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Abstract

As one of the fundamental video tasks in computer vision, Open-Vocabulary Action1

Recognition (OVAR) has recently gained increasing attention, with the develop-2

ment of vision-language pre-trainings. To enable open-vocabulary generalization,3

existing methods formulate vanilla OVAR to evaluate the embedding similarity4

between visual samples and text descriptions. However, one crucial issue is com-5

pletely ignored: the text descriptions given by users may be noisy, e.g., misspellings6

and typos, limiting the real-world practicality. To fill the research gap, this paper7

analyzes the noise rate/type in text descriptions by full statistics of manual spelling;8

then reveals the poor robustness of existing methods; and finally rethinks to study9

a practical task: noisy OVAR. One novel DENOISER framework, covering two10

parts: generation and discrimination, is further proposed for solution. Concretely,11

the generative part denoises noisy text descriptions via a decoding process, i.e.,12

proposes text candidates, then utilizes inter-modal and intra-modal information to13

vote for the best. At the discriminative part, we use vanilla OVAR models to assign14

visual samples to text descriptions, injecting more semantics. For optimization, we15

alternately iterate between generative-discriminative parts for progressive refine-16

ments. The denoised text descriptions help OVAR models classify visual samples17

more accurately; in return, assigned visual samples help better denoising. We carry18

out extensive experiments to show our superior robustness, and thorough ablations19

to dissect the effectiveness of each component.20

1 Introduction21

Action recognition is one of the fundamental tasks in computer vision that involves classifying videos22

into meaningful semantics. Despite huge progress that has been made, existing researches focus more23

on closed-set scenarios, where action classes remain constant during training and inference. Such24

scenarios are an oversimplification of real life, and thus limiting their practical application. Recently,25

another line of research considers one more challenging scenario, namely open-vocabulary action26

recognition (OVAR), and receives increasing attention.27

OVAR allows users to give free texts to describe action classes, and the model needs to match novel28

(unseen) text descriptions to videos with similar semantics. To tackle OVAR task, Vision-Language29

Alignment (VLA) paradigm [41, 14, 57] provides one preliminary but popular idea, i.e., measuring30

the embedding similarity between text descriptions and video embeddings. Following this paradigm,31

recent works focus on minor improvements, e.g., better align vision-language modalities [16, 49, 62].32

Although promising, these works all maintain one unrealistic assumption in real-world scenarios, i.e.,33

the given text descriptions are absolutely clean/accurate. The concrete form is that they evaluate open-34

vocabulary performance by re-partitioning closed-set datasets in which text descriptions of classes are35

fully human-checked. But in fact, under real-world OVAR, novel text descriptions provided by users36

are sometimes noisy. Character misspellings (typos, missing, tense error) are inevitable [43, 25] in37
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Figure 1: Left: For open-vocabulary action recognition (OVAR), existing researches neglect an
essential aspect: the text descriptions provided by users may be noisy (e.g., misspelling and typos),
resulting in potential classification errors and limiting the real-world practicality. Right: Rethinking
the robustness for popular OVAR methods [49, 62]. On various datasets, they exhibit high sensitivity
to text noises. Besides, as the noise level increases, the performance degrades significantly.

thousands of descriptions, since users often don’t double-check, as well as differences in user habits38

and diversity of scenarios (Fig. 1 Left).39

We are hence motivated to fill the research gap of noisy text descriptions in OVAR. We analyze the40

noise rate/type in real-world corpora [26, 45, 3]. We also make comprehensive simulations of text41

noises, following NLP literature [42, 47]. Fig. 1 Right empirically evaluates noise hazards for existing42

OVAR methods [16, 49, 62]. One can find that just a small amount of noise lowers recognition43

accuracy by a large margin, implying quite poor robustness.44

To spur the community to deal with the noisy OVAR task, being necessary and practical, this paper45

bravely faces the challenges. One vanilla idea is using a separate language model (e.g., GPT [1]) to46

correct noisy class descriptions, and then adapt the off-the-shelf vision-language paradigm [41, 14, 57].47

However, there exist two nettlesome issues. 1) Textual Ambiguity. One text description is usually a few48

compact words, with vague semantics, e.g., for the noisy text “boird”, there could be multiple cleaned49

candidates in terms of spelling, such as “bird” and “board”. This short text lacks context, making50

phrase correction difficult for uni-modal language models. 2) Cascaded Errors. Text correction and51

action recognition are independently completed, without sharing knowledge. The noisy output of52

text correction is cascaded to the input of action recognition, resulting in continuous propagation of53

errors. To address these issues, we design one multi-modal robust framework: DENOISER.54

Our first insight is to treat denoising of text descriptions as one generative task: given noisy text55

descriptions, decode the clean ones, by considering text-vision information to help denoising. Specif-56

ically, it consists of three components: text proposals, inter-modal weighting, and intra-modal57

weighting. We first propose potential text candidates based on spelling similarity to limit the decoding58

space. Then, two types of weighting are combined to decide the best candidate, that is, inter-modal59

weighting uses assigned visual samples to vote; while intra-modal weighting relies solely on text60

information. Our other insight is employing existing OVAR models as off-the-shelf tools to assign61

visual samples at discriminative step. Such tools have been proven to handle clean OVAR tasks well,62

also making our framework easier to adapt to previous models. For full usage of information in63

the same semantics, we then assign detail-rich visual samples to clarify the semantic ambiguity of64

compact text descriptions. To further avoid cascaded errors, we propose a solution of alternating65

iterations, to connect generative and discriminative steps. By progressive refinement, denoised text66

descriptions help OVAR models to match visual samples more accurately; assigned visual samples67

help better denoising. Under multiple iterations, denoising results and OVAR are both better.68

Our main contributions are summarized as follows:69

•We pioneer to explore noisy text descriptions for open-vocabulary action recognition (OVAR): first70

fully analyze the noise rate/type in text descriptions by extensive statistics in real-world corpora; then71

evaluate the robustness for existing methods; finally rethink to study one practical task: noisy OVAR.72

•We propose a novel DENOISER framework to tackle the noisy OVAR task, by alternately optimizing73

generative-discriminative steps. The generative step leverages knowledge of vision-text alignment to74

denoises noisy text descriptions, in the form of progressive decoding; while the discriminative step75

assigns visual samples to text descriptions for open-vocabulary action recognition.76
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•We carry out extensive experiments to show the superior robustness of DENOISER against noisy77

text descriptions, under various noises and datasets. Great performance improvements are achieved78

over existing competitors. Thorough ablations are studied to show effectiveness of every design.79

2 Related Work80

Vision-Language-Audio Pre-training (VLP) aims to jointly optimize multi-modal embeddings with81

large-scale web data, e.g., CLIP [41], ALIGN [14], Florence [57], FILIP [55], VideoCLIP [52], and82

LiT [58]. In architectures, VLP uses independent encoders for vision, text, and audio, followed by83

cross-modal fusion. For optimization, contrastive learning [5, 61] and cross-modal matching [7, 29]84

are mainstream, covering self supervision [32, 34], weak supervision [28, 8] and partial supervi-85

sion [19, 33]. VLP benefits various applications: image-text retrieval [6, 18], video understand-86

ing [23, 20, 22, 21], action recognition [16, 60], visual grounding [32, 56, 31], AIGC [4, 36].87

Open-Vocabulary Concept Learning aims to understand vision, where conceptual semantics are88

described by free/arbitrary text descriptions. It is characterized by using vision-language pre-trainings89

to match text descriptions and visual samples in semantic space. Its typical evaluation metric is90

the downstream zero-shot performance, i.e., classify unseen classes [49, 62, 17, 38, 54, 48, 37]. To91

achieve the evaluation, most methods re-partition closed-set datasets.[49] Although there is some92

plausibility, such re-partition implicitly makes an unrealistic assumption: text descriptions of unseen93

classes are human-checked, and thus absolutely clean, limiting real-world application. We pioneer94

taking noises from text descriptions (misspellings and typos) into consideration. By adding real-world95

noise for the above methods, we reveal their poor robustness, and design DENOISER for solution.96

Robustness of Language Models is extensively studied by adversarial attack-defense techniques [50,97

59]. When text inputs are facing noises, defense methods correct the outputs, dividing into: detection-98

purification [63, 39], as well as adversarial training [53, 9, 35, 30, 51]. The former methods detect99

and correct the corrupted part of a text phrase. The latter trains a model on adversarial samples to100

increase its direct noise-against ability. Overall, all these methods employ solely textual information101

for robustness in pure NLP tasks. We differ from them by considering robustness in the context of102

multi-modal scenarios and by employing multi-modal information to better assist text denoising.103

3 Method104

We explore noisy text descriptions for open-vocabulary action recognition. In Sec 3.1, we introduce105

noisy open-vocabulary setting; in Sec 3.2, we detail our DENOISER framework, covering generative106

- discriminative sub-parts; in Sec 3.3, we report the accompanying optimization strategy.107

3.1 Preliminary & Rethinking108

Open-Vocabulary Action Recognition (OVAR). For a video dataset V = (vj ∈ RT×H×W×3)Nj ,109

OVAR aims to train one model ΦOVAR that matches target videos with arbitrary text description T .110

Ytrain = ΦOVAR(Vtrain , T train) ∈ RCbase , Ytest = ΦOVAR(Vtest , T test) ∈ RCnovel , (1)

where Y refers to the matching label between V and T . During training, (video, text, matching label)111

triplets from the base semantic-classes are provided; while during testing, the model is evaluated112

on the novel semantic-classes. Note that, the semantic-classes between training (Cbase) and testing113

(Cnovel) are disjoint, i.e., Cbase ∩ Cnovel = ∅.114

Vision-Language Alignment (VLA). To enable open-vocabulary capability, recent OVAR stud-115

ies [16, 49, 62, 40] embrace vision-language pre-trainings (VLPs), for their notable ability in cross-116

modal alignment. Specifically, OVAR could be achieved by measuring the embedding similarity117

between text descriptions T and video samples V , which is formally formulated as:118

Y = σ(Fv ∗ Ft), Fv = Φpool(Φvis(V)) ∈ RN×D, Ft = Φtxt(T ) ∈ RC×D. (2)

where σ refers to the softmax activation, Φpool is the spatio-temporal pooling, Φvis and Φtxt are119

visual and textual encoders of VLPs, D is the embedding dimension.120

Noisy Text Descriptions in OVAR. Although great progress has been made, the VLA paradigm121

suffers from an unrealistic assumption, i.e., that text descriptions are absolutely clean/accurate,122
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Figure 2: Framework Overview. DENOISER is composed of one generative part Ψgene and one
discriminative part Ψdisc. Ψgene views denoising text descriptions as a decoding process Ti−1 → Ti.
We first propose text candidates Φprop for Ti−1 based on spelling similarity; then choose the best
candidate by inter-modal weighting Φinter and intra-modal weighting Φintra. Φinter uses vision-text
information, while Φintra relies solely on texts. Ψdisc assigns text semantics to visual samples, then
only visual samples with the same semantics can vote for text candidates. We optimize alternatively
between generative and discriminative steps to tackle noisy OVAR.

limiting the practicality in reality. Actually, the diversity of users and scenarios can easily cause123

text descriptions given to be somewhat noisy, especially for unseen semantic-classes, due to their124

enormous degree of freedom. Formally, for one text description with n words, the clean/noisy125

versions T /T ′ are:126

T ′ = (t′1, · · · , t′n) = Ψnoise(T ; p), T = (t1, · · · , tn). (3)

where ti is the i-th word of T .Ψnoise refers to noise contamination in reality, e.g., inserting, substitut-127

ing and deleting characters with probability p, following [42, 47]. Since these three atomic operations128

defined in Levenshtein edit distance D are of distance 1, noise rate p can also be deduced by:129

p =
D(T , T ′)

max(length of T , length of T ′)
(4)

As a result, the noisy OVAR task can be formulated as: given V and T ′, the model is expected to130

maximize the accuracy of action recognition, and even recovering T ′ to T .131

Robustness of Existing Methods. Fig. 1 evaluates for typical OVAR studies [49, 62], across three132

public datasets. In terms of Top-1 classification accuracy, existing methods are rather sensitive to133

noise and show one trend: the larger the noise, the more significant the performance degradation134

(please see quantitative experiments in Tab. 2). Such poor robustness to the noisy OVAR task, proves135

excessive idealization of existing studies and also motivates us to fill the research gap.136

3.2 DENOISER: One Robust OVAR Framework137

Motivation. Given the complexity of noisy OVAR, we here divide it into two sub-steps: denoising of138

text descriptions, and then vanilla OVAR. The former is viewed as one generative decoding form, by139

considering both vision-text information for progressive denoising. While the latter is in one natural140

discriminative form, by assigning text descriptions to video samples. For the joint optimization of141

these two sub-steps, we iterate alternately between generative and discriminative forms. As a result,142

our DENOISER framework progressively tackles the noisy OVAR task.143
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Framework. As shown in Fig. 2, our DENOISER framework covers two components: generative144

sub-step Ψgene and discriminative sub-step Ψdisc. For Ψgene, we iteratively refine text descriptions145

by one decoding process, that is, (T0, T1, · · · , Tn), where n is the index of decoding steps. Upon146

finishing step i, we will have Ti = (t1, · · · , ti, t′i+1, · · · , t′n), where t refers to the decoded version147

of t, meaning that the i-th word of text descriptions is decoded at step i. We start with T0 = T ′, and148

finish at Tn to ensure that all words are denoised. While for Ψdisc, we find it identical to vanilla OVAR149

task and thus leveraging the VLA pipeline [16, 49] for help, which is off-the-shelf and well-studied.150

Formally, our DENOISER framework tackles noisy OVAR as follows:151

Ti = Ψgene(Ti−1,Yi−1,V), Yi−1 = Ψdisc(Ti−1,V) = ΦOVAR(Ti−1,V). (5)

At the discriminative step, we calculate the matching labelYi−1 to make coarse semantic classification152

of visual samples, i.e., assign Ti−1 to V . At the generative step, we first propose K text candidates153

Φprop(Ti−1) for Ti base on Ti−1 to limit the decoding space. Then, to vote for the best candidate, we154

design two novel modules, namely inter-modal weighting Φinter and intra-modal weighting Φintra.155

Here, Φinter uses vision information V , while Φintra relies on text information Ti−1.156

We alternate between the generative and discriminative steps to optimize the decoding result step by157

step. Please find in Algorithm 1 for comprehensive details.158

3.3 Optimization for the DENOISER Framework159

Discriminative Step consists in calculating cross-modal matching labels Y using Ψdisc. Intuitively,160

visual samples Vc whose labels Y are assigned to semantic-class c, i.e. argmaxY = c, are those who161

could help decode Tc,i most efficiently. On the contrary, visual samples from other semantic-classes162

may have few connections with the current class and thus provide no meaningful aid. Here, we find163

this process is identical to vanilla OVAR, and hence employs ΦOVAR as Ψdisc. We theoretically164

prove in the Appendix that, Vc is the best set of visual samples to choose from. With Vc defined and165

argmaxY = c, Ψgene decodes text descriptions Tc,i for each semantic-class c:166

Ψgene(Tc,i−1,Y,V) = Ψgene(Tc,i−1,Vc) = argmax
Tc,i

p(Tc,i|Tc,i−1,Vc). (6)

Recall tc,i is the i-th word to be decoded, and Tc,i−1 is from last decoding, with the first i − 1167

words decoded. As we decode word-by-word, choosing the best Tc,i is exactly choosing the best tc,i,168

i.e. argmaxTc,i
p(Tc,i|Tc,i−1,Vc) = argmaxtc,i p(tc,i|Tc,i−1,Vc), as we do in generative step.169

Generative Step here consists in, for each semantic-class c, choosing the best tc,i that maximizes170

p(tc,i|Tc,i−1,Vc). With p(Tc,i−1,Vc) and p(Vc) same for all possible tc,i, we make detailed deriva-171

tions in the Appendix to show that:172

p(tc,i|Tc,i−1,Vc) ∝ p(tc,i, Tc,i−1,Vc) ∝
∏

vj∈Vc

p(tc,i|vj)p(Tc,i−1|tc,i, vj). (7)

Here, the error model p(Tc,i−1|tc,i, vj) evaluates how tc,i may be misspelled as t′c,i, since the i-th173

word in Tc,i−1 is still noisy and not decoded. Knowing that errors in text descriptions are independent174

of visual samples, it reduces to uni-modal p(Tc,i−1|tc,i). As the error that one may make given the175

correct text is harder to model while the reverse is much easier, we let p(Tc,i−1|tc,i) ∝ p(tc,i|Tc,i−1).176

Please refer to detailed derivations in the Appendix. As a result, our final objective is:177

p(tc,i|Tc,i−1)
∏

vj∈Vc

p(tc,i|vj) = Φintra

∏
vj∈Vc

Φinter. (8)

Text Proposals consists in proposing K candidates {tki }k for ti with the lowest Levenshtein Edit178

Distance D(·, t′i) (a metric of spelling similarity). By replacing original noisy word t′i in T k
i−1 with179

{tki }k, they form Φprop(Ti−1) = T k
i = (t1, · · · , ti−1, t

k
i , t

′
i+1, · · · , t′n), the K candidates for Ti.180

The benefit of text proposals is to reduce computing complexity. Since text embeddings are quantized181

in the semantic space, the search is limited to proposed candidates, rather than in the entire space.182

Inter-modal Weighting Φinter = p(tc,i|vj), vj ∈ Vc relies on vision samples from semantic-class c183

to determine the best tc,i for the next iteration. Concretely, we model the probability of being chosen184
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Algorithm 1 DENOISER: Robust Open-Vocabulary Action Recognition

Require: noisy text descriptions T ′, visual samples V , iteration number n, temperature λ, candidate
number K, edit distance D, open-vocabulary model ΦOVAR

T0 ← T ′

for i = 1, 2, · · · , n do
for c = 1, 2, · · · , C do ▷ Text Proposals

t′c,i is the i-th word of Tc,i−1, which is noisy and not yet decoded
Select from corpus, K candidates {tkc,i}k with the smallest D with t′c,i
Replace t′c,i with {tkc,i}k, forming {T k

c,i}k
end for
for j = 1, 2, · · · , |V| do ▷ Discriminative Step

c← argmax
c

max
k

exp(S(vj ,T k
c,i))∑

k′ exp(S(vj ,T k′
c,i))

Assign vj to class c, vj ∈ Vc
end for
for c = 1, 2, · · · , C do ▷ Generative Step

Φk
intra ←

exp(−D(tkc,i,t
′
c,i)/λ)∑

k′ exp(−D(tk
′

c,i,t
′
c,i)/λ)

▷ Intra-Modal Weighting

Φk
inter ←

∏
vj∈Vc

exp(S(vj ,T k
c,i))∑

k′ exp(S(vj ,T k′
c,i))

▷ Inter-Modal Weighting

Tc,i ← T k
c,i, k = argmaxk Φ

k
intra × Φk

inter
end for

end for

for each proposed candidate to be:185

P(tc,i = tkc,i|vj) = P(Tc,i = T k
c,i|vj) =

exp(S(vj , T k
c,i))∑

k′ exp(S(vj , T k′
c,i ))

, vj ∈ Vc. (9)

where S(·, ·) is the cosine similarity between video-text embeddings, both encoded by ΦOVAR. The186

intuition is that the more unanimously visual samples agree on candidate T k
c,i, the more likely it is the187

text descriptions corresponding to semantic-class c. Besides, by letting visual samples vote on T k
c,i188

instead of tkc,i, we take into consideration not only the current word tc,i but also context implicitly.189

Intra-modal Weighting Φintra = p(tc,i|Tc,i−1) relies solely on text information to decide the best tc,i190

for next iteration. Although Φintra may be solved by uni-modal spell-checkers [15] or large language191

models [1], we here design a simple model by considering only spelling similarity (ignore contexts),192

to save computing costs. That is, choose tc,i depending solely on t′c,i instead of on entire Tc,i−1:193

P(tc,i = tkc,i|Tc,i−1) = P(tc,i = tkc,i|t′c,i) =
exp(−D(tkc,i, t′c,i)/λ)∑
k′ exp(−D(tk′

c,i, t
′
c,i)/λ)

. (10)

The intuition is that, the more similar a word candidate tkc,i is, compared to the noisy word t′c,i, the194

more likely it is the corresponding denoised word. Here, we introduce one temperature parameter λ to195

balance Φintra and Φinter. A larger λ indicates that different edit distance gives similar probabilities,196

meaning that we rely more on visual samples for decision, and vice versa.197

4 Experiments198

Typical Models for Vanilla OVAR. To illustrate the generalizability of our framework, we leverage199

two typical models from the VLA pipeline as ΦOVAR, that is, ActionCLIP [49] and XCLIP [62].200

These two models adopt hand-crafted prompts and visual-conditioned prompt tuning, respectively.201

Under both models, we choose ViT-B/16-32F as the network backbones, for simplicity.202

Datasets. HMDB51 [26] contains 7k videos covering 51 action categories. UCF101 [45] contains203

13k videos spanning 101 action categories. Kinetics700 [3] (K700) is simply an extension of K400,204

with around 650k video clips sourced from YouTube. To partition these datasets for open-vocabulary205

action recognition, this paper follows the standard consensus [49, 62], for the sake of fairness.206

6



Figure 3: Statistics for Noises in Reality.
Text noises may be classified into 4 types: in-
serting, substituting, swapping, and deleting
characters.[2] In terms of edit distance, based on
TOEFL-Spell dataset[10], most of the text noises
have an edit distance = 1 compared to the clean
version. Nevertheless, the distribution tends to
be positively skewed towards larger noise.

Insertion
14%

Substitution
37%

Deletion
33%

Swap
16%

NOISE TYPE

=1
83%

=2
13%

=3
3%

>3
1%

EDIT DISTANCE

Table 1: Comparisons between Various Competitors. Using ActionCLIP [49] as ΦOVAR while
evaluating on UCF101, we compare with statistical text spell-checkers (PySpellChecker [15]), neural
based ones (Bert from NeuSpell) [13], and GPT 3.5 [1]. Our method remarkably outperforms others
in terms of Top-1 classification accuracy, and semantic similarity of recovered text descriptions.

Noise Type Noise Rate Competitors Top-1 Acc Label Acc Semantic Similarity

– 0% Upper Bound 66.3 100 100

Real ∼5.52%

GPT 3.5 [1] 61.2±1.4 74.7±1.9 97.1±0.4

Bert (NeuSpell) [13] 56.0±1.1 64.7±2.0 94.5±0.4

PySpellChecker [15] 59.9±1.2 79.6±1.6 96.7±0.3

Ours 61.5±0.7 82.3±1.6 97.2±0.3

Simulated

5%

GPT 3.5 [1] 59.7±1.2 47.6±3.1 95.9±0.4

Bert (NeuSpell) [13] 56.6±0.5 66.2±2.3 94.6±0.4

PySpellChecker [15] 60.9±1.1 82.5±2.9 97.1±0.4

Ours 63.8±0.7 86.4±2.3 97.7±0.2

10%

GPT 3.5 [1] 58.5±1.3 51.6±2.3 95.8±0.3

Bert (NeuSpell) [13] 51.0±0.5 50.4±3.6 91.6±0.6

PySpellChecker [15] 55.7±1.1 69.3±1.5 94.8±0.3

Ours 61.2±0.8 75.9±1.9 96.4±0.3

Metric. We use three metrics for full evaluations from multiple perspectives. Top-1 Acc refers to207

the top-1 classification accuracy of noisy open-vocabulary action recognition. Label Acc counts the208

percentage of denoised text descriptions that match exactly with ground truth. Semantic Similarity209

calculates the cosine similarity of embeddings, between denoised and clean text descriptions. Label210

Acc and Semantic Similarity measure how well noisy text descriptions are recovered.211

Implementations. We set the proposal number K = 10. Intra-modal weighting and inter-modal212

weighting are both used to determine the best candidate. Temperature λ follows a linear schedule213

from 0.01 to 1. We use the same corpus as in PySpellChecker, which contains 70317 English words,214

for text proposals. For typical OVAR methods [49, 62], we choose the ViT-B/16-32F checkpoint215

pretrained on K400 [24] to evaluate their zero-shot robustness on HMDB51 [27], UCF101 [46] and216

K700 [44]. Since K700 and K400 have overlapped categories, we exclude them when evaluating on217

K700. For UCF101, we use the separated lowercase text label. All ablation studies are conducted on218

UCF101 under 20% noise. For statistical significance, We do each simulation 10 times and report the219

mean and confidence interval of 95%. All experiments are done using a single RTX 3090.220

4.1 Statistics on Noise Type/Rate for Text Descriptions221

Real Noise. We adopt two large-scale corpora [11, 10] of misspellings to analyze noise type in text222

descriptions. As shown in Fig. 3, the conclusion is similar to the NLP community [42, 47], i.e., three223

atomic types of noise are inserting, substituting, and deleting text characters. More complicated noise224

patterns, e.g. swaping, can be constructed by mixing atomic noise types. Then, following previous225

literature, we quantify noise rate through Levenshtein Edit Distance, a generally accepted metric,226

to calculate the occurrence number of atomic noise types. Specifically, GitHub Typo Corpus [11]227

contains over 350k edits of typos from GitHub. The average noise rate (per sentence) is 3.3%.228

Nevertheless, the distribution is highly positively skewed (skewness = 2.9). For the worst 5% cases,229

the noise rate (per sentence) is larger than 9.4%. TOEFL-Spell Corpus [10] samples essays written230

by candidates from various language backgrounds in TOEFL® iBT test. There are, on average, 6.9231

spelling mistakes per essay. For misspelled words, the noise rate (per word) is on average 16.0%.232
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Table 2: Comparison Across Datasets and Models. On three standard datasets, facing multiple
noise types (real or simulated), and under various noise rates, our DENOISER consistently improves
the performance for noisy OVAR, regardless of underlying OVAR methods ΦOVAR.

Dataset Noise Type Noise Rate
ΦOVAR: Typical Models for Vanilla OVAR task

ActionCLIP [49] XCLIP [62]
w/o Ours w Ours w/o Ours w Ours

UCF101

Upper Bound 66.3 68.6
Real ∼5.52% 54.0±2.3 61.5±0.7 53.8±2.7 63.4±0.9

Simulated 5% 54.9±1.8 63.2±0.7 55.6±2.2 64.2±1.4

10% 47.3±1.4 61.2±1.2 46.4±1.3 62.9±2.3

HMDB51

Upper Bound 46.2 45.0
Real ∼6.71% 37.6±1.6 40.0±1.4 35.3±1.5 38.4±1.4

Simulated 5% 39.4±1.4 41.3±1.4 37.5±1.8 39.7±1.0

10% 35.2±2.3 39.6±1.4 31.8±2.2 37.3±1.5

K700

Upper Bound 40.2 49.3
Real ∼5.47% 30.8±0.51 35.9±0.4 35.6±0.6 43.5±0.7

Simulated 5% 31.5±0.5 36.8±0.3 36.7±0.9 44.1±0.6

10% 25.4±0.8 35.3±0.5 27.5±0.7 41.8±0.9

Noise Scenarios. In the "Simulated" noise type, we mix three atomic noises: insertion, substitution,233

and deletion. Concretely, for each character, we perturb it with probability p. For each perturbation,234

it will be insertion, substitution, and deletion with equal probability. To further ensure real-world235

generalizability, we ask GPT3.5 to give examples of perturbation according to real-world scenarios.236

We mix them into simulated noises. Noise rate p of the "Real" noise type is estimated with Eq. (3).237

4.2 Comparison with State-of-the-art Methods238

Comparison to Competitors. Tab. 1 compares from three axes: Top-1 Acc of ΦOVAR after correction,239

Label Acc and Semantic Similarity. PySpellChecker is a uni-modal statistical model that corrects240

each word by edit distance and appearance frequency. Bert (NeuSpell) [13] employs a uni-modal241

Bert-based model to translate noisy text descriptions into clean ones. We also ask GPT 3.5 to denoise242

text descriptions using the prompt “The following words may contain spelling errors by deleting,243

inserting, and substituting letters. You are a corrector of spelling errors. Give only the answer244

without explication. What is the correct spelling of the action of <noisy text description>?”. Our245

method outperforms all competitors by large margins, which is impressive because our method is246

unsupervised without prior knowledge other than those contained in the OVAR model. Note that the247

output of GPT 3.5 tends to be unstable depending on prompts, which requires manual cleaning to248

remove irrelevant parts contained in the output, thus impeding real-world usage.249

Comparisons Across Datasets/Models. Tab. 2 compares Top-1 Acc to further reveal our solution is250

scalable/generalizable. Under various noise rates, our model is robust to achieve huge improvements.251

In terms of scalability across models, our method is not only applicable to hand-crafted prompts as in252

ActionCLIP but also to learnable visual-conditioned prompts as in XCLIP. Furthermore, we notice253

that, whenever XCLIP outperforms ActionCLIP, our method also yields a better result. A better254

visual encoder and well-tuned prompt may significantly increase our performance, showing that our255

method’s upper limit could become higher, as the community continues to train better OVAR models.256

4.3 Ablation Study257

Inter-modal Weighting Φinter & Intra-modal Weighting Φintra. Tab. 3 shows that, both Φinter258

and Φintra contribute to denoising text descriptions and to improving the robustness of underlying259

ΦOVAR. In terms of Top-1 Acc and Semantic Similarity, Φinter performs better than Φintra, since260

Φinter uses visual information as one direct optimization guideline to improve video recognition.261

While Φintra performs better in terms of Label Acc, which focuses more on spelling correctness.262

Besides, Φinter and Φintra turn out to be complementary: visual information helps to understand263

noisy text descriptions; while textual information prevents the model from being misled by visual264

samples. We achieve the best performance when combining these two weightings.265
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Table 3: Ablations for Inter-modal Weighting ΦInter, Intra-modal Weighting ΦInter, Schedule of
Temperature λ. ΦInter alone outperforms ΦIntra. Both contribute to correcting class texts, and give
the best results when combined. Linear schedule of balancing factor λ outperforms the constant one,
meaning that it helps to rely more on ΦIntra at first, and then gradually switch to ΦInter.

ΦInter ΦIntra Schedule λ Top-1 Acc Label Acc Semantic Similarity
A1 ✓ / 48.1±2.2 38.2±2.5 88.9±0.4

A2 ✓ / 52.9±1.4 34.1±2.4 89.1±0.6

A3 ✓ ✓ Constant 54.5±2.5 54.9±4.5 92.4±0.8

A4 ✓ ✓ Linear 55.2±1.5 55.1±3.0 92.9±0.6

Figure 4: We evaluate on UCF101 by using ActionCLIP as ΦOVAR. Left: Ablation Study on Noise
Type. “Mixed” means that all types of text noises: “Substitute”, “Insert”, “Delete” take place with
equal probability. Our DENOISER shows good resilience, especially against noises of inserting or
substituting. Right: Ablation Study on Proposal Number K. As K increases, Top-1 Acc increases
and converges gradually towards the upper bound, but it also brings heavier computing costs.

Temperature Schedule λ balances intra-modal weighting and inter-modal weighting. One larger λ266

indicates more reliance on inter-modal weighting. “Linear” means that λ augments from 0.01 to 1267

linearly. Tab. 3 reports that it is beneficial to rely more on intra-modal at the beginning of decoding,268

and then gradually turn to inter-modal for more help. This indicates that, when text noises are high,269

Φintra offers more help; when text noises are slight, Φinter could help more.270

Noise Type. Fig. 4 Left reports our robustness under various noise types/rates. “Mixed” means that271

three noise types: “Substitute”, “Insert”, “Delete” are equally possible to appear. Our method shows272

remarkable resilience when texts are perturbed by inserting or substituting characters. Performance273

degradation is observed when texts are perturbed by deleting characters. It is reasonable, as deleting274

characters causes huge information loss, making the model difficult to recover clean text descriptions.275

Number of Candidates K. Fig. 4 Right shows as K increases, inter-modal weighting can reveal276

its full power, hence improving performance. Otherwise, if a good candidate is excluded from the277

proposal stage due to a small K, it can be selected by neither of the inter- or intra-modal weighting,278

thus decreasing performance. Moreover, the performance tends towards one plateau, showing a279

decreasing marginal contribution of more proposals to performance. Since a larger K means more280

computing costs for text encoding, we select K = 10 by default to make reasonable trade-offs.281

5 Conclusion282

This paper investigates how noises in class-text descriptions negatively interference OVAR; and283

one novel framework DENOISER is proposed for solutions. By incorporating visual information284

during denoising, we clarify the ambiguity induced by short and context-lacking text descriptions; by285

iteratively refining the denoised output through one generative-discriminative process, we mitigate286

cascaded errors which may propagate from spell-checking models to outputs of OVAR model. We287

conduct extensive experiments to demonstrate the generalizability of DENOISER across multiple288

models and datasets, and also show our superiority over uni-modal spell-checking solutions.289

Limitations. 1) We focus more on spelling noises; while in the real world, text noises can be more290

complex, involving semantic ambiguity. Equipping DENOISER with large language models may291

be a feasible solution. 2) Using more text candidates or visual samples brings better results for292

DENOISER, but also costs more. There is a trade-off between performance and computational cost.293
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A Theoretical Analysis462

A.1 Decoding Objective463

At each step i, the decoding objective to find argmaxti p(ti|Ti−1,V). Note that, p(Ti−1,V) is same464

for all possible ti. As a result, our objective is written as:465

argmax
ti

p(ti|Ti−1,V) = argmax
ti

p(ti|Ti−1,V)p(Ti−1,V) (11)

= argmax
ti

p(ti, Ti−1,V) (12)

= argmax
ti

log p(ti, Ti−1,V) (13)

A.2 Discriminative Step466

At the discriminative step, we choose the best set of V that helps decode tc,i for each semantic-class467

c. To understand why Vc, the set of visual samples vj whose labels Yj are assigned to semantic-class468

c are those who help decode most efficiently, we first introduce a hidden discrete random variable469

zj ∼ Qj for each vj , indicating the index of class assignment. zj = c means that argmaxYj = c.470

Knowing that all visual samples are independent and using Jensen inequality:471

log p(ti, Ti−1,V) =
∑
j

log p(ti, Ti−1, vj) (14)

=
∑
j

log
∑
zj

p(ti, Ti−1, vj , zj) (15)

=
∑
j

log
∑
zj

Qj(zj)
p(ti, Ti−1, vj , zj)

Qj(zj)
(16)

≥
∑
j

∑
zj

Qj(zj) log
p(ti, Ti−1, vj , zj)

Qj(zj)
(17)

Equality is attained at Qj(zj) ∝ p(ti, Ti−1, vj , zj). Since
∑

zj
Qj(zj) = 1, to maximize the lower472

bound, we have:473

Qj(zj) =
p(ti, Ti−1, vj , zj)∑
zj
p(ti, Ti−1, vj , zj)

(18)

=
p(ti, Ti−1, vj , zj)

p(ti, Ti−1, vj)
(19)

= p(zj |ti, Ti−1, vj) (20)
= p(zj |Ti, vj) (21)

Given class texts and visual samples, the best estimation is:474

P(zj = c|Ti, vj) =

1 c = argmax
c

max
k

exp(S(vj ,T k
c,i))∑

k′ exp(S(vj ,T k′
c,i))

0 otherwise
(22)

Note that, Qj is well defined because:475

lim
Qj(zj)→0+

Qj(zj) log
p(ti, Ti−1, vj , zj)

Qj(zj)
= 0 (23)
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With Qj defined in this way, we find the discriminative step to be identical to how ΦOVAR assigns476

labels. We have Qj(c) = 1 only for {j|vj ∈ Vc}:477

log p(ti, Ti−1,V) ≥
∑
j

∑
zj

Qj(zj) log
p(ti, Ti−1, vj , zj)

Qj(zj)
(24)

=
∑
c

∑
j,vj∈Vc

∑
zj

Qj(zj) log
p(ti, Ti−1, vj , zj)

Qj(zj)
(25)

=
∑
c

∑
j,vj∈Vc

log p(ti, Ti−1, vj , zj = c) (26)

=
∑
c

log p(tc,i, Tc,i−1,Vc) (27)

(28)

A.3 Generative Step478

We optimize tc,i for each semantic-class:479

argmax
tc,i

log p(tc,i, Tc,i−1,Vc) = argmax
tc,i

p(tc,i, Tc,i−1,Vc) (29)

= argmax
tc,i

∏
vj∈Vc

p(tc,i, Tc,i−1, vj) (30)

= argmax
tc,i

∏
vj∈Vc

p(Tc,i−1|tc,i, vj)p(tc,i|vj)p(vj) (31)

= argmax
tc,i

∏
vj∈Vc

p(Tc,i−1|tc,i, vj)p(tc,i|vj) (32)

Noting that p(Tc,i−1) is the same for any possible tc,i:480

argmax
tc,i

p(Tc,i−1|tc,i, vj) = argmax
tc,i

p(Tc,i−1|tc,i) (33)

= argmax
tc,i

p(tc,i|Tc,i−1)p(Tc,i−1)

p(tc,i)
(34)

= argmax
tc,i

p(tc,i|Tc,i−1)

p(tc,i)
(35)

It is possible to optimize with prior p(tc,i) by considering that the more a word is frequent, the less it481

is likely to be misspelled in real-world scenarios. In this paper, for simplicity, we assume the tc,i to482

be uniform:483

argmax
tc,i

p(Tc,i−1|tc,i, vj) = argmax
tc,i

p(tc,i|Tc,i−1) (36)

B Additional Experiments484

B.1 DENOISER vs. Adversarial Training485

Fig. 5 studies how adversarial training might mitigate the noise in text descriptions. We first train486

ActionCLIP ViT-B/32-8F from scratch on K400 by randomly injecting noise in its text labels, then487

test the model’s zero-shot performance on UCF101 under different noise rate scenarios. We find that488

adversarial training, though promising under closed-set scenarios in previous studies, is relatively489

ineffective under open-vocabulary settings. Specifically, training with more noise lowers significantly490

the model’s performance under low noise rate. Additionally, its added value is limited under heavy491

noise rate. These phenomena are probably related to the domain gap between datasets. By training492

on noisy text descriptions, the model tends to overfit the noise pattern, jeopardizing its zero-shot493

performance. We conclude that noisy text descriptions are better solved in testing time rather than494

during training stage. Our DENOISER framework shows a significant advantage over the adversarial495

training.496
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Figure 5: Comparison to Adversarial Training. Adversarial training is not efficient, especially in
low-noise scenarios, even leading to a lower performance compared to the original model. It also
falls behind our method by a significant margin.

Figure 6: Ablation Study on the Number of Visual Samples. When fewer visual samples are used
in Φinter, our method shows a drop in performance. The bigger the noise rate, the larger the drop,
showing that Φinter plays a role of increasing importance when the noise is larger.

B.2 Ablation Study on the Number of Visual Samples497

Fig. 6 ablates on the number of visual samples in Φinter. Our method shows a drop in performance498

when fewer visual samples are used in Φinter. The performance tends to converge towards that499

when solely Φintra is used. We hypothesize that fewer visual samples make Φinter harder to extract500

added value to Φintra. With the noise rate increasing, we find an increasingly large drop in perfor-501

mance, which shows conversely that Φinter is more important under large noise scenarios as textual502

information becomes more ambiguous and less informative.503

B.3 Qualitative Results504

Fig. 7 visualizes the embedding of (visual samples, text descriptions) from three semantic-classes:505

bird (green), ship (yellow), truck (blue) in CIFAR-10 using T-SNE. The first principal component of506

textual embedding is removed following ReCLIP[12] to prevent them from clustering at the same507

place. The Left shows that classification accuracy is low when text descriptions are noisy. Almost508

all visual samples are recognized as “bird”. The Middle shows the embeddings of proposed text509

candidates. Some of them remain at the same place, because they move perpendicular to this 2D space510

in the real semantic space. We assign the best set of visual samples for each semantic-class to help511

denoise, e.g., the blue dots are used to vote on the two candidates “trump” (red) and “truck” (purple)512

of “trumk”. The Right shows that the denoised text descriptions improve the OVAR performance.513

Tab. 4 quantifies some good/bad cases. We find GPT 3.5 is better at understanding semantics of514

noisy text descriptions, e.g., “wal4ingm with a dog”→ “dogwalking”. However, its output is highly515
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Table 4: Cases of Denoised Text Descriptions for GPT 3.5 and DENOISER. The output from
GPT 3.5 [1] tends to be unstable, and sometimes it’s a relatively high-level understanding of noisy
text descriptions. Our DENOISER ensures a relatively faithful output in terms of spelling but could
be slightly mistaken when two words are similar in terms of both semantics and spelling.

Ground Truth Noisy Text Descriptions GPT 3.5 [1] Ours

Good Case
walking with a dog wal4ingm with a dog dogwalking walking with a dog

baby crawling babty crawling baby crying baby crawling
cutting in kitchen cutting i aitnchen cutting cutting in kitchen

Bad Case juggling balls juggling ball juggling juggling ball

Figure 7: Denoising Visualization. Left: result with noisy text descriptions (crosses w black border).
Middle: text candidates (crosses w/o black border), the visual samples (in dots) that are used to vote
for candidates. Right: denoised class texts (crosses w black border) help for better classification.

affected by input prompts, and thus tends to be unstable: important text parts are sometimes omitted516

or misinterpreted, e.g., “babty crawling”→ “baby crying”. Such unstable outputs require manual517

cleaning, limiting its applications in reality. Our DENOISER remains faithful in terms of spelling,518

e.g., “wal4ingm with a dog”→ “walking with a dog” instead of “dogwalking”. While it may be519

mistaken when two words are similar in semantics and spelling (rare cases), e.g., “ball” and “balls”.520

C On the efficiency of DENOISER521

Our model requires a trade-off between computational cost and performance. As shown in Fig. 4522

and Fig. 6, the performance of our DENOISER increases as the number of proposals K and the523

percentage of the visual samples used. Since the theoretical complexity of DENOISER increases524

linearly with K and the percentage of visual samples used, while the marginal contribution of a larger525

K or percentage is decreasing, a trade-off between computational cost and performance is necessary.526

DENOISER requires only simple operations for each iteration. After having extracted the embedding527

of visual samples, DENOISER only requires recomputing the text embedding and doing a dot product528

with visual embeddings, which is extremely fast. Compared to other approaches that intend to align529

noisy text-image pairs or to train spell-checking models, DENOISER that denoises at evaluation time530

is extremely time-saving.531
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NeurIPS Paper Checklist532

1. Claims533

Question: Do the main claims made in the abstract and introduction accurately reflect the534

paper’s contributions and scope?535

Answer: [Yes]536

Justification: The main claims made in the abstract and introduction accurately reflect the537

paper’s contributions and scope.538

Guidelines:539

• The answer NA means that the abstract and introduction do not include the claims540

made in the paper.541

• The abstract and/or introduction should clearly state the claims made, including the542

contributions made in the paper and important assumptions and limitations. A No or543

NA answer to this question will not be perceived well by the reviewers.544

• The claims made should match theoretical and experimental results, and reflect how545

much the results can be expected to generalize to other settings.546

• It is fine to include aspirational goals as motivation as long as it is clear that these goals547

are not attained by the paper.548

2. Limitations549

Question: Does the paper discuss the limitations of the work performed by the authors?550

Answer: [Yes]551

Justification: We discuss the limitation of our method at the end of the paper, and in the552

appendix.553

Guidelines:554

• The answer NA means that the paper has no limitation while the answer No means that555

the paper has limitations, but those are not discussed in the paper.556

• The authors are encouraged to create a separate "Limitations" section in their paper.557

• The paper should point out any strong assumptions and how robust the results are to558

violations of these assumptions (e.g., independence assumptions, noiseless settings,559

model well-specification, asymptotic approximations only holding locally). The authors560

should reflect on how these assumptions might be violated in practice and what the561

implications would be.562

• The authors should reflect on the scope of the claims made, e.g., if the approach was563

only tested on a few datasets or with a few runs. In general, empirical results often564

depend on implicit assumptions, which should be articulated.565

• The authors should reflect on the factors that influence the performance of the approach.566

For example, a facial recognition algorithm may perform poorly when image resolution567

is low or images are taken in low lighting. Or a speech-to-text system might not be568

used reliably to provide closed captions for online lectures because it fails to handle569

technical jargon.570

• The authors should discuss the computational efficiency of the proposed algorithms571

and how they scale with dataset size.572

• If applicable, the authors should discuss possible limitations of their approach to573

address problems of privacy and fairness.574

• While the authors might fear that complete honesty about limitations might be used by575

reviewers as grounds for rejection, a worse outcome might be that reviewers discover576

limitations that aren’t acknowledged in the paper. The authors should use their best577

judgment and recognize that individual actions in favor of transparency play an impor-578

tant role in developing norms that preserve the integrity of the community. Reviewers579

will be specifically instructed to not penalize honesty concerning limitations.580

3. Theory Assumptions and Proofs581

Question: For each theoretical result, does the paper provide the full set of assumptions and582

a complete (and correct) proof?583
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Answer: [Yes]584

Justification: We provide detailed derivation in the appendix.585

Guidelines:586

• The answer NA means that the paper does not include theoretical results.587

• All the theorems, formulas, and proofs in the paper should be numbered and cross-588

referenced.589

• All assumptions should be clearly stated or referenced in the statement of any theorems.590

• The proofs can either appear in the main paper or the supplemental material, but if591

they appear in the supplemental material, the authors are encouraged to provide a short592

proof sketch to provide intuition.593

• Inversely, any informal proof provided in the core of the paper should be complemented594

by formal proofs provided in appendix or supplemental material.595

• Theorems and Lemmas that the proof relies upon should be properly referenced.596

4. Experimental Result Reproducibility597

Question: Does the paper fully disclose all the information needed to reproduce the main ex-598

perimental results of the paper to the extent that it affects the main claims and/or conclusions599

of the paper (regardless of whether the code and data are provided or not)?600

Answer: [Yes]601

Justification: We detail the proposed algorithm and the setting of experiments. Additionally,602

we provide source code.603

Guidelines:604

• The answer NA means that the paper does not include experiments.605

• If the paper includes experiments, a No answer to this question will not be perceived606

well by the reviewers: Making the paper reproducible is important, regardless of607

whether the code and data are provided or not.608

• If the contribution is a dataset and/or model, the authors should describe the steps taken609

to make their results reproducible or verifiable.610

• Depending on the contribution, reproducibility can be accomplished in various ways.611

For example, if the contribution is a novel architecture, describing the architecture fully612

might suffice, or if the contribution is a specific model and empirical evaluation, it may613

be necessary to either make it possible for others to replicate the model with the same614

dataset, or provide access to the model. In general. releasing code and data is often615

one good way to accomplish this, but reproducibility can also be provided via detailed616

instructions for how to replicate the results, access to a hosted model (e.g., in the case617

of a large language model), releasing of a model checkpoint, or other means that are618

appropriate to the research performed.619

• While NeurIPS does not require releasing code, the conference does require all submis-620

sions to provide some reasonable avenue for reproducibility, which may depend on the621

nature of the contribution. For example622

(a) If the contribution is primarily a new algorithm, the paper should make it clear how623

to reproduce that algorithm.624

(b) If the contribution is primarily a new model architecture, the paper should describe625

the architecture clearly and fully.626

(c) If the contribution is a new model (e.g., a large language model), then there should627

either be a way to access this model for reproducing the results or a way to reproduce628

the model (e.g., with an open-source dataset or instructions for how to construct629

the dataset).630

(d) We recognize that reproducibility may be tricky in some cases, in which case631

authors are welcome to describe the particular way they provide for reproducibility.632

In the case of closed-source models, it may be that access to the model is limited in633

some way (e.g., to registered users), but it should be possible for other researchers634

to have some path to reproducing or verifying the results.635

5. Open access to data and code636
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Question: Does the paper provide open access to the data and code, with sufficient instruc-637

tions to faithfully reproduce the main experimental results, as described in supplemental638

material?639

Answer: [Yes]640

Justification: We provide source code. Datasets are publicly accessible.641

Guidelines:642

• The answer NA means that paper does not include experiments requiring code.643

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/644

public/guides/CodeSubmissionPolicy) for more details.645

• While we encourage the release of code and data, we understand that this might not be646

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not647

including code, unless this is central to the contribution (e.g., for a new open-source648

benchmark).649

• The instructions should contain the exact command and environment needed to run to650

reproduce the results. See the NeurIPS code and data submission guidelines (https:651

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.652

• The authors should provide instructions on data access and preparation, including how653

to access the raw data, preprocessed data, intermediate data, and generated data, etc.654

• The authors should provide scripts to reproduce all experimental results for the new655

proposed method and baselines. If only a subset of experiments are reproducible, they656

should state which ones are omitted from the script and why.657

• At submission time, to preserve anonymity, the authors should release anonymized658

versions (if applicable).659

• Providing as much information as possible in supplemental material (appended to the660

paper) is recommended, but including URLs to data and code is permitted.661

6. Experimental Setting/Details662

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-663

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the664

results?665

Answer: [Yes]666

Justification: We specify all settings of experiments in the experiments section.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The experimental setting should be presented in the core of the paper to a level of detail670

that is necessary to appreciate the results and make sense of them.671

• The full details can be provided either with the code, in appendix, or as supplemental672

material.673

7. Experiment Statistical Significance674

Question: Does the paper report error bars suitably and correctly defined or other appropriate675

information about the statistical significance of the experiments?676

Answer: [Yes]677

Justification: We report confidence intervals.678

Guidelines:679

• The answer NA means that the paper does not include experiments.680

• The authors should answer "Yes" if the results are accompanied by error bars, confi-681

dence intervals, or statistical significance tests, at least for the experiments that support682

the main claims of the paper.683

• The factors of variability that the error bars are capturing should be clearly stated (for684

example, train/test split, initialization, random drawing of some parameter, or overall685

run with given experimental conditions).686

• The method for calculating the error bars should be explained (closed form formula,687

call to a library function, bootstrap, etc.)688
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• The assumptions made should be given (e.g., Normally distributed errors).689

• It should be clear whether the error bar is the standard deviation or the standard error690

of the mean.691

• It is OK to report 1-sigma error bars, but one should state it. The authors should692

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis693

of Normality of errors is not verified.694

• For asymmetric distributions, the authors should be careful not to show in tables or695

figures symmetric error bars that would yield results that are out of range (e.g. negative696

error rates).697

• If error bars are reported in tables or plots, The authors should explain in the text how698

they were calculated and reference the corresponding figures or tables in the text.699

8. Experiments Compute Resources700

Question: For each experiment, does the paper provide sufficient information on the com-701

puter resources (type of compute workers, memory, time of execution) needed to reproduce702

the experiments?703

Answer: [Yes]704

Justification: We report information of computer resources.705

Guidelines:706

• The answer NA means that the paper does not include experiments.707

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,708

or cloud provider, including relevant memory and storage.709

• The paper should provide the amount of compute required for each of the individual710

experimental runs as well as estimate the total compute.711

• The paper should disclose whether the full research project required more compute712

than the experiments reported in the paper (e.g., preliminary or failed experiments that713

didn’t make it into the paper).714

9. Code Of Ethics715

Question: Does the research conducted in the paper conform, in every respect, with the716

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?717

Answer: [Yes]718

Justification: We conduct in the paper conform, in every respect, with the NeurIPS Code of719

Ethics.720

Guidelines:721

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.722

• If the authors answer No, they should explain the special circumstances that require a723

deviation from the Code of Ethics.724

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-725

eration due to laws or regulations in their jurisdiction).726

10. Broader Impacts727

Question: Does the paper discuss both potential positive societal impacts and negative728

societal impacts of the work performed?729

Answer: [Yes]730

Justification: Our model helps users better leverage the existing Open-Vocabulary models in731

a more robust way.732

Guidelines:733

• The answer NA means that there is no societal impact of the work performed.734

• If the authors answer NA or No, they should explain why their work has no societal735

impact or why the paper does not address societal impact.736

• Examples of negative societal impacts include potential malicious or unintended uses737

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations738

(e.g., deployment of technologies that could make decisions that unfairly impact specific739

groups), privacy considerations, and security considerations.740
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• The conference expects that many papers will be foundational research and not tied741

to particular applications, let alone deployments. However, if there is a direct path to742

any negative applications, the authors should point it out. For example, it is legitimate743

to point out that an improvement in the quality of generative models could be used to744

generate deepfakes for disinformation. On the other hand, it is not needed to point out745

that a generic algorithm for optimizing neural networks could enable people to train746

models that generate Deepfakes faster.747

• The authors should consider possible harms that could arise when the technology is748

being used as intended and functioning correctly, harms that could arise when the749

technology is being used as intended but gives incorrect results, and harms following750

from (intentional or unintentional) misuse of the technology.751

• If there are negative societal impacts, the authors could also discuss possible mitigation752

strategies (e.g., gated release of models, providing defenses in addition to attacks,753

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from754

feedback over time, improving the efficiency and accessibility of ML).755

11. Safeguards756

Question: Does the paper describe safeguards that have been put in place for responsible757

release of data or models that have a high risk for misuse (e.g., pretrained language models,758

image generators, or scraped datasets)?759

Answer: [NA]760

Justification: The paper poses no such risks.761

Guidelines:762

• The answer NA means that the paper poses no such risks.763

• Released models that have a high risk for misuse or dual-use should be released with764

necessary safeguards to allow for controlled use of the model, for example by requiring765

that users adhere to usage guidelines or restrictions to access the model or implementing766

safety filters.767

• Datasets that have been scraped from the Internet could pose safety risks. The authors768

should describe how they avoided releasing unsafe images.769

• We recognize that providing effective safeguards is challenging, and many papers do770

not require this, but we encourage authors to take this into account and make a best771

faith effort.772

12. Licenses for existing assets773

Question: Are the creators or original owners of assets (e.g., code, data, models), used in774

the paper, properly credited and are the license and terms of use explicitly mentioned and775

properly respected?776

Answer: [Yes]777

Justification: All the assets are properly cited. License and terms of use are properly778

respected.779
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• The answer NA means that the paper does not use existing assets.781
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URL.784
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