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Abstract
Several algorithms implemented by language
models have recently been successfully reversed-
engineered. However, these findings have been
concentrated on specific tasks and models, leav-
ing it unclear how universal circuits are across
different settings. In this paper, we study the cir-
cuits implemented by Gemma 2B for solving the
subject-verb agreement task across two different
languages, English and Spanish. We discover that
both circuits are highly consistent, being mainly
driven by a particular attention head writing a
‘subject number’ signal to the last residual stream,
which is read by a small set of neurons in the
final MLP layers. Notably, this subject number
signal is represented as a direction in the residual
stream space, and is language-independent. Fi-
nally, we demonstrate this direction has a causal
effect on the model predictions, effectively flip-
ping the Spanish predicted verb number by inter-
vening with the direction found in English exam-
ples.

1. Introduction
The widespread use of large language models (LLMs;
Brown et al., 2020; Hoffmann et al., 2022; Chowdhery et al.,
2023) highlights the importance of research dedicated to in-
terpreting how these models work internally (Ferrando et al.,
2024), especially to ensure they are safe. Mechanistic inter-
pretability (MI) (Olah, 2022) aims to reverse-engineer the
algorithms implemented by language models. A large set
of MI works have focused on circuit analysis (Räuker et al.,
2023), which locates subsets of components responsible
for a behavior while giving human-understandable expla-
nations of their roles. This research has made progress in
identifying circuits that handle different tasks (Wang et al.,
2023; Heimersheim & Janiak, 2023; Stolfo et al., 2023a;b;
Geva et al., 2023; Hanna et al., 2023). However, it remains
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unclear whether the findings obtained through circuit anal-
ysis transfer to different settings. For instance, if different
models learn similar circuits for solving the same task, or
if models find different solutions for the same task in two
different languages. In this work, we study the latter ques-
tion. Through the lens of the subject-verb agreement (SVA)
task (Linzen et al., 2016; Goldberg, 2019), we study the
main components in Gemma 2B (Gemma Team et al., 2024)
that are responsible across both English and Spanish.

2. Experimental Setup
In our experiments, we use Gemma 2B
model (Gemma Team et al., 2024). This model has
a large vocabulary size (256k tokens), making it particularly
well-suited for circuit analysis, especially when doing
activation patching (Section 3) in a multilingual setting,
since it has a large set of non-English words with a reserved
token. Regarding the dataset, for the English experiments
use the subject-verb agreement (SVA) dataset from Arora
et al. (2024)1, built on top of SyntaxGym (Gauthier et al.,
2020). The dataset consists of contrastive pairs that
differ in the subject number, which agrees with the verb
form continuation. This allows us to create ‘clean’ and
‘corrupted’ versions:

Clean: The executive that embarrassed the manager has

Corrupted: The executives that embarrassed the manager

Singular

Plural (1)

3. Methods
We start searching for a circuit in Gemma 2B for solving
the SVA in English. To do so we use common techniques
in circuit analysis, mainly direct logit attribution, activation
patching, and attention pattern analysis.

Direct Logit Attribution. Every model component adds
a vector f c(x) to the residual stream, and the last residual
stream state gets projected onto the unembedding matrix,
producing the logits distribution. Due to the linearity of
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(a) (b) (c) (d)

Figure 1: English dataset activation patching results on the logit difference metric on (a) the residual streams (b) attention
blocks outputs, (c) MLP outputs, and (d) on attention heads at the last position.

the residual stream, the direct effect of a component to the
logits can be measured by projecting its output onto the
unembedding matrix, f c(x)WU . We can also measure the
direct attribution to the logit difference (DLDA) (Yin &
Neubig, 2022; Wang et al., 2023) of the two possible verb
continuations (g and b):

DLDAc = f c(x̃)WU [:, g]− f c(x̃)WU [:, b]. (2)

Activation Patching. A Transformer LM can be seen
as a directed acyclic graph (DAG) representing a causal
model (Geiger et al., 2021; Pearl, 2009; Vig et al., 2020),
where nodes are model components, and edges represen-
tations. During the forward pass on the corrupted input x
we can intervene on the value of a node, f c(x), or resid-
ual stream state, f l(x) by taking the activation value from
the forward pass on the clean input x̃. This is referred to
as denoising activation patching (Vig et al., 2020; Meng
et al., 2022). We can express the intervention using the
do-operator (Pearl, 2009) as f(x|do(f c(x) = f c(x̃))). Via
a metric m we measure how the prediction changes between
both runs:

APc = m
(
f(x), f(x|do(f c(x) = f c(x̃)))

)
. (3)

We are interested in finding components that increase the
clean verb prediction when patching on the corrupted run.
Thus, a natural choice for the patching metric m is the logit
difference between the clean and the corrupted verbs’ logits.
In the Example 1, this means computing the logit difference
between ‘has’ and ‘have’, and we expect it to increase as we
patch activations from the clean (which includes ‘executive’)
into the corrupted forward pass.

4. English Subject-Verb Agreement Circuit
Locating relevant components and residual stream states.
We perform activation patching on the residual stream states
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Figure 2: Average contribution to the logit difference by
each model component.

across the dataset and show the average logit differences2

in Figure 1 (a). We can see that the noun in the subject
largely impacts the prediction, and patching at its position
in early layers causes the verb prediction to aggressively
change to match its number. Information from the subject
flows towards the last residual stream via the attention block
at layer 13 (Figure 1 (b)), followed by some action from
downstream MLPs at the last position (Figure 1 (c)), espe-
cially MLP at layer 13 (MLP13). We can also observe that
‘that’ and the following verb (‘embarrassed’) get information
from the subject at middle layers. We get a more granular
understanding of the attention layers that seem relevant by
doing activation patching on the output of every attention
head in the last position (Figure 1 (d)). Attention head 7 in
layer 13 (L13H7) has the largest effect on the logit differ-
ence, followed by L17H4. Notably, we also observe a head
(L17H7) that contributes negatively to the logit difference.
In Appendix F we show the average output-value-weighted
heatmaps of these heads, and we see that L13H7 attends
broadly to the context, with a slight focus on ‘what’, while
L17H4 focuses on the subject’s noun. Although attention
blocks at layers 13 and 17 also have large direct effects Fig-
ure 2, most of the direct contribution to the logit difference is

2See in Appendix A the average logit differences.
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Figure 3: Average contribution to the logit difference by
each neuron in MLP13.

Top Promoted Tokens Positive Neuron Activation
‘ are’, ‘are’, ‘were’, ‘ were’, ‘Are’, ‘aren’, ‘ ARE’,
‘ WERE’, ‘ weren’

Top Promoted Tokens Negative Neuron Activation
‘ gardent’, ‘ is’, ‘ has’, ‘ sembrano’, ‘ was’, ‘ continúan’,
‘ appartienment’, ‘ isn’, ‘ hasn’, ‘ sostu’

Table 1: Top promoted tokens by neuron 2069 in MLP13
based on the sign of the neuron.

carried by downstream MLPs, specifically MLP14, MLP15,
MLP16, and most notably MLP13.

Analysis of Neurons. The contribution of MLP13 to the
logit difference is led by a single neuron (2069) (Figure 3).
Recall that Gemma models use gated MLPs, which compute

GMLP(x) =
(
g(xWgate)⊙ xWin︸ ︷︷ ︸

neurons

)
Wout, (4)

where g is the activation function (GeGLU), Wgate,Win ∈
Rd×dmlp read from the residual stream, and the linear com-
bination of the rows of Wout ∈ Rdmlp×d weighted by the
neuron values is added back to the residual stream (see
Appendix E for a visual description). This means that,
unlike standard MLPs, neurons in GMLPs can take arbi-
trarily large positive and negative values. In the case of
neuron 2069 in MLP13, when the neuron positively acti-
vates, their associated neuron weights (row in Wout) write
in the direction of plural verb forms (and suppress singular
forms) (Table 2). On the other hand, on negative activations,
the neuron weights write in the direction of singular verb
forms (and suppresses plural forms). Notably, this is true
for the English and the Spanish verbs in our datasets, which
are present and past tenses of the verbs ‘to be’ and ‘have’,
but we also observe less common non-English plural verb
forms promoted on negative neuron activations. This neuron
seems to read a ‘subject number’ signal, but where does this
signal come from? A candidate is L13H7, which has a large
total effect on the logit difference.

We compute the dot product between the output of atten-
tion head L13H7 at the last position and column 2069
of Win (Win[:, 2069]) across the whole dataset and show

Figure 4: Dot product between the output of attention head
L13H7 and the input weights of neuron 2069 in MLP13.
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Figure 5: Projections of L13H7 outputs onto the top 2 PCs
on English SVA dataset.

the results in Figure 4. When the subject is singular, we
get a negative dot product (activation) and promote singu-
lar verb forms (Table 2). When the subject is plural, we
get positive dot product values and promote plural forms.
We observe a similar pattern in other influential MLP neu-
rons (Appendix C). We further provide evidence of the role
of L13H7 by applying PCA on its outputs in the last resid-
ual stream (Figure 5). The first principal component (PC1)
clearly distinguishes between singular and plural subject ex-
amples. This means that L13H7 writes into a 1-dimensional
subspace where the subject number signal is encoded, from
which downstream neurons read to promote the correct to-
kens.

5. Spanish Subject-Verb Agreement Circuit
To study the subject-verb agreement task in Spanish, we
follow the style of the English dataset, where we first prompt
GPT4 (OpenAI et al., 2024) to generate verbs and nouns,
and remove those words tokenized into multiple subwords.
Then, we build similar examples to the ones in the English
dataset. An example of a contrastive pair is:

Clean: El ingeniero que ayudó al cantante era

Corrupted: Los ingenieros que ayudaron al cantante

Singular

Plural

(5)

Spanish circuit is consistent with the English circuit.
With activation patching we see a similar pattern to that

3
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(a) (b) (c) (d)
Figure 6: Spanish dataset activation patching results on the logit difference metric on (a) the residual streams (b) attention
blocks outputs, (c) MLP outputs, and (d) on attention heads at the last position.
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Figure 7: Projections of L13H7 outputs onto the top 2 PCs
on Spanish SVA dataset.

of the English dataset. Information from the subject flows
to the last residual stream at layer 13, where the attention
block shows a large effect (Figure 6). Also similarly, down-
stream MLPs are relevant for correctly solving the task, with
MLP13 showing the highest total effect (Figure 6 (b)), while
MLP15, MLP16 and MLP17 having large direct effects on
the logit difference. The contribution of MLP17 is notably
greater than in the English dataset (Figure 2), where we
observe non-English specific neurons (Appendix D). Acti-
vation patching on individual attention heads (Figure 6 (d))
shows that, as in the English dataset, attention heads L13H7
and L17H4 have a positive influence on the correct verb
form, while L17H7 influences negatively.

Activation Steering. In both languages, the same atten-
tion head (L13H7) composes with specific neurons in down-
stream MLPs that are responsible for the correct verb form
prediction, suggesting that this head writes a ‘subject num-
ber’ signal, which is found via PC1 (Figures 5 and 7). Here,
we study whether this direction, found in 50 English exam-
ples (PC1English) has a causal effect on the model predictions,
also on Spanish sentences. Specifically, we do activation
steering (Turner et al., 2023; Li et al., 2023; Tigges et al.,

(a) (b)

Figure 8: Average logit difference in (a) singular subject
and (b) plural subject examples, before and after steering
the prediction with PC1English.

2023) on the attention head output at the last position (n)

Attn13,7n = Attn13,7
n ± αPC1English, (6)

where the coefficient α scales the unit norm PC1English vector
to match Attn13,7

n norm. Results show that adding PC1English
successfully flips the Spanish verb number prediction to plu-
ral (Figure 8 (a)) on examples with singular subject, and
that subtracting PC1English flips the Spanish plural number
prediction to singular. Furthermore, we observe that the
top predicted tokens other than verbs remain mostly un-
changed (see example in Appendix G).

6. Conclusion
In this work, we study how Gemma 2B solves the subject-
verb agreement task in two different languages, English
and Spanish. Through activation patching and direct logit
attribution we find that both languages rely on circuits that
are highly consistent. Moreover, we provide evidence of an
attention head (L13H7) writing a ‘subject number’ signal as
a direction from which downstream neurons read to promote
the correct verb number continuation. Finally, we show this
direction has a causal effect, being able to flip the predicted
verb number across languages.

4



Subject-verb Agreement in Gemma 2B: An initial investigation on the similarity of circuits across languages

References
Arora, A., Jurafsky, D., and Potts, C. Causalgym:

Benchmarking causal interpretability methods on lin-
guistic tasks, 2024. URL https://arxiv.org/abs/
2402.12560.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S.,
Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polo-
zov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz,
M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K.,
Eck, D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scal-
ing language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1–113, 2023. URL
http://jmlr.org/papers/v24/22-1144.html.

Ferrando, J., Sarti, G., Bisazza, A., and Costa-jussà, M. R.
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A. Logit Differences Clean and Corrupted
prompts

Figure 9: Logit Difference on clean and corrupted inputs.
English dataset.

Figure 10: Logit Difference on clean and corrupted inputs.
Spanish dataset.

B. Logit Difference by Neurons in MLPs
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Figure 11: Average contribution to the logit difference by
each neuron in MLP15.
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Figure 12: Average contribution to the logit difference by
each neuron in MLP16.
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Figure 13: Average contribution to the logit difference by
each neuron in MLP17.

C. Attention Head L13H7 Composition with
Downstream Neurons

Figure 14: Values of the dot product between the output of
attention head L13H7 and the input weights of neuron 971
in MLP16.
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Figure 15: Values of the dot product between the output of
attention head L13H7 and the input weights of neuron 4408
in MLP16.

Figure 16: Values of the dot product between the output of
attention head L13H7 and the input weights of neuron 7540
in MLP16.

D. Neuron 1138 in MLP17
Neuron 1138 in MLP17 only activates on sentences with
plural subjects. This can be seen in Figure 18, the dot-
product of Wgate[:, 1138] with L13H7 output is negative
for singular subjects, meaning that it doesn’t activate. In
contrast, on plural subjects the dot product of Wgate[:, 1138]
and L13H7 output is positive, and Win[:, 1138] is negative,
meaning that the neurons fires negatively. In Table 2 we see
that the promoted tokens in this case are plural verb forms
of multiple non-English languages.

Figure 17: Values of the dot product between the output of
attention head L13H7 and the input weights Win of neuron
1138 in MLP17.

Figure 18: Values of the dot product between the output of
attention head L13H7 and the input weights Wgate of neuron
1138 in MLP17.

Top Promoted Tokens Negative Neuron Activation
‘abbiano’, ‘ avevano’, ‘ sembrano’, ‘ avrebbero’, ‘ continúan’,
‘ fossero’, ‘ possano’, ‘ poseen’, ‘ tenham’, ‘ terão’
‘ ont’, ‘ constituyen’, ‘ lograron’

Table 2: Top promoted tokens by neuron 1138 in MLP17
based on negative neuron activations.

E. MLP and Gated MLP (GMLP)

MLP

Gated MLP

Figure 19: A comparison between the operations performed
by the standard MLP and the Gated MLP (GMLP) found in
Gemma models.

F. Attention Patterns Main Heads
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Figure 20: L13H7 average attention patterns (output-value
weighted) across the English dataset.

Figure 21: L17H4 Average attention patterns (output-value
weighted) across the English dataset.

G. Example Top Predicted Tokens in Steering
Experiment

Figure 22: L13H7 average attention patterns (output-value
weighted) across the Spanish dataset.

Figure 23: L17H4 Average attention patterns (output-value
weighted) across the English dataset.

Top 10 Predicted Tokens Before Steering
’ se’, ’ de’, ’ en’, ’ era’, ’ y’, ’ del’, ’ ’, ’,’, ’ es’, ’ fue’

Top 10 Predicted Tokens After Steering
’ de’, ’ se’, ’ en’, ’ y’, ’ ’, ’ del’, ’ son’, ’,’, ’ no’, ’ eran’

Table 3: Top 10 Predicted Tokens before and after steering
a spanish example. In bold are shown spanish forms of the
verb ‘to be’.
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