
SVFT: Parameter-Efficient Fine-Tuning
with Singular Vectors

Vijay Lingam† §∗ Atula Tejaswi†∗ Aditya Vavre†∗ Aneesh Shetty†∗

Gautham Krishna Gudur†∗ Joydeep Ghosh† Alex Dimakis† Eunsol Choi†

Aleksandar Bojchevski‡∗ Sujay Sanghavi†∗
†University of Texas at Austin ‡University of Cologne

§CISPA Helmholtz Center for Information Security

Abstract

Popular parameter-efficient fine-tuning (PEFT) methods, such as LoRA and its
variants, freeze pre-trained model weights W and inject learnable matrices ∆W.
These ∆W matrices are structured for efficient parameterization, often using tech-
niques like low-rank approximations or scaling vectors. However, these methods
typically exhibit a performance gap compared to full fine-tuning. While recent
PEFT methods have narrowed this gap, they do so at the expense of additional
learnable parameters. We propose SVFT2, a simple approach that structures ∆W
based on the specific weight matrix W. SVFT updates W as a sparse combination
M of outer products of its singular vectors, training only the coefficients of these
combinations. Crucially, we make additional off-diagonal elements in M learnable,
enabling a smooth trade-off between trainable parameters and expressivity—an
aspect that distinctly sets our approach apart from previous works leveraging
singular values. Extensive experiments on language and vision benchmarks show
that SVFT recovers up to 96% of full fine-tuning performance while training only
0.006 to 0.25% of parameters, outperforming existing methods that achieve only
up to 85% performance with 0.03 to 0.8% of the trainable parameter budget.

1 Introduction

Large-scale foundation models are often adapted for specific downstream tasks after pre-training.
Parameter-efficient fine-tuning (PEFT) facilitates this adaptation efficiently by learning a minimal set
of new parameters, thus creating an "expert" model. For instance, Large Language Models (LLMs)
pre-trained on vast training corpora are fine-tuned for specialized tasks such as text summarization [13,
37], sentiment analysis [27, 21], and code completion [28] using instruction fine-tuning datasets.
Although full fine-tuning (Full-FT) is a viable method to achieve this, it requires re-training and
storing all model weights, making it impractical for deployment with large foundation models.

To address these challenges, PEFT techniques [14] (e.g., LoRA [15]) were introduced to significantly
reduce the number of learnable parameters compared to Full-FT, though often at the cost of perfor-
mance. DoRA [19] bridges this performance gap by adding more learnable parameters and being
more expressive than LoRA. Almost all these methods apply a low-rank update additively to the
frozen pre-trained weights, potentially limiting their expressivity. Furthermore, these adapters are
agnostic to the structure and geometry of the weight matrices they modify. Finally, more expressive

∗indicates equal contribution/advising
2Code is available at https://github.com/VijayLingam95/SVFT/

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/VijayLingam95/SVFT/

0.3 0.5 0.85 1.5 2.5 4 7 12 20.5 35
Number of Trainable Params (M)

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

SVFTP

SVFTB
d = 2

SVFTB
d = 4 SVFTB

d = 8

SVFTB
d = 16

SVFTR
d = 16

LoRAr = 1

DoRAr = 1

LoRAr = 32

VeRAr = 1024

VeRAr = 2048

BOFTm = 2
b = 8

DoRAr = 16

DoRAr = 4

LoRAr = 4

Full Fine-Tuning (2500M params)

0.3 0.5 0.85 1.5 2.5 4 7 12 20.5 35
Number of Trainable Params (M)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

SVFTP

SVFTB
d = 2

SVFTB
d = 4

SVFTB
d = 8

SVFTB
d = 16

DoRAr = 16

DoRAr = 4
LoRAr = 32

LoRAr = 1 DoRAr = 1

VeRAr = 2048
BOFTm = 2

b = 8

Full Fine-Tuning (2500M params)

A
cc

ur
ac

y
(%

)

Figure 1: Performance vs total trainable parameters for GSM-8K (left) and Commonsense Reasoning
(right) on Gemma-2B. SVFTB/R

d=16 outperforms DoRAr=8/16 with 75% less trainable parameters.

PEFT methods (e.g., LoRA, DoRA, BOFT [20]) still accumulate a considerable portion of learnable
parameters even in their most efficient configuration (e.g., setting rank=1 in LoRA and DoRA). The
storage requirements for the learnable adapters can grow very quickly when adapting to a large
number of downstream tasks [17].

Is it possible to narrow the performance gap between PEFT and Full-FT while being highly
parameter-efficient? Yes, we propose SVFT: Singular Vectors guided Fine-Tuning — a simple
approach that involves updating an existing weight matrix by adding to it a sparse weighted
combination of its own singular vectors. The structure of the induced perturbation in SVFT depends
on the specific matrix being perturbed. Our contributions can be summarized as follows:

• We introduce SVFT, a new PEFT method. Given a weight matrix W , SVFT involves adapting
it with a matrix ∆W :=

∑
(i,j)∈Ω mijuiv

T
j where the {ui} and {vj} are the left and right

singular vectors of W , Ω is an a-priori fixed sparsity pattern, and mij for (i, j) ∈ Ω are learnable
parameters. By controlling |Ω| we can efficiently explore the accuracy vs parameters trade-off.

• SVFT achieves higher downstream accuracy, as a function of the number of trainable parameters,
as compared to several popular PEFT methods (see Figure 1) and over several downstream
tasks across both vision and language tasks. For instance, on GSM-8K using Gemma-2B our
method recovers up to 96% of full fine-tuning performance while training only 0.006 to 0.25% of
parameters, outperforming existing methods that only recover up to 85% performance using 0.03
to 0.8% the trainable parameter budget (see Figure 1).

We introduce four simple variants for parameterizing weight updates, namely: Plain, Random,
Banded, and Top-k in SVFT (which differ in their choices of the fixed sparsity pattern Ω) and validate
these design choices empirically. Additionally, we theoretically show that for any fixed parameters
budget, SVFT can induce a higher rank perturbation compared to previous PEFT techniques.

2 Related Work

Recent advancements in large language models (LLMs) have emphasized the development of PEFT
techniques to enhance the adaptability and efficiency of large pre-trained language models.

LoRA. A notable contribution in this field is Low-Rank Adaptation (LoRA) [15], which freezes
the weights of pre-trained models and integrates trainable low-rank matrices into each transformer
layer. For a pre-trained weight matrix W0 ∈ Rd×n, LoRA constraints the weight update ∆W to a
low-rank decomposition: h = W0x+∆Wx = W0x+BAx, where B ∈ Rd×r, A ∈ Rr×n and
rank r ≪ min(d, n). We underline the (trainable) parameters that are updated via gradient descent.

LoRA variants. We highlight some recent approaches that further improve the vanilla LoRA
architecture. Vector-based Random Matrix Adaptation (VeRA) [17] minimizes the number of

2

Figure 2: Schematic comparison of LoRA, VeRA, DoRA, and SVFT (left to right).

trainable parameters by utilizing a pair of low-rank random matrices shared between layers and
learning compact scaling vectors while maintaining performance comparable to LoRA. Formally,
VeRA can be expressed as: h = W0x+∆Wx = W0x+ΛbBΛdAx, where A and B are initialized
randomly, frozen, and shared across layers, while Λb and Λd are trainable diagonal matrices.

An alternative approach, Weight-Decomposed Low-Rank Adaptation (DoRA) [19], decomposes pre-
trained weight matrices into magnitude and direction components, and applies low-rank updates for
directional updates, reducing trainable parameters and enhancing learning capacity and training sta-
bility. DoRA can be expressed as: h = m W0+∆W

∥W0+∆W ∥c
x = m W0+BA

∥W0+BA∥c
x, where ∥ · ∥c denotes the

vector-wise norm of a matrix across each column. Similar to LoRA, W0 remains frozen, whereas the
magnitude vector m (initialized to ∥W0∥c) and low-rank matrices A,B contain trainable parameters.

AdaLoRA [38] adaptively distributes the parameter budget across weight matrices based on their
importance scores and modulates the rank of incremental matrices to manage this allocation
effectively. PiSSA (Principal Singular Values and Singular Vectors Adaptation) [22] is another variant
of LoRA, where matrices A,B are initialized with principal components of SVD and the remaining
components are used to initialize W0. FLoRA [34] enhances LoRA by enabling each example in a
mini-batch to utilize distinct low-rank weights, preserving expressive power and facilitating efficient
batching, thereby extending the domain adaptation benefits of LoRA without batching limitations.

Other PEFT variants. Orthogonal Fine-tuning (OFT) [26] modifies pre-trained weight matrices
through orthogonal reparameterization to preserve essential information. However, it still requires
a considerable number of trainable parameters due to the high dimensionality of these matrices.
Butterfly Orthogonal Fine-tuning (BOFT) [20] extends OFT’s methodology by incorporating Butterfly
factorization thereby positioning OFT as a special case of BOFT. Unlike the additive low-rank weight
updates utilized in LoRA, BOFT applies multiplicative orthogonal weight updates, marking a
significant divergence in the approach but claims to improve parameter efficiency and fine-tuning
flexibility. BOFT can be formally expressed as: h = (R(m, b) ·W0)x, where the orthogonal matrix
R(m, b) ∈ Rd×d is composed of a product of multiple orthogonal butterfly components. When
m = 1, BOFT reduces to block-diagonal OFT with block size b. When m = 1 and b = d, BOFT
reduces to the original OFT with an unconstrained full orthogonal matrix.

SVD-based Variants. SVF [31], SVDiff [10], and SAM-Parser [25] also leverage the structure of
W matrices by decomposing them into three consecutive matrices via Singular Value Decomposition
(SVD). However, these methods fine-tune only the singular values while keeping other components
fixed, making them comparable to SVFTP . In Appendix C.1, we present a comparison of SVFTP

with SVF, confirming that their performance is similar, which supports our observations.

3 Method

In this section, we introduce Singular Vectors guided Fine-Tuning (SVFT). The main innovation
in SVFT lies in applying structure/geometry-aware weight updates through sparse weighted
combination of singular vectors.

3

Figure 3: An Overview of SVFT. The original weights W are decomposed into U ,Σ,V . Here, M
contains all the trainable parameters, which can be configured into patterns such as Plain, Random,
Banded, and Top-k, represented by patterns of trainable (orange) and zero (gray) elements.

3.1 SVFT Formulation

We now formally describe our method, SVFT for parameter-efficient fine-tuning of a pre-trained
model. Let W0 ∈ Rd1×d2 denote a weight matrix in the pre-trained model, such as a key matrix,
query matrix, or an MLP matrix within a transformer block. To this matrix, we add a structured,
learnable update ∆W as follows.

As a first step, we compute the Singular Value Decomposition (SVD) of the given matrix: W0 =
UΣV T . That is, U is the d1 × d1 matrix of left singular vectors (i.e., its columns are orthonormal),
V T is the d2 × d2 matrix of right singular vectors (i.e., its rows are orthonormal), and Σ is a d1 × d2
diagonal matrix. Then, we parameterize our weight update as ∆W = UMV T , where U ,V are
fixed and frozen, while M is a d1 × d2 sparse trainable matrix with pre-determined and fixed
sparsity pattern3. That is, we first pre-determine a small fixed set of elements in M that will be
allowed to be non-zero and train only those elements. The forward pass for SVFT can be written as,

h = W0x+∆Wx = U(Σ+M)V Tx (1)

We explore four simple choices for Ω, the pre-determined sparsity pattern of M .
Plain

(
SVFTP

)
. In this variant, we constrain M to be a diagonal matrix, which can be interpreted

as adapting singular values and reweighting the frozen singular vectors. Since only the diagonal
elements are learned, this is the most parameter-efficient SVFT variant.
Banded

(
SVFTB

d

)
. In this approach, we populate M using a banded matrix, progressively making

off-diagonals learnable. Specifically, for constants z1 and z2, Mij = 0 if j < i− z1 or j > i+ z2,
where z1, z2 ≥ 0. In our experiments, we set z1 = z2 = d to induce off-diagonal elements that
capture additional interactions beyond those represented by singular values. This banded perturbation
induces local interactions, allowing specific singular values to interact with their immediate neighbors,
ensuring smoother transitions. This method, although deviating from the canonical form of SVD,
provides a mechanism to capture localized interactions.
Random

(
SVFTR

d

)
. A straightforward heuristic for populating M involves randomly selecting

k elements to be learnable.
Top-k

(
SVFTT

#p

)
. The final design choice we explore involves computing the alignment between

the left and right singular vectors as uT
i vj . We then select the top-k elements and make them

learnable. However, note that this only works when left and right singular vectors have the same
size. A possible interpretation of this is we make only the top-k strong interactions between singular
vector directions learnable. The subscript #p denotes the total number of learnable parameters.

We illustrate these SVFT design choices in Figure 3. Our empirical results demonstrate that these
simple design choices significantly enhance performance compared to state-of-the-art PEFT methods.
Note that SVFTP has a fixed number of learnable parameters, while the remaining variants are
configurable. We hypothesize that further innovation is likely achievable through optimizing the
sparsity pattern of M , including efficient learned-sparsity methods. In this paper, we explore these

3Learnable parameters are underlined.

4

four choices to validate the overall idea: determining a perturbation using the singular vectors of the
matrix that is being perturbed.

3.2 Properties of SVFT

We highlight some properties of SVFT in the following lemma and provide insights into how its
specific algebraic structure compares and contrasts with baseline PEFT methods.

Lemma: Let W0 be a matrix of size d1 × d2 with SVD given by UΣV T . Consider an updated
final matrix W0 +UMV T , where M is a matrix of the same size as Σ, which may or may not be
diagonal. Then, the following holds:

(a) Structure: If M is also diagonal (i.e. the plain SVFT), then the final matrix W0+UMV T

has U as its left singular vectors and sign(Σ+M)V T as its right singular vectors. That
is, its singular vectors are unchanged, except for possible sign flips. Conversely, if M is
not diagonal (i.e., variants of SVFT other than plain), then U and V may no longer be the
singular directions of the final matrix W0 +UMV T .

(b) Expressivity: Given any target matrix P of size d1 × d2, there exists an M such that
P = W0 + UMV T . That is, if M is fully trainable, any target matrix can be realized
using this method.

(c) Rank: If M has k non-zero elements, then the rank of the update UMV T is at most
min{k,min{d1, d2}}. For the same number of trainable parameters, SVFT can produce
a much higher rank perturbation than LoRA (eventually becoming full rank), but in a
constrained structured subspace.

We provide our proofs in Appendix A. Building on this lemma, we now compare the form of the
SVFT update with LoRA and VeRA. SVFT’s ∆W can be written as a sum of rank-one matrices:

∆W =
∑

(i,j)∈Ω

mijuiv
T
j (2)

where ui is the ith left singular vector, vj is the jth right singular vector, and Ω is the set of non-zero
elements in M . Thus, our method involves adding a weighted combination of specific rank-one
perturbations of the form uiv

T
j .

LoRA and VeRA updates can also be expressed as sums of rank-one matrices.

∆WLoRA =

r∑
i=1

ai bi
T and ∆WVeRA =

r∑
i=1

αi(âi ⊙ β)b̂Ti (3)

where ai and bj are the trainable columns of A and B matrices in LoRA. In VeRA, âi and b̂i are
random and fixed vectors, while α and β represent the diagonal elements of Λd and Λb respectively.

Note that LoRA requires d1 + d2 trainable parameters per rank-one matrix, while SVFT and VeRA
require only one. Although LoRA can potentially capture directions different from those achievable
by the fixed {ui,v

T
j } pairs, each of these directions incurs a significantly higher parameter cost.

VeRA captures new directions at a parameter cost similar to SVFT; however, there is a key distinction:
in VeRA, each vector âi or b̂i appears in only one of the rank-one matrices. In contrast, in SVFT,
the same vector ui can appear in multiple terms in the summation, depending on the sparsity pattern
of M . This results in an important difference: unlike SVFT, VeRA is not universally expressive – it
cannot represent any target matrix P . Moreover, âi, b̂i are random, while ui,vj depend on W0.

Note. SVFT requires storing both left and right singular vectors due to its computation of the
SVD on pre-trained weights. While this increases memory usage compared to LoRA, it remains
comparable to or lower than DoRA and BOFT. We present a memory analysis in Section 5.3.
Further exploration of memory-reduction techniques, such as quantization, is planned as future work.
Importantly, inference time and memory consumption remain the same across all methods, including
SVFT, as the weights can be fused.

5

4 Experiments

4.1 Base Models & Setup

We adapt widely-used language models, encoder-only model (DeBERTaV3base [11]) and two
decoder-only models (Gemma-2B/7B [32], LLaMA-3-8B [1]). We also experiment with vision
transformer models (ViT-B/16 and ViT-L/16) [9]) pre-trained on ImageNet-21k [8], following prior
work [17]. The complete details of our experimental setup and hyperparameter configurations are
provided in Appendix C.
Baselines. We compare with Full Fine-Tuning (FT) updating all learnable parameters in all layers,
along with LoRA [15], DoRA [19], BOFT [20] and VeRA [17].4
Target Modules. We adapt all weight matrices for SVFT, as it does not increase trainable parameters
at the same rate as baseline methods. For baselines, we adapt the target modules recommended
in [19]: QKVUD matrices for LoRA and DoRA, compatible matrices for VeRA, and QV matrices
for BOFT to stay within GPU memory limits. Additional details can be found in Appendix C.7 and
C.8. We also conduct experiments adapting QKVUD modules across methods and observe similar
trends, as discussed in Appendix C.2.

4.2 Datasets

Language. For natural language generation (NLG) tasks, we evaluate on GSM-8K [7] and
MATH [12] by fine-tuning on MetaMathQA-40K [35], following [20]. We also evaluate on 8
commonsense reasoning benchmarks (BoolQ [5], PIQA [3], SIQA [30], HellaSwag [36], Wino-
grande [29], ARC-easy/challenge [6], and OpenBookQA [23]). We follow the setting outlined in
prior work [19, 16], where the training sets of all benchmarks are amalgamated for fine-tuning.
We fine-tune on 15K examples from this training set. For natural language understanding (NLU),
we evaluate on the General Language Understanding Evaluation (GLUE) benchmark consisting of
classification and regression tasks, in line with [17, 15].
Vision. Our experiments on vision tasks consist of 4 benchmarks: CIFAR-100 [18], Food101 [4],
RESISC45 [33], and Flowers102 [24]. We follow the setup from [17], and fine-tune on a subset
comprising 10 samples from each class.

Table 1: Performance (Accuracy) on Mathematical Reasoning (GSM-8K and MATH). #Params
denote the number of trainable parameters. bold and underline represent the best and second best
performing PEFT methods, respectively. SVFT offers superior/competitive performance at much
lower #Params. For SVFTR

d , we set d = 16 for Gemma and d = 12 for LLaMA-3 models.

Method
Gemma-2B Gemma-7B LLaMA-3-8B

#Params GSM-8K MATH #Params GSM-8K MATH #Params GSM-8K MATH

Full-FT 2.5B 52.69 17.94 8.5B 74.67 25.70 8.0B 64.13 16.24

LoRAr=32 26.2M 43.06 15.50 68.8M 76.57 29.34 56.6M 75.89 24.74
DoRAr=16 13.5M 44.27 16.18 35.5M 74.52 29.84 29.1M 75.66 24.72

BOFTb=8
m=2 1.22M 36.01 12.13 2.90M 71.79 28.98 4.35M 67.09 21.64

DoRAr=1 1.19M 35.25 13.04 3.26M 74.37 26.28 2.55M 68.30 21.96

LoRAr=1 0.82M 32.97 13.04 0.82M 72.4 26.28 1.77M 68.84 20.94

VeRAr=1024 0.63M 36.77 14.12 0.43M 71.11 27.04 0.98M 63.76 20.28

SVFTP 0.19M 40.34 14.38 0.43M 73.50 27.30 0.48M 69.22 20.44

SVFTR
d 6.35M 50.03 15.56 19.8M 76.81 29.98 13.1M 75.90 24.22

4BOFT is approximately three times slower than LoRA. The shared matrices in VERA can become a limiting
factor for models with non-uniform internal dimensions, such as LLaMA-3.

6

Table 2: Evaluation results on eight commonsense reasoning benchmarks with Gemma-7B. We
follow [19] for hyperparameter configurations, and report accuracy for all tasks. HS and WG denote
HellaSwag [36] and WinoGrande [29], respectively. SVFTP offers competitive performance at a
fraction of #Params. SVFTB

d=8 can match LoRAr=32 with ∼7x fewer parameters.

Method #Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Average

Full-FT 8.5B 72.32 87.32 76.86 91.07 81.76 92.46 82.76 89.00 84.19

LoRAr=32 68.8M 71.55 87.95 77.27 91.80 79.71 92.67 82.16 86.40 83.69
DoRAr=16 35.5M 71.46 87.59 76.35 92.11 78.29 92.00 80.63 85.60 83.00

DoRAr=1 3.31M 68.22 86.72 75.23 91.14 78.13 91.87 83.19 86.20 82.59

VeRAr=2048 1.49M 64.25 86.28 74.04 86.96 69.00 92.76 82.33 82.00 79.70

LoRAr=1 0.82M 65.44 86.28 75.02 89.91 75.92 91.79 81.91 85.40 81.46

SVFTP 0.51M 67.92 86.45 75.47 86.92 74.03 91.80 81.23 83.00 80.85

SVFTB
d=8 9.80M 71.90 86.98 76.28 91.55 78.76 92.80 83.11 85.40 83.35

Table 3: DeBERTaV3base with different adaptation methods on the GLUE benchmark. We report
matched accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and
accuracy for other tasks. Higher is better for all tasks. * indicates values reported in [20].

Method #Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Full-FT* 184M 89.90 95.63 89.46 69.19 94.03 92.40 83.75 91.60 88.25

LoRA*r=8 1.33M 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60 88.50

DoRAr=4 0.75M 89.92 95.41 89.10 69.37 94.14 91.53 87.00 91.80 88.53

BOFT*b=8
m=2 0.75M 90.25 96.44 92.40 72.95 94.23 92.10 88.81 91.92 89.89

LoRAr=1 0.17M 90.12 95.64 86.43 69.13 94.18 91.43 87.36 91.52 88.23

VeRAr=1024 0.09M 89.93 95.53 87.94 69.06 93.24 90.4 87.00 88.71 87.73

SVFTP 0.06M 89.69 95.41 88.77 70.95 94.27 90.16 87.24 91.80 88.54

SVFTR
d=2 0.28M 89.97 95.99 88.99 72.61 93.90 91.50 88.09 91.73 89.10

5 Results

5.1 Performance on Language Tasks

Natural Language Generation. We present results on mathematical question answering against
baseline PEFT techniques across three base models – varying from 2B to 8B parameters in Table 1.
To ensure a comprehensive comparison, we test baseline techniques (LoRA, DoRA) with different
configurations, and varying hyper-parameters like rank to cover a range of learnable parameters
from low to high. Note that even when the rank is as low as 1, both methods yield more trainable
parameters than SVFTP . SVFTP (∼0.2M) shows as much as 18% relative improvement over
techniques that use 6× more trainable parameters (BOFTb=8

m=2, LoRAr=1). Against techniques of
comparable size (VeRA), SVFTP achieves 15.5% relative improvement on average. Even in the
default regime, SVFTR

d matches techniques with at least 3× more trainable parameters. Notably, on
GSM-8K, SVFTR

d again achieves 96% of full fine-tuning performance, while DoRAr=16 recovers
86% with 2× more parameters than SVFTR

d .

Commonsense Reasoning. In Table 2, we compare performance on commonsense reasoning
benchmarks with Gemma-7B, and observe similar trends. In the lower and moderately parameter-
ized regime (∼0.43M), SVFTP shows competitive performance in comparison to LORAr=1 and

7

Table 4: Performance on image classification benchmarks – CIFAR-100 (C100), Food101 (F101),
Flowers102 (F102), and Resisc-45 (R45). We only adapt Q,V matrices for all methods, following
prior work [17]. We report accuracy for all tasks.

Method
ViT Base ViT Large

#Params C100 F101 F102 R45 #Params C100 F101 F102 R45

Head - 78.58 75.14 98.71 64.42 - 79.14 75.66 98.89 64.99

Full-FT 85.8M 85.02 75.41 99.16 75.30 303.3M 87.37 78.67 98.88 80.17
LoRAr=8 294.9K 85.65 76.13 99.14 74.01 786.4K 87.36 78.95 99.24 79.55

VeRAr=256 24.6K 84.00 74.02 99.10 71.86 61.4K 87.55 77.87 99.27 75.92

SVFTP 18.5K 83.78 74.43 98.99 70.55 49.2K 86.67 77.47 99.09 73.52

SVFTR
d=4 165.4K 84.85 76.45 99.17 74.53 441.5K 87.05 78.95 99.23 78.90

SVFTB
d=4 165.4K 84.65 76.51 99.21 75.12 441.5K 86.95 78.85 99.24 78.93

DoRAr=1, which have 1.9× and 7.7× more parameters, respectively. Against VeRA, which trains
3.5× more parameters, SVFTP shows a relative improvement of ∼1.16%. Similarly, SVFTB

d=8 also
matches or exceeds methods that use up to 7× more trainable parameters. For instance, SVFTB

d=8
attains an average performance of 83.35% with only 9.8M parameters, closely matching LORAr=16

(83.69%, 68.8M parameters). We observe similar trends with Gemma-2B (refer Table 11).

Natural Language Understanding. Results on the GLUE benchmark are summarized in Table 3.
SVFT matches LoRAr=8 and DoRAr=4 which use 12-22× more trainable parameters. Similarly,
when compared to OFT and BOFT, SVFTP maintains a comparable average performance despite
being 12× smaller. These results highlight SVFT’s ability to strike a balance between parameter
efficiency and performance, making it an attractive PEFT choice for simple classification tasks.

0.05 0.1 0.2 0.4 0.8 1.6 3 5.5
Number of Trainable Params (M)

30

32

34

36

38

40

42

44

46

48

Ac
cu

ra
cy

 (
%

)

Weight Types
Q,V
Q,K,V
U,D
Q,K,V,U,D
Q,K,V,U,D,G,O

Configuration
P
d = 2
d = 4
d = 8

Figure 4: Performance variation with
SVFTB

d based on the adapted weight
matrices – GSM-8K with Gemma-2B.
Adapting more target weight types re-
sults in greater gains in performance. In-
terestingly, for a fixed parameter budget,
adapting U and D weight types gives
greater lifts than adapting Q and V .

Parameter efficiency. In Figure 1, we plot the perfor-
mance of SVFT on mathematical reasoning and com-
monsense reasoning against other PEFT techniques across
a range of configurations. Across trainable parameter
budgets ranging from lowest to highest, SVFT obtains
the best overall performance, matching methods that re-
quire significantly more trainable parameters. These re-
sults establish SVFT as a pareto-dominant approach for
parameter-efficient fine-tuning.

5.2 Performance on Vision Tasks

Table 4 presents a comparison between SVFT and other
PEFT techniques on image classification benchmarks, us-
ing ViT-B and ViT-L models. The results show that SVFT
variants achieve a strong balance between performance
and parameter efficiency, often surpassing or matching
the performance of other methods with fewer learnable
parameters. Notably, the SVFTB variant attains an av-
erage accuracy of 83.87% across tasks with ViT-Base,
outperforming Full-FT, which achieves a close 83.72%.
Additionally, it’s important to note that in these vision experiments, both classifier head parameters
and other learnable parameters are trained.

5.3 Memory Analysis

Although SVFT reduces trainable parameters, it results in higher overall GPU memory usage
compared to LoRA. However, fewer trainable parameters lower the memory demands for gradients,

8

activations, optimizer states, and other buffers. To validate this, we used HuggingFace’s internal
memory profiler to measure peak GPU memory usage. Our results, along with the adapted modules
for all baselines, are summarized in Table 5. We observe that SVFT uses approximately 1.2x more
memory than LoRA but remains comparable to or more efficient than DoRA. We present additional
analysis in Appendix C.5.

Table 5: GPU Memory analysis, measured in gigabytes (GB). We report the average performance
on GSM-8K and MATH. SVFT outperforms both LoRA and DoRA in terms of performance while
requiring lesser GPU memory than DoRA.

Method Target Modules
Gemma-2B Gemma-7B

#Params GPU Mem Perf. #Params GPU Mem Perf.

LoRAr=4 Q,K,V,U,D 3.28M 18.88 27.56 8.6M 63.57 51.03

DoRAr=4 Q,K,V,U,D 3.66M 24.58 28.44 9.72M 78.70 51.94

LoRAr=32 Q,K,V,U,D 26.2M 19.06 29.28 68.8M 64.24 52.96

DoRAr=16 Q,K,V,U,D 13.5M 24.64 30.22 35.5M 78.99 52.18

SVFTP Q,K,V,U,D,O,G 194K 21.90 27.36 429K 76.26 50.40

SVFTR
d=8 Q,K,V,U,D,O,G 3.28M 22.02 31.87 9.8M 76.65 50.99

SVFTR
d=16 Q,K,V,U,D,O,G 6.35M 22.15 32.79 19.8M 77.04 53.40

5.4 Contribution of Each Weight Type

In Figure 4, we investigate the contribution of each weight type. Starting with the base configuration,
we apply SVFTB

d to the Q and V weights in each transformer block and report the performance. We
then incrementally add the remaining weight modules (K,U ,D,O,G) and observe the changes in
performance. For each configuration, we also vary the trainable parameters by incrementing the total
learnable off-diagonals.

Note that applying SVFTB
d to U ,D,O, and G does not increase trainable parameters as much as

applying LoRA/DoRA to these modules (Table 8). For example, for a large matrix of shape d1 × d2,
LoRAr=1 learns d1 + d2 parameters, while SVFTP learns min(d1, d2) parameters. We observe
that adapting only U and D with SVFT yields up to a 10% relative improvement over adapting
Q and V for the same parameter budget (∼ 0.8M). Our findings indicate that adapting more weight
types enhances performance.

5.5 Impact of M ’s Structure on Performance

Table 6: Results on GSM-8K after fine-
tuning on Pythia-2.8B checkpoints at dif-
ferent stages of pre-training (PT).

Method #Params
PT Steps

∆Perf
39K 143K

Full-FT 2.5B 21.00 30.09 9.09

LoRA 5.24M 11.22 18.95 7.73

SVFT 5.56M 15.08 23.19 8.11

We analyze the impact of various parameterizations of
M (Plain, Banded, Random, Top-k) on downstream
performance. To ensure a fair comparison, we align
the number of trainable coefficients across all variants
whenever possible. As shown in Table 7, the Banded
variant outperforms the others, followed closely by the
Random variant, across different models and tasks. This
trend is also evident in the average rank column of the
table. Based on these empirical findings, we recommend
using the Banded variant.

5.6 Impact of Pre-trained Weight Quality

A key feature of SVFT is that the weight update de-
pends on the pre-trained weights W . We therefore ask
the following question: Does the quality of pre-trained
weights have a disproportionate impact on SVFT? To

9

Table 7: Results on fine-tuning with SVFT using different M parameterizations.

Structure
Gemma-2B Gemma-7B LLaMA-3-8B Avg.

Rank
#Params GSM-8K MATH #Params GSM-8K MATH #Params GSM-8K MATH

Plain 0.2M 40.34 14.38 0.43M 73.50 27.30 0.48M 69.22 20.44 4

Banded 6.4M 47.84 15.68 19.8M 76.81 29.98 17.2M 75.43 24.44 1
Random 6.4M 50.03 15.56 19.8M 76.35 29.86 17.2M 74.07 23.78 2

Top-k 6.4M 49.65 15.32 19.8M 76.34 29.72 17.2M 73.69 23.96 3

answer this, we consider two checkpoints from the Pythia suite [2] at different stages of training,
i.e., 39K steps and 143K steps, respectively. We fine-tune each of these checkpoints independently
with Full-FT, LoRA, and SVFT. We then compare the increase in performance (∆Perf). As shown
in Table 6, compared to LoRA, SVFT benefits more from better pre-trained weights. We also note
that SVFT outperforms LoRA in both settings, suggesting that the benefits of inducing a ∆W that
explicitly depends on W are beneficial even when W is sub-optimal.

6 Discussion

Limitations. Despite significantly reducing learnable parameters and boosting performance, SVFT
incurs some additional GPU memory usage. Unlike LoRA, SVFT necessitates computing the SVD
and storing both left and right singular vectors. While memory consumption remains comparable
to or lower than DoRA and BOFT, it’s roughly 1.2× that of LoRA. However, similar to the scaling
explored in [34], memory usage should amortize with the increasing scale of adaptation tasks. In
future work we will explore quantization and other techniques to address memory concerns.

Broader Impact. Our work enables easier personalization of foundational models, which can have
both positive and negative societal impacts. Since our method provides computational efficiency
(smaller parameter footprint), it will be less expensive to enable personalization.

7 Conclusion

This work introduces SVFT, a novel and efficient PEFT approach that leverages the structure of pre-
trained weights to determine weight update perturbations. We explore four simple yet effective sparse
parameterization patterns, offering flexibility in controlling the model’s expressivity and the number
of learnable parameters. Extensive experiments on language and vision tasks demonstrate SVFT’s
effectiveness as a PEFT method across diverse parameter budgets. Furthermore, we theoretically
show that SVFT can induce higher-rank perturbation updates compared to existing methods, for a
fixed parameter budget. In future work, we aim to develop principled methods to generate sparsity
patterns, potentially leading to further performance improvements.

Acknowledgements

We would like to thank Greg Kuhlmann for helping support this research. This work was also
supported by the NSF institutes ENCORE and IFML.

References
[1] Meta AI. Introducing meta llama 3: The most capable openly available llm to date. April 2024.

[2] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling, 2023.

10

[3] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative
components with random forests. In European Conference on Computer Vision, 2014.

[5] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions,
2019.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge, 2018.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[10] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang.
Svdiff: Compact parameter space for diffusion fine-tuning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 7323–7334, 2023.

[11] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing, 2023.

[12] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[13] Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Proceedings of
the 28th International Conference on Neural Information Processing Systems, NIPS’15, page
1693–1701. MIT Press, 2015.

[14] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, Proceedings
of Machine Learning Research. PMLR, 2019.

[15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[16] Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models, 2023.

[17] Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. ELoRA: Efficient low-rank
adaptation with random matrices. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

11

[19] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation,
2024.

[20] Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In The Twelfth
International Conference on Learning Representations, 2024.

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

[22] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

[23] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

[24] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image Processing,
Dec 2008.

[25] Zelin Peng, Zhengqin Xu, Zhilin Zeng, Xiaokang Yang, and Wei Shen. Sam-parser: Fine-tuning
sam efficiently by parameter space reconstruction. Proceedings of the AAAI Conference on
Artificial Intelligence, 38:4515–4523, 03 2024.

[26] Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian
Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning.
In Thirty-seventh Conference on Neural Information Processing Systems, volume 36, pages
79320–79362, 2023.

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[28] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

[29] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019.

[30] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions, 2019.

[31] Yanpeng Sun, Qiang Chen, Xiangyu He, Jian Wang, Haocheng Feng, Junyu Han, Errui Ding,
Jian Cheng, Zechao Li, and Jingdong Wang. Singular value fine-tuning: Few-shot segmentation
requires few-parameters fine-tuning. In Advances in Neural Information Processing Systems,
volume 35, pages 37484–37496, 2022.

[32] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[33] Ihsan Ullah, Dustin Carrion, Sergio Escalera, Isabelle M Guyon, Mike Huisman, Felix Mohr,
Jan N van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-
domain meta-dataset for few-shot image classification. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

12

[34] Yeming Wen and Swarat Chaudhuri. Batched low-rank adaptation of foundation models. In
The Twelfth International Conference on Learning Representations, 2024.

[35] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2023.

[36] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

[37] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. PEGASUS: Pre-training with
extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 11328–11339. PMLR, 13–18 Jul 2020.

[38] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2023.

13

Appendix

The appendix is organized as follows.

• In Appendix A, we give proofs for the lemmas outlined in 3.2.

• In Appendix B, we compare how the trainable parameters count for different PEFT tech-
niques (LoRA, DoRA, VeRA) versus our method SVFT.

• In Appendix C, we describe results for additional experiments and provide implementation
details for all the experiments.

A Proofs

We provide brief proofs for the Structure, Expressivity and the Rank lemmas for SVFT:

(a) Structure: If M is diagonal, then the final matrix W0 + UMV T can be written as
U(Σ + M)V T since W0 = UΣV T , where (Σ + M) is also a diagonal matrix. Thus,
U(Σ +M)V T is a valid and unique SVD of W0 + UMV T up to sign flips in the singular
vectors.

(b) Expressivity: Finding M for any target matrix P of size d1 × d2 such that P = W0 +
UMV T is the same as finding M for a new target matrix P ′ = P − W0 such that
P ′ = UMV T . For a full SVD, the dimension of M is d1 × d2 and since the dimension of
P ′ is also d1 × d2, P ′ = UMV T is a bijection and M = UT (P −W0)V (since U and V
are orthogonal).

(c) Rank: If M has k non-zero elements, then the rank of the update UMV T will be upper
bounded by k (since by Gaussian elimination, k or less elements will remain, the best case
being all k elements in the diagonal). We also know that the rank is upper bounded by
min{d1, d2}, giving an achievable upper bound on the rank as min{k,min{d1, d2}}.

B Parameter Count Analysis

Table 8: Parameter count analysis. Ltuned, Dmodel, r, k denote total layers being adapted, hidden
dimension, rank, and additional off-diagonals respectively.

Method Trainable Parameter Count

LoRA 2× Ltuned ×Dmodel × r

DoRA Ltuned ×Dmodel × (2r + 1)

VeRA Ltuned × (Dmodel + r)

SVFTP Ltuned ×Dmodel

SVFTB
d=k Ltuned × (Dmodel × k + (Dmodel − k)(k + 1))

C Additional Experiments and Implementation Details

All of our experiments are conducted on a Linux machine (Debian GNU) with the following specifi-
cations: 2×A100 80 GB, Intel Xeon CPU @ 2.20GHz with 12 cores, and 192 GB RAM. For all our
experiments (including baseline experiments), we utilize hardware-level optimizations like mixed
weight precision (e.g., bfloat16) whenever possible.

C.1 Comparison against SVD-based Variants

We compare SVF [31] and our proposed method, SVFT, on the GSM-8K and MATH benchmarks
using Gemma-2B. The results are presented in Table 9. The results indicate that SVF and SVFTP ex-
hibit comparable performance on these benchmarks, as expected due to their design equivalence. This

14

finding also applies to SVDiff [10] and SAM-parser [25] for the same reason. Additionally, the table
highlights a significant performance improvement when comparing SVF to SVFTR, demonstrating
the advantage of learning the off-diagonal elements.

Table 9: Results of SVF and SVFT on GSM-8K and MATH with Gemma-2B.

Method #Params Target Modules GSM-8K MATH

SVF 120K Q,K,V,U,D 36.39 13.96

SVFTP 120K Q,K,V,U,D 36.39 13.86

SVF 194K Q,K,V,U,D,O,G 39.12 14.02

SVFTP 194K Q,K,V,U,D,O,G 40.34 14.38

SVFTR
d=16 6.35M Q,K,V,U,D,O,G 50.03 15.56

C.2 Performance Evaluation with Fixed Target Module Adaptation

We compare SVFT to baseline methods, adapting the same target modules to ensure a consistent evalu-
ation. Results are presented in Table 10, showing that SVFT outperforms other methods in this setup.

Table 10: Performance (Accuracy) on Mathematical Reasoning (GSM-8K and MATH). All methods
are applied on the target modules {Q,K,V,U,D} with SVFT demonstrating superior performance.
When applying SVFTR on Gemma-2B and LLaMA-3-8B we use d = 12 and d = 24 respectively.

Method
Gemma-2B LLaMA-3-8B

#Params GSM-8K MATH #Params GSM-8K MATH

LoRAr=4 3.28M 40.60 14.50 7.07M 69.37 22.90

DoRAr=4 3.66M 41.84 15.04 7.86M 74.37 24.10

LoRAr=32 26.2M 43.06 15.50 56.6M 75.89 24.74

DoRAr=16 13.5M 44.27 16.18 29.1M 75.66 24.72

SVFTR 2.98M 47.41 16.72 15.98M 75.32 25.08

C.3 Commonsense Reasoning Gemma-2B

We evaluate and compare SVFT variants against baseline PEFT methods on commonsense reasoning
tasks with Gemma-2B model and tabulate results in Table 11.

C.4 Are All Singular Vectors Important?

To determine the importance of considering all singular vectors and singular values during fine-
tuning, we reduce the rank of U and V , and truncate Σ and M to an effective rank of r. If the
original weight matrix W ∈ Rm×n, then after truncation, U ∈ Rm×r,V ∈ Rn×r. This truncation
significantly reduces the number of trainable parameters, so we compensate by increasing the number
of off-diagonal coefficients (d) in M .

15

Table 11: Results with Gemma-2B on eight commonsense reasoning benchmarks. We follow [19] for
hyperparameter configurations, and report accuracy for all tasks.

Method #Params BOOLQ PIQA SIQA HellaSwag Winogrande ARC-E ARC-C OBQA Average

Full-FT 2.5B 63.57 74.1 65.86 70.00 61.95 75.36 59.72 69 67.45

LoRAr=32 26.2M 63.11 73.44 63.20 47.79 52.95 74.78 57.16 67.00 62.43

LoRAr=16 13.5M 62.87 73.93 65.34 53.16 55.51 76.43 59.55 68.4 64.40

BOFTb=8
m=2 1.22M 59.23 63.65 47.90 29.93 50.35 59.04 42.66 41.00 49.22

VeRAr=2048 0.66M 62.11 64.31 49.18 32.00 50.74 58.08 42.83 42.6 50.23

LoRAr=1 0.82M 62.2 69.31 56.24 32.47 51.53 69.52 48.8 56.4 55.81

DoRAr=1 1.19M 62.17 68.77 55.93 32.95 51.22 68.81 48.72 55.6 55.52

SVFTP 0.19M 62.26 70.18 56.7 32.47 47.04 69.31 50.08 58.4 55.81

SVFTB
d=16 6.35M 63.42 73.72 63.86 71.21 59.58 73.69 54.77 66.6 65.86

Table 12: Performance with varying rank (r) and the off-diagonal elements (d) of M . When
r = 2048, the update is full-rank.

Rank (r) Diags (d) #Params GSM-8K MATH

128 64 1.55M 0.98 0.21

1536 - 0.15M 16.37 3.64

1536 2 0.74M 25.01 6.04

2048 - 0.19M 40.34 14.38

Our results, with four different configurations of r and d, are presented in Table 12. The findings show
that a very low rank (r = 128) leads to poor performance, even when parameters are matched. A
reasonably high rank of r = 1536, which is 75% of the full rank, still fails to match the performance
of the full-rank variant that has 0.25× the trainable parameters. This indicates that all singular vectors
significantly contribute to the end task performance when fine-tuning with SVFT, and that important
information is lost even when truncating sparingly.

C.5 Additional Memory Analysis Experiments

We present additional memory analysis experiments for Gemma-2B and LLaMA-3-8B in Table 13
and Table 14. SVFT variants consume lesser memory than DoRA and 1.2× more memory than
LoRA.

Table 13: Memory analysis for Gemma-2B.

Method Target Modules #Params GPU Mem (GB) GSM-8K MATH

LoRAr=4 Q,K,V,U,D 3.28M 18.88 40.63 14.5

DoRAr=4 Q,K,V,U,D 3.66M 24.58 41.84 15.04

LoRAr=32 Q,K,V,U,D 26.2M 19.06 43.06 15.5

DoRAr=16 Q,K,V,U,D 13.5M 24.64 44.27 16.18

SVFTR
d=12 Q,K,V,U,D 2.98M 20.50 47.61 16.72

SVFTP Q,K,V,U,D,O,G 194K 21.90 40.34 14.38

SVFTR
d=8 Q,K,V,U,D,O,G 3.28M 22.02 47.76 15.98

SVFTR
d=16 Q,K,V,U,D,O,G 6.35M 22.15 50.03 15.56

16

Table 14: Memory analysis for LLaMA-3-8B.

Method Target Modules #Params GPU Mem (GB) GSM-8K MATH

LoRAr=1 Q,K,V,U,D 1.77M 57.82 68.84 20.94

DoRAr=1 Q,K,V,U,D 2.56M 70.17 68.30 21.96

LoRAr=32 Q,K,V,U,D 56.6M 58.41 75.89 24.74

DoRAr=16 Q,K,V,U,D 29.1M 70.44 75.66 24.72

SVFTB
d=24 Q,K,V,U,D 15.98M 71.52 75.32 25.08

SVFTR
d=12 U,D,O,G 13.1M 70.37 75.90 24.22

SVFTP Q,K,V,U,D,O,G 483K 73.95 69.22 20.44

SVFTR
d=12 Q,K,V,U,D,O,G 15.9M 71.52 73.99 25.08

C.6 Performance vs Total Trainable Parameters

In addition to the experiments performed in Figure 1 (main paper) for Gemma-2B on challenging
natural language generation (NLG) tasks like GSM-8K and Commonsense Reasoning, we also plot
the performance vs total trainable parameters for larger state-of-the-art models like Gemma-7B and
LLaMA-3-8B on GSM-8K. Figure 5 further demonstrates SVFT’s pareto-dominance. On larger
models, we observe that full-finetuning overfits, leading to sub-optimal performance in comparison
to PEFT methods.

0.5 0.75 1.2 2 3 5 8 12.5 20 32 50 84
Number of Trainable Params (M)

70

71

72

73

74

75

76

77

78

SVFTP
SVFTB

d = 2

SVFTR
d = 16

DoRAr = 16
DoRAr = 4

LoRAr = 32

LoRAr = 1

DoRAr = 1

VeRAr = 1024

BOFTm = 2
b = 8

LoRAr = 4

Full Fine-Tuning (8500M params)

0.5 0.75 1.2 2 3 5 8 12.5 20 32 50 81
Number of Trainable Params (M)

62

64

66

68

70

72

74

76

78

80

SVFTP

SVFTB
d = 2

SVFTB
d = 8

SVFTB
d = 12

DoRAr = 16

LoRAr = 32

LoRAr = 1
DoRAr = 1

VeRAr = 1024

BOFTm = 2
b = 8

LoRAr = 4

Full Fine-Tuning (2500M params)

A
cc

ur
ac

y
(%

)

Figure 5: Performance versus total trainable parameters for GSM-8K on Gemma-7B (left) and
LLaMA-3-8B (right).

C.7 Settings for Language Tasks

Natural Language Understanding. We fine-tune the DeBERTaV3base [11] model and apply SVFT
to all linear layers in every transformer block of the model. We only moderately tune the batch size,
learning rate, and number of training epochs. We use the same model sequence lengths used by [20]
to keep our comparisons fair. The hyperparameters used in our experiments can be found in Table 15.

Natural Language Generation. See the hyperparameters used in our experiments in Table 16. For
LoRA, DoRA, we adapt Q,K, V, U,D matrices. We apply BOFT on Q,V matrices since applying
on multiple modules is computationally expensive. For VeRA, which enforces a constraint of uniform
internal dimensions for shared matrices, we apply on G,U projection matrices as it yields the highest
number of learnable parameters. We apply SVFT on Q,K, V, U,D,O,G for the Gemma family
of models, and U,D,O,G for LLaMA-3-8B. Note that applying SVFT on these modules does not
increase trainable parameters at the same rate as applying LoRA or DoRA on them would. We adopt
the code base from https://github.com/meta-math/MetaMath.git for training scripts and

17

https://github.com/meta-math/MetaMath.git

Table 15: Hyperparameter setup used for DeBERTaV3base on the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW

Warmup Ratio 0.1

LR Schedule Linear

Learning Rate (Head) 6E-03

Max Seq. Len. 256 128 320 64 512 320 320 128

Epochs 10 10 30 20 10 6 15 15

SVFTP
Batch Size 32 32 16 16 32 16 4 32

Learning Rate 5E-02 5E-02 5E-02 8E-02 8E-02 5E-02 5E-02 5E-02

SVFTR
d=2

Batch Size 32 32 16 16 32 32 16 32

Learning Rate 1E-02 1E-02 1E-02 1E-02 3E-02 1E-02 3E-02 1E-02

evaluation setups and use the fine-tuning data available at https://huggingface.co/datasets/
meta-math/MetaMathQA-40K.

Table 16: Hyperparameter setup used for fine-tuning on MetaMathQA-40K.

Hyperparameter
Gemma-2B Gemma-7B LLaMA-3-8B

SVFTP SVFTR
d=16 SVFTP SVFTR

d=16 SVFTP SVFTR
d=12

Optimizer AdamW

Warmup Ratio 0.1

LR Schedule Cosine

Learning Rate 5E-02 1E-03 5E-02 1E-03 5E-02 1E-03

Max Seq. Len. 512

Epochs 2

Batch Size 64

Commonsense Reasoning. See the hyperparameters used in our experiments in Table 17. We
adopt the same set of matrices as that of natural language generation tasks. We use the code base from
https://github.com/AGI-Edgerunners/LLM-Adapters, which also contains the training and
evaluation data.

C.8 Settings for Vision Tasks

For each dataset in the vision tasks, we train on 10 samples per class, using 2 examples per class for
validation, and test on the full test set. Similar to previous literature, we always train the classifier head
for these methods since the number of classes is large. The parameter counts do not include the num-
ber of parameters in the classification head. The hyperparameters are mentioned in Table 18. We tune
the learning rates for SVFT and BOFT select learning rates for other methods from [17], run training
for 10 epochs, and report test accuracy for the best validation model. For all methods, since the classi-
fication head has to be fully trained, we report the parameter count other than the classification head.

18

https://huggingface.co/datasets/meta-math/MetaMathQA-40K
https://huggingface.co/datasets/meta-math/MetaMathQA-40K
https://github.com/AGI-Edgerunners/LLM-Adapters

Table 17: Hyperparameter setup used for fine-tuning on commonsense-15K.

Hyperparameter
Gemma-2B Gemma-7B

SVFTP SVFTB
d=8 SVFTP SVFTB

d=8

Optimizer AdamW

Warmup Steps 100

LR Schedule Linear

Max Seq. Len. 512

Epochs 3

Batch Size 64

Learning Rate 5E-02 5E-03 5E-02 1E-03

Table 18: Hyperparameter setup used for fine-tuning on all vision tasks.

Hyperparameter ViT-B ViT-L

Optimizer AdamW

Warmup Ratio 0.1

Weight Decay 0.01

LR Schedule Linear

Epochs 10

Batch Size 64

SVFTP Learning Rate (Head) 4E-03

SVFTP Learning Rate 5E-02

SVFTB
d=2 Learning Rate (Head) 4E-03

SVFTB
d=2 Learning Rate 5E-02

SVFTB
d=8 Learning Rate (Head) 4E-03

SVFTB
d=8 Learning Rate 5E-03

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are motivated using extensive
experiments (see section 4). A Lemma and its proof are introduced where required. We
include some limitations of our work in the Limitations section (see section 6).

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We run extensive experiments on a range of models to study and analyze our
method’s performance. See section 6 for some limitations. We include parameter count
analysis in Appendix B.

3. Theory Assumptions and Proofs

19

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We introduce our Lemma in subsection 3.2 and its corresponding proof in
Appendix A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide our method description in section 3, experimental evaluation
in section 4 and hyper-parameter ranges in Appendix C. Additionally, we provide code
and scripts to replicate our experiments as part of supplementary material to provide more
details.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is publicly available at https://github.com/vijaylingam95/
svft – also referenced in our abstract. We include all details on hyper-parameters ranges
and methods in Appendix C. All our experiments are run on publicly available datasets. We
provide references to the dataset source in our code.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details on our method in section 3. We provide comprehensive
details on hyper-parameter ranges and datasets/model names in Appendix C. Additional
details on model implementation and experiments are available in the code submitted as part
of supplementary material. We rely on public datasets, splits, and evaluation strategies from
previously published literature. We refer and cite these works in section 4.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Since we experiment with large models, it is often difficult to run these
experiments with multiple seeds and report error bars. We follow the same setup from
previously published research – these research works also do not compute error bars or
report them in any of their results tables. E.g, DoRA: Weight-Decomposed Low-Rank
Adaptation (ICML 2024 Accepted paper). Our limited compute resources have hindered us
from running multiple seed experiments.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We use a Linux machine (Debian GNU/Linux 10) with the following configu-
ration: 2x A100 80GB, 192GB RAM, Intel Xeon CPU @ 2.20GHz with 12 cores. Here are
some more information on the compute time for our language experiments: 2B models take
around 6 hours and 7B/8B models take around 14 hours for training. For vision experiments
using vision transformers (ViTs), it takes up to 4 hours for training.

20

https://github.com/vijaylingam95/svft
https://github.com/vijaylingam95/svft

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow and abide by the ethics guidelines laid out by NeurIPS. We also
preserve and conform to anonymity policies.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See section 6. Our work can allow more easy personalization of founda-
tional models which can have both positive and negative societal impact. This is because
our method provides computational efficiency (smaller memory footprint), making it less
expensive to enable personalization.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, the paper poses no such risks on safeguards.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers for utilizing the assets like code (in supplementary
material), datasets (subsection 4.2, and models (subsection 4.1) including their appropriate
versions. We also abide by different licenses for code bases, models, and datasets used in our
work like CC, MIT, META LLAMA 3 COMMUNITY LICENSE AGREEMENT, Gemma
Terms of Use, and more.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide assets in the form of code and multiple scripts as a part of the
supplementary material for the experiments and ablations performed in the paper. The
details about model training, their respective hyperparameters, and limitations are furnished
in section 4, Appendix C, and section 6 respectively. We also add the appropriate licenses
for disseminating our assets, particularly code and scripts in the supplementary material.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

21

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.

22

	Introduction
	Related Work
	Method
	SVFT Formulation
	Properties of SVFT

	Experiments
	Base Models & Setup
	Datasets

	Results
	Performance on Language Tasks
	Performance on Vision Tasks
	Memory Analysis
	Contribution of Each Weight Type
	Impact of M's Structure on Performance
	Impact of Pre-trained Weight Quality

	Discussion
	Conclusion
	Proofs
	Parameter Count Analysis
	Additional Experiments and Implementation Details
	Comparison against SVD-based Variants
	Performance Evaluation with Fixed Target Module Adaptation
	Commonsense Reasoning Gemma-2B
	Are All Singular Vectors Important?
	Additional Memory Analysis Experiments
	Performance vs Total Trainable Parameters
	Settings for Language Tasks
	Settings for Vision Tasks

