity problem in FSS by introducing information feed-
back from cybernetics. Our method utilizes QFB to feed
category information from query back to support, thereby
creating a query-related support prototype. The QAB en-
hances the target objects through self-activation and support-
activation, facilitating bidirectional information exchange.
QRM uses prediction differences for self-rectification of the
query feature. Combining QFB, QAB, and QRM into FRL
and iteratively applying it, we establish a bidirectional recip-
rocative flow of category information, leading to progressive
self-rectification of the query feature. Experiments on two
benchmark datasets confirm the superior performance of
our method.
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Table 8. Performance comparison of average FB-IoU results on PASCAL-5i. ∆ denotes the increments over 1-shot results. ‘*’ denotes
that we follow BAM (Lang et al., 2022) and use the ensemble module to remove the impact of base classes.

Backbone Method Venue 1-shot 5-shot ∆
PFENet TPAMI’20 72.0 72.3 0.3
HSNet ICCV’21 73.4 76.6 3.2

NTRENet CVPR’22 73.1 74.2 1.1
MVPNet APIN’23 79.3 80.2 0.9
FECANet TMM’23 78.7 80.7 2.0VGG-16

IFRNet(ours) 80.8 82.4 1.6
BAM* CVPR’22 77.2 81.1 3.9

MVPNet* APIN’23 81.4 82.8 1.4
IFRNet*(ours) 83.1 83.8 0.7

PFENet TPAMI’20 73.3 73.9 0.6
HSNet ICCV’21 76.7 80.6 3.9

NTRENet CVPR’22 77.0 78.1 1.1
MVPNet APIN’23 79.3 80.2 0.9

IFRNet(ours) 81.7 82.8 1.1
BAM* CVPR’22 79.7 82.2 2.5

MVPNet* APIN’23 81.4 82.8 1.4
HDMNet* CVPR’23 72.2 77.7 5.5

ResNet-50

IFRNet*(ours) 82.2 84.6 2.4

A. Comparison on FB-IoU
As an additional analysis, we compared our method with previous approaches using FB-IoU. Table 8 shows that our method
outperforms the previous best results by 2.4% (1-shot) and 2.6% (5-shot) with the ResNet-50 backbone. Furthermore, by
incorporating the ensemble module of BAM (Lang et al., 2022), our method surpasses the previous best results by 10.0%
and 6.9%, respectively. Using the VGG-16 backbone, we outperform all previous approaches and achieve exceptional
results (i.e., 80.8% and 83.1%) in the 1-shot setting, surpassing previous top results by 2.1% and 1.7%, respectively. In the
5-shot setting, we exceed previous results by 2.7% and 1.0%, respectively. These results further confirm the effectiveness of
our method.

B. Qualitative prototype comparsion
In this section, we qualitatively visualize the distribution of original support prototypes (red points), query-related support
prototypes (green points), and the query prototype (blue point) in Figure 6. We observe that our query-related support
prototypes are closer to the query prototype than the original support prototypes in the feature space. Especially in the
right subfigure, we can observe that the query prototype is initially positioned at a considerable distance from the support
prototypes, suggesting a notable intra-class difference between them. However, our query-related support prototypes
successfully close this gap, emphasizing the reduction of intra-class diversity and narrowing the category information
disparity between query and support images.

Figure 6. t-SNE visualization of the prototype distribution. Our query-related support prototypes are closer to the query prototype than
the original support prototypes.
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Figure 7. t-SNE visualization of the prototype distribution. Our query-related support prototypes are closer to the query prototype than
both the intermediate prototypes and the original support prototypes.

C. Qualitative comparison with IPMT
To qualitatively illustrate the superiority of our method over IPMT (Liu et al., 2022c), we incorporate the distribution of the
intermediate prototypes (yellow points) and combine it with the original support prototypes (red points), our query-related
support prototypes (green points), and the query prototype (blue point) in Figure 7. Upon observation, we notice that our
query-related support prototypes, in contrast to intermediate prototypes, are closer to the query prototype and tend to cluster
around it. Meanwhile, the position of intermediate prototypes appears more irregular.

D. Additional Qualitative Results
We give more qualitative results in Figure 8 to show the good performance of our IFRNet.
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Figure 8. More qualitative results of our IFRNet.
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