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ABSTRACT

A key step in protein optimization is modeling the fitness landscape, which
maps proteins to functional assay readouts. Existing methods typically either
use property-agnostic likelihoods/embeddings from pretrained protein language
models (PLMs) for fitness prediction, or assume independent mutational effects,
limiting their ability to capture higher-order interactions. In this work, we intro-
duce RankFlow, a conditional flow framework that refines PLM representations
to be a property-aligned distribution via a tailored energy function and captures
multi-mutation interactions through learnable embeddings. To align optimization
with evaluation protocols, we propose the Rank-Consistent Conditional Flow Loss
(RC?), a differentiable ranking objective that enforces the correct order of mutants
rather than absolute values, which improves out-of-distribution generalization.
Finally, we introduce a Property-guided Steering Gate (PSG) that concentrates
learning on positions carrying signals for the target property while suppressing
unrelated evolutionary biases. Across ProteinGym, PEER, and FLIP benchmarks,
RankFlow obtains state-of-the-art ranking accuracy and stronger generalization.

1 INTRODUCTION

Proteins enable catalysis, structural support, molecular transport, and cellular signaling. The ability
to design protein sequences and structures with tailored properties has a direct impact on sustainable
manufacturing and therapeutics. In practice, optimization targets a series of properties that can
include stability, binding affinity, and enzymatic activity, which are typically measured by high-
throughput assays (Biswas et al., 2021)). A central objective is to learn property landscapes that
map variants to these assay readouts and that explain how single and combined mutations modulate
them (Notin et al., |2024). The more accurately we model and navigate such landscapes, the more
reliably we can propose edits that deliver targeted behavior in realistic experimental settings.

Protein optimization typically begins by modeling the mapping from sequence and structure to func-
tional readouts, often called the fitness landscape (Romero & Arnold, 2009). A significant obstacle
in modeling the fitness landscape is the scarcity of experimentally measured labels. This has moti-
vated self-supervised representation learning for mutation effect prediction (Hopf et al.|[2017; Meier,
et al.| 2021). Early approaches, including Riesselman et al.| (2018)); Frazer et al|(2021); Laine et al.
(2019) have modeled family-specific distributions from multiple sequence alignments (MSAs) and
used those priors to score variants. More recently, hybrid designs have combined family-specific
and family-agnostic information for fitness prediction (Alley et al.l 2019} Rives et al.,|2021). Those
PLMs have shown that their predicted likelihoods can infer evolutionary trajectories and predict
zero-shot mutation effects (Rao et al., [2021; Notin et al., 2022). Subsequently, with the growth
of high-throughput assays and broader annotated datasets, many studies have moved to supervised
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Figure 1: Illustration of RankFlow. (a) In a local region of representation space, a regression head
on PLM embeddings can overfit when fine-tuned on a single assay, mapping some truly high-fitness
mutants to low scores and vice versa. RankFlow instead reshapes wild-type-conditioned mutant rep-
resentations into a fitness-aligned distribution, enforcing a property-aware landscape. (b) In a cross-
assay generalization experiment, models are trained on 40 Deep Mutational Scanning (DMS) assays
from the same category and evaluated on a held-out assay; RankFlow achieves higher Spearman
correlation than fine-tuned ESM2/SaProt with regression heads, indicating stronger generalization.

training (Gelman et al.| 2021} |[Heinzinger et al.| 2019). They fine-tune PLMs on experimental read-
outs and minimize differences between predicted and measured property values.

However, two critical aspects remain underaddressed. First, while PLMs capture rich evolutionary
regularities, PLM representations are property-agnostic (Loell & Nandal |2018)): they encode mul-
tiple, often competing evolutionary constraints (e.g., foldability, stability, expression), which can
dilute or even oppose the signal of the property of interest. Directly using such embeddings can bias
predictions toward wildtype-like preferences rather than property-aligned improvements. Second,
some fitness prediction methods overlook multi-mutation interactions (epistasis) and assume addi-
tive effects of individual mutations (Notin et al., [2023a; [Wang et al., [2024). This leads to wrong
predictions, especially for higher-order mutants where non-additive interactions dominate and sig-
nificantly influence the target property (Dauparas et al.,[2022; (Chen et al., 2024)).

In this work, we present RankFlow, a property-aware conditional flow framework designed to ad-
dress both limitations while preserving the generalization ability of pretrained PLMs. Standard
approaches attach a regression head to PLM embeddings and fine-tune on a single DMS assay,
which can yield strong in-assay performance but tends to introduce dataset-specific bias and inferior
cross-protein generalization. Rather than performing point-to-point regression, RankFlow keeps the
PLM embeddings as a base sequence/structure prior and learns an energy-guided conditional flow
that reshapes wild-type-conditioned mutant representations into a fitness-aligned distribution. This
refinement captures multi-mutation interactions through learnable embeddings defined on mutation
sets, going beyond additive assumptions. The energy function is constructed from observed fitness
scores and steers the learned dynamics toward landscapes where high-fitness mutants consistently
outrank low-fitness ones. Figure |l|illustrates how RankFlow differs from regression methods. To
align training with the evaluation protocols of protein engineering, we propose the Rank-Consistent
Conditional Flow Loss (RC?), a differentiable soft-ranking objective that enforces the correct order
of mutants rather than absolute values, improving robustness to noise and generalization to unseen
assays. Finally, we introduce a Property-guided Steering Gate (PSG), which focuses learning on
positions carrying signals for the target property and suppresses directions reflecting unrelated evo-
lutionary biases, reducing wild-type preference and sharpening the edit signal. We evaluate Rank-
Flow on ProteinGym (Notin et al., 2023a), S-Lactamase and Fluorescence from PEER (Xu et al.,
2022), and GB1 from FLIP (Dallago et al.}2021]), where it consistently outperforms state-of-the-art
methods in ranking accuracy and generalization. Our work makes the following contributions:

* We propose RankFlow, a novel conditional flow framework that refines PLM-derived mu-
tant representations into property-aligned embeddings, capturing non-additive interactions
across mutation sets.

* We introduce the Rank-Consistent Conditional Flow Loss (RC? Loss), a rank-consistent
flow objective that aligns training with rank-based evaluation metrics and improves out-of-
distribution generalization.
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* We develop the Property-guided Steering Gate (PSG) mechanism, which focuses learning
on property-relevant positions and reduces wild-type bias in PLM representations.

2 RELATED WORK

Protein Representation Learning. Protein representation learning has seen significant advance-
ments with the introduction of protein language models (PLMs) that leverage large-scale protein
sequence data (Rives et al.l 2021). Early works focused on family-specific models trained on
MSAs (Riesselman et al., 2018; Hopf et al., 2017} [Laine et al., [2019), which capture evolution-
ary constraints within protein families. More recent approaches have developed family-agnostic
PLMs (Rao et al., 2021} Lin et al., [2023; [Yang et al., [2023)) that learn from vast and diverse protein
sequences, enabling zero-shot prediction of mutational effects and improved generalization across
different proteins. Hybrid models that combine family-specific and family-agnostic information
have also been proposed (Alley et al.l [2019; |[Notin et al., 2022} Hsu et al., 2022} |Su et al., [2024),
further enhancing the predictive capabilities of PLMs. These models typically use self-supervised
objectives, such as masked language modeling or autoregressive prediction, to learn rich represen-
tations that can be fine-tuned for specific downstream tasks.

Protein Fitness Prediction. Protein fitness prediction aims to model the relationship between
proteins and their functional properties, such as stability and activity (Dallago et al.| 2021} |Gelman
et al., 2021). Traditional approaches directly map sequences to measured properties via regression
or classification (Gelman et al., 2021} Heinzinger et al., |2019), while alignment-based models fo-
cus on specific protein families and use evolutionary information from MSAs to infer mutational
effects (Riesselman et al.,|2018};|Laine et al.,[2019;|Shin et al., [2021)). Unsupervised methods predict
mutation effects by evaluating changes in likelihood scores (Riesselman et al.l [2018; [Frazer et al.,
2021; Notin et al., 2022} Nijkamp et al.| 2023} Truong Jr & Bepler, [2023)), and more recent work
leverages PLM representations within supervised frameworks for improved fitness prediction (Wang
et al.| 2024; Notin et al.||2023bj [Tan et al., [2025). Despite these advances, existing methods primar-
ily optimize for absolute fitness regression, which can limit robustness when extrapolating to unseen
mutation combinations. [Notin et al.| (2023b)) introduces a non-parametric Transformer that jointly
embeds protein sequences and labels and excels in label-scarce settings. [Beck et al.| (2025) propose
a meta-learning approach that trains an in-context regressor over more than 100 fitness tasks, but
it assumes access to many related tasks and excludes proteins longer than 750 amino acids due to
memory limits. Both methods are also computationally and memory-intensive during training and
inference. Kermut (Groth et al., [2024) combines sequence and structure information in a Gaussian
process with composite kernels and achieves state-of-the-art performance; however, it inherits the
cubic scaling of exact GPs and thus becomes costly on large variant libraries, and requires trun-
cation or subsampling for long or dense assays (Groth et al.| 2024). [Ronen et al.| (2025)) further
shows that Kermut and related predictors can be sensitive to the choice of representation and use
prediction-based screening plus representation ensembling to stabilize performance and improve
out-of-distribution generalization and uncertainty quantification. In contrast, our method learns
a lightweight, property-aware flow on top of PLM representations, and explicitly models multi-
mutation interactions to enable strong generalization even on large and diverse variant libraries.

3 METHOD

This section describes the proposed RankFlow framework. Section [3.1] presents the problem setup
and model overview. Section [3.2]introduces the Property-aware Conditional Flow, which constructs
a new property-guided flow to generate the target distribution. In Section we describe the
Steering Gate. Section [3.4]details the RankFlow architecture and training and inference procedures.

3.1 PROBLEM SETUP AND MODEL OVERVIEW

Protein optimization seeks to quantify how sequence edits change a property of interest. Let a wild

type protein be % = [z}, ... z}\f] with N amino acids (AAs). A mutation is a set of substitutions
p={pm ¥ = 2B m e {1,.. M}} which may act on multiple positions at once. Applying
w yields a mutant sequence =™ = [x1 ,...,2%]. For a wild type protein and a given assay, a
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Figure 2: Overview of RankFlow for protein fitness prediction. RankFlow takes wild-type-
conditioned PLM representations as the source distribution py and learns a property-aware condi-
tional flow (Section[3.2)) that transports py to a property-aligned target g. The flow is conditioned on
the wild type context (via the Multi-modal Fusion Encoder), the mutation set, and a Property-guided
Steering Gate (Section[3.3)) that emphasizes positions relevant to the target property. Training uses a
dual-objective loss that combines property-aware flow matching with the rank-consistent RC? loss.
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typical learning objective is to fit a function Fg(x“*, u) = vy, where y is the measured property
value of the mutation p on **.

In RankFlow, rather than fitting a deterministic predictor Fg that is prone to overfitting in the low-
data regime, we train a conditional flow parameterized by € that models a distribution over protein
representations whose density is tilted toward the target property via our energy function. This
flow takes PLM representations as the source distribution py and transports it to a property-aware
distribution ¢ conditioned on p and y. Specifically, for each mutant ™" in the dataset, we mask
the mutated AAs with the PLM’s mask token, feed the sequence into the PLM, and extract the final
hidden representation hy € R™*? prior to the output head. Masking removes self-information
about the wild type residues, yielding a mutation-aware yet wildtype-specific state hy ~ pg, which
serves as the input distribution for RankFlow. The overview of RankFlow is depicted in Figure[2]

3.2 PROPERTY-AWARE CONDITIONAL FLOW

Continuous Property-aware Flow. Inspired by [Zhang et al.| (2025)), we learn a conditional flow
that generates samples not directly from the base distribution pg, but from an energy-guided dis-
tribution g(h) o po(h) exp{—E(h)}, where £(h) is an energy function that encodes the target
property. Following guided flows (Zheng et al.,2023), we model a conditional distribution p;(h | h¢)
at time ¢ via a Gaussian conditional path:

pe(h|ho) = Mueho, o71), (1)

where p;, o, are differentiable scheduler functions. The property-aware distribution at time ¢ is:

qt(h) o< pi(h) exp{—&i(h)}, )

with &; denotes the energy at time ¢. To realize this distribution, we construct a flow via a time-
dependent velocity field v;(0) describing the velocity of the particle at position h that matches the
conditional vector field u:(h | ho). For the Gaussian path p;(h | hg), this field admits the closed
form with score function log p;(h | ho):

wy(h| o) = fue py " h + (ftr o0 — e 64) 04 i Vi logpe(h | ho), (3)

where fi; and &, are both the derivative of y; and o with respect to time t.
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Energy function. We construct an assay-invariant energy function that emphasizes mutants with
strong fitness scores while remaining robust to differences across assays. Our design combines two
principles: (i) mutants with large fitness values should be favored, and (ii) mutants whose fitness
departs from local substitution patterns should be highlighted (Wylie & Shakhnovich} [201T)). Let X
be the training set (K = |K|). Mutant 2™ has measured label y; and a mutation set pt; = {(k, a; 1)}
where k denotes a mutated site and a;  the amino acid at that site. We measure similarity between
two mutants " and " by a substitution-aware edit distance:

dsub(i,j): |S1ASJ|+|{]€€SZQSJ : ai7k7éaj7k}‘, Sli{k (k,ai7k) € W; }, 4)

so that dgu1, (7, 7) = 1 means ™ and :c‘J‘»“ differ by a single mutational move. For each mutant =™,
we define its neighborhood N (i) = {j ek | Jj# i, deun(i,j) <r }, where r is a mutational
radius. Within this neighborhood, we compute kernel weights K;; and normalize them:

. K

K;; :eXP(*dsub(i,j)), Kij = =————. (5
! ! Zje/\/ (4) Kij
Using the neighborhood weights, we then compute:
gi= Y. Ky, si= Y Kij (5 —i)° (6)
JEN () JEN(7)
where ¢; is the normalized fitness score with §; = (y; — pr)/(0tr), Where uy, and oy, are the

mean and deviation. 7j; is the local baseline implied by nearby mutants, and s; is the corresponding
variance. Finally, with flow time ¢ € [0, 1], we form the energy function &;(h) and weight w;(t) by
combining a global magnitude term and a local deviation term:

~ Yi —

() = ~(\gi+ (1=

where 7; denotes the standardized global fitness of variant '™, encouraging the flow to shift em-

beddings toward globally high-fitness regions, (§; — 7;)/ /5; quantifies how much mutant ¢ deviates

from local substitution patterns. The mixing coefficient A\ balances these two components, and

the final weight w;(¢) emphasizes mutants that are simultaneously high in standardized fitness and
anomalous relative to local substitution trends. 5 > 0 controls the sharpness of the weighting.

<

l), w;(t) o« exp{—B&;(h)}, 7

Rank-Consistent Conditional Flow Loss. With energy weights w;(t), we learn the flow by
matching the vector field v;(8) to the target velocity u:(h | ho):

Leem(6) = Ei n [@i(t) llve(h; 8) — we(h | ho) 5], ®)

where v, is the vector field. w;(t) is obtained by applying a softmax to w;(t). Given infinite data,
Lprm(0) is able to achieve the global minimum. However, in our task, we observe a main limitation
with this objective: some assays contain only a few hundred labeled variants, which is insufficient
to learn a complex transport map that accurately matches property values.

Therefore, we propose a Rank-Consistent Conditional Flow Loss (RC?) that complements the
Lprm(0). Specifically, for each sample =™, the representation h from the PLM’s internal space is
fed into the flow model G(8) to produce a predicted target representation hi. We compute target
logits with the PLM head, Q"' = PLMHead(h, ), and form the predicted score § by summing logic
differences over the mutated sites p;:

Gz > (10g QL — 108 QYL ). ©

mep;

¥; can be regarded as the predicted property value for the mutant ™. This readout is invariant
to the scale of logits and focuses on the mutations that drive the property change (Gordon et al.,
2025). For a batch of B mutants, let § = {g;} denote the model predictions and y = {y;} be
the experimental measured labels. Our proposed RC? loss Lrriow(0) minimizes a differentiable
surrogate of the Spearman rank correlation between y and y:

Lrriow(0) = Arank (1 — psote (R-(9),R(¥))), (10)



Published as a conference paper at ICLR 2026

where A\ is a hyper-parameter, R, (+) is a standard differentiable ranking operator used in prior
work (Cuturi et al., 2019) on differentiable sorting and ranking with temperature 7 > 0, the hard
rank operator R(-) is used for ground-truth labels, and pso computes a differentiable correlation
between (soft) predicted ranks and the hard ranks of target y. Now the total loss is defined as:

L(0) = Lprm(0) + Lrpiow(0)- (11)
This total loss combines the property-aware flow matching and the rank-wise flow objectives, bal-
ancing the need to align with the target property while preserving the correct ranking of mutants.

3.3 REPRESENTATION OPTIMIZATION VIA A PROPERTY-GUIDED STEERING GATE

While the training objective Eq. |1 1|directly optimizes representations for a target property, the evo-
lutionary information from PLMs is property-agnostic. They encode many objectives at once and
can steer updates toward directions that are neutral or even adverse for a given assay (Notin et al.,
2022). To address this issue, we propose a Property-aware Steering Gate (PSG) that concentrates
learning on positions carrying signals for the target property and suppresses directions driven by
unrelated evolutionary biases.

Let ST and S~ be the top and bottom &-quantiles of the training set by the measured property (we
use & = 0.3 unless stated). For mutant 2}"*, we define the wildtype-conditioned token delta by:
AR = RO — h (™), (12)

where h(©) € RV*4 denotes the token representation from ¢-layer of PLM. Empirically, we use the
final PLM layer (¢ = L) from the PLM’s internal space before its prediction head. This delta ties the
signal at each position to the effect of mutating that site and reduces wildtype-specific offsets. We
then compute average per-position token representations across sequences in each set and construct
a steering matrix V; that points along the mean difference between high- and low-property samples:

¢
N+ ‘3+| Z AR, “* ‘5 | Z AR (13)
seSt sES™
ve = u - p. (14)
V' captures the direction that separates high- and low-property mutants in the PLM representation

space. Prior to training, we compute V' once and cache it. For each mutant ™ during training,
we score position 7 by a cosine similarity to V()

AR, v
" Ak

(15)
Vi + ¢

el

where Ah( ) is the n-th row of Ah( ) , € > 01is a small constant for numerical stability. Large posi-
tive w; 1nd1cates the token’s representatlon aligns with the high-property direction, while negative
Wi n 1ndlcates opposition. We convert these scores to a gate vector:

gi = yo(w,), (16)
with scale v > 0 and sigmoid o(-). This gate serves as a condition to our flow model to concentrate
learning on positions that carry signal for the target property and reduces the influence of positions
that reflect unrelated evolutionary signals.

3.4 RANKFLOW ARCHITECTURE

The implementation of RankFlow comprises two core components: (1) Multi-modal fusion encoder,
which combines the representations of structure and sequence representations for a sequence; and
(2) Conditional flow head: which predicts the velocity field at each time step.

Multi-modal Fusion Encoder. We leverage existing state-of-the-art architectures to encode the
structure and sequence modalities separately. For structure encoding, we rely on the pretrained
structure encoder ESM-IF (Hsu et al.| [2022), which can effectively capture the geometric context of
the wild-type protein. For sequence encoding, we utilize pretrained PLM ESM-2 (Lin et al., [2023)
to extract evolutionary information from wild-type sequences. The outputs from both encoders are
projected using two Multi-Layer Perceptrons (MLPs) and then fused via a self-attention block to
create a unified representation F' € R™V*? that captures both sequence and structural features.
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Conditional Flow Head. The conditional flow head is designed to predict the velocity field v (-)
at each time step ¢. To refine PLM representations, we add learnable embeddings to the flow head,
applied only at mutated sites with one embedding per position. For a mutation set g = { u"}%ﬂ’
we construct ¢(p) € RE*4e with entries ¢, (1) = [Bpos() + Gaa(fim) ], Where ¢pos € REXde
and ¢, € R29%de are trainable modules. ¢m(p) will be concatenated to hg so that the flow can
learn mutation-specific adjustments. The flow head takes as input the current state h;, the mutation
set i, and the condition C, which includes the fused representation F' and the steering gate g. The
conditional flow head is now parameterized as v;(h|C'; @), where 6 is a light stack of U-Net blocks
with time embedding and layer normalization to effectively model the dynamics of the flow.

Putting all the components together, RankFlow is trained as a conditional flow-matching model.
For each mutant z1"*, we first obtain its representation h? from the frozen PLM, together with
the fused sequence-structure representation F' and steering gate g; obtained from Eq. these
are collected into the condition C;. We then sample a time ¢ ~ /(0, 1), construct a noisy state
h; = ph® + oe with fixed scheduler (p4,04) and ¢ ~ N(0, I), and compute the target velocity
u;(hy | h°) in closed form according to Eq. [3| where we omit the index i for brevity. The flow
head takes (h;, C) as input and predicts a velocity v;(h;;8). The parameters § are optimized by
minimizing the energy-weighted flow-matching loss Lppy in Eq. [8]together with the rank-consistent
loss in Eq. Algorithm[T]in Appendix[A.T|summarizes the overall training procedure. Atinference
time, we fix C for a given assay and mutant, integrate the learned vector field fromt = 1tot = 0
using a fixed-step Heun solver with N steps (Appendix [A.2)), and map the final representation to a
scalar fitness score.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We first fix the architecture and optimiser, then
select method-specific hyperparameters on a

few representative assays. For the loss com- Active site (Residue 58)

position, we start from Lppy and add Lrpiow ____ Solvent-exposed areas
only if it improves validation Spearman (which (Residues 117-120, 121-122)
it consistently does), so we recommend using Predicted top S Experimental
the combined loss. For the energy design of variants fitness rank
A, we perform a coarse sweep 0,0.25,0.5,1 and DLISN 3

L . F115Y 7
choose the value near the validation optimum Elooy s
(typically A = 0.5). For scheduling, we com- — 6
pare linear vs. cosine time schedules and pick F1150 9

the better one (cosine in our case). Once cho-
sen on this validation subset, we reuse the same Figure  3: Structural  visualization  of

configuration for all ProteinGym assays with-  A{cpA HUMAN using Mol* Viewer (Sehnal
out per-assay tuning; full training and evalua- =1 5GT) The top three predicted mutants by

tion configurations are given in Appendix @ RankFlow are at solvent-exposed positions.
We use Spearman’s rank correlation coefficient

between predicted and true fitness values as the
evaluation metric.

4.2 PERFORMANCE COMPARISON

Benchmarks. ProteinGym (Notin et al., 2023a)) servers as a benchmark for mutation effect pre-
diction. It contains 217 substitution DMS assays and over 2.4 million mutated sequences spanning
more than 200 protein families. Additional details are provided in Appendix (-lact. and Fluo.
are widely used benchmarks for protein fitness prediction. Both comprise deep mutational scanning
measurements covering thousands of single- and multi-mutants. -lact. includes 4,158 training, 520
validation, and 520 test samples; Fluo. contains 21,446 training, 5,362 validation, and 27,217 test
samples. GB1 from FLIP (Dallago et al., |2021) is derived from deep mutational scanning of the
IgG-binding protein G domain B1, which assayed nearly all single to quadruple mutants. In the
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Table 1: Spearman performance of supervised methods on (-lact., GB1, Fluo., and ProteinGym

under the Random scheme. Results of CNN, ResNet, LSTM, and Transformer are from Wang et al.

(2024); OHE, ESM-MSA, Tranception, and ProteinNPT are from [Notin et al.| (2023b). . best,
: second best.

Model | ProteinGym Blact. GBI  Fluo.
Stability  Fitness Expression Binding Activity
CNN 0.788 0.588 0.627 0.599 0.573 0.781 0.502 0.682
ResNet 0.734 0.489 0.521 0.525 0.481 0.152 0.133 0.636
LSTM 0.745 0.413 0.477 0.496 0.408 0.139  -0.002 0.494
Transformer 0.560 0.149 0.156 0.172 0.155 0.261 0.271 0.643
OHE 0.718 0.545 0.573 0.562 0.555 0.823 0.533 0.657
ESM-1v 0.880 0.566 0.642 0.596 0.572 0.536 0.394 0.438
ESM-2 0.882 0.573 0.645 0.587 0.576 - - -
ESM-MSA 0.885 0.568 0.632 0.565 0.600 - - -
ProtSSN 0.877 0.692 0.718 0.757 0.678 - - -
SaProt 0.882 0.686 0.716 0.749 0.677 - - -
Tranception 0.871 0.632 0.704 0.671 0.623 - - -
ProteinNPT 0.904 0.668 0.736 0.706 0.680 - - -
DePLM (ESM1v) 0.887 0.704 0.738 0.773 0.688 0.900 0.676 0.662
DePLM (ESM2) 0.897 0.707 0.742 0.764 0.693 0.904 0.665 0.662
RankFlow (Ours) 0.911 0.742 0.765 0.781 0.722 0.912 0.689 0.687

2-vs-rest split, double mutants are used for training, while single, triple, and quadruple mutants are
held out for validation and testing.

Table |I| reports the performance of RankFlow and other baselines on four benchmarks. For
the ProteinGym benchmark, we follow DePLM (Wang et al., [2024)) in excluding datasets whose
wild-type proteins exceed 1,024 residues, yielding 201 DMS datasets. Among these methods,
ProtSSN (Tan et al., 2025), SaProt |Su et al.| (2024), DePLM (Wang et al., |2024), and our model
are sequence+structure approaches that use both amino acid sequences and 3D structures, whereas
all other methods operate on sequence information only. All models are trained either from scratch
or via task-specific fine-tuning. As shown in Table[I] our RankFlow achieves the state-of-the-art per-
formance on all benchmarks consistently. Both ESM-MSA (Rao et al.,|2021)) and Tranception (Notin
et al., |2022) outperform ESM-1v (Meier et al., 2021)) and ESM-2 (Lin et al.| [2023) by leveraging
evolutionary information from MSAs. However, RankFlow still outperforms them significantly,
demonstrating that reorganizing information in pretrained PLMs can surpass even MSA-based ap-
proaches. Compared to DePLM, which also uses a generative model, RankFlow directly learns
a conditional flow that transports property-agnostic PLM embeddings to a property-aligned distri-
bution. By modeling mutation sets rather than independent sites, it better captures higher-order
epistatic interactions that DePLM can only approximate, and consistently surpasses DePLM across
benchmarks. We provide a per-assay comparison of Spearman scores in Fig.[8| We further analyzed
which variants are prioritized by our method and found that, as shown in Fig. [3| high-fitness pre-
dictions are enriched at solvent-exposed positions and away from the active site, which is consistent
with established biological observations (Notin et al., 2022).

We further evaluate RankFlow on ProteinGym under the Contiguous and Modulo schemes, with
results summarized in Table Kermut (Groth et al., 2024) achieves the best performance on the
Contiguous split, where a single long region of positions is entirely withheld during training. In con-
trast, RankFlow achieves the highest Spearman scores on both the Random and Modulo splits. The
Modulo split suppresses periodic subsets of positions while still preserving distributed positional
coverage; RankFlow’s conditional-flow formulation appears to leverage this dispersed contextual
information more effectively than kernel-based regression. Aggregated over all three evaluation
modes, RankFlow yields the highest average performance. This suggests that RankFlow exhibits
more stable performance across different forms of distribution shift.

4.3 UNCERTAINTY ESTIMATION

We adopt the hybrid uncertainty estimation used in ProteinNPT, combining MC-Dropout and batch-
resampling to obtain per-mutation epistemic uncertainty scores. This approach is model-agnostic
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Table 2: Spearman performance on the ProteinGym benchmark under Random, Modulo, and Con-
tiguous evaluation schemes. Results for Kermut are taken from the original paper (Groth et al.,
2024), while all other baseline results are sourced from the ProteinGym website.

Model Random Modulo Contiguous  Avg. | Std. err.
OHE 0.582 0.022 0.059 0.221 0.014
ESM-1v + OHE 0.565 0.394 0.396 0.452 0.015
DeepSequence + OHE 0.523 0.393 0.395 0.437 0.017
MSAT + OHE 0.540 0.409 0.407 0.452 0.014
Tranception + OHE 0.550 0.413 0.415 0.459 0.012
TranceptEVE + OHE 0.552 0.435 0.435 0.474 0.012
ESM-1v Emb. 0.614 0.514 0.479 0.535 0.014
MSAT Emb. 0.670 0.562 0.513 0.581 0.013
Tranception Emb. 0.681 0.525 0.439 0.548 0.008
ProteinNPT 0.741 0.588 0.529 0.619 0.009
Kermut 0.744 0.631 0.591 0.655 0.000
RankFlow (Ours) 0.786 0.635 0.589 0.669 0.018

Table 3: Benchmark results on ProteinGym under the Contiguous and Modulo evaluation schemes.
Puncertainty 15 the Spearman correlation between the uncertainty scores and the absolute errors of the
predictions. All baseline model values are taken from [Ronen et al.|(2025).

Contiguous Modulo Random
Model
Spearman Puncertainty Spearman Puncertainty Spearman Puncertainty

CNN 0.344+0.013 0.019+0.006 0.344+0.013 0.019+0.006 0.3654+0.012 0.013+0.006
Stable CNN 0.492+0.010 0.12940.008 0.492+0.010 0.12940.008 0.509+0.010 0.133+0.008
Bayesian Ridge 0.42240.014 0.008+0.004 0.422+0.014 0.008+0.004 0.693+0.013 0.005+0.004
Stable Bayesian Ridge 0.597+0.011 0.153+0.008 0.597+0.011 0.153+0.008 0.755+0.011 0.139+0.007
Kermut 0.606 = 0.012 0.11040.008 0.606+0.012 0.110+0.008 0.758+0.012 0.106£0.008
Stable Kermut 0.667 + 0.010 0.164+0.010 0.667 = 0.010 0.164 + 0.010 0.785 £ 0.010 0.184 + 0.008
RankFlow (Ours) 0.589+0.009 0.135 =+ 0.009 0.635 & 0.010 0.132 % 0.008 0.786 £ 0.012 0.165 % 0.006

and does not require any changes to our model architecture. As reported in Table (3| the Spearman
correlation between our uncertainty scores and the absolute prediction errors (puncertainty) is compara-
ble to or in some schemes slightly higher than the values reported for Stable CNN, Stable Bayesian
Ridge, and Stable Kermut (Ronen et al., [2025)). These results indicate that our approach not only
achieves strong predictive accuracy but also delivers robust uncertainty quantification on par with
stabilized baselines.

4.4 GENERALIZATION

To demonstrate the generalization of RankFlow, we further test it on the ProteinGym bench-
mark (Notin et al., [2023a). Following the experimental settings in DePLM (Wang et al., |2024),
for each test dataset, we randomly select 40 additional datasets from the same category for train-
ing, while ensuring that sequence similarity between training and test datasets remains below 50%
to avoid data leakage. Table [ summarizes the performance of RankFlow and the baselines on
ProteinGym. RankFlow consistently outperforms all methods across categories, indicating strong
generalization. Despite using PLMs, it has far fewer trainable parameters than SaProt (37.1M vs.
650M), enabling training within about 1 hour on a single A100 GPU, whereas some large-scale
baselines require days. This efficiency and data efficiency make RankFlow well suited for protein
engineering applications.

4.5 ABLATION STUDY

We conduct an ablation study to analyze the contributions of RankFlow’s components, comparing
the full model with four variants: (1) energy-guided conditional flow only (RankFlow (Lpgy only));
(2) RC? loss only (RankFlow (Lgriow only)); (3) RankFlow w/o structure info; and (4) RankFlow
w/o steering gate g;. We evaluate all variants on ProteinGym, and report the results by (a) function
type and (b) mutation depth. As shown in Fig. [4] our energy-guided objective LPFM yields the
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Table 4: Generalization ability evaluation on ProteinGym. Results for zero-shot and fine-tuned (FT)
baselines are taken from [Wang et al.[(2024)).

Model Input Modalities  Trainable Spearman

Seq.  Struct.  parameters | Stability Fitness Expression Binding Activity
Zero-shot methods
ESM1v v - 0.437 0.395 0.427 0.287 0.415
ESM2 v - 0.523 0.396 0.439 0.356 0.433
ProtSSN v v - 0.560 0.408 0.435 0.362 0.458
TranceptEVE L v - 0.500 0.477 0.457 0.360 0.487
ESM-IF v - 0.624 0.346 0.436 0.380 0412
ProteinMPNN v - 0.564 0.166 0.209 0.159 0.203
Supervised methods
CNN v 2.7 0.141 0.053 0.043 0.056 0.095
ESM1v (FT) v v 650M 0.497 0.318 0.301 0.216 0.385
ESM2 (FT) v v 650M 0.454 0.359 0.338 0.276 0.391
ProtSSN (FT) v v 148M 0.689 0.448 0.478 0.421 0.488
SaProt (FT) v v 650M 0.703 0.442 0.496 0.391 0.495
DePLM (ESM1v) v v 42.2M 0.763 0.467 0.506 0.409 0.499
DePLM (ESM2) v v 42.2M 0.773 0.480 0.510 0.441 0.518
RankFlow (Ours) Vv v 37.1M 0.797 0.515 0.534 0.457 0.554

largest gains across assays and mutation depths, underscoring the importance of property-aware
flow matching for learning an accurate fitness landscape. The RC? loss is especially helpful at
higher mutation depths, where the combinatorial explosion of sequences makes reliable supervision
scarce. Removing the property-aware steering gate (RankFlow w/o steering gate g;) improves over
the RC?-only variant, highlighting the value of focusing learning on positions most relevant to the
target property. We also observe a moderate performance drop when structure information and the
multi-modal fusion encoder are removed (RankFlow w/o Structure info), particularly on label-sparse
ProteinGym assays (notably in the Fitness and Activity categories), yet the sequence-only variant
still surpasses strong sequence-only baselines such as ESM2(FT) and SaProt(FT), indicating that
RankFlow remains effective without structures. More details are in Appendix

RankFlow (Lpry only) RankFlow (w/o steering gate g;) RankFlow (Lpry only) RankFlow (Lpry + LRrriow)

RankFlow (Lgriow only) RankFlow (Full)
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S o _
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Figure 4: Results of ablation study for analyzing contributions of different components. Breakdown
performance on assays is grouped by (a) function type and (b) mutation depth.

5 CONCLUSION

We present RankFlow, a conditional flow-matching framework for protein fitness prediction that
learns a property-aware landscape on top of pretrained PLMs. By introducing an energy function
tied to assay-specific fitness and a rank-consistent objective, it shapes the flow so that mutants are
ordered coherently by their functional properties. In addition, the property-aware steering gate fo-
cuses learning on relevant positions, improving performance on diverse protein engineering tasks.
Across ProteinGym and additional protein engineering benchmarks, RankFlow consistently matches
or surpasses state-of-the-art supervised methods under the same training protocols, using far fewer
trainable parameters than full PLM fine-tuning and offering a robust, transferable approach to pro-
tein fitness prediction.
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Reproducibility Statement. All the datasets used in this work are publicly available and are de-
scribed in the main content and Appendix Detailed descriptions of the model architecture,
training, and inference procedures are provided in Section [3.4] and Appendix [A.T] and we explain
and justify all hyperparameter choices in Appendix [A.2]to ensure reproducibility.
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Algorithm 1 Training of RankFlow

Input: Pretrained language model PLM, pretrained structure encoder SE, training data D =
{(z™, " y)}, batch size B, learning rate 1), weight A, max epochs F, rank loss weight Aank,
time sampler ¢ ~ 1/(0, 1)
Initialize RankFlow parameters 6
h"t = PLM(z""), s"'=SE(z"")
for epoch = 1 to E do
for each batch {(z, 2%, y,)}2 | in D do
h*t = PLM(z™),
F; = Encoder([h"™*; s¥']);
Sample ¢; ~ U(0, 1);
Compute embeddings of mutated positions ¢;(g;);
hi™* = concat(h™, ¢;(p:));
Compute perturbed representation: hy, = g, A + o4, € where € ~ N (0, 1);
Compute target velocity ug, (hy, |h™") using Eq.
Compute steering gate g using Eq. [T6}
'ug = FlowHead(h:,, t;, [F}; gi]);
Compute property-aware flow matching loss Lppyv using Eq. [}
Compute rank-wise loss Lrpiow using Eq. ['115];
L = Lerm + LrFiow
0«0 — ’17V9£
end for
end for
Return: Trained RankFlow model parameters 68

A METHOD DETAILS

A.1 DETAILS OF TRAINING

Algorithm [T outlines the training procedure for RankFlow. The model parameters 6 are initialized,
and the training proceeds for a specified number of epochs. In each epoch, the training data is pro-
cessed in batches. For each assay, the wild-type sequence is encoded using the pretrained language
model (PLM) and structure encoder (SE). Because each assay has a single wild-type sequence, its
representation is computed once and reused across all batches.

A.2 IMPLEMENTATION DETAILS

For the main results in Table[T} we use pretrained ESM2-650M as the sequence encoder and ESM-IF
as the structure encoder, and the structures are predicted by AlphaFold2 (Jumper et al.,[2021). For
Table[2] which includes assays longer than 1,024 residues, we instead use pretrained ESMC-600M-
2024-12 as the sequence encoder, while keeping ESM-IF as the structure encoder. Training uses
grouped batches per assay and per protein. We use AdamW with learning rate 10~%, weight decay
1072, batch size 256, and early stopping on validation set. Given the variability in the datasets,
the number of training epochs is set to a maximum of 50. Training typically takes less than 1 hour
on a single 80 GB A100 GPU. During inference, we use a fixed-step second-order explicit solver
(Heun) over ¢ € [1,0] using the number of steps N = 20. From the endpoint, we read a scalar
score by averaging mutant-vs-wild type logit changes over edited sites as in Eq.[9] This readout
is invariant to the scale of logits and focuses on the mutations that drive the property change. For
the mutational radius r, we use =2 by default, and for extremely small assays, neighborhoods are
sparse, © will be increased to 3. During experiments, we fix A = 0.5 after experimental validation.
We use £=0.3 by default to form S* and S~. If either split has fewer than 20 samples, we switch
to a top-k selection with £ = min(20, [0.3K |) per side. For very small assays (K <80), we disable
PSG by setting all gates to 1. The hyper-parameter ~ is chosen from {0.5,1.0} based on dataset
size. The temperature 7 in Eq. is set to 0.1. The weight Ak in Eq. is set to 0.5. 3 in
Eq. is chosen from {1.0,2.0, 5.0} based on validation performance. For each assay, we compute
Spearman’s p between predicted scores and ground-truth labels on the test set, and no additional
calibration or post-processing is used.
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Table 5: Comparison of different energy function designs on ProteinGym.

Energy Function Stability Fitness Expression Binding Activity
E(h)=—y; 0.902 0.738 0.750 0.768 0.701
Ei(h)=—R(y;)/n 0.901 0.712 0.725 0.742 0.695
Eh)=—(\gi + (1 =N %) (Ours) | 0911  0.742 0.765 0.781  0.722

Hyperparameter selection. We follow the commonly used training setup of flow-matching mod-
els and perform a coarse sweep on a held-out validation split over the three specific knobs that
appear in Table [§} the objective, the energy-guidance weight, and the schedule. For the objective,
the ablation shows that removing RC? or replacing it with another commonly used loss (e.g., kinetic
reg.) degrades performance. For the energy-guidance weight A, the value 0.5 yields the best average
Spearman correlation, whereas both smaller and larger values lead to a noticeable drop in perfor-
mance, so we fix A = 0.5 for all experiments and recommend selecting A on a small validation set
from a simple grid such as 0.25, 0.5, 1.0 in new applications. For the schedule, cosine scheduling
performs slightly better than the linear variant, so we use it as the default and recommend it in the
text.

The energy-guidance weight ) is robust over a wide range, with A = 0.5 performing best on average.
Cosine scheduling consistently outperforms linear scheduling, so we use it in all reported results.
Overall, RankFlow is robust to reasonable variations of these hyperparameters rather than relying
on extensive benchmark-specific tuning.

(i) the objective, comparing variants without RC?, with RC? only, and the full objective with ki-
netic regularization; (ii) the energy-guidance weight A € {0,0.25,0.5, 1}; and (iii) the schedule for
(e, 01 ), comparing linear and cosine scheduling. The ablation indicates that the full objective with
RC? and kinetic regularization consistently outperforms the other variants, so we adopt this as the
default. For the guidance weight, performance is relatively stable over the range A € [0.25, 1], with
A = 0.5 achieving the best average Spearman correlation across the four ProteinGym properties;
we therefore fix A\ = 0.5 for all experiments and recommend A € [0.25,0.5] as a practical range.
Cosine scheduling provides a small but consistent improvement over the linear schedule, so we use
the cosine schedule in all reported results.

Overall, practitioners can reproduce our configuration by directly adopting these default settings,
and the ablations in Table [§] show that RankFlow is robust to reasonable variations of these hyper-
parameters rather than relying on extensive benchmark-specific tuning.

A.3 DESIGN DETAILS

Design of Energy Function. We analyze the design of the energy function &;(h) = — ()\ gi+(1—
A) %) in Eq. by comparing it with two alternatives: (1) a normalized score value &;(h) = —;
without neighbor comparison, and (2) a rank-based score &;(h) = —R(y;)/n, where R(y;) is the
rank of y; among all n samples. The results are summarized in Table[5] The first alternative directly
uses the normalized property value as the energy, which may be sensitive to outliers and does not
consider the relative ranking among variants. The second alternative uses the rank as the energy,
which captures relative ordering but loses fine-grained information about the magnitude of differ-
ences between variants. Our proposed energy function combines both absolute and relative informa-
tion, leading to improved performance across all categories. This demonstrates that incorporating
both the magnitude of the predicted property and its deviation from the local average provides a
more informative signal for guiding the flow model in learning the fitness landscape.

RankFlow Architecture Details. Our flow matching is based on a one-dimensional U-Net back-
bone (UNet1D) tailored for sequential data. The encoder consists of four residual blocks with inter-
leaved linear attention and downsampling operations, reducing temporal resolution while enriching
representations. A bottleneck stage applies two residual blocks with a full attention layer in between,
capturing long-range dependencies. The decoder mirrors the encoder with four residual blocks and
upsampling layers, combined with skip connections from the encoder. Temporal conditioning is
incorporated through sinusoidal time embeddings processed by an MLP, while an additional MLP
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Table 6: Model architecture details.

Component Details

Fusion Encoder | 2 MLPs with dim=1280, 1-layer Self-Attention, output dim=1280
Flow Head U-Net1D with 4 ResBlocks (down) + 2 ResBlocks (middle)

+ 4 ResBlocks (up), hidden dim=128, output dim=1280

handles auxiliary fitness embeddings. Finally, a residual block and 1 xConv1D projection layer yield
the model’s output. In total, UNet1D contains approximately 9.6M trainable parameters. The fusion
encoder consists of two MLP layers with ReLU activations, followed by a self-attention layer to
integrate sequence and structure features. The detailed architecture is summarized in Table[6]

B EXPERIMENTAL DETAILS

B.1 DETAILS OF BENCHMARK

ProteinGym is an extensive set of DMS assays, containing 217 datasets. Each dataset is categorized
into one of five groups based on the measured property: Stability, Fitness, Expression, Binding, and
Activity. For fair comparison, we implemented the Random cross-validation method as described in
DePLM. Specifically, for each dataset, each mutation in the dataset is randomly assigned to one of
five folds. The model is trained on four folds and evaluated on the remaining fold, and this process is
repeated five times to ensure each fold serves as the test set once. The final performance is reported
as the average across all five folds. For results reported in Table[2] which include all 217 assays, we
follow ProteinGym’s official evaluation protocols for the three splitting schemes: Random, Modulo,
and Contiguous. In order to deal with

B.2 EVALUATION METRIC

Following ProteinGym (Notin et al., [2023a)), we quantify concordance with the experimental land-
scape using Spearman’s p. For each protein assay, let the predicted scores be g = (g;)"_; and
the experimental measurements be y = (y;)7,. Spearman’s coefficient is the Pearson correlation
between the ranked vectors:

_ cov(R(9), R(y))

IR(7) OR(y)
where R(-) is the vector of ranks (averaging ties). We compute p per protein assay and report
aggregate statistics across assays in the results.

B.3 MULTIPLE MUTANTS PROPERTY PREDICTION

We further evaluate RankFlow on 15 protein assays with multiple mutants in ProteinGym. Figure 3]
shows the Spearman’s rank correlation between model predictions and experimental measurements
for these assays. RankFlow consistently outperforms other baselines, demonstrating its effective-
ness in capturing the complex interactions among multiple mutations. This highlights RankFlow’s
potential for guiding protein engineering efforts that involve combinatorial mutagenesis.

B.4 CROSS-VALIDATION RESULTS

The error bars for the cross-validation setting are reported in Table [/} RankFlow surpasses Protein-
NPT and DePLM across all categories while using fewer trainable parameters. Relative to DePLM,
RankFlow improves average performance by 1.8% (Stability), 3.8% (Fitness), 2.2% (Expression),
1.7% (Binding), and 3.0% (Activity). It is also lighter (37.1M trainable parameters in RankFlow vs.
42.2M in DePLM) and faster to train (50 training epochs for RankFlow vs. 100 for DePLM). These
results underscore RankFlow’s effectiveness and parameter-efficient design.

In addition, we analyze the correlation of predictions from different methods. As shown in Figure
[6l the predictions from RankFlow exhibit less correlation with those from DePLM and ESM-2 on
the Fluorescence benchmark, indicating that RankFlow might capture complementary information.
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Figure 5: Spearman’s rank correlation between model predictions and experimental measurements,
for assays in ProteinGym with multiple mutants.

Table 7: Model performance on ProteinGym. We report mean=+standard deviation performance
under the Random scheme.

Model Stability Fitness Expression Binding Activity

ProteinNPT 0.904+0.015 | 0.668+£0.035 0.736+£0.023 0.706+£0.060 0.680-+0.026
DePLM 0.897+0.013 | 0.707£0.027 0.742£0.027 0.764+0.041 0.693+0.024
RankFlow (Ours) 0.911+0.012 | 0.742+0.022 0.765+£0.021 0.781+£0.035 0.722£0.019

Additionally, the correlation coefficients on GB1 are significantly lower, suggesting that the models
may be learning different aspects of the fitness landscape for this particular protein. We also found
that ESM-2 and DePLM exhibit a stronger correlation between their predictions, which is consistent
with their similar methodological basis. This suggests that RankFlow’s unique architecture and
training objectives enable it to learn distinct aspects of the protein fitness landscape, which may
not be fully captured by other models. The moderate correlation also highlights the potential for
ensemble approaches that combine predictions from multiple models to further enhance performance
in protein fitness prediction tasks.

B.5 RESULT ANALYSIS OF 3-LACT.
To understand how RankFlow achieves accurate predictions on hyperactive mutants, we extracted

mutant embeddings of -lact. from RankFlow, and visualized the latent space with t-SNE. As shown
in Figure[7] mutants with high experimental fitness values (top quantile) are closer in the latent space,
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Figure 6: The pair-wise Spearman’s correlation coefficient of the predicted fitness values from dif-
ferent methods.

indicating that RankFlow effectively captures the underlying distribution of the fitness landscape. In
contrast, mutants with low fitness values (bottom quantile) are more dispersed, suggesting that Rank-
Flow can distinguish between high- and low-fitness variants. The t-SNE visualization also reveals
that RankFlow organizes the mutant embeddings in a way that reflects their functional properties,
which likely contributes to its strong performance in predicting protein fitness. This clustering of
high-fitness mutants indicates that RankFlow has learned meaningful representations that correlate
with experimental outcomes, enabling it to generalize well to unseen variants.
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Figure 7: t-SNE visualization of $-lact. mutant embeddings from RankFlow. Points are colored by
quantile bins of experimentally measured fitness; the bottom panel shows the ground-truth fitness
trend.

B.6 SUPPLEMENTARY ABLATION STUDY

Table [§] highlights the contribution of each design choice in RankFlow. Removing the rank-
consistent loss (Lrpiow) leads to a noticeable degradation across all assay categories, especially in
Fitness and Activity, confirming that ranking consistency is crucial under data-scarce conditions.
Using RC? alone performs poorly, indicating that flow matching remains necessary to anchor the
transport map. Adding a simple kinetic regularizer recovers only part of the lost performance, un-
derscoring the importance of our rank-aware objective. For the energy design, both extremes (A=1
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Table 8: Ablations of RankFlow on ProteinGym.

Model Variant Stability Fitness Expression Binding Activity
Full RankFlow 0.911 0.742 0.765 0.781 0.722
Objective Loss
w/0 LRFlow 0.885 0.702 0.736 0.744 0.680
LRFiow Only 0.881 0.624 0.676 0.622 0.613
Lppy + kinetic reg. 0.892 0.714 0.745 0.755 0.695
Lppm + pairwise hinge 0.889 0.709 0.740 0.751 0.690
Energy guidance
A=1 0.902 0.738 0.750 0.768 0.701
A=0 0.896 0.718 0.744 0.756 0.699
A=0.25 0.900 0.719 0.748 0.759 0.702
A=0.50 0911 0.742 0.765 0.781 0.722
Scheduling
Linear (ji¢, 0¢) 0.908 0.736 0.762 0.772 0.718
Cosine (¢, 0¢) 0911 0.742 0.765 0.781 0.722

Table 9: Comparison of computational costs of ProteinNPT and DePLM.

Method Training (MACs) Inference (MACs) Parameter (#)

ProteinNPT 58.63M = 11724.82 x 5001 11.7K 100M + 119M
9.16K = 180.56 + 77.55 -

DePLM 189.05 x 100 347.16 = 180.56 + 77.55 + 89.05 792M + 42.2M

897.1K = 179.25 x 5001

RankFlow (Ours) L7755 4+ 19.34 % 30 19.34 792M +37.1M

using only global magnitude or A=0 using only local deviation) underperform, while intermediate
values achieve stronger results; the best trade-off is obtained at A=0.5, showing that global fitness
and local substitution deviation are complementary signals. Finally, cosine scheduling consistently
outperforms a linear schedule, particularly in Fitness and Binding, demonstrating that smoother
variance growth improves the stability of the learned flow. Overall, the ablations validate that each
proposed component: Lrpiow, balanced energy guidance, and cosine scheduling contributes to Rank-
Flow’s state-of-the-art performance.

B.7 COMPUTATIONAL COSTS

Following Wang et al.| (2024), we use A4GRB6_PSEAI as an example to compare the computa-
tional costs of different models. The sequence length is 267, and the dataset size is 5001. We
report the number of trainable parameters, peak GPU memory usage, and training time in Table
[ For both DePLM and RankFlow, the sequence encoder requires 180.56G MACs and 179.25G
MAG:s, respectively, as RankFlow only requires internal representation from the sequence encoder
not the final predicted logits. The structure encoder requires 77.55G MACs for both models. Before
training a model on a given assay, both ProteinNPT and RankFlow compute and persist to disk the
sequence embeddings for all mutated proteins in that assay. During training, we load from disk
the embeddings corresponding to each batch. RankFlow trains with higher MACs than DePLM
(897.1K vs. 9.16K) as it learns a property-aligned velocity field for all mutants. However, for this
assay, RankFlow lowers total inference cost by 94.4% compared to DePLM, making it more prac-
tical for large-scale screening. RankFlow also uses fewer trainable parameters (37.1M vs. 42.2M)
by employing a lightweight flow architecture instead of a large transformer decoder, reducing mem-
ory footprint and speeding up training. Overall, RankFlow achieves a favorable balance of training
efficiency and inference speed compared to ProteinNPT and DePLM.

19



Published as a conference paper at ICLR 2026

o PolinT e RankFlow

.
i,
cess

.
co s
§locncge?®
. .

.

B

o3
.
H

DRV o ProwinNPT e Ranklow

02

o
Score

Spearman

20

e
. . .
-
o e e
ee o
. oo
o e o
o oo
“ e
. o
ooe
o o
e o
- o
-
o o
o o
. oo
. oo
oo
. o e
. .
-
PO
. -
. .
o o
.o .
o o
. .
e o
S
.o
ee o
¢ e
I
-
e o
oo
e
ooe
ceo
-
. .

¢ =
. oo
. o
e
.o
e
.
. .
. oo
¢ -
-
.
ooe
o e
o e
oo
. e
. e
- .
0o o
-
- e
o oo
.
. oo
.e
-
-
o e
.
-
.o
o o
.
-
06 07 08 )
Score

Spearman

Figure 8: Results under the random cross-validation scheme on ProteinGym. We report the DMS-
level performance of DePLM, ProteinNPT, and our RankFlow.
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C BACKGROUND

C.1 CONDITIONAL FLOW MATCHING

Continuous Normalizing Flows (CNFs) (Chen et al., [2018) consider the dynamics of a probability
density via a path p : [0, 1] x R? — R that transports between data distribution py and an initial
distribution p;. The flow is governed by a vector field v : [0, 1] x R? — R through the continuity
equation:

Ope(h) + V- (pe(h)v(h,1)) =0, pi—o =po, Pi=1 =Dp1. a7

The objective is to learn the time-dependent vector field v describing the velocity of a particle at
position h. In practice, given the conditional distribution p;(h | hg), which is usually modeled as
a Gaussian path, i.e., p;(h | ho) = N (utho, oI), where ju, o4 is Gaussian scheduler. The vector
field v is learned by minimizing the flow matching objective (Lipman et al.,|2022):

Len(0) = Birt4(0,1).homposhs~pshempe (- 1ho) 100 (R, 1) — wi (e[ Ro) 3], (18)
where h follows the data distribution pg.

C.2 PROTEIN LANGUAGE MODELS FOR MUTATIONAL EFFECT PREDICTION

Protein Language Models (PLMs) are deep learning models trained on large corpora of protein
sequences using self-supervised learning objectives, such as masked language modeling (MLM) or
autoregressive modeling. These models learn to capture the statistical patterns and dependencies in
protein sequences, enabling them to generate meaningful representations that can be used for various
downstream tasks, including mutational effect prediction. Protein language models trained using
the masked language modeling objective, such as ESM-2 (Lin et al., 2023), can be used to predict
the effects of mutations on protein function. These models are trained to predict masked amino
acids in a sequence based on the surrounding context, allowing them to learn rich representations
that capture the relationships between different amino acids and their roles in protein structure and
function. Specifically, given a protein sequence = (21,2, ..., 2y ), Where N is the length of the
sequence and x; represents the amino acid at position ¢, a PLM trained with MLM learns to predict
the masked amino acid x,, given the context of the other amino acids in the sequence. The model
outputs a probability distribution over the 20 standard amino acids for each position in the sequence.
For a mutant sequence ™ and its corresponding wild type sequence ="', we can compute the
log-odds score for each mutation at position m as follows:

Z (log P(zp, = wima:‘\ﬂ;) —log Pz, = wmt\wl\n;l)), (19)

mep
where p is the set of mutated positions, and w‘\‘;ﬁl denotes the mutant sequence with the amino acid
at position m masked. This log-odds score reflects the model’s confidence in the mutant amino acid
relative to the wild type amino acid, providing an estimate of the mutation’s effect on protein func-
tion (Meier et al.,[2021). By leveraging the learned representations from PLMs, we can effectively
predict the impact of mutations on protein properties, aiding in tasks such as protein engineering
and understanding disease-related mutations.

D LIMITATION AND FUTURE WORK

While RankFlow demonstrates strong performance in protein fitness prediction, there are limitations
and areas for future work. First, the reliance on pretrained language models means that the quality
of the embeddings is contingent on the diversity and representativeness of the training data used for
these models. Future work could explore fine-tuning or adapting PLMs specifically for protein en-
gineering tasks to enhance their relevance. Second, while RankFlow effectively integrates structural
information through ESM-IF, it may not fully capture dynamic aspects of variant structures that are
crucial for function. Incorporating more sophisticated structural representations or dynamic simu-
lations could further improve performance. Finally, while RankFlow is efficient compared to some
baselines, further optimizations in model architecture and training procedures could make it more
accessible for large-scale applications in protein engineering. For example, exploring lightweight
architectures or distillation techniques for extracting protein representations could reduce computa-
tional costs without sacrificing accuracy.
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Our paper uses LLMs to polish the writing. We did not use LLMs to generate any scientific content,
including the main ideas, algorithms, or experimental results. All scientific content was developed
and verified by the authors.
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