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ABSTRACT

Applying reinforcement learning (RL) to real-world problems is often made chal-
lenging by the inability to interact with the environment and the difficulty of de-
signing reward functions. Offline RL addresses the first challenge by consider-
ing access to an offline dataset of environment interactions labeled by the reward
function. In contrast, Preference-based RL does not assume access to the reward
function and learns it from preferences, but typically requires an online interaction
with the environment. We bridge the gap between these frameworks by explor-
ing efficient methods for acquiring preference feedback in a fully offline setup.
We propose Sim-OPRL, an offline preference-based reinforcement learning al-
gorithm, which leverages a learned environment model to elicit preference feed-
back on simulated rollouts. Drawing on insights from both the offline RL and
the preference-based RL literature, our algorithm employs a pessimistic approach
for out-of-distribution data, and an optimistic approach for acquiring informative
preferences about the optimal policy. We provide theoretical guarantees regarding
the sample complexity of our approach, dependent on how well the offline data
covers the optimal policy. Finally, we demonstrate the empirical performance of
Sim-OPRL in various environments.

1 INTRODUCTION

While reinforcement learning (RL) (Sutton and Barto, 2018) achieves excellent performance in var-
ious decision-making tasks (Kendall et al., 2019; Mirhoseini et al., 2020; Degrave et al., 2022), its
practical deployment remains limited by the requirement of direct interaction with the environment.
This can be impractical or unsafe in real-world scenarios. For example, patient management and
treatment in intensive care units involve complex decision-making that has often been framed as
a reinforcement learning problem (Raghu et al., 2017; Komorowski et al., 2018). However, the
timing, dosage, and combination of treatments required are critical to patient safety, and incorrect
decisions can lead to severe complications or death, making the use of traditional RL algorithms
unfeasible (Gottesman et al., 2019; Tang and Wiens, 2021). Offline RL emerges as a promising
solution, allowing policy learning from entirely observational data (Levine et al., 2020).

Still, a challenge with Offline RL is its requirement for an explicit reward function. Quantifying
the numerical value of taking a certain action in a given environment state is challenging in many
applications (Yu et al., 2021). Preference-based RL offers a compelling alternative, relying on com-
parisons between different actions or trajectories (Wirth et al., 2017) and being often easier for hu-
mans to provide (Christiano et al., 2017). In medical settings, for instance, clinicians may be queried
for feedback on which trajectories lead to favorable outcomes. Unfortunately, most algorithms for
preference acquisition require environment interaction (Saha et al., 2023; Chen et al., 2022; Lindner
et al., 2021) and are therefore not applicable to the offline setting.

Lack of environment interaction and reward learning are thus two critical challenges for real-world
RL deployment that are rarely tackled jointly. In this work, we address the problem of prefer-
ence elicitation for offline reinforcement learning by asking: What trajectories should we sample
to minimize the number of human queries required to learn the best offline policy? This presents a
challenging problem as it combines learning from offline data and active feedback acquisition, two
frameworks that require opposing inductive biases for conservatism and exploration, respectively.
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To the best of our knowledge, the only strategy proposed in prior work is to acquire feedback directly
over samples within an offline dataset of trajectories (Shin et al., 2022, Offline Preference-based Re-
ward Learning (OPRL)). We propose an alternative solution that queries feedback on simulated
rollouts by leveraging a learned environment model. Our offline preference-based reinforcement
learning algorithm, Sim-OPRL, strikes a balance between conservatism and exploration by combin-
ing pessimism when handling states out-of-distribution from the observational data (Jin et al., 2021;
Zhan et al., 2023a), and optimism in acquiring informative preferences about the optimal policy
(Saha et al., 2023; Chen et al., 2022). We study the efficiency of our approach through both theo-
retical and empirical analysis, demonstrating the superior performance of Sim-OPRL across various
environments.

Our contributions are the following: (1) In Section 3, we first formalize the new problem setting
of preference elicitation for offline reinforcement learning, which allows for complementing of-
fline data with preference feedback. This framework is crucial for real-world RL applications
where direct environment interaction is unsafe or impractical and reward functions are challeng-
ing to design manually, yet experts can be queried for their knowledge. (2) In Section 5, we provide
theoretical guarantees on eliciting preference feedback over samples from an offline dataset, comple-
menting work of Shin et al. (2022). (3) Next, in Section 6, we propose our own efficient preference
elicitation algorithm based on simulated rollouts in a learned environment model, and establish
its improved theoretical guarantees. (4) Finally, we develop a practical implementation of our al-
gorithm and demonstrate its empirical efficiency and scalability across various decision-making
environments.

2 RELATED WORK

Our problem setting shares similarities with Offline RL and Preference-based RL, which we sum-
marize below. We position ourselves relative to our closest related works in Table 1 and extend our
discussion in Appendix B.
Offline RL. Offline Reinforcement Learning has gained significant traction in recent years, as the
practicality of training RL agents without environment interaction makes it relevant to real-world
applications (Levine et al., 2020). However, learning from observational data only is a source of
bias in the model, as the data may not cover the entire state-action space. Offline RL algorithms
therefore output pessimistic policies, which has been shown to minimize suboptimality (Jin et al.,
2021). Model-based approaches show particular promise for their sample efficiency (Yu et al., 2020;
Kidambi et al., 2020; Rigter et al., 2022; Zhai et al., 2024; Uehara and Sun, 2021). In this work, we
study the setting where reward signals are unavailable and must be estimated by actively querying
preference feedback.

Preference-based RL. Rather than accessing numerical reward values for each state-action pair as
in traditional online RL, preference-based RL learns the reward model through collecting pairwise
preferences over trajectories (Wirth et al., 2017). Different preference elicitation strategies have
been proposed for this framework, generally based on knowing the transition model exactly or on
having access to the environment for rollouts (Christiano et al., 2017; Saha et al., 2023; Chen et al.,
2022; Lindner et al., 2021; Zhan et al., 2023b; Sadigh et al., 2018; Brown et al., 2020). Prior
theoretical and empirical work (Lindner et al., 2021; Chen et al., 2022) show that, in this setting,
the most efficient preference elicitation strategy is to actively reduce the set of candidate optimal
policies, rather maximize information gain on the reward function – our theoretical and empirical
results reach the same conclusion for the offline setting.

Offline Preference-based RL. The development of preference-based RL algorithms based on of-
fline data only is critical to settings where environment interaction is not feasible for safety and

Table 1: Comparison of related work on preference elicitation.

Framework Offline Policy-Based Sampling Robustness Guarantees Practical Implementation

PbOP (Chen et al., 2022) ✗ ✓ ✓ ✗
MoP-RL (Liu et al., 2023) ✗ ✗ ✗ ✓
REGIME (Zhan et al., 2023b) ✗ ✓ ✓ ✗
FREEHAND (Zhan et al., 2023a) ✓ ✗ ✓ ✗
OPRL (Shin et al., 2022) ✓ ✗ ✗ ✓

Sim-OPRL (Ours) ✓ ✓ ✓ ✓
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efficiency reasons. Still, this framework remains largely unexplored in the literature. While Zhu
et al. (2023); Zhan et al. (2023a) demonstrate the value of pessimism in offline preference-based re-
inforcement learning, they do not consider how to query feedback actively. On the other hand, Shin
et al. (2022) propose an empirical comparison of different preference sampling trajectories from an
offline trajectories buffer. In Section 5, we provide a theoretical analysis of their approach, then
propose an alternative sampling strategy based on simulated trajectory rollouts in Section 6, which
benefits from both theoretical motivation and superior empirical performance.

3 PROBLEM FORMULATION

3.1 PRELIMINARIES

Markov Decision Process. We consider the episodic Markov Decision Process (MDP), defined by
the tupleM = (S,A, H, T,R), where S is the state space, A is the action space, H is the episode
length, T : S × A → ∆S is the transition function, R : S × A → R is the reward function. We
assume an initial state s0, but our analysis generalizes to a fixed initial state distribution. At time t,
the environment is at state st ∈ S and an agent selects an action at ∈ A. The agent then receives a
reward R(st, at) and the environment transitions to state st+1 ∼ T ( · |st, at). We describe an agent’s
behavior through a policy function π : S → ∆A, such that π(a|s) is the probability of taking action
a in state s. Let τ = (s0, a0, . . . sH , aH) denote the trajectory of state-action pairs of an interaction
episode with the environment. With an abuse of notation, we also write R(τ) =

∑
t R(st, at). Let

dπT denote the distribution of trajectories (or state-action pairs, overloading notation) induced by
rolling out policy π in transition model T . We denote the expected return of policy π as V π

T,R =

Eτ∼dπ
T
[R(τ)], and π∗ = argmaxπV

π
T,R denotes the optimal policy inM.

Preference-based Reinforcement Learning. Rather than observing rewards for each state and
action, we receive preference feedback over trajectories. For a pair of trajectories (τ1, τ2), we obtain
binary feedback o ∈ {0, 1} about whether τ1 is preferred to τ2. We define the preference function
PR and assume that preference labels follow the Bradley-Terry model (Bradley and Terry, 1952):

PR(τ1 ≻ τ2) := P (o = 1|τ1, τ2) =
exp(R(τ1))

exp(R(τ1)) + exp(R(τ2))
= σ(R(τ1)−R(τ2)), (1)

where ≻ denotes a preference relationship and σ is a monotonous increasing link function. Within
this framework, preference elicitation refers to the process of sampling preferences to obtain infor-
mation about both the preference function and the system dynamics (Wirth et al., 2017).

3.2 OFFLINE PREFERENCE ELICITATION

We assume access to an observational dataset of trajectories Doffline = {τ : τ ∼ d
πβ

T }, where πβ is
an unknown behavioural policy inM. As in Offline RL, we do not have access to the environment
to observe transition dynamics or rewards under alternative action choices. We assume not to have
access to the reward function, but we can query preference feedback from a human to generate a
dataset of preferences Dpref = {(τ1, τ2, o)}.
Optimality Criterion. Based only on our offline dataset Doffline, our goal is to recover a policy
π̂∗ that minimizes suboptimality in the true environment with as few human preference queries as
possible. Let π∗

offline denote the optimal offline policy estimated based on the offline data, with access
to the true reward function R, and let ϵT denote its suboptimality. Since preference elicitation only
allows us to estimate the reward function, we do not aim to achieve a suboptimality less than ϵT .1
Our objective is then formalized as follows.
Definition 3.1 (Optimality Criterion of Offline Preference Elicitation). Let π∗ be the optimal policy
in M and π̂∗ be the estimated optimal policy based on an offline dataset Doffline and Np > 0
preference queries. Let ϵT be the inherent suboptimality assuming access to the true reward function.
We say that a sampling strategy is (ϵ, δ,Np)-correct if for every ϵ ≥ ϵT , with probability at least
(1− δ), it holds that V π∗

T,R − V π̂∗

T,R ≤ ϵ.

Our work is the first to formalize this important problem, which faces the challenge of balancing
exploration when actively acquiring feedback and bias mitigation in learning from offline data.

1However, ϵT is not formally a lower bound for our problem, as shown in Appendix A.3.
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Function classes. We estimate the reward function and transition kernel with general function ap-
proximation; letFR andFT denote the classes of functions considered respectively. We also assume
a policy class Π. Our theoretical analysis also requires the following assumptions and definitions,
which are standard in preference-based RL (Chen et al., 2022; Zhan et al., 2023a).
Assumption 3.1 (Realizability). The true reward function belongs to the reward class: R ∈ FR.
The true transition function belongs to the transition class: T ∈ FT . The optimal policy belongs to
the policy class: π∗ ∈ Π.

Assumption 3.2 (Boundedness). The reward function is bounded: 0 ≤ R̃(τ) ≤ Rmax for all R̃ ∈
FR and all trajectories τ .
Definition 3.2 (ϵ-bracketing number). Let F be a class of real functions f : X → R. We say (l, u)
is an ϵ-bracket if l(x) ≤ u(x) and |u(x) − l(x)|1 ≤ ϵ for all x ∈ X . The ϵ-bracketing number of
F , denoted NF (ϵ), is the minimal number of ϵ-brackets (ln, un)Nn=1 needed so that for any f ∈ F ,
there is a bracket i ∈ [N ] containing it, meaning li(x) ≤ f(x) ≤ ui(x) for all x ∈ X .

LetNFR
(ϵ) andNFT

(ϵ) denote the ϵ-bracketing numbers ofFR andFT respectively. This measures
the complexity of the function classes (Geer, 2000). For instance, with linear rewards FR := {R :
τ → θTϕ(τ)}, the ϵ-bracket number is bounded by logNFR

(ϵ) ≤ O(d log BG
ϵ ), where ∥θ∥2 ≤ B

and ∥ϕ(τ)∥2 ≤ G ∀τ ∈ T , and d is the dimension of the feature space (Zhan et al., 2023a).
Definition 3.3 (Transition concentrability coefficient, Zhan et al. (2023a)). The concentrability co-
efficient w.r.t. transition classes FT and the optimal policy π∗ is defined as:

CT (FT , π
∗) = sup

T̃∈FT

 E(s,a)∼dπ∗
T
[|T (·|s, a)− T̃ (·|s, a)|1]√

E(s,a)∼Doffline [|T (·|s, a)− T̃ (·|s, a)|21]

 ,

The concentrability coefficient measures the coverage of the optimal policy in the offline
dataset. Note that CT is upper-bounded by the density-ratio coefficient: CT (FT , π

∗) ≤
sup(s,a)∈S×A dπ

∗

T (s, a)/d
πβ

T (s, a), where πβ is the behavioural policy underlying Doffline.

4 OFFLINE PREFERENCE-BASED RL WITH PREFERENCE ELICITATION

In this section, we propose a general framework for offline preference-based reinforcement learning.
The next two sections propose two different preference elicitation strategies. As learning must be
carried out in two distinct stages, with environment dynamics based on Doffline and reward learning
on Dpref, we adopt a model-based approach which we summarize in Algorithm 1.

Model Learning. We first leverage the offline data to learn a model of the environment dynamics,
fitting a transition model T̂ and an uncertainty function uT through maximum likelihood:

T̂ = argmaxT̃∈FT
E(s,a,s′)∼Doffline

[
log T̃ (s′|s, a)

]
,

uT (s, a) = max
T̃1,T̃2∈T

|T̃1(·|s, a)− T̃2(·|s, a)|1 ·Rmax,

where T = {T̃ ∈ FT | E(s,a,s′)∼Doffline

[
log
(
T̂ (s′|s, a)/T̃ (s′|s, a)

)]
≤ βT }, defining a confidence

set over the maximum likelihood estimator (MLE), and βT is a margin hyperparameter.

Iterative Preference Elicitation and Reward Learning. As with the transition model, our algo-
rithm estimates the reward function R̂ and its uncertainty function through maximum likelihood
over iteratively collected preference data Dpref:

R̂ = argmaxR̃∈FR
E(τ1,τ2,o)∼Dpref [o logPR̃(τ1 ≻ τ2) + (1− o) logPR̃(τ2 ≻ τ1)] ,

uR(τ) = max
R̃1,R̃2∈R

|R̃1(τ)− R̃2(τ)|1,

whereR = {R̃ ∈ FR | E(τ1,τ2,o)∼Dpref

[
log
(
PR̂(τ1 ≻ τ2)/PR̃(τ1 ≻ τ2)

)]
≤ βR} defines the confi-

dence set and βR is a hyperparameter. We also define preference uncertainty between two trajecto-
ries τ1, τ2:

uPR
(τ1, τ2) = max

R̃1,R̃2∈R
|PR̃1

(τ1 ≻ τ2)− PR̃2
(τ1 ≻ τ2)|1. (2)

4
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Algorithm 1 Offline Preference-based Reinforcement Learning with Preference Elicitation

Input: Observational trajectories dataset Doffline. Significance δ ∈ (0, 1), preference budget Np.
Output: π̂∗

1: Estimate T̂ and uT via maximum likelihood over the observational data Doffline.
2: Dpref ← ∅.
3: for k = 1, ...Np do
4: Generate trajectory pairs (τ1, τ2). ▷ Preference Elicitation: Sections 5 and 6
5: Collect preference label o for (τ1, τ2).
6: Dpref ← Dpref ∪ {(τ1, τ2, o)}.
7: Estimate R̂ and uR via maximum likelihood over the preference data Dpref.
8: end for
9: π̂∗ ← argmaxπ∈ΠEτ∼dπ

T̂
[R̂(τ)− uR(τ)− uT (τ)]

The choice of trajectory sampling strategy for preference elicitation in line 4 (Algorithm 1) is critical
to efficiently obtaining an ϵ-optimal policy. We present two possible strategies in Sections 5 and 6.

Pessimistic Policy Optimization. Finally, our algorithm outputs a policy π̂∗ that is optimal while
ensuring robustness to modeling error. This means optimizing for the worst-case value function over
the remaining transition and reward uncertainties (Levine et al., 2020):

π̂∗ = argmaxπ∈Π min
T̃∈T ,R̃∈R

V π
T̃ ,R̃

. (3)

Based on this objective, we define the pessimistic transition and reward models as follows:
T̂inf, R̂inf = argminT̃∈T ,R̃∈R maxπ∈Π V π

T̃ ,R̃
. Our analysis provides a worst-case robustness guar-

antee when considering well-calibrated confidence intervals, as detailed in Sections 5.1 and 6.1. In
other words, following prior work (Chen et al., 2022; Zhan et al., 2023a), our theoretical analysis
assumes that modeling elements can be identified with no optimization error. We then complement
this algorithmic framework with a flexible practical implementation in Section 6.3.

5 PREFERENCE ELICITATION FROM OFFLINE TRAJECTORIES

A first strategy for preference elicitation without environment interaction is to sample trajectories
directly from the offline dataset. Shin et al. (2022) propose this approach as Offline Preference-based
Reward Learning (OPRL), and design a uniform and uncertainty-sampling variant:

OPRL Uniform Sampling: τ1, τ2 ∼ Doffline

OPRL Uncertainty Sampling: τ1, τ2 = argmaxτ1,τ2∈Doffline
uPR

(τ1, τ2)

We provide a theoretical analysis of the performance of OPRL.

5.1 THEORETICAL GUARANTEES.

We obtain the following result, proven in Appendix A.4. The suboptimality of the estimated policy
π̂∗ is bounded by the policy evaluation error for the optimal policy π∗. This error decomposes into
a term depending on transition model estimation, and one on reward model estimation.
Theorem 5.1. For any δ ∈ (0, 1], let βT = cMLE

T log(HNFT
(1/No)/δ)/No and βR =

cMLE
R log(NFR

(1/Np)/δ)/Np, where No = H|Doffline| is the number of observed transitions in the
observational dataset and cMLE

T , cMLE
R are universal constants. The policy π̂∗ estimated by Algo-

rithm 1, with preference elicitation based on offline trajectories, achieves the following suboptimal-
ity with probability 1− δ:

V π∗ − V π̂∗ ≤ HRmaxCT (FT , π
∗)

√
cT
No

log

(
H

δ
NFT

(
1

No

))
︸ ︷︷ ︸

transition term ϵT

+2ακCR(FR, π
∗)

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
︸ ︷︷ ︸

reward term

,

where α = 1 for uniform sampling or α ≤ 1 for uncertainty sampling, CR is a concentrability
measure for the reward function, κ = supr∈[−Rmax,Rmax]

1
σ′(r) measures the degree of non-linearity

of the link function, and cT , cR are universal constants.
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In the special case where both the transition and reward functions are learned on a fixed initial pref-
erence dataset (no preference elicitation; |Doffline| = 2Np), we recover Theorem 1 from Zhan et al.
(2023a). Importantly, the coefficient α allows us to motivate the superior efficiency of uncertainty
sampling over uniform sampling, observed empirically in Shin et al. (2022) and in our own ex-
periments (Section 7). Uncertainty sampling learns accurate reward models with fewer preference
queries when α < 1, but can perform like uniform sampling in harder problems (α = 1).

6 PREFERENCE ELICITATION FROM SIMULATED TRAJECTORIES

We now propose our alternative strategy for generating trajectories for offline preference elicitation:
Simulated Offline Preference-based Reward Learning (Sim-OPRL). This method simulates tra-
jectories (τ1, τ2) by leveraging the learned environment model. This overcomes a limitation of
OPRL, which is only designed to reduce uncertainty about the reward functions inR, by instead re-
ducing uncertainty about which policies are plausibly optimal. Our approach is inspired by efficient
online preference elicitation algorithms (Saha et al., 2023; Chen et al., 2022), which we modify for
practical implementation. We account for the offline nature of our problem by avoiding regions that
are out of the distribution of the data: the sampling strategy is optimistic with respect to uncertainty
in rewards, but pessimistic with respect to uncertainty in transitions.

We summarize our approach to generating simulated trajectories for preference elicitation in Al-
gorithm 2. First, we construct a set of candidate optimal policies Πoffline, containing policy π∗

offline
(optimal policy under the pessimistic model and the true reward function) with high probability –
as demonstrated in Appendix A.5.2. Next, within this set of candidate policies, we identify the
two most exploratory policies π1, π2, chosen to maximize preference uncertainty uPR

. Finally, we
roll out these policies within our learned transition model to generate a trajectory pair (τ1, τ2) for
preference feedback.

Algorithm 2 Preference Elicitation through Simulated Trajectory Sampling.

Input: Pessimistic transition model T̂inf. Reward confidence setR and preference uncertainty function uPR .
Output: (τ1, τ2)

1: Estimate optimal offline policy set: Πoffline = {π | ∃R̃ ∈ R : π = argmaxπ∈ΠEτ∼dπ
T̂inf

[
R̃(τ)

]
}

2: Identify exploratory policies: π1, π2 = argmaxπ1,π2∈Πoffline
Eτ1∼d

π1
T̂inf

,τ2∼d
π2
T̂inf

[uPR(τ1, τ2)]

3: Rollouts in model: τ1 ∼ dπ1

T̂inf
, τ2 ∼ dπ2

T̂inf
.

We first provide a theoretical analysis of the performance of Sim-OPRL, before proposing a practical
implementation of our entire preference elicitation and policy optimization algorithm.

6.1 THEORETICAL GUARANTEES

We decompose suboptimality in a similar way to Section 5.1, but obtain a reward suboptimality term
that depends on the learned dynamics model instead of the true one, and on π∗

offline instead of π∗:

V π∗
− V π̂∗

≤ (V π∗

T,R − V π∗

T̂inf,R
)︸ ︷︷ ︸

transition term ϵT

+(V
π∗

offline

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf
)︸ ︷︷ ︸

reward term

. (4)

Analysis of the suboptimality due to transition error is identical to above, but the reward term is thus
significantly different. By design, our sampling strategy ensures good coverage of preferences over
π∗

offline within the learned environment model, which eliminates the concentrability term for the
reward CR. We refer the reader to Appendix A.5 for the proof of Theorem 6.1.

Theorem 6.1. For any δ ∈ (0, 1], let βT = cMLE
T log(HNFT

(1/No)/δ)/No and βR =
cMLE
R log(NFR

(1/Np)/δ)/Np, where No = H|Doffline| is the number of observed transitions in
the observational dataset and cMLE

T , cMLE
R are universal constants. The policy π̂∗ estimated by Al-

gorithm 1, with a preference sampling strategy based on rollouts in the learned transition model,

6
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achieves the following suboptimality with probability 1− δ:

V π∗
− V π̂∗

≤ HRmaxCT (FT , π
∗)

√
cT
No

log

(
H

δ
NFT

(
1

No

))
︸ ︷︷ ︸

transition term ϵT

+2κ

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
︸ ︷︷ ︸

reward term

.

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the link function, and
cT , cR are universal constants.

6.2 DISCUSSION

Our theoretical results demonstrate that the learned policy can achieve performance comparable to
the optimal policy, and thus satisfy our optimality criterion in Definition 3.1, provided it is covered
by the offline data (CT (FT , π

∗), CR(FR, π
∗) < ∞). Following our analysis, a suboptimal dataset

requires more preferences to achieve a certain policy performance, as the concentrability terms CT

or CR are large. Empirical results in Section 7 confirm that sample efficiency is worse when the
behavioral policy is more suboptimal.

Offline Trajectories vs. Simulated Rollouts. While both OPRL and Sim-OPRL depend on the
offline dataset for estimating environment dynamics, they induce different suboptimality in model-
ing preference feedback. Simulated rollouts are designed to achieve good coverage of the optimal
offline policy π∗

offline, which avoids wasting preference budget on trajectories with low rewards or
high transition uncertainty. In contrast, as shown in Zhan et al. (2023a), due to the dependence
of preferences on full trajectories, the reward concentrability term CR in Theorem 5.1 can be very
large. While sampling from the offline buffer is not sensitive to the quality of the transition model,
good coverage of the optimal policy is needed from both transition and preference data to achieve
low suboptimality.

Transition vs. Preference Model Quality. Our theoretical analysis also suggests an interesting
trade-off in the sample efficiency of our approach, depending on the accuracy of the transition model.
The width of the confidence interval reduces as significance parameter δ or dataset size increase,
or as function class complexity NFT

decreases. For a target suboptimality gap ϵ, provided the
optimal offline policy π∗

offline has a gap ϵT < ϵ, then the number of preferences required is of the
order of O(log(1/δ)/(ϵ− ϵT )

2). A more accurate transition model should therefore require fewer
preference samples to achieve a given suboptimality, which we again confirm empirically.

6.3 PRACTICAL IMPLEMENTATION

We now complete the general algorithmic framework discussed above with a possible implementa-
tion strategy, allowing for empirical validation. In fact, with minor changes to the following frame-
work, our paper also proposes a feasible implementation of related theoretical algorithms (Chen
et al., 2022; Zhan et al., 2023a). We refer the reader to Appendix C for further detail.

Model Learning and Policy Optimization. Following prior work in offline reinforcement learn-
ing (Yu et al., 2020), we train ensembles of NT and NR neural network models for the transition
and reward functions on different bootstraps of the data (Lakshminarayanan et al., 2017), denoted
{T̂1, . . . T̂NT

} and {R̂1, . . . R̂NR
}. We estimate MLE and uncertainty functions as follows:

T̂ (·|s, a) = 1

NT

NT∑
i=1

T̂i(·|s, a); uT (s, a) = max
i,j∈[[1,NT ]]

|T̂i(·|s, a)− T̂j(·|s, a)|1 ·Rmax

R̂(s, a) =
1

NR

NT∑
i=1

R̂i(s, a); uR(s, a) = max
i,j∈[[1,NR]]

|R̂i(s, a)− R̂j(s, a)|1

Each R̂i in the ensemble has an associated preference function defined by the Bradley-Terry model,
with σ as the sigmoid function. We obtain preference uncertainty through variation over the en-
semble as in Equation (2). Recall that transition and reward models are trained on Doffline and Dpref
respectively; for computational efficiency, we sample preferences in batches of to reduce the number
of reward model updates needed.
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We approximate the pessimistic objective in Equation (3) by penalizing the reward function with the
uncertainty, as in Lagrangian formulations of model-based offline RL (Yu et al., 2020; Rigter et al.,
2022). We solve for the following objective with a traditional reinforcement learning algorithm:

π̂∗ = argmaxπ∈ΠE(s,a)∼dπ
T̂
[R̂(s, a)− λRuR(s, a)− λTuT (s, a)], (5)

where hyperparameters λT , λR control the degree of conservatism. Note that in our theoretical anal-
ysis, this was achieved through parameters βT , βR which affect the width of the confidence intervals
uR and uT , but their exact value cannot be estimated. We show in Appendix A.2 that Equation (5)
indeed lower bounds the true value function, under well-calibrated uncertainty estimates.

Near-Optimal Policy Set and Exploratory Policies. Sim-OPRL requires constructing Πoffline, a
set of near-optimal policies within a pessimistic model of the environment. Following Lindner et al.
(2021), we obtain a policy model for each element R̂i of the reward ensemble. Policy models are
optimized to maximize returns under the transition model T̂ and the reward function R̂i − λTuT ,
ensuring pessimism w.r.t transitions. Next, the most exploratory policies are identified by generating
rollouts of each candidate policy within the learned model T̂ . The trajectories (τ1, τ2) induced
by different policies and maximizing the preference uncertainty function uPR

(τ1, τ2) are used for
preference feedback. We refer the reader to Appendix C for further detail.

7 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our preference elicitation strategy, Sim-OPRL,
across a range of offline reinforcement learning environments and datasets. We demonstrate its
superior performance over OPRL, as expected from our theoretical analysis.

Since our closest related works do not propose any experimental validation (Chen et al., 2022;
Zhan et al., 2023a), we propose a practical implementation of Preference-based Optimistic Planning
(PbOP) in Appendix C; this uncertainty-based preference elicitation queries feedback over trajectory
rollouts in the true environment (Chen et al., 2022). We also compare against OPRL (Shin et al.,
2022) with uniform and uncertainty-sampling. Finally, we report the performance of π∗

offline and π∗

as upper bounds for the performance of our algorithm: the former is trained in the learned transition
model with access to the true reward, and the latter has full knowledge of both transition and reward
function.

We compare different preference elicitation strategies on a range of environments detailed in Ap-
pendix D. Among others, we explore environments from the D4RL benchmark (Fu et al., 2020)
identified as particularly challenging offline preference-based reinforcement learning tasks (Shin
et al., 2022), as well as a medical simulation designed to model the evolution of patients with sep-
sis (Oberst and Sontag, 2019). As detailed in Appendix D, these environments consist of high-
dimensional state spaces with continuous or discrete action spaces, follow complex transition dy-
namics, and have sparse or non-linear rewards and termination conditions. This makes them repre-
sentative of the challenge of learning a reward function and learning offline in a real-world appli-
cation. In particular, the sepsis simulation environment is commonly used in medically-motivated
offline RL work (Tang and Wiens, 2021; Pace et al., 2023), and highlights another advantage of Sim-
OPRL over OPRL: it does not require feedback on real trajectories from the observational dataset.
In a sensitive setting such as healthcare where data access is carefully controlled, it may be attractive
to query experts about synthetic trajectories rather than real samples.

Performance against State-of-the-Art. Performance and sample complexity results with different
preference elicitation methods are given in Figure 1 and Table 2. Within the offline approaches,
Sim-OPRL consistently achieves better environment returns than OPRL with much fewer preference
queries. In line with our theoretical analysis, our empirical results therefore demonstrate that policy-
based sampling in Sim-OPRL is more efficient than maximizing information gain on the reward
function (uncertainty-based OPRL), which echoes similar conclusions reached in prior work on
online preference elicitation (Lindner et al., 2021; Chen et al., 2022).

As an upper bound for the performance of our algorithm, we include baselines that have access
to the environment: we report the performance of the optimal policy π∗, as well as that of an
algorithm querying feedback over optimistic rollouts in the real environment (Chen et al., 2022,
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Table 2: Sample complexity Np under different preference elicitation strategies, to reach a suboptimality
gap of ϵ = 20 over normalized returns. Mean and 95% confidence interval over 6 experiments. The best-
performing offline method is highlighted in bold, ✗ marks when the target suboptimality could not be achieved.
Note that PbOP has an advantage by having access to direct interaction with the environment.

Environment OPRL Uniform OPRL Uncertainty Sim-OPRL (Ours) PbOP (Online)

Star MDP 32 ± 4 30 ± 4 4 ± 2 4 ± 2
Gridworld 105 ± 11 66 ± 7 49 ± 7 32 ± 4
MiniGrid-FourRooms 92 ± 7 53 ± 5 41 ± 5 25 ± 3
HalfCheetah-Random 108 ± 9 71 ± 8 50 ± 10 36 ± 3
Sepsis Simulation ✗ 642 ± 72 225 ± 46 75 ± 11
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(e) Sepsis Simulation.

Figure 1: Environment returns under different preference elicitation strategies. Mean and 95% confidence
interval over 6 experiments. Environment returns are normalized between 0 and 100. Only OPRL and Sim-
OPRL are fully offline.

PbOP). In Figure 1, the PbOP method naturally reaches a superior policy with fewer samples as it
allows environment interaction and can thus improve its estimate of the transition model in parallel
to learning the preference function. As supported by our theoretical analysis, this result stresses the
importance of having a high-quality transition model to make our method effective. We explore this
in more detail in our following ablations.
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Figure 2: Algorithm ablations on the StarMDP.

Algorithm Ablations. We conduct ablations for our
algorithm on a simple tabular MDP, with results in
Figure 2. This example (transition and reward de-
tails deferred to Appendix D) illustrates the impor-
tance of pessimism with respect to the transition
model. Even with access to true rewards, π∗

offline is
pessimistic to avoid the out-of-distribution state, as
it is unclear how to reach it. Thus, in Figure 2, we
see a drop in performance if pessimism is not ap-
plied to the output policy (purple lines). This con-
firms the theoretical insights from Zhu et al. (2023);
Zhan et al. (2023a), who demonstrate the importance
of pessimism in offline preference-based RL prob-
lems. Pessimism is also crucial in simulated roll-
outs, to avoid wasting preference budget on regions
of low confidence — as value estimates are inaccurate in any case. This is reflected in lower perfor-
mance without pessimism w.r.t the transition model in Figure 2 (brown line), and which could be
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(b) As a function of dataset optimality.

Figure 3: Preference sample complexity Np as function of the properties of the observational data, to reach
a suboptimality gap of ϵ = 20 over normalized environment returns (Star MDP). Mean and 95% confidence
intervals over 6 experiments. × marks when the target suboptimality could not be achieved.

seen as the naive adaptation of online preference elicitation methods to our setting (Chen et al.,
2022; Lindner et al., 2022). We also note the importance of optimism with respect to the reward
uncertainty, both in OPRL in Figure 1 and in our own model-based rollouts in Figure 2.

Transition vs. Preference Model Quality. Next, we empirically study the trade-off between transi-
tion and preference model performance in our problem setting. Still in the Star MDP, in the low-data
regime, the error ϵT incurred in estimating the value function due to the misspecification of the tran-
sition model is large. As dictated by our theoretical analysis and as visualized in Figure 3a, this
significantly increases the number of preference samples Np required to achieve good final perfor-
mance. At the other end of the spectrum, if the offline dataset is large and allows modeling the tran-
sition model accurately, then ϵT is small and the number of preference samples Np needed shrinks.
We observe a similar trend for both Sim-OPRL and our OPRL uncertainty-sampling baseline.

We also measure how the coverage of the optimality of the dataset affects performance in our set-
ting. In Figure 3b, we vary the behavioral policy πβ underlying the offline data, ranging from
optimal (density ratio coefficient = 1) to highly suboptimal (large density ratio coefficient). The
concentrability terms CT and CR are challenging to measure as they require considering entire
function classes, but we report the accuracy of the maximum likelihood estimate for both models
in Appendix E. We observe that preference elicitation methods perform best when the data is close
to optimal (with the exception of a fully optimal, non-diverse dataset making reward learning from
preferences challenging). More preference samples are required if the observational dataset has poor
coverage of the optimal policy (large CT (FT , π

∗)), as the transition and reward models become less
accurate for the trajectory distribution of interest. We also validate this conclusion on HalfCheetah
datasets of varying optimality in Appendix E.

8 CONCLUSION

Our work shows the potential of integrating human feedback within the framework of offline RL.
We address the challenges of preference elicitation in a fully offline setup by exploring two key
methods: sampling from the offline dataset (Shin et al., 2022, OPRL) and generating model rollouts
(Sim-OPRL). By employing a pessimistic approach to handle out-of-distribution data and an opti-
mistic strategy to acquire informative preferences, Sim-OPRL balances the need for robustness and
informativeness in learning an optimal policy.

We provide theoretical guarantees on the sample complexity of both approaches, demonstrating that
performance depends on how well the offline data covers the optimal policy. Empirical evalua-
tions on various environments confirm the practical effectiveness of our algorithm, as Sim-OPRL
consistently outperforms OPRL baselines in all settings.

Overall, our approach not only advances the state-of-the-art in offline preference-based RL but also
takes a significant step toward improving the practical utility of offline RL. This opens up new
avenues for real-world applications of RL in healthcare, robotics, and manufacturing, where interac-
tion with the environment is challenging but domain experts can be queried for feedback. Looking
forward, a natural extension will be to explore alternative sources of information from experts, still
without direct environment interaction.
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A THEORETICAL DETAILS

This appendix provides proofs for the presented theorems and lemmas. In subsection A.1, we pro-
vide details on how we define the maximum likelihood estimators and confidence intervals of the
preference and transition models. In subsection A.2 we provide the proof that our uncertainty-
penalized objective in Equation (5) lower bounds the true value function and thus forms a valid
pessimistic framework. In Appendix A.3, we show that the suboptimality of our offline preference
elicitation framework is not lower-bounded by the performance of the optimal offline policy. In
Appendix A.4, we provide our proof of theorem 5.1, analyzing the suboptimality of preferences
sampled from an offline dataset. Finally, in Appendix A.5, we prove Theorem 6.1, which analyzes
the suboptimality of preference sampling over simulated rollouts.

A.1 MAXIMUM LIKELIHOOD AND CONFIDENCE INTERVALS

Let Fg denote a function class over X → ∆Y , where X ,Y are measurable sets, and g ∈ Fg denotes
a function to be estimated.

Let ĝ denote the maximum likelihood estimator (MLE) of g based on a datasetD = {(xn, yn)}Nn=1:
ĝ = argmaxg̃∈Fg

E(x,y)∼D log(g̃(y|x)). We construct the confidence set around the MLE as follows:

G = {g̃ ∈ Fg | E(x,y)∼D

[
log

ĝ(y|x)
g̃(y|x)

]
≤ β}

Lemma A.1 (MLE Guarantee, Lemma 1 in Zhan et al. (2023a)). Let δ ∈ (0, 1] and define the event
E that g ∈ G. If

β =
cMLE

N
log

(
1

δ
NFg

(
1

N

))
,

where cMLE > 0 is a universal constant, then P (E) ≥ 1− δ/2.

Proof. The proof follows that of Lemma 1 in Zhan et al. (2023a) and uses Cramér-Chernoff’s
method.

Let B̄ be a 1/N -bracket of Fg with |B̄|1 = NFg
(1/N). Denote the set of all right brackets in B̄ by

B̃ = {b : ∃b′s.t.[b′, b] ∈ B̄}. For b ∈ B̃, we have:

E

[
exp

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)

)]
=

N∏
n=1

E
[
exp

(
log

b(yn|xn)

g(yn|xn)

)]

=

N∏
n=1

E
[
b(yn|xn)

g(yn|xn)

]

=

N∏
n=1

E

[∑
y

b(y|xn)

]
≤ (1 + 1/N)

N ≤ e.

as samples in D as i.i.d. We use the Tower property in the third step and the fact that b is a 1/N -
bracket for Fg in the fourth: there exists g′ ∈ Fg such that ∥g(·|x) − b(·|x)∥1 ≤ 1/N and thus
∥b(·|x)∥1 ≤ 1 + 1/N , for all x ∈ X .

Then by Markov’s inequality, for any δ ∈ (0, 1], we have:

P

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)
> log(δ)

)
≤ E

[
exp

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)

)]
· exp(− log(1/δ))

≤ eδ.

By union bound, we have for all b ∈ B̃,

P

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)
> cMLE log

(
1

δ
NFg

(
1

N

)))
≤ δ/2,
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where cMLE > 0 is a universal constant.

Finally, for all g̃ ∈ Fg , there exists b ∈ B̃ such that g(·|x) ≤ g̃(·|x) for all x ∈ X . As a result, for
all g̃ ∈ Fg , we have:

P

(
N∑

n=1

log
g̃(yn|xn)

g(yn|xn)
> cMLE log

(
1

δ
NFg

(
1

N

)))
≤ δ/2.

Under this event E , we have g ∈ G with probability 1− δ/2. A confidence interval constructed via
loglikelihood also incurs a bound on the total variation (TV) distance between g and g̃ ∈ G:
Lemma A.2 (TV-distance to MLE). Under the event E , we have, with probability 1 − δ, for all
g̃ ∈ G:

Ex∼D
[
∥g(·|x)− g̃(·|x)∥21

]
≤ c

N
log

(
1

δ
NFg

(
1

N

))
, (6)

where c > 0 is a universal constant.

Proof. The proof follows that of Liu et al. (2022a), Proposition 14.

This guarantees that the true function is within an interval around the MLE estimate with high
probability.

We apply these lemmas to our MLE estimates of transition and reward functions in Algorithm 1 to
obtain the following guarantees.

Let ER denote the event R ∈ R and ET denote the event T ∈ T , R and T denote the respective
confidence sets around the MLE. By Lemma A.1, events ER and ET have probability 1 − δ/2 if
we choose βR = cMLE

R log(NFR
(1/Np)/δ)/Np and βT = cMLE

T log(HNFT
(1/No)/δ)/No, where

cMLE
R , cMLE

T are universal constants.

A.2 MODEL-BASED PESSIMISM AND UNCERTAINTY PENALTIES

Lemma A.3 (Telescoping Lemma). For any reward model R ∈ FR, and any two transition models
T, T̂ ∈ FT :

V π
T,R − V π

T̂ ,R
≤ Eτ∼dπ

T̂

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̂ (·|sj , aj)∥1

 ·Rmax

Proof. The proof follows that of Lemma 4.1 in Yu et al. (2020) or Lemma 4 in Zhan et al. (2023a).

Let Wj be the expected return under policy π, with transition model T̂ for the first j steps, then
transition model T for the rest of the episode. We have:

V π
T,R − V π

T̂ ,R
=

H−1∑
j=0

Wj −Wj+1.

Now,

Wj = Rj + Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]

]
Wj+1 = Rj + Esj ,aj∼π,T̂

[
Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]
where Rj is the expected return of the first j steps taken in T̂ . Therefore,

Wj −Wj+1 = Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]− Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]
≤ Esj ,aj∼π,T̂

[
∥T (·|sj , aj)− T̂ (·|sj , aj)∥1 ·Rmax

]
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under the boundedness assumption for R. Finally, we have:

V π
T,R − V π

T̂ ,R
=

H−1∑
j=0

Wj −Wj+1

=

H−1∑
j=0

Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]− Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]

≤
H−1∑
j=0

Esj ,aj∼π,T̂

[
∥T (·|sj , aj)− T̂ (·|sj , aj)∥1 ·Rmax

]

= Eτ∼dπ
T̂

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̂ (·|sj , aj) ·Rmax∥1



Lemma A.4 (Pessimistic Transition Model). Under event ET , for all π ∈ Π, R̃ ∈ FR:

V π
T̂ ,R̃−uT

≤ V π
T,R̃

.

Proof.

V π
T,R̃

= V π
T̂ ,R̃
− (V π

T̂ ,R̃
− V π

T,R̃
)

≥ Eτ∼dπ
T̂

[
R̃(τ)

]
− Eτ∼dπ

T̂
[uT (τ)]

= Eτ∼dπ
T̂

[
R̃(τ)− uT (τ)

]
where we have used the telescoping lemma (Lemma A.3), and where uT (τ) =

∑
(s,a)∈τ uT (s, a) ≥∑

(s,a)∈τ ∥T̂ (·|s, a)− T (·|s, a)∥1 ·Rmax under event ET .

Lemma A.5 (Pessimistic Reward Model). Under event ER, for all π ∈ Π, T̃ ∈ FT :

V π
T̃ ,R̂−uR

≤ V π
T̃ ,R

.

Proof.

V π
T̃ ,R

= V π
T̃ ,R̂
− (V π

T̃ ,R̂
− V π

T̃ ,R
)

= Eτ∼dπ
T̃

[
R̂(τ)

]
− Eτ∼dπ

T̃

[
R̂(τ)−R(τ)

]
≥ Eτ∼dπ

T̃

[
R̂(τ)− uR(τ)

]
where we have used the fact that |R̂(τ) − R(τ)|1 ≤

∑
s,a∈τ |R̂(s, a) − R(s, a)|1 =∑

(s,a)∈τ uR(s, a) = uR(τ) under event ER.

Combining the above two lemmas gives the following result:
Corollary A.1. Under events ET and ER, for all π ∈ Π:

V π
T̂ ,R̂−uT−uR

≤ V π
T,R.

This justifies the overall objective considered in our pessimistic policy optimization procedure in
Section 6.3.

A.3 SUBOPTIMALITY LOWER BOUND: A COUNTEREXAMPLE

Let π∗
offline = argmaxπ∈Π minT̃∈T V π

T̃ ,R
denote the optimal offline policy, which has access to the

ground-truth reward function. In this section, we ask whether its suboptimality ϵT = V π∗

T,R−V
π∗

offline
T,R

is a lower bound for the suboptimality of our learned policy π̂∗ after preference elicitation.
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s0

s1 R = 1

s2 R = 0

(a
0
, 0
.8
)

(a
1 , 0.6)

Figure 4: Tabular MDP. The environment starts in state s0 and has horizon H = 1. Transition probabilities
from state s0 are given for the two binary actions a0, a1 (which send the agent to the other state with comple-
mentary probability).

Counterexample. Consider the MDP illustrated in Figure 4. The value function for the optimal
policy π∗, which consists of taking action a0, is: V π∗

T,R = 0.8 · 1 + 0.2 · 0 = 0.8.

Now assume the following MLE estimate and uncertainty function for both the transition and reward
models:

T̂ (s1|s0, a0) = 0.5; uT (s0, a0) = 0.4

T̂ (s1|s0, a1) = 0.5; uT (s0, a1) = 0.1

r̂(s1) = r̂(s2) = 0.5; uR(s1) = uR(s2) = 0.5

Assuming access to the learned transition model and the true reward function, we pessimistically
estimate the value of both actions:

V a0

T̂inf,R
= 0.1 · 1 + 0.9 · 0 = 0.1

V a1

T̂inf,R
= 0.6 · 0 + 0.4 · 1 = 0.4

Thus, we have: Π∗
offline(s0) = argmaxaV

a
T̂inf,R

= a1. The offline policy picks the suboptimal action
since the worst-case returns of this action are lower than those estimated for a0. Evaluating this
policy in the real environment, we get V π∗

offline
T,R = 0.6 · 0 + 0.4 · 1 = 0.4.

We now estimate the optimal policy in the learned transition and reward model. Applying pessimism
with respect to both models, we get an equal estimated value of 0 for both actions a0 and a1. If policy
optimization converges to π̂∗ = a0, we achieve optimal performance with V π̂∗

T,R = 0.8 > V
π∗

offline
T,R .

This example demonstrates that ϵT = V π∗

T,R−V
π∗

offline
T,R = 0.4 is not a lower bound for the suboptimality

of π̂∗, as policy π̂∗ can achieve better performance (even optimal performance in this case) if errors
in transition and reward model estimation compensate each other.

A.4 SUBOPTIMALITY OF OPRL: PROOF OF THEOREM 5.1

A.4.1 SUBOPTIMALITY DECOMPOSITION

Recall that T̂inf, R̂inf = argminT̃∈T ,R̃∈RV π
T̂ ,R̂

denote the pessimistic transition and reward models,
such that π̂∗ = argmaxπ∈ΠV

π
T̂inf,R̂inf

. We have:

V π∗
− V π̂∗

= V π∗

T,R − V π̂∗

T,R

= (V π∗

T,R − V π∗

T̂inf,R̂inf
)− (V π̂∗

T,R − V π∗

T̂inf,R̂inf
)

≤ (V π∗

T,R − V π∗

T̂inf,R̂inf
)− (V π̂∗

T,R − V π̂∗

T̂inf,R̂inf
)

≤ V π∗

T,R − V π∗

T̂inf,R̂inf
, (7)
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where we have first used the optimality of π̂∗ (stating that V π̂∗

T̂inf,R̂inf
≥ V π

T̂inf,R̂inf
, for all π) and then

the pessimism principle (stating that V π̂∗

T̂inf,R̂inf
≤ V π̂∗

T,R).

Finally, we decompose the last term above as follows:

V π∗
− V π̂∗

≤ (V π∗

T,R̂inf
− V π∗

T̂inf,R̂inf
)︸ ︷︷ ︸

transition term

+(V π∗

T,R − V π∗

T,R̂inf
)︸ ︷︷ ︸

reward term

(8)

We further analyze each term in the following sections.

A.4.2 ANALYSIS OF THE TRANSITION TERM

In this section, we now upper bound the transition term defined in Equation (8).
Lemma A.6 (Lemma 4, Zhan et al. (2023a)). Under the event ET , with probability 1 − δ, we have
for all T̃ ∈ T , for all R̃ ∈ GR, for all π:

Edπ
T
[R̃(τ)]− Edπ

T̃
[R̃(τ)] ≤ HRmaxCT (FT , π)

√
cT
No

log

(
H

δ
NFT

(
1

No

))
,

where cT > 0 is a constant.

Proof. From the telescoping lemma (Lemma A.3), we have:

V π
T,R̃
− V π

T̃ ,R̃
≤ RmaxEτ∼dπ

T

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̃ (·|sj , aj)∥1


≤ HRmaxE(s,a)∼dπ

T

[
∥T (·|s, a)− T̃ (·|s, a)∥1

]
≤ HRmaxCT (FT , π)

√
E(s,a)∼Doffline [∥T (·|s, a)− T̃ (·|s, a)∥21]

Under event ET , by Lemma A.2, we have, with probability 1− δ, for all T̃ ∈ T :

E(s,a)∼Doffline [∥T (·|s, a)− T̃ (·|s, a)∥21] ≤
1

No
cT log

(
H

δ
NFT

(
1

No

))
This concludes our proof.

A.4.3 ANALYSIS OF THE REWARD TERM

Next, we upper bound the reward term defined in Equation (8).

As in Zhan et al. (2023a), we consider the following value function: V π
T,R = Eτ∼dπ

T
[R(τ)] −

Eτ∼dpref [R(τ)], where dpref is a fixed reference trajectory distribution. This baseline subtraction,
which doesn’t affect either the optimal policy or the analysis of the transition term, is needed as the
approximated confidence set is based on the uncertainty in preference between two trajectories, not
in the reward of a single one.
Definition A.1 (Preference concentrability coefficient). The concentrability coefficient w.r.t. reward
classes FR, a target policy π∗ and a reference trajectory distribution dpref is defined as:

CR(FR, π
∗) =

Eτ1∼dπ∗
T ,τ2∼dpref

[uPR
(τ1, τ2)]

Eτ1,τ2∼Doffline [uPR
(τ1, τ2)]

Note that, for the purpose of our analysis, our definition differs from that of Zhan et al. (2023a) who
instead consider the max ratio of difference in rewards term: |R(τ1) − R(τ2) − R̃(τ1) + R̃(τ2)|1
over the entire function class FR.
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Lemma A.7. Let trajectories for preference elicitation be sampled uniformly from the offline
dataset. Under the event ER, with probability 1 − δ, we have for all T̃ ∈ GT , for all R̃ ∈ R,
for all π:

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FR, π)

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
,

where cR > 0 is a constant and κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of
the sigmoid function.

Proof.

V π∗

T,R − V π∗

T,R̂inf
= Eτ∼dπ∗

T
[R(τ)]− Eτ∼dpref [R(τ)]− Eτ∼dπ∗

T
[R̂inf(τ)] + Eτ∼dpref [R̂inf(τ)]

= Eτ1∼dπ∗
T ,τ2∼dpref

[R(τ1)−R(τ2)]− (R̂inf(τ1)− R̂inf(τ2))]

≤ κEτ1∼dπ∗
T ,τ2∼dpref

[|PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2)|1]

≤ κEτ1∼dπ∗
T ,τ2∼dpref

[uPR
(τ1, τ2)]

= κCR(FR, π
∗)Eτ1,τ2∼Doffline [uPR

(τ1, τ2)] (9)

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function. In
the first inequality, we have applied the mean value theorem, under Assumption 3.2. In the second
inequality, we have used the definition of uncertainty function uPR

as we know R̂inf ∈ R.

Now, under event ER, by Lemma A.2, we have, with probability 1− δ for all R̃ ∈ R:

E(τ1,τ2)∼Dpref [∥PR(τ1 ≻ τ2)− PR̃(τ1 ≻ τ2)∥21] ≤

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
, (10)

where cR > 0 is a constant. This implies the following upper bound for the preference uncertainty
function:

E(τ1,τ2)∼Dpref [uPR
(τ1, τ2)] ≤ 2

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
(11)

Under uniform sampling, the distribution of preferences in Dpref is that of the offline dataset:

E(τ1,τ2)∼Doffline [uPR
(τ1, τ2)] = E(τ1,τ2)∼Dpref [uPR

(τ1, τ2)]

Thus,

V π∗

T,R − V π∗

T,R̂inf
≤ 2κCR(FT , π)

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
.

Lemma A.8. Let trajectories for preference elicitation be sampled through uncertainty sampling
from the offline dataset. Under the event ER, with probability 1− δ, we have for all T̃ ∈ GT , for all
R̃ ∈ R, for all π:

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FT , π)

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
,

where cR > 0 is a constant and α ≤ 1.

Proof. The proof follows closely that of Lemma A.7. We introduce the preference concentrability
coefficient defined for a general preference dataset:

C ′
R(FT , π

∗) =
Eτ1∼dπ∗

T ,τ2∼dpref
[uPR

(τ1, τ2)]

Eτ1,τ2∼Dpref [uPR
(τ1, τ2)]
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We start from Equation (9):

V π∗

T,R − V π∗

T,R̂inf
≤ κEτ1∼dπ∗

T ,τ2∼dpref
[uPR

(τ1, τ2)]

= κC ′
R(FR, π

∗)Eτ1,τ2∼Dpref [uPR
(τ1, τ2)]

≤ 2κC ′
R(FR, π

∗)

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
where we have used Equation (11).

Now consider the dataset of uncertainty-sampled preferences Dpref. By definition, we have:

Eτ1,τ2∼Dpref [uPR
(τ1, τ2)] ≥ Eτ1,τ2∼Doffline [uPR

(τ1, τ2)]

Thus, we have: C ′
R(FR, π

∗) ≤ CR(FR, π
∗). In other words, we can write: C ′

R(FR, π
∗) =

αCR(FR, π
∗), where α ≤ 1. This concludes our proof.

We now conclude the proof of Theorem 5.1 under events ER and ET .

From Lemma A.6, we upper bound the transition term:

V π∗

T,R̂inf
− V π∗

T̂inf,R̂inf
≤ HRmaxCT (FT , π

∗)

√
cT
No

log

(
H

δ
NFT

(
1

No

))

From Lemmas A.7 and A.8, we upper bound the reward term:

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FR, π

∗)

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
,

where α = 1 for uniform sampling or α ≤ 1 for uncertainty sampling.

Combining with Equation (8), we obtain Theorem 5.1.

A.5 SUBOPTIMALITY OF SIM-OPRL: PROOF OF THEOREM 6.1

A.5.1 SUBOPTIMALITY DECOMPOSITION

We decompose the suboptimality slightly differently to Equation (7), introducing the optimal
offline policy (optimal in the pessimistic model under the true reward function): π∗

offline =
argmaxπ∈ΠV

π
T̂inf,R

.

V π∗
− V π̂∗

= V π∗

T,R − V π̂∗

T,R

= (V π∗

T,R − V
π∗

offline

T̂inf,R̂inf
)− (V π̂∗

T,R − V
π∗

offline

T̂inf,R̂inf
)

≤ (V π∗

T,R − V
π∗

offline

T̂inf,R̂inf
)− (V π̂∗

T,R − V π̂∗

T̂inf,R̂inf
)

≤ V π∗

T,R − V
π∗

offline

T̂inf,R̂inf

= (V π∗

T,R − V π∗

T̂inf,R
) + (V π∗

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf
)

≤ (V π∗

T,R − V π∗

T̂inf,R
)︸ ︷︷ ︸

transition term

+(V
π∗

offline

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf
)︸ ︷︷ ︸

reward term

(12)

where we have followed the same analysis as in Appendix A.4.1 and used the optimality of π∗
offline

in the last inequality.

The analysis of the transition term is identical to the above (Appendix A.4.2). We analyze the reward
term next.
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A.5.2 ANALYSIS OF THE REWARD TERM

Lemma A.9 (Optimal Offline Policy In Set). Let Πoffline denote the following set of near-optimal
pessimistic policies, under the pessimitic transition model T̂inf and the reward confidence setR:

Πoffline = {π | π = argmaxπ∈ΠEτ∼dπ
T̂inf

[
R̃(τ)

]
∀R̃ ∈ R}

Under event ER, we have π∗
offline ∈ Πoffline.

Proof. Recall the definition of π∗
offline: π∗

offline = argmaxπ∈ΠV
π
T̂inf,R

. Note that there is no need to
consider the preference baseline term in V π when building Πoffline since it is independent of the
policy. Under event ER, we have R ∈ R. Thus, π∗

offline ∈ Πoffline.

Lemma A.10. Under event ER, we have, with probability 1− δ:

V
π∗

offline

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf
≤ 2κ

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
Proof.

V
π∗

offline

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf

= (V π∗

T̂inf,R
− V π∗

T̂inf,R̂
) + (V π∗

T̂inf,R̂
− V π∗

T̂inf,R̂inf
)

= E
τ∼d

π∗
offline

T̂inf

[R(τ)]− Eτ∼dpref [R(τ)]− E
τ∼d

π∗
offline

T̂inf

[R̂inf(τ)] + Eτ∼dpref [R̂inf(τ)]

= E
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[R(τ1)−R(τ2)]− E
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[R̂inf(τ1)− R̂inf(τ2)]

≤ κE
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2)],

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function. We
have applied the mean value theorem, under Assumption 3.2.

As Rinf ∈ R, we have: PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2) ≤ uPR

(τ1, τ2).

Let dpref correspond to the distribution of the preference data, which consists of rollouts from ex-
ploratory policies within the learned environment model: dpref = dπ1

T̂inf
/2 + dπ2

T̂inf
/2. Recall that the

near-optimal policy set Πoffline includes policy π∗
offline (Lemma A.9) and that π1, π2 are the two more

exploratory policies within this set:
E
τ1∼d

π∗
offline

T̂
,τ2∼dpref

[uPR
(τ1, τ2)] ≤ max

π1,π2∈Πoffline
Eτ1∼d

π1

T̂ ,τ2∼d
π2
T̂

[uPR
(τ1, τ2)].

Now, under event ER, by Lemma A.2, we have, with probability 1− δ for all R̃ ∈ R:

E(τ1,τ2)∼Dpref [∥PR(τ1 ≻ τ2)− PR̃(τ1 ≻ τ2)∥21] ≤
cR
Np

log

(
1

δ
NFR

(
1

Np

))
,

where cR > 0 is a constant. This implies the following upper bound for the preference uncertainty
function:

E(τ1,τ2)∼Dpref [uPR
(τ1, τ2)] ≤ 2

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
.

Thus, we obtain:

V
π∗

offline

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf
≤ 2κ

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
.

The resulting sample complexity of O(κ
2d
ϵ2 ) matches that of active preference learning within a

known environment (Saha et al., 2023; Chen et al., 2022).
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We now conclude the proof of Theorem 6.1 under events ER and ET .

From Lemma A.6, we upper bound the transition term:

V π∗

T,R − V π∗

T̂inf,R
≤ HRmaxCT (FT , π

∗)

√
cT
No

log

(
H

δ
NFT

(
1

No

))
.

From Lemma A.10, we upper bound the reward term:

V
π∗

offline

T̂inf,R
− V

π∗
offline

T̂inf,R̂inf
≤ 2κ

√
cR
Np

log

(
1

δ
NFR

(
1

Np

))
.

Combining with Equation (12), we obtain Theorem 6.1.

B ADDITIONAL RELATED WORK

Table 3: Comparison of broader related work on preference elicitation and preference-based RL.

Framework Offline Policy-based Sampling Robustness Guarantees Practical Implementation

PREFERENCE-BASED DEEP RL
D-REX (Brown et al., 2020) ✓ ✗ ✗ ✓
PEBBLE (Lee et al., 2021) ✗ ✗ ✗ ✓
MRN (Liu et al., 2022b) ✗ ✗ ✗ ✓
SURF (Park et al., 2022) ✗ ✗ ✗ ✓
PT (Kim et al., 2023) ✗ ✗ ✗ ✓
IPL (Hejna and Sadigh, 2024) ✓ ✗ ✗ ✓

PREFERENCE ELICITATION
PbOP (Chen et al., 2022) ✗ ✓ ✓ ✗
REGIME (Zhan et al., 2023b) ✗ ✓ ✓ ✗
FREEHAND (Zhan et al., 2023a) ✓ ✗ ✓ ✗
OPRL (Shin et al., 2022) ✓ ✗ ✗ ✓
MoP-RL (Liu et al., 2023) ✗ ✗ ✗ ✓
Max. Regret (Wilde et al., 2020) ✗ ✓ ✗ ✓
Biyik and Sadigh (2018) ✗ ✗ ✓ ✓
Bıyık et al. (2019) ✗ ✗ ✓ ✓

Sim-OPRL (Ours) ✓ ✓ ✓ ✓

In this section, we position this work against additional related literature. We summarize our analysis
in Table 3.

First, we note that significant prior work on preference-based reinforcement learning is centered on
improving preference modeling or policy optimization for a fixed (uncertainty-based or uniform)
preference elicitation strategy (all methods in the top half of Table 3). This focus is orthogonal
to our work, and could certainly be combined with our preference elicitation method for optimal
performance.

Next, comparing with other preference elicitation methods in Table 3 (bottom half), we find that
almost all works consider a setting with online environment interaction, which makes them in-
compatible with our problem setting. Online environment exploration eliminates the need for pes-
simism against transition dynamics (Levine et al., 2020), whereas we show that it is essential for
both theoretical and empirical performance in the offline setting.

The uncertainty-based preference elicitation strategy adopted in most practical PbRL algorithms is
to minimize uncertainty about preferences, or to maximize information gain about the reward
function. From prior theoretical and empirical work (Chen et al., 2022; Lindner et al., 2021), we
know that this strategy is often suboptimal compared to actively reducing the set of candidate optimal
policies, and both our theoretical and experimental results confirm this.

Finally, note that ours is the first work to provide both a theoretical and empirical analysis of the
sample complexity of preference elicitation in the fully offline setting.
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Beyond Offline Reinforcement Learning. With our community’s recent surge in interest in
preference-based reinforcement learning for its application to language model alignment (Stien-
non et al., 2020; Ouyang et al., 2022), we foresee many possible applications and extensions of
our work beyond offline RL. Sample efficiency in preference collection is of paramount importance
in Reinforcement Learning from Human Feedback (RLHF): recent works consider active learning
pipelines based on uncertainty sampling to improve efficiency (Chen et al., 2024; Melo et al., 2024),
similar to OPRL. The insights from our work suggest that a model-based elicitation strategy like
Sim-OPRL, designed to simulate responses from near-optimal policies, might perform even better.
We believe this line of future work could prove critical to the language model alignment community.

C IMPLEMENTATION DETAILS

We trained all models on two 64-core AMD processors or a single NVIDIA RTX2080Ti GPU. The
total wall-clock time for running all experiments presented in this paper amounted to less than 72
hours.

Transition and Reward Function Training. For all baselines, transition and reward models were
implemented as linear classifiers (for the Star MDP), as two-layer perceptions with ReLU activation
and hidden layer dimension 32 (Gridworld, Sepsis, MiniGrid environments), or as 5-layer MLPs
with ReLU activations and hidden sizes [512, 256, 128, 64, 32] for the HalfCheetah environments.
Training was carried out for two or one epochs for the transition and reward models respectively,
with the Adam optimizer (Kingma and Ba, 2014) and a learning rate of 10−3.

We provide a more detailed practical algorithm for Sim-OPRL in Algorithm 3. For both our method
and baselines relying on uncertainty sets (OPRL and PbOP), we estimated uncertainty sets by train-
ing models initialized with different random seeds on different bootstraps of the data (sampling 90%
of the data with replacement). We consider ensembles of size |T | = |R| = 5 for both transition and
reward models. Hyperparameters λT , λR control the degree of pessimism in practice and could be
considered equivalent to adjusting margin parameters βT , βR in our conceptual algorithm proposed
in Section 4. Since the exact values prescribed by our theoretical analysis cannot be estimated, the
user must set these parameters themselves. Hyperparameter optimization in offline RL is a chal-
lenging problem (Levine et al., 2020); for our experiments, we simply set λT = 0.5, λR = 0.1
(StarMDP, Gridworld) and λT = λR = 1 for the Sepsis environment.

Near-Optimal Policy Set and Exploratory Policies. Both Sim-OPRL and PbOP require con-
structing a set of near-optimal policies within a learned model of the environment. Note that the
PbOP algorithm in Chen et al. (2022) proposes to construct the near-optimal policy set by consider-
ing all policies that have a preference greater than 1/2 over all other policies in Π, under a transition
and preference uncertainty bonus. This is infeasible to estimate in practice; we modified the algo-
rithm to allow for practical implementation. The motivation in building the set of plausibly optimal
policies remains the same, but the theoretical guarantees may not hold.

We build Πoffline by maintaining a policy model for all R̃ ∈ R, i.e., each element of the reward
ensemble. Policy models are optimized to maximize returns under the transition model T̂ and the
reward function R̃ − λTuT (Sim-OPRL) or R̃ + λTuT (PbOP). Next, the most exploratory poli-
cies are identified by generating 10 rollouts of each of the candidate policies within the learned
(SimOPRL) or true (PbOP) model. The trajectories (τ1, τ2) maximizing the preference uncertainty
function uPR

(τ1, τ2) are used for preference feedback. In PbOP, the trajectories are then added to
the trajectories buffer and the transition model is retrained for 20 (Star MDP, Gridworld) or 200
steps (Sepsis).

Preference Feedback Collection. Preference labels are provided through the ground-truth reward
function associated with every environment. As stated in Section 4, for computational efficiency, we
sample preferences in batches of 4 (Star MDP, Gridworld) or 100 (Sepsis) to reduce the number of
model updates needed.

Policy Optimization. Policy optimization stages, both in estimating optimal policy sets in Sim-
OPRL and PbOP and in outputting final policies, are carried out exactly through linear programming
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Algorithm 3 Sim-OPRL: Practical Algorithm

Input: Observational trajectories dataset Doffline. Hyperparameters λT , λR.
Output: π̂∗

1: Train an ensemble T of transition models via bootstrapping on the observational data Doffline:

T̂ (·|s, a) = 1

|T |
∑
T̃∈T

T̃ (·|s, a); uT (s, a) = max
T1,T2∈T

|T1(·|s, a)− T2(·|s, a)|1 ·Rmax

2: Dpref ← ∅.
3: for k = 1, ...Np do
4: Estimate optimal offline policy set:

Πoffline = {π | π = argmaxπ∈ΠE(s,a)∼dπ
T̂

[
R̃(s, a)− λTuT (s, a)

]
∀R̃ ∈ R}

5: Identify exploratory policies: π1, π2 = argmaxπ1,π2∈Πoffline
Eτ1∼d

π1
T̂

,τ2∼d
π2
T̂

[uPR
(τ1, τ2)]

6: Rollouts in model: τ1 ∼ dπ1

T̂
, τ2 ∼ dπ2

T̂
.

7: Collect preference label o for (τ1, τ2).
8: Dpref ← Dpref ∪ {(τ1, τ2, o)}.
9: Train an ensembleR of reward models via bootstrapping of the preference data Dpref:

R̂(s, a) =
1

|R|
∑
R̃∈R

R̃(s, a); uR(s, a) = max
R1,R2∈R

|R1(s, a)−R2(s, a)|1

10: end for
11: π̂∗ ← argmaxπ∈ΠE(s,a)∼dπ

T̂
[R̂(s, a)− λRuR(s, a)− λTuT (s, a)]

for the Star MDP and Gridworld using cvxopt (Diamond and Boyd, 2016), based on code from
Lindner et al. (2021), using Proximal Policy Optimization (Schulman et al., 2017) implemented
in stable-baselines3 (Raffin et al., 2021) for the Sepsis and MiniGrid environments, and
Soft Actor-Critic (Haarnoja et al., 2018) for HalfCheetah. In the latter case, after every preference
collection episode, reward and policy models were trained from the checkpoint of the previous
iteration, for only 20 steps to minimize computation.

Baselines and Ablations. We implement both OPRL baselines within our model-based offline
preference-based algorithm described in Section 4. Uncertainty sampling is taking the pair with
maximum preference uncertainty over 45 pairs for every sample, to reduce the load of computing
preference uncertainty over the entire trajectory buffer.

Our ablation study for Figure 2 is conducted as follows. For Sim-OPRL without pessimism in the
output policy, we output the policy that maximizes the value function under the MLE estimate of
the transition and reward function, T̂ and R̂, after preference acquisition. For Sim-OPRL without
pessimism in the simulated rollouts, we estimate the optimal policy set Πoffline in the MLE estimate of
the transition model instead of its pessimistic counterpart. Finally, for Sim-OPRL without optimism
in the simulated rollouts, we generate rollouts from any two policies in Πoffline instead of the most
explorative ones.

D ENVIRONMENT DETAILS

Star MDP. We illustrate the transition dynamics underlying the Star MDP in Figure 5. Transition
probabilities are 0.9 for all depicted solid arrows, and leave the state unchanged otherwise. Other
actions also keep the state unchanged with probability 1. Episodes have length H = 3 and start
from s0. Unless specified otherwise, the offline dataset Doffline consists of 40 trajectories which only
cover states (s0, s1, s3) and (s3, s1, s2).

Preferences collected over samples from the offline dataset learn slowly about the negative reward in
the bottom state, as it is always included in the sampled trajectories. Instead, simulated rollouts can
query a direct comparison between the optimal path and one that includes it. This example illustrates
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Figure 5: Star MDP. Transition probabilities are 0.9 for all solid arrows. Omitted actions or complementary
transitions keep the state unchanged.
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Figure 6: Gridworld environment. Rewards at every state are indicated if non-zero. Transition probabilities
are 0.9. Thick lines indicate an obstacle, through which state transitions have probability zero.

clearly why querying feedback over simulated rollouts achieves better environment returns than over
samples from the offline buffer.

Gridworld. We illustrate the gridworld environment in Figure 6. The environment consists of a
4 × 4 grid with states associated with different rewards, including a negative-reward region in the
top-right corner, a high-reward but unreachable state, and a moderate-reward state at the bottom right
corner. Each episode starts in the top-left corner. Transition probabilities for each of the four actions
(top, left, bottom, right) are 0.9 for the intended direction, and 0.1 for the others; and
action stay remains in the current state with probability 1. Transitions beyond the grid limits or
through obstacles have probability zero, with the remainder of the probability mass for each action
being distributed amongst other directions equally. The offline dataset contains 150 episodes and
the behavioral policy is ϵ-optimal with noise ϵ = 0.1. Episodes have length H = 10.

MiniGrid-FourRooms. We also conduct experiments on the minigrid-fourrooms-v0
D4RL dataset (Fu et al., 2020), ignoring all reward information in the offline dataset. In this en-
vironment, the agent must navigate a maze consisting of four interconnected rooms and reach a
green goal square (Chevalier-Boisvert et al., 2023). Agent and goal squares are randomly placed at
the beginning of every episode.

HalfCheetah-Random. The halfcheetah-random-v2 dataset is also part of the D4RL
benchmark (Fu et al., 2020). Our choice is motivated by Shin et al. (2022) who identify it as a
particularly challenging offline preference-based reinforcement learning task. The dataset consists
of 1 million transitions induced by a random policy in the MuJoCo environment Halfcheetah-v2,
which rewards agents if they move forward. The observation space is 17-dimensional.
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Table 4: Transition dynamics of the sepsis simulator environment (Oberst and Sontag, 2019). Table
adapted from (Tang and Wiens, 2021).

Step Variable Current New Change Variable Affected Effect

1 Antibiotics
- on - Heart Rate high→ normal w.p. 0.5

Systolic Blood Pressure high→ normal w.p. 0.5

on off withdrawn Heart Rate normal→ high w.p. 0.1
Systolic Blood Pressure normal→ high w.p. 0.5

2 Ventilation - on - Oxygen Saturation low→ normal w.p. 0.7

on off withdrawn Oxygen Saturation normal→ low w.p. 0.1

3 Vasodilators

- on -

low→ normal w.p. 0.7 (non-diabetic)
normal→ high w.p. 0.7 (non-diabetic)

Systolic Blood Pressure low→ normal w.p. 0.5 (diabetic)
low→ high w.p. 0.4 (diabetic)
normal→ high w.p. 0.9 (diabetic)

Blood Glucose very low, low→ normal, normal→ high,
high→ very high w.p. 0.5 (diabetic)

on off withdrawn Systolic Blood Pressure

normal→ low w.p. 0.1 (non-diabetic)
high→ normal w.p. 0.1 (non-diabetic)
normal→ low w.p. 0.05 (diabetic)
high→ normal w.p. 0.05 (diabetic)

4 Heart Rate

fluctuate

Vitals spontaneously fluctuate when not affected
5 Systolic Blood Pressure by treatment (either enabled or withdrawn),
6 Oxygen Saturation the level fluctuates ±1 w.p. 0.1, except:
7 Blood Glucose glucose fluctuates ±1 w.p. 0.3 (diabetic).

Sepsis Simulation. The sepsis simulator (Oberst and Sontag, 2019) is a commonly used en-
vironment for medically-motivated RL work (Tang and Wiens, 2021). We use the original au-
thors’ publicly available code: https://github.com/clinicalml/gumbel-max-scm/
tree/sim-v2/sepsisSimDiabetes (MIT license). The state space consists of 1,440 dis-
crete states based on different observational variables (heart rate, blood pressure, oxygen concentra-
tion, glucose, diabetes status). The action space consists of three binary treatment options (antibiotic
administration, vasopressor administration, and mechanical ventilation). The complex transition dy-
namics of the environment determine how each treatment affects the value of each vital sign, and
are summarized in Table 4; these were designed to reflect patients’ physiology (Oberst and Sontag,
2019). The ground truth reward function is sparse and only assigns a positive reward of +1 to sur-
viving patients and a negative reward of −1 if death occurs (3 or more abnormal vitals) during their
stay. The offline trajectories dataset includes 10,000 episodes following an ϵ-optimal policy with
noise ϵ = 0.1 and the episode length is H = 20.

E ADDITIONAL RESULTS

We include additional results in this section.

In Figure 7, we report the accuracy of the transition and preference model achieved for the Star MDP
as we vary the size of optimality of the offline dataset. Accuracy is measured against all possible
state transitions and over 100 pairs of random trajectories (random combinations of the 5 states and
4 actions in a sequence of H = 3). This complements our analysis in Section 7 and fig. 3. We
see a steady improvement in both transition and reward model quality as we increase the amount of
observational data in Figure 7a, which explains the observed dependence of Np on No in Figure 3a.

In Figure 7b, we notice low model performance at both extremes of the x-axis. When the dataset is
fully optimal, we find that all trajectories involve the same sequence of actions and states, so learning
a transition or reward model from this data is challenging. We reach a similar conclusion at the other
end of the spectrum at high density ratios, where the coverage the optimal states reduces. We reach
highest performance for both models at intermediate values, when diversity of the observational data
is high.

Still, it is important to stress that the highest accuracy of both models does not necessarily translate
to the best-performing policy: good performance on the distribution induced by the optimal policy
is more important, as formalized by the concentrability coefficients.
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Figure 7: Transition and preference model accuracy as function of the properties of the observational data
(Star MDP). Preference elicitation is carried out until 10 preferences are queried. Mean and 95% confidence
intervals over 20 experiments. Note that the transition model is the same for the two methods, as they have
access to the same dataset.

Table 5: Sample complexity Np with Sim-OPRL as a function of dataset optimality, to reach a suboptimal-
ity gap of ϵ = 20 over normalized returns for the D4RL HalfCheetah environment. Mean and 95% confidence
interval over 6 experiments.

Offline Dataset OPRL Uniform OPRL Uncertainty Sim-OPRL

HalfCheetah-Random 108 ± 9 71 ± 8 50 ± 10
HalfCheetah-Medium 63 ± 8 49 ± 6 36 ± 8
HalfCheetah-Medium-Expert 47 ± 8 45 ± 6 30 ± 8

Table 6: Policy performance for a fixed preference budget (Np = 30) for different D4RL HalfCheetah
datasets. Normalized environment returns, mean and 95% confidence interval over 6 experiments.

Offline Dataset OPRL Uniform OPRL Uncertainty Sim-OPRL

HalfCheetah-Random 17 ± 7 47 ± 10 49 ± 9
Halfcheetah-Medium 43 ± 6 63 ± 6 69 ± 7
Halfcheetah-Medium-Expert 57 ± 6 72 ± 6 80 ± 6

To complement the analysis with a more complex environment, we also ran different preference
elicitation algorithms on D4RL HalfCheetah datasets of varying optimality. In Table 5, we report the
number of preference samples needed to achieve a target suboptimality with these different datasets.
We reach the same conclusion as above: fewer preferences are needed as the dataset becomes more
optimal.

In Table 6, we report policy performance for a fixed preference budget. With a fixed preference
budget, policies learned from suboptimal observational datasets achieve lower returns, due to the
worse quality of the transition model. Shin et al. (2022) reach similar conclusions when evaluating
policy performance under different OPRL methods (in their Table 2).

F BROADER IMPACT

Better preference elicitation strategies for offline reinforcement learning have the potential to facili-
tate and improve decision-making in real-world safety-critical domains like healthcare or economics,
by reducing reliance on direct environment interaction and reducing human effort in providing feed-
back. Potential downsides could include the amplification of biases in the offline data, potentially
leading to suboptimal or unfair policies. Thorough evaluation is therefore crucial to mitigate this
before deploying models in such real-world applications. In addition, human preferences may not
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be fully captured by binary comparisons. As noted in our conclusion, we hope that future work will
explore richer feedback mechanisms to better model complex decision-making objectives.
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