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ABSTRACT Deep neural networks have enhanced the performance of decision making systems in many
applications, including image understanding, and further gains can be achieved by constructing ensembles.
However, designing an ensemble of deep networks is often not very beneficial since the time needed to
train the networks is generally very high or the performance gain obtained is not very significant. In this
paper, we analyse an error correcting output coding (ECOC) framework for constructing ensembles of deep
networks and propose different design strategies to address the accuracy-complexity trade-off. We carry out
an extensive comparative study between the introduced ECOC designs and the state-of-the-art ensemble
techniques such as ensemble averaging and gradient boosting decision trees. Furthermore, we propose a
fusion technique, that is shown to achieve the highest classification performance.

INDEX TERMS Deep learning, ensemble learning, error correcting output coding, gradient boosting
decision trees, multi-task classification.

I. INTRODUCTION
Classifier ensembles are a popular method to boost the per-
formance of a classification system. The combination rules
employed for fusing ensembles of base classifiers can be as
simple as taking a vote, or more complex, involving learning
to compensate for the respective weaknesses of the individual
base classifiers.

Several fusion techniques such as averaging, majority vot-
ing [1], bagging [2], stacking [3], random forests [4], error
correcting output coding [5], [6] and their variants have
been widely used in traditional machine learning. However,
extensions of some of these approaches to deep learning (DL)
systems have been deemed inefficient and challenging, due to
the computational complexity associated with the training of
deep networks, as well as the difficulty in ensuring diversity
among the base classifiers. Therefore, most of the state-of-art
DL ensembles are either formed of simple averaging (or
voting) frameworks, comprising only a small number of base
classifiers [7]–[11], or weak decision tree ensembles based
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on boosting deep features that have been already extracted
[12]–[15].

Averaging ensembles are composed of base classifiers that
are mainly obtained by modifying the various DL elements
such as the network architectures, and their parameters, data
augmentation techniques, and the meta parameters of the
learning process. An example is the DeepFace [7], where
Taigman et al. construct a face verification system of 7 deep
networks and achieve 97.35% accuracy, compared to 97.0%
obtained using a single face verification network. In another
work, Szegedy et al. [8] increase the accuracy from 40% (sin-
gle network) to 43.9% by averaging 6 GoogLeNet networks
in the ILSVRC 2015 detection challenge. Yet another exam-
ple is the winner of the PlantCLEF2017 competition [16],
which is formed of 12 networks that are trained with an
emphasis on complementarity and achieved a top-1 accuracy
of 88.5% in classifying 10,000 different plant species. Sim-
ilarly, Gessert et al. [11] employ multi-resolution Efficient-
Nets [17] for skin lesion classification based on an ensemble
of 15 deep networks, where the area under the curve (AUC)
is increased from an average of 94 per classifier to 95.4.

Despite the performance gain achieved by the deep averag-
ing ensembles, the increased time complexity, which scales
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linearly with the addition of each base classifier network,
comes out as the main drawback. In the literature, gradient
boosting decision tree (GBDT) methods are proposed to
address this shortcoming, by operating on the deep features
obtained from one base network (contrary to generatingmany
deep networks as base classifiers) and constructing a sequen-
tial ensemble of trees which are trained to correct each other’s
errors, using these features.

There are three commonly used GBDT variations in the
literature: extreme gradient boosting (XGBoost) [18], light
gradient boosting machine (LightGBM) [19], and categori-
cal boosting (CatBoost) [20]. As an example of XGBoost,
Pang et al. [14] propose a subcellular localisation method
by integrating the Convolutional Neural Network (CNN)
and XGBoost, where CNN acts as a feature extractor and
XGBoost acts as a classifier to identify the protein sub-
cellular localisation. In another literature review, Torres-
Barrán et al. [21] study the application of XGBoost to global
and local wind energy prediction and solar radiation prob-
lem, exploiting gradient boosting regression methods. As for
LightGBM, Ju et al. [15] overcome the limitation of the
single-convolution model in predicting the wind power by
integrating the LightGBM algorithm to improve the robust-
ness and accuracy of the forecasting.

Although GBDT is a powerful ensemble technique,
the major disadvantages are its inability to deal with a high
number of classes and the high number of hyper-parameters
that need to be tuned to obtain the desired performance.
It is important to note that the improved time complexity
obtained with respect to the averaging ensembles is at the
expense of a reduced ensemble performance. In this arti-
cle, we address the drawbacks of deep averaging ensembles
(time complexity) and GBDT (accuracy), and propose an
efficient DL framework based on error correcting output
coding (ECOC).

ECOC, borrowed originally from the communication the-
ory [22], [23], is a multi-class classification ensemble,
in which a given multi-class problem is decomposed into
several two-class problems, whose simpler decision bound-
aries are then combined to give the final, more complex
decision boundary. The errors of the base classifiers that
implement the two-class decision boundaries are corrected to
a certain degree [24]. Several data-dependent and indepen-
dent approaches can be used for guiding the decomposition
process [25], [26]. In [27], it has been theoretically and
experimentally demonstrated that ECOC frameworks formed
using random class splits obtain close to Bayes performance,
if there are infinitely many such splits, and the associated
base classifiers achieve good accuracy. In practice, the perfor-
mance reaches the optimum very rapidly [28] as the number
of classifiers increases. The superiority of this method, which
we refer to as randECOC, over the rest of the data inde-
pendent and dependent ECOC approaches are demonstrated
in [24], [27], and [29].

Although ECOC has been commonly employed in tradi-
tional machine learning applications [30]–[33], to date, to the

best of our knowledge, its potential as a method of construct-
ing deep convolutional neural network ensembles has nei-
ther been exploited nor analysed. The only work addressing
ECOC in DL research is [34], where it is utilised for the
adversarial robustness of the networks.

In this work, by operating on the base network features,
we propose and analyse efficient implementation strategies
for randECOCs. We investigate three different design pro-
cedures: i) the straightforward approach of training the base
classifiers independently, ii) multi-task learning (MTL) for
faster training, and iii) MTL with embedded error correction.
It is expected that the selection of the most appropriate design
procedure will be carried out by the user, depending on the
specific requirements of an application, and the time com-
plexity versus accuracy trade-off.

The systems proposed are evaluated on four public
datasets: CIFAR-10 and CIFAR-100 (10 and 100 classes,
respectively) for object recognition [35], SVHN of Google
street view images of house numbers (10 classes) [36], and
PlantVillage dataset [37] consisting of 38 plant leaf disease
types.

We show that for all the proposed design techniques, ran-
dECOC almost always surpasses the GBDT performance at
comparable time complexity, when MTL based implementa-
tion strategies are considered. When compared with averag-
ing ensembles, a degradation in performance has been noted,
due to the end-to-end training nature of averaging ensembles
as opposed to the feature-based training of randECOC. How-
ever, for the users who have enough resources to accommo-
date averaging ensembles, we propose combining randECOC
with averaging, and show that this setup guarantees the best
performance with the highest accuracy in all scenarios.

The main contributions of this study can be summarised as
follows:
• We propose three different designs for randECOC
ensembles to be used with convolutional deep neural
networks, and analyze these approaches in terms of
accuracy and time complexity, using several different
deep network architectures and 4 different datasets.

• We perform an empirical comparison of the randECOC
ensembles and state-of-the-art ensemble methods for
deep learning, i.e. ensemble averaging and GBDTs, and
show that the proposed MTL strategies provide the best
time complexity versus accuracy trade-off.

• We propose a hybrid approach, combining randECOC
strategies and ensemble averaging, to achieve state-
of-the art classification performance for all network and
dataset combinations.

The article is structured as follows. Section II provides a
background information on the state-of-the-art deep ensem-
ble classification techniques as well as the ECOC framework.
In Section III, different ECOC training strategies using fea-
tures extracted by deep convolutional neural networks are
presented. This is followed by their experimental analysis in
Section IV and a discussion of the results obtained. Finally,
conclusions of this study are presented in Section V.

86084 VOLUME 9, 2021



S. A. A. Ahmed et al.: Deep Convolutional Neural Network Ensembles Using ECOC

II. BACKGROUND
In the literature, averaging and majority voting are the most
commonly used classifier combination approaches, where the
ensemble output is calculated based on the (weighted) aver-
age of the base classifier outputs or their mostly voted predic-
tion. Bagging [2] is a special case ofmajority voting for which
the base classifiers are trained on different versions [38] of the
same data obtained by resampling, to ensure complementarity
among the base classifiers. More complex combination rules
include methods such as boosting [39], where the classifiers
are trained sequentially to compensate for the weaknesses of
those already selected and stacking [40], where the outputs of
all classifiers are fed into a new model to generate the final
prediction. Another commonly used ensemble technique is
random forests [4], which are composed of multiple decision
trees trained on bootstrapped training data with an additional
step of feature-bootstrapping to allow for a random selection
(with replacement) of features at each tree node. The final
decision is based on the (weighted) average of the outputs or
the majority vote of the individual tree decisions.

The fusion rules most commonly applied in the state-of-
the-art deep learning ensembles are based on averaging or
majority voting. These ensembles consist of a small num-
ber of deep neural network architectures as base classifiers,
which differ from each other in terms of the data augmenta-
tion techniques used during training and / or network archi-
tectures and / or learning parameters (such as learning rates,
training and validation set partitions, weights initialisation
and data batches). Due to the costly training of these ensem-
bles, they typically are composed of only a handful of base
classifiers.

Overcoming the time complexity of the averaging / voting
ensembles of deep neural networks, the second most com-
mon combination strategy, gradient boosting decision trees
(GBDT), depends on extracting the bottleneck features of
one base network and using them for training a sequence of
decision trees. However, the gain in time complexity of this
approach is compromised by reduced accuracy, especially for
high number of classes. Moreover, the method requires a high
number of hyper-parameters to be tuned to obtain the desired
performance.

In this work, we confine the comparison of our results to
that of simple averaging ensembles of deep neural networks
and gradient boosting methods; we do not include bagging or
stacking as they both involve trainingmultiple deep networks,
which takes a very long time. Furthermore, while bagging
might bring additional benefits over simple averaging ensem-
bles, especially for smaller data sets, this is beside the point,
as our experimental validation of the proposed methods is
based on the fact that their results approach that of sim-
ple averaging ensembles, while having much smaller time
complexity.

In Section II-A, we analyse three state-of-the-art vari-
ants of the GBDT method found in the literature; namely,
extreme gradient boosting (XGBoost) [18], light gradient

boosting machine (LightGBM) [19], and categorical boost-
ing (CatBoost) [20], in detail. In Section II-B, we provide
the background for error correcting output coding (ECOC)
ensembles, on which we build our novel design strategies for
designed ensembles of deep learning networks, presented in
Section III.

A. GRADIENT BOOSTING DECISION TREES (GBDT)
Gradient boosting is a machine learning technique for
regression and classification problems that creates an
ensemble of weak prediction models to achieve powerful
prediction. When decision trees are used as the base classi-
fiers, the method is referred to as gradient boosting decision
trees (GBDT).

Unlike random forests, where the decision trees are con-
structed in parallel prior to combination, GBDT employs a
boosting approach, in which each tree is sequentially trained
with the aim of correcting the error produced by its pre-
decessor. In particular, every tree is trained to learn the
residual between the desired output and the output of the
previous tree, using gradient descent.The most important
parameter in GBDT is the number of base classifiers which
controls the model complexity. The most recent and effi-
cient GBDT methods developed are XGBoost [18], Light-
GBM [19], and CatBoost [20]. These algorithms differ from
each other in terms of the mechanism used for splitting the
tree nodes.

Extreme gradient boosting (XGBoost) [18], is a highly
extensible tool mainly designed to overcome the overfit-
ting limitations of the traditional gradient boosting methods.
It uses pre-sorted and histogram-based algorithms for com-
puting the best split, which continues until the maximum
level, pre-defined by the ‘‘max_depth’’ hyper-parameter,
is reached. Once at the maximum level, the splits are pruned
backwards until there is no positive gain.

Light gradient boosting machine (LightGBM), proposed
and developed by Microsoft [19], uses gradient-based
one-side sampling (GOSS) to filter out data instances on the
basis of their contribution to the gradient of the loss func-
tion. The best split is obtained by using all of the instances
with large gradients and a random sample of instances with
small gradients to maintain a balance between the training
data reduction and accuracy. LightGBM uses a leaf-wise tree
growth mechanism which allows the growth of an imbal-
anced tree.

Categorical boosting (CatBoost) [20] focuses on categor-
ical features by using minimal variance sampling (MVS),
which is a weighted sampling method at the tree-level. Unlike
LightGBM, CatBoost grows balanced trees, which makes
this method less prone to overfitting, and uses combinations
of categorical features as additional categorical features to
capture high-order dependencies. As it is infeasible to process
all of the possible combinations, CatBoost solves the expo-
nential growth of the feature combinations by constructing
the candidates in a greedy way.
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B. ERROR CORRECTING OUTPUT CODING (ECOC)
Error Correcting Output Coding (ECOC) is a generic ensem-
ble classification framework designed for multi-class clas-
sification problems [24], where the aim is to decompose a
given multi-class problem into several two-class problems.
The final decision boundary is formed by combining the
boundaries of the base classifiers trained on these simple
decompositions, while providing a scope for error correction.

The way the decomposition is carried out in ECOC is
defined by a design code matrix. Accordingly, a base classi-
fier may be assigned the task of separating a particular class
from all of the others, or learning a random dichotomy of
the classes. The commonly used ensemble approaches such
as one-vs-one or one-vs-all can therefore be considered as
special types of ECOC systems.

Let us consider a problem with K classes {c1, c2, . . . cK },
L base classifiers {h1, h2, . . . hL}, and a pre-designed code
matrixM of size K × L as illustrated in Table (1), for K = 4
and L = 5. A particular element Mij ∈ {+1,−1} indicates
the desired label for class ci to be used in training the base
classifier, hj. For instance in Table (1), the base classifier,
h1, is assigned the task of separating instances belonging
to classes c1 and c2 from instances belonging to classes c3
and c4. The classes c1 and c2 are re-labelled with label +1,
while c3 and c4 are re-labelled with label −1, to reflect this
two-class problem.

TABLE 1. A sample ECOC matrix for a 4-class classification problem with
5 base classifiers.

The design (encoding) of the code matrix can be car-
ried out in several ways. These include problem-independent
approaches such as one-vs-one or one-vs-all [24], or problem-
dependent methodologies where the aim is to split the classes
in the given data domain [29], [41] meaningfully.

In decision making (testing), firstly, a given test instance
x is classified by each base classifier to obtain the output
vector Y = [y1, . . . , yL] where yj is the hard or soft output of
the classifier hj for x. Then, the distance between Y and the
codewordMi of class ci,∀i, is computed using a metric such
as Hamming, Manhattan or Euclidean distance. The class
c∗ associated with the minimum distance is chosen as the
predicted class, such that

c∗ = arg min
i=1...k

dist(Y,Mi) (1)

While choosing the closest codeword during the target
prediction, the system is able to correct some of the base clas-
sifiersmistakes. Specifically, up to b(e− 1)/2c base classifier
errors can be corrected if Hamming Distance (HD) is chosen
as the distancemetric, and theminimumHDbetween any pair
of codewords is e.

Although the encoding and decoding of ECOC matrices
are open research problems, it is important to note that ran-
domly generated ECOC matrices (randECOC) have been
shown to reach Bayes performance when used with a large
enough number of base classifiers, each of which is exhibiting
close to Bayes accuracy [27]. In practice, it has been exper-
imentally demonstrated in [28] that for problems involving
∼10 classes, randECOCs of length 20-30 would be enough
to converge to optimum performance, whereas this number
would grow to 200-300, when the number of classes is∼100.

III. DESIGN STRATEGIES FOR randECOC USING CNNs
Under the assumption of unconstrained computational
resources, the optimal strategy to achieve the highest predic-
tion performance using randECOC would be to train each
base classifier independently. End-to-end training of these
classifiers, each of which is initialised with random weights,
would help increase the diversity between classifiers and
enforce independence which is a key element in achieving
close-to-Bayes performance [27], [28]. However, this proce-
dure would suffer from similar time complexity drawbacks
as in averaging ensembles and be impractical in real-life
applications.

For this reason, in this section, we propose and analyse
different design strategies for randECOC matrices, which
address the shortcomings of time complexity associated with
averaging ensembles, while still achieving better perfor-
mance than their time efficient alternative, GBDT. In the
design strategies presented in Section III-A through III-C,
we propose to initially train a multi-class base network to
obtain the bottleneck features (as opposed to end-to-end train-
ing), and build three implementation techniques with varying
accuracy vs time complexity trade-off on these features.

Specifically, after presenting the straightforward approach
to designing randECOC ensembles with base classi-
fiers trained independently using bottleneck features in
Section III-A, we propose a more time-efficient imple-
mentation strategy based on multi-task learning (MTL)
in Section III-B. Then, in Section III-C, the MTL based
strategy is further improved with the incorporation of an
error-correcting mechanism as a separate layer of the net-
work. This strategy aims to couple the base classifier training
to the classification problem, as opposed to training the base
classifiers only to be in agreement with the encoding matrix:
A few research works exist to learn or modify the ECOC
matrix after the training of the base classifiers, for their joint
optimization [42]–[44].

In our study, due to resource constraints, we confine the
choice of base networks to convolutional neural networks
(CNNs). However, it cannot be overemphasised that the pro-
posed ensemble design methodology is general and would be
just as applicable to other deep neural network architectures.

A. INDEPENDENT LEARNING OF BASE CLASSIFIERS
In this approach, the base classifiers are trained one by one
and independently according to a given randECOC matrix,
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FIGURE 1. An independent base classifier architecture with a 3-hidden
layer shallow network, consisting of fully connected layers followed by
rectified linear units, one for each base classifier of the ECOC ensemble.
The input comprises the features extracted by the bottleneck layer of a
trained base network.

using the deep features extracted from the bottleneck layer of
a base network. A schematic diagram illustrating an example
of independently trained base classifier networks is given
in Figure 1.
Here, we propose to design the base classifiers as shal-

low networks, whose outputs are then combined for an
error-correcting randECOC decoding to give the final output.
In other words, after extracting the output vector Y(x) for a
given test sample x from all shallow networks, the prediction
is carried out in a separate decoding step, where x is assigned
the class with the closest codeword to Y(x) (see Equation 1).

B. MULTI-TASK LEARNING OF BASE CLASSIFIERS
In order to achieve close-to-Bayes accuracy, the number of
base classifiers required for a randECOC ensemble should
increasewith the number of classes. Although all independent
tasks can potentially be trained in parallel as proposed in
Section III-A, this framework might be unattractive under
the assumption of limited resources, despite the performance
gain promised.

To address this, we consider the idea of simultaneous
training of the base classifiers by employing an MTL based
strategy, where the classifiers are trained to learn multiple
labels, i.e. the desired base classifier outputs, at the same time.
Although this method can only approximate the performance
of the independently trained base classifiers, it is important
from the point of view of accuracy versus time complexity
trade-off.

In this approach, we have a single MTL network compris-
ing several shared layers among all base classifiers, with L
output nodes, as opposed to L independent networks. In other
words, while training the independent classifiers sequentially
would mean the repetition of the randECOC procedure L
times, training all classifiers at the same time via MTL would
imply carrying out this step only once. Hence, the time com-
plexity of the MTL network is approximately L times better
than the independent sequential training. An illustration of an
example MTL network is presented in Figure 2.
The prediction is carried out in the same way as in

Section III-A, where ECOC decoding is executed as the sec-
ond step, following the extraction of classifier outputs in the
first step. Note that we propose that this network should also

FIGURE 2. Multi-task learning architecture, with two shared modules and
one classifier specific module. All layers are fully connected networks
with rectified linear units.

include a small number of shallow, classifier specific layers
to allow for diversity.

As a further advantage of the MTL network, it should be
noted that the sharing of the base network and the subsequent
layers are expected to reduce overfitting, as observed in the
literature [45], since the nodes in the shared layers are con-
strained to work for multiple classifiers.

C. MULTI-TASK LEARNING WITH EMBEDDING
Despite its advantages in terms of speed and reduced over-
fitting, the MTL network described in Section III-B is sub-
optimal in the sense that the second step of the prediction,
namely ECOC decoding, is carried out separately from the
network training. In other words, while the base classifiers
are enforced to learn the dichotomies (two-class problems)
indicated by the randECOC matrix, they are not enforced to
reveal the desired multi-class label.

In order to address this issue, we propose to extend the
MTL network with a K-node output layer, with weights set
from the randECOC codewords and the output nodes repre-
senting the original classes. This layer not only enforces the
final, multi-class decision on the outputs of the two-class base
classifiers, but also inherently includes the ECOC decoding.
The proposed framework is illustrated in Figure 3 with an
example architecture. It is referred to as ‘‘MTL w/ embed-
ding’’ in the remainder of this paper.

It is worth mentioning that the randECOC matrix is not
learned here but is pre-set. In some earlier work, the matrix
was modified during or after the training of the base classi-
fiers, with the goal of reducing this decoupling between the
encoding and base classifier training stages [42]–[44].

Let us assume that the nodes corresponding to the base
classifiers hj, j = 1 . . . L are connected to the output nodes
oi, i = 1 . . .K with the preset ECOC matrix weights wij =
Mij. For a given input x, each output node oi represents the
score for class ci, such that

oi(x) =
L∑
j=1

hj(x)× wij = h(x) · wi. (2)

Note that the maximum value of oi(x) is L when all the
base classifier outputs are in agreement with their associ-
ated bits of the codeword for that class (targets); while the
minimum is −L when all base classifier outputs are wrong.
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FIGURE 3. Multi-label architecture with embedded ECOC decoding, including two shared modules and one classifier
specific module. The base classifier output layer is followed by the ECOC embedding layer with fixed weights. The
output oi corresponds to the score of class ci .

In other words,

HD(wc,h(x)) =
L − oc(x)

2
. (3)

The loss function used to train the network is designed with
two goals: 1) To maximise the output of the correct class,
oc; 2) To match the output vector h(x) to the predetermined
codeword wc, so as to benefit from the ECOC framework.
Therefore, given a sample of class c and groundtruth T =
[t1 . . . tK ] (one-hot encoded vector where tc = 1 for only the
correct class and zero elsewhere), we use the loss function
given in Equation 4.We ignore oi, i 6= c because maximizing
oc is equivalent to minimizing other class outputs, thanks to
the design of the ECOC matrix.

L = (L − oc(x))2 +
L∑
l=1

(hl(x)−M (c, l))2 (4)

With ternary ECOC where there are zeros in the code
matrix, the maximum output value of L is not attainable for
oc, hence L should be replaced with the number of non-zeros
in a codeword.

To train the network, we use stochastic backpropagation,
starting with the weights of the base classifiers hj, as the
ECOC matrix weights are fixed. The partial derivative of our
combined loss function with respect to hj(x) is computed as:

∂L/∂hj (x)

=
∂ (L − oc (x))2

∂oc (x)
∂oc (x)
∂hj (x)

+

L∑
l=1

∂ (hl (x)−M (c, l))2

∂hj (x)

= 2 (L − oc (x)) ωcj + 2
(
hj (x)−M (c, j)

)
For the final prediction, the class ci that has the maximum

oi(x) (equivalently, minimum distance to the base classifier
outputs h(x)) is chosen as the correct class.

IV. EXPERIMENTAL ANALYSIS AND RESULTS
To evaluate the effectiveness of the proposed randECOC tech-
niques and compare their efficiency in terms of time complex-
ity and accuracy with the state-of-the-art ensemble methods,

we conduct various experiments using well-known deep
architectures and multi-class datasets. Specifically, the com-
parative studies are performed on:

1) Simple averaging ensemble;
2) Gradient boosting decision trees (GBDTs): XGBoost,

LightGBM, and CatBoost;
3) randECOC ensembles: Independent learning, MTL,

and MTL with embedding.

After carrying out the comparisons, we combine randE-
COC and GBDT approaches with ensemble averaging, i.e.
we generate ensembles of randECOC and GBDT ensembles
and analyse their performance. The purpose of this experi-
ment is to measure the highest possible prediction accuracy,
for scenarios where the available resources (computational
resources including processing power, time and storage) are
not a limiting factor for the user.

In Section IV-A, the details of the datasets used in the
experiments are presented and in Section IV-B, various base
network architectures utilised in this study are described. This
is followed by providing the details of the experimental setup
in Section IV-C, and the thorough discussion of the results in
Section IV-D.

A. DATASETS
We carry out the experimental analyses on four state-of-
the-art multi-class classification problems based on digit clas-
sification and object recognition using images. In all tasks,
each image contains a single object on an unconstrained
background.

• CIFAR-10 [35]: This dataset consists of 60, 000 (32 ×
32) images belonging to 10 classes (airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, and truck),
and is divided into 50, 000 images to be used for training
and 10, 000 for testing.

• CIFAR-100 [35]: Similar to CIFAR-10 dataset, CIFAR-
100 consists of 50, 000 training images and 10, 000
testing images. There are 100 classes in this dataset,
grouped into 20 super-classes. Each image comes with a
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‘‘fine label’’ which is the class label and a ‘‘coarse label’’
which is the super-class to which it belongs. In our study,
we make use of the fine labels.

• SVHN [36]: This real-world dataset comprises house
numbers obtained from Google Street View images and
consists of 73, 257 samples for training, 26, 032 images
for testing and 531, 131 additional, less difficult samples
which can be used as extra data for training. In our
study, the training portion of the dataset corresponding
to isolated digits (10 classes) is used.

• PlantVillage [37]: This crowd-sourced dataset con-
sists of 54, 309 images with 39 diseases of different
crop plants. Three different versions of this dataset
are provided: original RGB images with varied sizes,
gray-scaled version of the raw images, and RGB images
with just the leaf segmented and color corrected. In this
work, we used the original RGB images.

B. BASE NETWORK
To construct the base network, we employ four commonly
used, state-of-the-art convolutional neural network archi-
tectures; namely MobileNetV2 [46], Inception-V3 [47],
Xception [48], and Squeeze-and-Excitation Networks
(SENet) [49].

MobileNetV2 proposed by Google in [46], is a lightweight
deep neural networks where depthwise separable convolution
is used to reduce the model size and complexity. The network
is 53 layers deep with a total of 3.54 million parameters.

Inception-V3, proposed by Google in [47], is a widely-
used image recognition model. It consists of symmetric and
asymmetric building blocks, including convolutions, average
pooling, max pooling, dropouts, and fully connected layers.
Batch normalisation is used extensively throughout themodel
and applied to activation inputs. The network is 48 layers deep
with a total of 23.8 million parameters.

Xception [48] is an extreme version and an extension of
the Inception [8] architecture, which replaces the standard
inception modules with depth-wise separable convolutions.
The network is 71 layers deep with a total of 22.9 million
parameters.

The final architecture, SENet [49], introduces the
squeeze-and-excitation block that adaptively re-calibrates the
channel-wise feature responses by modelling the interde-
pendencies between channels to automatically acquire the
importance of each feature channel. SENet is the winner of
ILSVRC 2017 classification challenge.

C. EXPERIMENTAL SETTING
All the base networks employed in this study are pre-trained
on the ImageNet dataset [50]. The inputs to the ensemble
systems are obtained by forward passing the datasets through
the fine-tuned networks and extracting the features of the
last pooling layer. Note that for a fair comparison, no extra
randomness such as data augmentation, has been applied
during training or feature extraction.

The averaging ensembles are obtained by training 5 base
networks with different random weight initialisations, as this
is a typical number employed in these ensembles to respect
time and computing power constraints. For randECOC using
independently trained base classifiers, we train L classifiers
with a simple multi-layer perceptron architecture, where L
is set to 30, 300, 30, and 100 for CIFAR-10, CIFAR-100,
SVHN, and PlantVillage datasets, respectively. The architec-
ture, which is depicted in Figure 1, consists of three fully
connected layers with (500, 50, 10) units, each followed by
rectified linear unit (ReLU ) activation function and a dropout
layer. Finally, each output layer has one neuron that is associ-
ated with a tangent hyperbolic activation function (tanh) and
a mean square error (MSE) loss function.

The randECOC framework using MTL is composed of
two shared fully connected layers with (500, 50) units, each
of which is followed by a ReLU activation function and a
dropout layer. For each classifier, there are some specific
layers: a dropout layer, a fully connected layer with 10 units,
a ReLU activation function, a fully connected layer with one
unit, and a tanh function. The output units are concatenated to
form one layer with L units defining the output layer. Similar
to randECOC with independently trained base classifiers,
MSE loss function is used here. The network structure of this
framework is as given in Figure 2.

The randECOC using MTL w/ embedding, as given in
Figure 3, mimics the setup of the randECOC framework using
MTL, with an additional layer to include ECOC codewords as
weights, for which the learning rate is set to zero. Note that
as the random weight initialisations impacts on training all
randECOC frameworks, we report the mean and the standard
deviation of the testing accuracy from 5 independent runs.

All the networks including the base networks are optimised
using RMSPROP optimiser with 3 × 10−4 learning rate,
0.99 squared gradient decay factor, and a batch size of 64
images per training iteration for the base networks and 512
images for the randECOC experiments. The implementation
is performed using the Deep Learning Toolbox and MatCon-
vNet [51] within MATLAB, with a single NVIDIA GeForce
GTX 1080 Ti 11GB graphics processing unit (GPU).

The GBDT frameworks are implemented using the offi-
cial XGBoost, LightGBM and CatBoost Python packages
on Google Colaboratory with the provided free Tesla K80
11GB GPU. In our experiments, we fine-tune the most vital
hyper-parameter for these frameworks, which is the number
of iterations that is relative to the number of created trees.
The highest validation accuracy has been obtained using 60
iterations for CIFAR10 and SVHN datasets and 300 iterations
for CIFAR100 in all of the employed gradient boosting meth-
ods. Rest of the hyper-parameters are set to the default values
suggested by the corresponding authors.

For the set of experiments where the randECOC and
GBDT frameworks are combined with ensemble averaging,
we train 5 base networks, each of which is initialised by
random weights, separately for all network architectures and
dataset combinations. For each network architecture, we first
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TABLE 2. Comparison of the results obtained on the CIFAR-10 dataset using MobileNetV2, Inception-V3, Xception, and SENet architectures as base
networks. The best results obtained in each group are shown in bold and the performance decreases compared to the base networks are shown
underlined. The numbers in parentheses show the performance change compared to the base network.

evaluate the ensemble averaging performance with the 5 net-
works. Then, GBDT and randECOC approaches are applied
to the features extracted from each base network, resulting
in 5 ensembles in each case. The ECOC matrices used in all
5 networks are kept the same. Finally, ensemble averaging is
applied to the 5 GDBT and 5 randECOC ensembles to obtain
the final prediction.

To further validate our results, we carry out a final set of
experiments with the PlantVillage dataset which is a large,
crowd-sourced dataset of real-life diseased plant images.

D. RESULTS
We report the result of a comparison of the evaluated frame-
works in Section IV-D1 and the performance analysis of
combinatory approaches in Section IV-D2.

1) COMPARISON OF THE ENSEMBLE FRAMEWORKS
The performance of the 5 ensemble frameworks together
with their corresponding time complexity, while using four
base networks, is shown in Table 2, 3, and 4 for CIFAR-10,
CIFAR-100 and SVHN datasets, respectively. The perfor-
mance is gauged in terms of classification accuracy, and the
time complexity is measured as the training and test time
spent, over and above the time required by the base network.
Note that while the hardware is slightly different for GBDT
and ECOC frameworks, their time complexities are both

accepted as small and no strict comparison is made between
the two in terms of time.

a: ENSEMBLE AVERAGING
As expected, the averaging ensemble achieves the highest
accuracy for all datasets and base networks, with highest
accuracies of 97.69%, 89.91% and 97.75% for the CIFAR-10,
CIFAR-100 and SVHN datasets, respectively. Despite sur-
passing the base network by a relatively high margin, this
ensemble comes out as very costly in terms of time and the
resources required. Specifically, the training times are of the
order of thousands of minutes, or about several days, which
is often not available to researchers, providing the motivation
for this work.

b: GRADIENT BOOSTING DECISION TREES
Among the GBDT frameworks, none outperforms the others
on all datasets, and more importantly, it can be observed that
all three variations cause degradation over the base network
performance at least for network architecture and dataset.
This is a very important finding, proving a clear evidence
in support of the perceived instability and inconsistency of
this technique, especially when dealing with a high number
of classes. Specifically, for CIFAR-10 and SVHN datasets,
XGBoost appears as the best performing algorithm as shown
in Table 2 and 4, respectively. It improves the testing accuracy
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TABLE 3. Comparisons on the CIFAR-100 dataset using the MobileNetV2, Inception-V3, Xception, and SENet architectures as base networks. The best
results obtained in each group are shown in bold.

TABLE 4. Comparisons on the SVHN dataset using the MobileNetV2, Inception-V3, Xception, and SENet architectures as base networks. The best results
obtained in each group are shown in bold.

of the base networks at the expense of minimal additional
training time, with improvements of 0.33%, 0.83%, 0.30%,

and 0.40% on CIFAR-10 and 0.46%, 0.89%, 0.20%, and
0.19% on the SVHN dataset, compared to the base network.

VOLUME 9, 2021 86091



S. A. A. Ahmed et al.: Deep Convolutional Neural Network Ensembles Using ECOC

TABLE 5. Test accuracies for the combinatory methods. The best result corresponding to each dataset and base network, is shown in bold.

However, this method deteriorates the base network accu-
racy for all network types on CIFAR-100. For this dataset,
the only GBDT improvement over the base network perfor-
mance is achieved when using Xception as the architecture
and employing LightGBM or CatBoost. This is in line with
the theoretical underpinning of the inability of these methods
to cope with a high number of classes [52].

c: randECOC ENSEMBLES
We see that all the variants of the randECOC framework
improve the testing accuracy over the base networks and
the best GBDT approach,1 in almost all of our experiments.
Despite some drop in the performance in comparison to the
averaging ensembles, a much faster training time is observed.
For instance, in the case of CIFAR-100, the averaging ensem-
ble requires around 2, 4, 4.6, and 5 days for training and
reveals 81.95%, 81.34%, 85.50%, and 89.91% test accuracy,
with different base network architectures. On the other hand,
randECOC using MTL w/ embedding requires only about
30 minutes for the training of all the architectures, with
the output test accuracy of 76.74%, 78.45%, 83.16%, and
87.74%. While MTL w/ embedding brings roughly half
the performance improvement obtained by the averaging
ensemble over the base network, it does so consistently and
requiring negligible additional time, which is important for
scenarios where training several deep networks is not viable.

Among the MTL based randECOC ensembles, MTL w/
embedding performs always better than or equal to MTL,
while revealing similar time complexity. The independent
learning approach obtains the highest accuracy; however only
with a slight margin over MTL w/ embedding and a lot more
additional training time (more than 20 times in all scenarios).

The strength of the MTL based randECOC approaches
over GBDTs is emphasised especiallywhen dealingwith high

1except for one out of the nine settings, where a slight drop for the MTL
approach was noted.

number of classes. As shown in Table 3 for the CIFAR-100,
MTLw/ embedding improves the accuracy by 2.13%, 1.68%,
2.49%, and 0.39% over the base networks, and outperforms
the best GBDT approach (LightGBM in this case) by 0.91%,
1.98%, 1.46%, and 1.35%, for the four network architectures.
Note also that, the training time of LightGBM for this prob-
lem is also greater than that of MTL w/ embedding.

2) COMBINATORY APPROACH - ENSEMBLE AVERAGING OF
GBDT AND randECOC ENSEMBLES
As an important outcome of the comparative experiments
presented in Section IV-D1, the averaging ensembles tend
to achieve the highest accuracy for all the base networks
and dataset combinations, benefiting from their increased
computational complexity. Under the assumption of an ade-
quate computational resources, we aim further to improve this
accuracy by assisting the averaging process with GBDT and
randECOC, as explained in IV-C.

The results of these experiments are provided in Table 5.
It can be observed that GBDT+averaging approaches out-
perform the baseline averaging ensemble by the slightest
margin, while the randECOC+averaging methods provide
a higher performance improvement, ranging from 0.05 up
to 2 percentage points, where the highest improvement is
observed for the CIFAR-100 dataset.

Although the best accuracies are acquired from randE-
COC using independent classifiers, MTL based approaches
follow closely, revealing better accuracy than GBDTs in
all scenarios other than one (Inception-V3 with SVHN),
where the difference in performance with the best GBDT
framework (XGBoost) is as small as 0.02%. The consis-
tency in the improvement in accuracy not only over the base
network, but also the baseline averaging ensemble and the
GBDT+averaging ensemble, renders randECOC+averaging
as the best performing classifier combination technique in the
literature.

86092 VOLUME 9, 2021



S. A. A. Ahmed et al.: Deep Convolutional Neural Network Ensembles Using ECOC

TABLE 6. 5-Fold cross validation and the combinatory approach on the Plant Village dataset using the Xception base network. The best results obtained
in each group are shown in bold.

Wewould like to underline the fact that the GBDT and ran-
dECOC frameworks operate on the features extracted by the
base networks; hence training the combinatory approach with
these frameworks takes little additional time. For instance,
training 5 randECOC ensembles on top of the 5 base networks
only takes 21 minutes for the CIFAR-10 dataset, while train-
ing the 5 base networks takes 3160 minutes. The additional
time corresponds to 0.58% overhead.

3) EXPERIMENTS WITH REAL-LIFE PlantVillage DATASET
Experiments on PlantVillage dataset [37] are done using
5-fold cross-validation due to the lack of a designated test set.
Due to large computational requirements, the experiments
are conducted using only the Xception network, because of
its favorable performance-size ratio, and the combinatory
approach is applied on only one fold.

The results are shown in Table 6, where it can be observed
that while all the performances are very close, the randE-
COC variants achieve superior accuracy in all folds. More-
over, the combinatory approach of randECOC achieves the
state-of-the-art results (99.81%) on this dataset, surpassing
Mohanty et al., Too et al., andKC et al.who reported%99.34,
%99.75, and %98.34 respectively [53]–[55].

V. CONCLUSION
In this paper, we have proposed different design method-
ologies to address the use of the Error Correcting Output
Coding (ECOC) framework as a strategy for constructing
deep convolutional neural network ensembles. This is the
first study to date, which comprehensively analyses ECOC in
relation to the deep learning research, while proposing novel
strategies to focus on the accuracy-complexity trade-off.

The current state-of-the-art deep ensemble techniques in
the literature are constructed either by averaging the outputs
of the multiple realisations of a deep network architecture by
randomising / changing some of its constitutional elements,
or by employing gradient boosting decision trees (GBDT)
on the features extracted from one fully trained network.
Despite all its advantages in terms of the performance gain,
the increased time complexity the averaging ensembles incur,
which is shown to be of the order of days and weeks for

problems involving a high number of classes, may make this
method computationally infeasible or inefficient for users
with limited resources. Even though GBDTs address this
inefficiency, they have been shown to be unstable in terms
of the improvement they offer over the base networks. In our
experiments, we have shown that there exists no GBDT
method which provides consistent improvement over the base
accuracy for all architectures and datasets.

Addressing the drawbacks of GBDTs, we have proposed
and analysed three ECOC-based design techniques, which
provide a reliable and stable improvement over the base
network performance as well as the performance of GBDT
under all settings. Moreover, two of the proposed designs
achieve time complexity benefits similar to GBDTs.

The proposed design techniques are based on independent
learning, multi-task learning (MTL), and multi-task learning
with embedding (MTL w/ embedding). It has been shown
that MTL w/ embedding always provides an accuracy equal
to or greater than that of MTL, and both methods have a
comparable time complexity with those of GBDTs. Inde-
pendent learning provides the best performance among the
ECOC based methods. However, the performance gain over
the MTL based methods is marginal and comes with the time
complexity trade-off, though this complexity is still much
less than that of averaging. Therefore, for problems to be
tackled with a limited computational resources, we suggest
that employing ECOC methods, the choice of which is to be
made by the user depending on the fine-tuned requirements of
the problem, is the best strategy; i.e. MTL w/ embedding for
fastest training, independent learning for a relatively slower
but marginally better performance.

To offer solutions for scenarios where the available
resources are not a limiting factor for the user, we have
conducted experiments with simple averaging ensembles of
GBDT and ECOC frameworks, and shown that the combina-
tory framework built using any of the ECOC methodologies
achieves the best performance, at the expense of negligible
additional training time.

In conclusion, the ECOC framework, either alone or in
combination with the averaging methodology, appears to pro-
vide the most efficient ensemble learning approach. In the
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future, the feasibility of end-to-end training of the proposed
design strategies using the ECOC framework will be explored
for the cases where time and space complexity is not a
restriction.
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