
Active Preference Optimization for Sample Efficient RLHF

Nirjhar Das 1 Souradip Chakraborty 2 Aldo Pacchiano 3 Sayak Ray Chowdhury 1

Abstract

Reinforcement Learning from Human Feedback
(RLHF) is pivotal in aligning Large Language
Models (LLMs) with human preferences. Al-
though aligned LLMs have shown remarkable
abilities in numerous tasks, their reliance on high-
quality human preference data creates a costly
bottleneck. Current methods for RLHF rely on
uniformly picking prompt-generation pairs from
a dataset of prompt-generations, to collect human
feedback. For limited number of human feedback
samples, we show that this leads to sub-optimal
alignment. Next, we develop an active-learning
algorithm, Active Preference Optimization (APO),
which significantly enhances model alignment by
querying preference data for the most important
samples, thus achieving superior performance at
a small sample budget. We analyze the theoreti-
cal performance guarantees of APO showing that
the suboptimality gap of the policy learned via
APO scales as O(1/

√
T ) for a sample budget of

T . We perform detailed experimental evaluations
on practical preference datasets to validate APO’s
efficacy over the existing methods, establishing
it as a sample-efficient and practical solution of
alignment in a cost-effective and scalable manner.

1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
has proven highly effective in aligning Large Language
Models (LLMs) with human preferences (Christiano et al.,
2017; Ouyang et al., 2022). It involves collecting extensive
data, each comprising a prompt (context), a pair of responses
(actions), and a preference indicating which response is bet-
ter. A reward model is learned to classify the responses
and subsequently, a policy is trained to generate responses
with high rewards while minimizing divergence from a refer-
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ence policy. Most practical implementations of RLHF pick
prompts uniformly at random from a given pool. This is
followed by first generating a pair of responses for each sam-
pled prompt based on a supervised fine tuned (SFT) policy,
and then sending all the pairs to human labelers (Stiennon
et al., 2020). While excessive but low-quality data (incorrect
or ambiguous preferences) can degrade performance of the
aligned policy, high-quality (correct preferences) but scarce
data might also not be able enhance it. Moreover, high-
quality samples are expensive to collect since this demands
a certain level of expertise from labelers.

While uniform prompt sampling as a simple approach has
been effective for aligning LLMs so far, one might need
more involved sampling strategies to deliver better model
alignment under a fixed budget of labeling. Against this
backdrop, we make the following contributions:
• Sub-optimality of randomly sampling prompts: We
design a hard instance of the RLHF problem for which we
show that an algorithm that collects preferences by sampling
contexts (prompts) uniformly at random, and then trains the
policy based on this data suffers Ω(1) suboptimality gap.
• Adaptive algorithm via active prompt sampling: We
propose Active Preference Optimization (APO), an active
learning algorithm for RLHF that actively selects to collect
preference data, and show that suboptimality gap of APO
scales as O(

√
κ/T ) where T is sample budget and κ is a

problem-dependent non-linearity factor.
• Empirical evidence: We propose a batch version of
APO which is also computationally efficient. We experi-
ment with GPT-2 (Radford et al., 2019) on IMDb sentiment
dataset (Maas et al., 2011) and with Gemma-2b (Team et al.,
2024) on Anthropic-HH dataset (Bai et al., 2022) demon-
strating significant improvement over uniform sampling.

Related work. Ji et al. (2024) proposes an RLHF strategy
that selects one action adaptively and the other randomly,
but do not actively sample contexts. Muldrew et al. (2024)
actively select both contexts and actions using an uncertainty
based heuristic, but don’t provide any theoretical justifica-
tion. Mehta et al. (2023) proposes an active learning strategy
with decreasing sub-optimality gap. However, they choose
one out of two actions randomly at every round, which is
wasteful in practice. They also assume that both rewards
and probabilities of an action winning over any uniformly
chosen action are linear functions of a common feature map,
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which is a restrictive assumption on the model.

2. Problem Setup
We have a set of contexts X and a set of possible actions per
context A. To learn using preference feedback, the agent
selects a tuple (x, a, a′) to present to a human labeller who
then reveals a binary preference y which takes value 1 if a
wins over a′ and 0 otherwise. We assume that y is sampled
from distribution conditioned on (x, a, a′) given as

Pθ∗ [y=1|x, a, a′] = exp(r∗(x, a))

exp(r∗(x, a)) + exp(r∗(x, a′))
,

known as the Bradley-Terry-Luce (BTL) model (Bradley
and Terry, 1952; Luce, 2012). Here r∗ is a latent reward
function. The goal of the agent is to first learn the reward
over T rounds of sequential interaction with the labeller,
collecting datasetD = (xs, as, a

′
s, ys)

T
s=1, and then employ

the learned reward to train a policy π : X → A, which will
eventually fetch high latent rewards r∗(x, a).

In this work, we consider linear latent rewards r∗(x, a) =
ϕ(x, a)⊤θ∗, where θ∗ ∈ Rd are unknown reward parame-
ters, and ϕ : X ×A → Rd is some known and fixed feature
map. For instance, such a ϕ can be constructed by removing
the last layer of a pre-trained language model, and in that
case, θ∗ correspond to the weights of the last layer. With
this model, one can equivalently write the probability of
sampling ys = 1 given (xs, as, a

′
s) as

Pθ∗[ys=1|xs, as, a
′
s]=σ(ϕ(xs, as)

⊤θ∗−ϕ(xs, a
′
s)

⊤θ∗),

where σ(w) = 1
1+e−w is the sigmoid function. We let

zs = ϕ(xs, as) − ϕ(xs, a
′
s) denote the differential fea-

ture of actions as and a′s at state xs. Thus we can write
Pθ [ys=1|xs, as, a

′
s] = σ(z⊤s θ). With this, the reward pa-

rameters θ∗ are estimated by minimizing the log-loss, which
is also equivalent to maximum likelihood estimation (MLE).

At round t, the MLE of θ∗ is computed using preference
dataset {(xs, as, a

′
s, ys)}t−1

s=1 as θ̂t = argminθ∈Θ Lt(θ),
where the log-loss Lt(θ) is given by

Lt(θ)=−
t−1∑
s=1

ys log(σ(z
⊤
s θ))+(1−ys) log(1−σ(z⊤s θ)). (1)

The above optimization problem is convex when the con-
straint set Θ is convex, and hence can be solved using stan-
dard algorithms (Hazan et al., 2016).

Performance Measure. Our goal is to learn a policy over
the collected data D, which has high rewards or, equiva-
lently, low suboptimality. Formally, the suboptimality gap
of a learned policy πT after collecting T samples by an
algorithm of choice is defined as

R(T )=maxx∈X maxa∈A [r∗(x, a)− r∗(x, πT (x))] . (2)

The suboptimality gap is the worst possible difference in la-

tent rewards between the best action and the policy’s action
over the set of contexts.

3. Active Preference Optimization
3.1. Is Uniform Prompt Sampling Good Enough?

We first characterize the pitfall of learning via a uniformly
random prompt sampling strategy (details in Appendix A).
Definition 3.1 (Uniform Learner). Say an algorithm Alg
samples T contexts uniformly at random from a set X and
for each context xt, t ∈ {1, . . . , T}, picks two actions at, a′t
of its choice from a set A. For each triplet (xt, at, a

′
t),

Alg then queries the BTL model parameterized by θ∗ and
observes a stochastic preference yt ∈ {0, 1} between the
actions. Alg then solves an MLE over these T preference
data, and learns a greedy policy with respect to the MLE.
We call such an algorithm Alg a Uniform Learner.
Theorem 3.2 (Lower bound on sub-optimality gap). There
exists a T ∈ N and a problem instance (X ,A, θ∗) for which
the policy learnt by a Uniform Learner Alg suffers Ω(1)
suboptimality gap with high probability.

Theorem 3.2 highlights need for learners that use samples
effectively. Next, we propose a strategy which actively
selects contexts so that suboptimality goes down as 1/

√
T .

3.2. Our Approach: Active Prompt Sampling

We present the algorithm for active context and action selec-
tion in RLHF (Algorithm 1). At each round t, our algorithm
proceeds by computing the MLE estimate θ̂t based on the
data obtained in the past t − 1 steps (see (1)). Based on
θ̂t, our goal is to maximize exploration. To do this, for a
context x ∈ X , we compute the uncertainty bt(x, a, a

′) for
each action (a, a′) available for that context and choose the
one which maximizes this, i.e., we choose

(at(x), a
′
t(x)) = argmax

(a,a′)∈A×A
bt(x, a, a

′) , (3)

where bt(x, a, a
′) = ∥ϕ(x, a) − ϕ(x, a′)∥H−1

t (θ̂t)
. Here

Ht(θ̂t) is a matrix that describes a confidence ellipsoid
around the unknown reward parameter θ∗ after t− 1 steps
of data collection. For any θ ∈ Θ, this is defined as

Ht(θ)=∇2Lt(θ)+λId=
∑t−1

s=1
σ̇(z⊤s θ)zsz

⊤
s +λId . (4)

Intuitively, the confidence ellipsoid keeps shrinking along
whichever direction (in Rd) we decide to explore. Thus,
for a given context x, choosing the pair (at(x), a′t(x)) max-
imally reduces the uncertainty among all other possible
action duels. However, our algorithm picks not only the
action pair that maximizes uncertainty, but also the context
that increases it the most, i.e.,

xt = argmaxx∈X bt(x, at(x), a
′
t(x)) (5)
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Algorithm 1 APO (Theoretical version)

Require: Context set X , action set A = [K], feature map
ϕ : X × A → Rd, regularization λ > 0, and failure
probability δ ∈ (0, 1]

1: Initialize θ̂1 = 0
2: for t = 1, . . . , T do
3: Choose the triplet (xt, at, a

′
t) using (3) and (5).

4: Observe preference feedback yt ∼ Ber(σ(z⊤t θ∗)),
where zt = ϕ(xt, at)− ϕ(xt, a

′
t).

5: Compute reward estimate θ̂t+1 that minimizes the
constrained log-loss (1).

6: Compute (scaled) design matrix Ht+1(θ̂t+1) via (4).
7: Compute final policy πT (x) using (6)

This is a crucial step in our approach that ensures that the un-
certainty of the reward function over all contexts decreases
at a fast rate which in turn ensures low suboptimality gap of
our policy. After T time steps, we define θT = 1

T

∑T
s=1 θ̂t

as the average of all the past parameter estimates. Our final
policy πT for any context x ∈ X is to play the action that
maximizes the reward parameterized by θT , i.e.,

πT (x)=argmax
a∈A

r̂T (x, a)=argmax
a∈A

ϕ(x, a)⊤θT . (6)

3.3. Suboptimality Gap of APO

We make the following assumption which is standard in
RLHF literature (Zhu et al., 2023; Chowdhury et al., 2024).

Assumption 3.3 (Boundedness). (a) θ∗ lies in the set Θ =
{θ ∈ Rd|⟨1, θ⟩ = 0, ||θ||≤ S}. (b) Features are bounded,
i.e., ||ϕ(x, a)||≤ 1, ∀ (x, a) ∈ X ×A.

Now, we define a key quantity that captures learning com-
plexity under the BTL preference model:

κ = max
x∈X ,a,a′∈A

max
θ∈Θ

1

σ̇(ϕ(x, a)⊤θ−ϕ(x, a′)⊤θ)
. (7)

κ specifies difficulty in learning via the worst-case non-
linearity in preference feedback. Our algorithm enjoys the
following guarantee (proof is presented in appendix B).

Theorem 3.4 (Sub-optimality gap). Let δ ∈ (0, 1]. Un-
der Assumption 3.3, with probability at least 1 − δ, APO
(Algorithm 1) enjoys the suboptimality gap

R(T ) = O

(
γT (δ)

√
S log

(
1 +

T

λκd

)κd
T

)
.

where λ= 1
4S2(2+2S)2 and γt(δ)=CS

√
d log St

d + log t
δ .

Remark 3.5 (Dependence on κ). κ can be exponential in
the parameter norm S in the worst-case. In logistic ban-
dits, the state-of-the-art regret guarantee is κ-independent
– the dependence is only in lower order term (Lee et al.,
2023). We believe the

√
κ dependence is unavoidable in

Algorithm 2 APO (Practical version)

Require: Prompt-generation pairsM={(x, a, a′)}, sam-
ple budget T , encoder ϕ, SFT policy πSFT, log-loss L,
batch size B, uncertainty regularizer λ>0, KL regular-
izer β>0, learning rate η>0

1: Initialize V1 = λI, θ̂1 = 0,D = ∅
2: for batch t = 1, . . . , ⌊T/B⌋ do
3: Compute bt(x, a, a′) = ∥ϕ(x, a)− ϕ(x, a′)∥V −1

t
for

each (x, a, a′) ∈M
4: InitializeMt = ∅
5: for j = 1, . . . , B do
6: Pick (xt,j , at,j , a

′
t,j) = argmax

(x,a,a′)∈M\Mt

bt(x, a, a
′)

7: Mt ←Mt ∪ {(xt,j , at,j , a
′
t,j)}

8: Observe yt,j ; D ← D ∪ {(xt,j , at,j , a
′
t,j , yt,j)}

9: Update θ̂t+1 ← Gradient-step(L, θ̂t,D, η)
10: Update Vt+1 ← Vt +

∑B
j=1 zt,jz

⊤
t,j , where zt,j =

ϕ(xt,j , at,j)− ϕ(xt,j , a
′
t,j)

11: Define reward r̂T (x, a) = ϕ(x, a)⊤θ̂⌊T/B⌋+1∀(x, a)
12: Compute final policy πT ← PPO(πSFT, r̂T (x, a), β)

the RLHF setting as the bound here is for real-valued re-
wards r∗(x, a) = ϕ(x, a)⊤θ∗ instead of the sigmoid re-
wards σ(ϕ(x, a)⊤θ∗) in logistic bandits.

4. Experiments
In this Section, we first present a practical version of
APO, which largely follows the former with minor changes
adapted for computationally efficient implementation re-
quired in large scale experiments. In this practical version
(Algorithm 2), we access preference data in batches instead
of being fully online. For each batch t, we first compute
the uncertainty bt(x, a, a

′) of each triplet (x, a, a′) ∈ D
(Step 3). In order to maximize exploration, only those B
triplets (x, a, a′) are queried in a batch that have the high-
est uncertainty bt(x, a, a

′) and the preference data is col-
lected in batches and stored in a buffer D. At the end of
each batch t, we update the parameter estimate θ̂t via a
Gradient-Step, which is a blackbox gradient-descend-
based optimization algorithm (e.g. Adam (Kingma and Ba,
2015)) on the log-loss (1) over the dataset D. Finally, after
the budget T is exhausted, we first learn an estimate r̂T of
the latent reward model r∗, and then the aligned policy πT is
learned via proximal policy optimization (PPO), which takes
as input the SFT policy πSFT and the learnt reward model
r̂T , and aligns πSFT with the preference dataset D (Ouyang
et al., 2022). Next we discuss the results of our experiments
(details in Appendix E). Hereafter we denote by Random
the random prompt sampling baseline.
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Figure 1. Top Row: Left: Evaluation accuracy of trained reward model vs. no. of samples (in percentage) comparing our algorithm
(APO) with Random. Eval accuracy of APO even with only 5% active samples is higher than that of Random with 40% samples. Middle:
Sentiment score distribution of aligned policies trained on reward model learned with APO (using only 10% samples) and on Random’s
highest accuracy reward model (using 40% samples). Generations by APO-trained reward is more shifted towards positive showing better
reward learning than Random. Right: Win rates of APO against Random. APO outperforms Random by 60 : 40 win rate. Bottom Row:
Left and 2nd Left Evaluation accuracy of trained reward model vs. no. of samples comparing our algorithm (APO) with Random, when
the number of epochs is 5 (Left) and 20 (2nd Left). Eval. accuracy of APO is higher than the Random in both cases. 2nd Right: Reward
distribution of APO, SFT-policy and Random for generations on prompts in the test dataset. Clearly, APO has a much better alignment
compared to Random. Right: Win rates of APO and Random. APO outperforms Random by 60 : 40 win rate.

4.1. Results on Controlled Sentiment Generation Task

In this experiment, the task is to produce positive senti-
ment texts for given prompts in the IMDb dataset (Maas
et al., 2011) with GPT-2 (Radford et al., 2019) as the LLM.
Reward is learnt using 5000 samples (out of 8000 in the
training set) for both APO and Random. With these learnt
reward models, the GPT-2 model is finetuned on the prompts
in the training set to obtain APO-policy and Random-policy,
respectively. We then use the finetuned models to generate
responses for the prompts in the test set. A pretrained GPT-2
sentiment classifier is used as model for the latent reward
r∗. The test set consisted of 2000 samples.
Reward Evaluation. The % of samples in the test set for
which APO assigns larger reward to chosen responses is
higher than that for Random, even when APO is trained
with 5% samples and Random is trained with 40%. The
result is shown in Fig. 1 top row.
Win Rate. We compare reward distribution of responses
generated by APO-policy and Random-policy. Using the
pretrained sentiment classifier, we also compute the win rate
of APO-policy over Random-policy Fig. 1 shows that APO
outperforms Random by a significant margin.

4.2. Results on Single-turn Dialogue task

We use Anthropic-HH (Bai et al., 2022) preference dataset
and Gemma-2b (Team et al., 2024) language model. We
construct a dataset by collecting the prompts with single-
turn dialogues and then putting these samples into three

buckets based on reward difference between chosen and
rejected responses (using Mistral-7b reward model). Out of
these three buckets, we take more samples from the buckets
with smaller reward difference and less samples from the
bucket with larger reward difference, to construct our final
training dataset. Such a dataset highlights the importance
of selecting prompts carefully to obtain useful information
regarding learning. The test set had a separate set of 2000
samples chosen randomly from Anthropic-HH test set.
Reward Evaluation. We compare the reward models learnt
by APO and Random by computing the % of samples in the
test set for which the models assign higher reward to the
chosen responses. The results can be seen in Fig. 1 bottom
row. We also study how this accuracy changes with number
of batches keeping sample budget same. We see that APO
always outperforms Random.
Win Rate. Based on reward models learnt by APO and
Random, we finetune the SFT plicy with PPO to obtain
APO-policy and Random-policy respectively. Then we
generate responses for prompts in the test set using APO
and Random, and get them evaluated by Mistral-7b reward
model. Reward distribution of all these policies and win
rate of APO-policy over Random-policy is shown in Fig. 1.
Clearly, APO performs much better than the baseline.

Concluding Remarks. We showed that the simple ap-
proach of sampling prompts uniformly at random could
suffer a constant suboptimality gap when aligning a lan-
guage model policy with human preferences. To mitigate
this, we proposed an active prompt selection algorithm APO
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to achieve an O(1/
√
T ) suboptimality gap. This is a general

approach and can be applied to other alignment methods like
DPO (Rafailov et al., 2023) and IPO (Azar et al., 2024). We
keep this as a promising future direction towards building
sample-efficient algorithms for language model alignment.
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Active Preference Optimization for Sample Efficient RLHF:
Appendix

A. Proof of Theorem 3.2

zb

θ∗

θ̂zg(0, 0)

Figure 2. Visualization of
lower bound instance. zg
represents feature difference
vectors for good contexts. zb
represents feature difference
for the bad context. θ∗, θ̂ are
true and learnt parameters,
respectively.

Let the number of contexts be |X | = N . Assume T ≪ N . Otherwise, if sample budget
T > N , then one can just collect data for every context, and the setting becomes trivial.
We divide X into two disjoint subsets: a good set Xg and a bad set Xb. We assume w.l.o.g.
that |Xb| = 1, and we denote the bad context by b. Let the action set be A = {a, a′} for
all contexts, and let a has higher reward than a′. Let ϕ : X × A → R2 be a feature map
and zx = ϕ(x, a)− ϕ(x, a′) be the feature difference vector at context x. Fix an α > 0 and
consider the problem instance:

θ∗ = α
[
1
2

√
3
2

]⊤
, zb =

[
− 1

2

√
3
2

]⊤
, zx =

[
1 0

]⊤
, ∀ x ∈ Xg .

Note that ∥θ∗∥2 = α. From this construction (see Fig. 2), it is clear that both for good and
bad contexts, z⊤x θ∗ = α/2 > 0, which implies that indeed action a has higher reward than
a′.

Let E1 be the event that all the T sampled contexts are good (i.e. from Xg). Since, under
uniform sampling, for a random context X , P[X ∈ Xg] = 1 − 1/N , we have P[E1] =
(1 − 1/N)T . Let E2 be the event that all observed preferences y1, . . . yT are equal to 1.
Since, for a random preference Y given a context x, P[Y = 1|x] = σ(α/2), we have P[E2|E1] = σ(α/2)T .

Now, under the event E1 ∩ E2, the MLE θ̂ constrained to the same norm as θ∗ is given by

θ̂ = argmin
θ∈R2:∥θ∥2≤α

∑T

t=1
log
(
1 + e−αθ1

)
= argmin

θ∈R2:∥θ∥2≤α

log
(
1 + e−αθ1

)
.

It is easy to see that θ̂ =
[
α 0

]⊤
. For any x ∈ Xg, the predicted reward difference between actions a and a′ is

z⊤x θ̂ = α > 0. Thus, θ̂ predicts the better action a correctly for all good contexts Xg. However, for context b, the reward
difference is z⊤b θ̂ = −α

2 < 0. Thus, θ̂ wrongly predicts a′ as the better action for the bad context b. This yields a a constant
sub-optimality gap

R(T, b) = ϕ(b, a)⊤θ∗ − ϕ(b, a′)⊤θ∗ = α/2 = Ω(1).

Finally, it remains to show that the event E1 ∩ E2 happens with high probability. To this end, we choose α = 2 log(N − 1)
which yields σ(α/2) = 1− 1/N . This yields

P[E1 ∩ E2] = P[E2|E1]P[E1] =
(
1− 1

N

)2T
≥ 1− 2T

N
.

The last step uses T ≪ N , which completes the proof.

B. Missing Proofs from Section 3
First we state the result from logistic bandit literature that characterizes the confidence set for the constrained maximum
likelihood estimator. Here we give one version of the confidence set from (Lee et al., 2023) but note that similar guarantees
are also derived in (Abeille et al., 2021).

Lemma B.1 (Confidence Set for MLE (Theorem 1 of (Lee et al., 2023)). Let θ̂t be the constrained maximum likelihood

7
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estimator after t− 1 time steps defined as follows:

θ̂t = argmin
θ∈Θ

{
−

t−1∑
s=1

ys log(σ(z
⊺
s θ)) + (1− ys) log(1− σ(z⊺s θ))

}
.

Now define the set

Ct(δ) = {θ ∈ Θ : Lt(θ)− L(θ̂) ≤ βt(δ)
2}

where βt(δ) =
√
10d log

(
St
4d + e

)
+ 2(e− 2 + S) log

(
1
δ

)
. Then we have P (∀t ≥ 1, θ∗ ∈ Ct(δ)) ≥ 1− δ.

The details of the proof can be found in section 3.1 of (Lee et al., 2023). Next we present another lemma that quantifies the
parameter estimation error. Using this lemma and a novel self-concordance property, we will prove B.3.

Lemma B.2 (Lemma 6 of (Lee et al., 2023)). Let θ̂t be defined above. Further, let θ∗ ∈ Ct(δ). Then,

∥θ̂t − θ∗∥2Ht(θ∗) ≤ γt(δ)
2 := 2(2 + 2S)f(d, S, t, δ)

where

f(d, S, t, δ) := 2(e− 2)(2 + 2S)d log(
5St

d
) + 2(e− 2)(2 + 2S) log(

t

δ
) +

5d

4
+

d2

16St

Simplifying, γt(δ)2 = CS2
(
d log St

d + log t
δ

)
for some C > 0.

The proof of the lemma can be found in appendix C.4.4 of (Lee et al., 2023). Now we are ready to present the proof of
lemma B.3.

Lemma B.3. Suppose θ∗ ∈ Ct(δ). Then, ∥θ∗ − θ̂∥Ht(θ̂t)
≤ CS1/2γt(δ).

Proof. By Taylor’s theorem, we have,

Lt(θ̂t)− Lt(θ
∗) = ∇Lt(θ

∗)⊺(θ̂t − θ∗) +

∫ 1

v=0

(1− v)(θ̂ − θ∗)⊺∇2Lt(θ
∗)(θ̂ − θ∗)dv

= ∇Lt(θ
∗)⊺(θ̂t − θ∗) +

t−1∑
s=1

[∫ 1

v=0

(1− v)σ̇(z⊺s θ
∗ + v(z⊺s θ̂t − z⊺s θ

∗))dv

]
(z⊺s (θ̂t − θ∗))2

= ∇Lt(θ
∗)⊺(θ̂t − θ∗) + ∥θ̂t − θ∗∥2

G̃t(θ∗,θ̂t)
− λ∥θ̂t − θ∗∥2

where we define G̃t(θ
∗, θ̂t) = λId +

∑t−1
s=1

[∫ 1

v=0
(1− v)σ̇(z⊺s θ

∗ + v(z⊺s θ̂t − z⊺s θ
∗))dv

]
zsz

⊺
s . Thus, we obtain,

∥θ̂t − θ∗∥2
G̃t(θ∗,θ̂t)

= Lt(θ
∗)− Lt(θ̂t) +∇Lt(θ

∗)⊺(θ̂t − θ∗) + λ∥θ̂t − θ∗∥2

Now, from a novel self-concordant analysis (see lemma D.1), Ht(θ̂t) ≼ C(2 + 2S)2G̃t(θ
∗, θ̂t) for some C > 1.01. Thus,

∥θ̂t − θ∗∥2
Ht(θ̂t)

≤ C(2 + 2S)2∥θ̂t − θ∗∥2
G̃t(θ∗,θ̂t)

= C(2 + 2S)2
[
Lt(θ

∗)− Lt(θ̂t) +∇Lt(θ
∗)⊺(θ̂t − θ∗) + λ∥θ̂t − θ∗∥2

]
≤ C(2 + 2S)2

[
4λS2 + βt(δ)

2 +∇Lt(θ
∗)⊺(θ̂t − θ∗)

]
(8)

where the last inequality is because (a) θ̂t, θ∗ ∈ Θ which implies that ∥θ∗ − θ̂t∥ ≤ diam(Θ) = 2S and (b) by lemma B.1,
Lt(θ

∗)− Lt(θ̂t) ≤ βt(δ)
2 since θ∗ ∈ Ct(δ) by assumption.

Thereafter, from the proof of Lemma 6 of (Lee et al., 2023) it can be extracted that |∇Lt(θ
∗)⊺(θ̂t − θ∗)| ≤ ∥θ̂t−θ∗∥2

Ht(θ
∗)

2(2+2S) +

8



Active Preference Optimization

f(d, S, t, δ) . Then using lemma B.2, the R.H.S of 8 can be bounded by 2f(d, S, t, δ). Thus, we now obtain,

∥θ̂t − θ∗∥2
Ht(θ̂t)

≤ C(2 + 2S)2
[
4λS2 + βt(δ)

2 + 2f(d, S, t, δ)
]

≤ C(2 + 2S)2
[

1

(2 + 2S)2
+ βt(δ)

2 +
γt(δ)

2

2(2 + 2S)

]
( λ = 1

4S2(2+2S)2 )

≤ C(2 + 2S)2

[
1

(2 + 2S)
+ βt(δ) +

γt(δ)√
2(2 + 2S)

]2
Hence, we have,

∥θ̂t − θ∗∥Ht(θ̂t)
≤ C(2 + 2S)

[
1

(2 + 2S)
+ βt(δ) +

γt(δ)√
2(2 + 2S)

]

= C(1 + (2 + 2S)βt(δ) +
√
2 + 2Sγt(δ)) = CS3/2

√(
d log(

St

d
) + log(

t

δ
)

)
.

Theorem B.4 (Suboptimality Upper Bound). Let δ ∈ (0, 1). The suboptimality of the policy πT specified at the end of APO
(algorithm 1) after running the algorithm for T rounds is upper bounded with probability at least 1− δ as follows:

R(T ) ≤ CS3/2

√(
d log(

ST

d
) + log(

T

δ
)

)
log

(
1 +

T

λκd

)
κd

T

Proof. Let the suboptimality gap for a context x ∈ X be denoted as R(T, x). Thus,

R(T, x) = (ϕ(x, a∗(x))− ϕ(x, πT (x)))
⊺
θ∗

≤ (ϕ(x, a∗(x))− ϕ(x, πT (x)))
⊺
θ∗ + (ϕ(x, πT (x))− ϕ(x, a∗(x)))

⊺

(
1

T

T∑
t=1

θ̂t

)
(πT (x) = argmax

a∈A
ϕ(x, a)⊺

(
1
T

∑T
i=1 θ̂t

)
)

= (ϕ(x, a∗(x))− ϕ(x, πT (x)))
⊺
(θ∗ − 1

T

T∑
t=1

θ̂t)

=
1

T

T∑
t=1

(ϕ(x, a∗(x))− ϕ(x, πT (x)))
⊺
(θ∗ − θ̂t)

≤ 1

T

T∑
t=1

∥ϕ(x, a∗(x))− ϕ(x, πT (x))∥H−1
t (θ̂t)

∥θ∗ − θ̂t∥Ht(θ̂t)
. (Cauchy-Schwarz)

Here inequality (1) is due the definition of policy πT (x) := argmaxa∈A ϕ(x, a)⊺
(

1
T

∑T
i=1 θ̂t

)
. Now we use lemma B.3

to upper bound ∥θ∗ − θ̂t∥Ht(θ̂t)
with CS1/2γt(δ) which we further upper bound by CS1/2γT (δ) after noting that γt(δ) ≤

γt+1(δ) for all t ∈ [T ]. Thus, we now have,

R(T, x) ≤ CS1/2γT (δ)

T

T∑
t=1

∥ϕ(x, a∗(x))− ϕ(x, πT (x))∥H−1
t (θ̂t)

≤ CS1/2γT (δ)

T

T∑
t=1

∥ϕ(xt, at)− ϕ(xt, a
′
t)∥H−1

t (θ̂t)
.

To get the above inequality, we use the fact that algorithm’s choice of the triplet is (xt, at, a
′
t) :=

argmaxx∈X ,a,a′∈A∥ϕ(x, a) − ϕ(x, a′)∥H−1
t (θ̂t)

. Now, we are left with terms that can be bounded using Elliptic Po-
tential Lemma (lemma D.2) after using the fact that ∥ϕ(xt, at)− ϕ(xt, a

′
t)∥H−1

t (θ̂t)
≤
√
κ∥ϕ(xt, at)− ϕ(xt, a

′
t)∥V −1

t
due

9
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to the fact that Vt ≼ κHt(θ̂t). Thus,

R(T, x) ≤ C
√
κSγT (δ)

T

T∑
t=1

∥ϕ(xt, at)− ϕ(xt, a
′
t)∥V −1

t

≤ C
√
κSγT (δ)

T

√√√√T

T∑
t=1

∥ϕ(xt, at)− ϕ(xt, a′t)∥2V −1
t

(Cauchy-Schwarz)

≤ C
√
κSγT (δ)

T

√
2dT log

(
1 +

T

λκd

)
(Lemma D.2)

= CS3/2

√(
d log(

ST

d
) + log(

T

δ
)

)
log

(
1 +

T

λκd

)
κd

T
, (Def. of γT (δ))

C. Generalization to Function Approximation
In this section, we remove the assumption of BTL preference model characterized by a linear parameter θ. Instead, we
assume that we have access to a function class

F={f : X×A×A → [0, 1] : f(x, a, a′)+f(x, a′, a)=1},
where f(x, a, a′) denotes the probability that the arm a wins over arm a′ given context x when the preference function is f ,
i.e., f(x, a, a′) = P[a ≽ a′|x, f ] where a ≽ a′ denotes the event that a wins over a′. Now, we assume that there is a true
f∗ ∈ F from which the data is generated. Further, we assume a Condorcet winner at each context:

Assumption C.1. For all context x∈X , there is an action a∗(x)∈A(x) such that f∗(x, a∗(x), a0)≥1/2∀a0∈A(x).

Note that in this case, there is no direct reward model and is therefore a generalization of the BTL model. The absence of a
reward model makes the problem more nuanced. Accordingly, the simple regret is now defined as:

R(T )=maxx∈X maxa∈A(x) f
∗(x, a, πT (x))−1/2 .

Note that f∗(x, a∗(x), πT (x)) ≥ 1/2 by assumption C.1, thus R(T ) is always non-negative.

C.1. Algorithm

Our algorithm takes a function class F and a confidence level δ ∈ (0, 1] as its inputs. First, a regularized least square
estimate of f∗ is computed by minimizing the cumulative squared prediction error:

f̂t ∈ argminf∈F
∑t−1

s=1
(ys − f(xs, as, a

′
s))

2
. (9)

The confidence set Ct(F , δ) is then defined as the set of all functions f ∈ F satisfying∑t−1

s=1
(f(xs, as, a

′
s)−f̂t(xs, as, a

′
s))

2≤βt(F , δ) , (10)

where βt(F , δ) is an appropriately chosen confidence parameter. Since yt ∼ Ber(f∗(xt, at, a
′
t)) given (xt, at, a

′
t), We

have Var[yt] ≤ 1/4. Thus, following (Ayoub et al., 2020), we set the confidence parameter

βt(F , δ)=2 log
2N (F)

δ
+2

√
log

4t(t+1)

δ
+4 ,

where N (F) denotes the (1/t, ||·||∞)-covering number1 of F . This choice of confidence width ensures that f∗ lies in the
confidence set Ct(F , δ) at all time instant t ≥ 1 with probability at least 1− δ (Lemma C.4).

Next, for each triplet (x, a, a′), we define the exploration bonus bt(x, a, a′) at round t as

bt(x, a, a
′)= max

f1,f2∈Ct(F,δ)
|f1(x, a, a′)−f2(x, a, a′)|, (11)

1For any α > 0, we call Fα an (α, ||·||∞) cover of the function class F if for any f ∈ F there exists an f ′ in Fα such that
||f ′ − f ||∞:= supx∈X |f ′(x)− f(x)|≤ α.

10
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which measures the uncertainty of a pair of actions a, a′ given a context x with respect to the confidence set Ct(F , δ). The
near-optimal action set At(x) at round t is defined as the set of all actions in the previous set At−1(x) satisfying

f̂t(x, a, a0) + bt(x, a, a0) ≥ 1/2∀a0 ∈ At−1(x) . (12)

Intuitively speaking, we retain only those actions from the previous near-optimal set which are not significantly outperformed
by other actions according to the estimates of the current round. Since f∗ ∈ Ct(F , δ), the optimal action a∗(x) lies in At(x)
for each context x for all t with high probability (Lemma C.5). By pruning out suboptimal actions every round, we make
better use of samples. When the set At(x) becomes a singleton (i.e., a∗(x) has been identified w.h.p), we remove this
context from the pool of contexts considered in future rounds.

To encourage exploration, we choose actions (at(x), a′t(x)) which has the highest uncertainty in At(x), i.e., we choose

(at(x), a
′
t(x))=argmaxa,a′∈At(x) bt(x, a, a

′) . (13)

Next, we choose the context xt that provides the maximum information about the unknown preference function f∗, i.e.,

xt ∈ argmaxx∈X bt(x, at(x), a
′
t(x)) . (14)

We play the actions at = at(xt) and a′t = a′t(xt) in round t and observe the preference feedback yt. We repeat this until we
have exhausted the budget T . Our final policy πT samples an action uniformly at random from the set AT (x) for every
context x ∈ X . Pseudocode is given in Algorithm 3.

C.2. Result

We characterize the complexity of the function class F by its eluder dimension (Russo and Van Roy, 2013).

Definition C.2 (Eluder dimension). The ε-eluder dimension dimE(F , ε) of a function class F defined on a domain X is the
length of the longest sequence {xi}ni=1⊆X of input points such that for some ε′≥ε and for each i ∈ {2, . . . , n},

sup
f1,f2∈F

{
(f1−f2)(xi)

∣∣∣√∑i−1

j=1
(f1−f2)2(xi)≤ε′

}
>ε′ .

We denote by dE(F) = dimE (F , 1/T ), the (1/T )-Eluder dimension of the function class F . Now, we state sub-optimality
guarantee of the final policy using eluder dimension and metric entropy of the function class F .

Theorem C.3 (Suboptimality Gap). Let δ ∈ (0, 1). Under assumption C.1, the suboptimality gap R(T ) of our policy πT

after running APO-Gen (algorithm 3) for T steps is upper bounded with probability at least 1− δ as

R(T ) ≤ Õ

(√
log(N (F)T/δ)dE(F)

T

)
.

Proof is deferred to the next section. It essentially follows ideas similar to Theorem 3.4 with difference that we crucially
leverage action elimination (Step 8).

BTL model. For the BTL preference model f(x, a, a′) = µ(ϕ(x, a)⊤θ−ϕ(x, a′)⊤θ). Define r = h/h, where

h = supx,a,a′,θ µ̇(ϕ(x, a)⊤θ−ϕ(x, a′)⊤θ) ,
h = infx,a,a′,θ µ̇(ϕ(x, a)⊤θ−ϕ(x, a′)⊤θ) .

Then the logN (F) and Eluder dimension of F are at most O(d log(hT )) and O(dr2h log(rShT )), respectively. Note that
h = 1/κ and h ≤ 1/4. This yields logN (F) = O(d log T ) and dE(F) = O(κ2d log T ). Substituting this in Theorem C.3,
we get the sub-optimality gap O(κd/

√
T ), which is

√
κ factor loose than Theorem 3.4. This is because we crucially use

self-concordance of the sigmoid function in Theorem 3.4 to shave this extra
√
κ factor. Nevertheless, Theorem C.3 is general

enough to subsume other preference models (e.g. probit/Thurstone) beyond the BTL model.

C.3. Analysis

First we present a result that characterizes the confidence set around f̂t.

Lemma C.4 (Confidence Set for Function Approximation (Lemma A.1 of (Chen et al., 2022)). Let δ ∈ (0, 1). Define the
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Algorithm 3 APO-Gen: Active Preference Optimization with General Function Approximation

Require: Context set X , action set A = [K], function class F , failure level δ ∈ (0, 1)
1: Set X0 = X and A0(x) = A∀x ∈ X ,
2: for t = 1, 2, . . . T do
3: Compute function estimate f̂t usning (9).
4: Construct confidence set Ct(F , δ) using (10).
5: Intialize the Xt = Xt−1

6: for each context x ∈ Xt−1 do
7: For each pair of actions a, a′ ∈ At−1(x), compute the bonus bt(x, a, a′) using (11).
8: Find the near-optimal action set At(x) using (12)
9: if |At(x)| = 1 then

10: Set AT (x) = At(x)
11: Xt ← Xt \ {x}
12: Choose context and pair of actions (xt, at, a

′
t) = argmaxx∈Xt,a,a′∈At(x)

bt(x, a, a
′)

13: Observe preference yt ∼ Ber(f∗(xt, at, a
′
t))

14: Output final policy πT (x) = a for some a ∈ AT (x).

confidence set

Ct(F , δ) = {f ∈ F|
t−1∑
s=1

(f(xs, as, a
′
s)− f̂t(xs, as, a

′
s))

2 ≤ βt(F , δ)

Let Et(δ) be the event that f∗ ∈ Ct(F , δ). Then, P[Et(δ)] ≥ 1− δ. Further, P
[
∩Tt=1Et(δ/T )

]
≥ 1− δ.

Proof. The proof is a direct extension of lemma D.3 by observing that in our case the subgaussianity parameter σ = 1/4 since
our rewards are Bernoulli and by setting α = 1/t. Moreover, C = 1 in our case. Finally, since Et(δ/t) holds with probability
at least 1− δ/t, by union bound we can show that P

[
∩Tt=1Et(δ/T )

]
= 1− P

[
∪Tt=1Et(δ/T )

]
≥ 1−

∑T
t=1 P[Et(δ/T )] ≥

1− δ.

Hereon, we will assume that Et(δ/T )for all t ∈ [T ]. All subsequent guarantees will be proved this event. The next result
shows that for each context x, the optimal action a∗(x) lies in At(x) for all t.

Lemma C.5. For a given context x ∈ X , let {As(x)}ts=0 be defined as follows: (a) A0(x) = A and (b) As(x) = {a ∈
As−1(x)|f̂s(x, a, a′) + bs(x, a, a

′) ≥ 1
2 ∀a

′ ∈ As−1(x)}. Then, we have, a∗(x) ∈ As(x) for all s ∈ [t].

Proof. The proof is by induction. First note that by definition of a∗(x), f∗(x, a∗(x), a′) ≥ 1/2 for every a′ ∈ A, and
a∗(x) ∈ A0(x) = A. Suppose, for some s > 0, a∗(x) ∈ As−1(x). Now, we know that under event Es(δ/T ), f∗ ∈
Cs(F , δ/T ) and thus from definition of bs(x, a, a′), f∗(x, a, a′)− f̂s(x, a, a

′) ≤ bs(x, a, a
′). Thus, for any a′ ∈ As−1(x),

1

2
≤ f∗(x, a∗(x), a′) ≤ f̂s(x, a

∗(x), a′) + bs(x, a
∗(x), a′)

Hence a∗(x) ∈ As(x). Thus by induction, a∗(x) ∈ As(x) for all s ∈ [t].

Now, we are ready to prove Theorem C.3.

Proof. The idea is to show that our arm elimination technique throws away arms with large suboptimality gap in every
round for every context. Thus the set At(x) maintains a candidate set of good arms at every time instant. In the end, playing
any action from AT (x) ensures that we only play actions from a set of actions that are only 1/

√
T suboptimal. Formally,

12
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for any context x ∈ X , the suboptimality R(T, x) is upper bounded as follows:

R(T, x) = f∗(x, a∗(x), πT (x))−
1

2

≤ 1

T

T∑
t=1

[
f̂t(x, a

∗(x), πT (x)) + bt(x, a
∗(x), πT (x))−

1

2

]
(a∗(x), πT (x) ∈ At(x) ∀ t ∈ [T ])

=
1

T

T∑
t=1

[
1

2
− f̂t(x, πT (x), a

∗(x)) + bt(x, a
∗(x), πT (x))

]
(f(x, a, a′) + f(x, a′, a) = 1 ∀ f ∈ F)

=
1

T

T∑
t=1

[
1

2
− f̂t(x, πT (x), a

∗(x)) + bt(x, πT (x), a
∗(x))

]
(bt(x, a, a′) = bt(x, a

′, a))

≤ 1

T

T∑
t=1

[bt(x, πT (x), a
∗(x)) + bt(x, πT (x), a

∗(x))] (Since πT (x), a
∗(x) ∈ At(x), line 7 Algorithm 3)

=
2

T

T∑
t=1

bt(x, πT (x), a
∗(x))

≤ 2

T

T∑
t=1

bt(xt, at, a
′
t) (Line 9 of Algorithm 3)

Now we invoke lemma D.4 to bound the RHS.

R(T, x) ≤ 2

T

T∑
t=1

bt(xt, at, a
′
t) ≤

2

T

[
1

T
+min{dE(F), T}+ 2βT (F , δ/T )

√
dE(F)T

]
Simplifying constants and using the fact that min{a, b} ≤

√
ab for a, b > 0, we get R(T, x) ≤ CβT (F , δ/T )

√
dE(F)

T .
Now, using order notation, we have for all x ∈ X with probability at least 1− δ,

R(T, x) ≤ Õ

(√
log(N (F)T/δ)dE(F)

T

)
,

which completes the proof.

D. Some Useful Results
Lemma D.1. Let z, z′ ∈ R and α̃(z, z′) :=

∫ 1

0
(1− v)σ̇(z + v(z′ − z))dv. Then, for some C > 1 (1.01 suffices),

α̃(z, z′) ≥ σ̇(z′)

C(2 + |z − z′|)2

Proof. Firstly, note that by property of definite integrals
∫ b

a
f(x)dx =

∫ b

a
f(a+ b− x)dx, we have∫ 1

0

(1− v)σ̇(z + v(z′ − z))dv =

∫ 1

0

vσ̇(z′ + v(z − z′))dv

Now, we use the fact that σ̇(x) ≥ σ̇(y) exp(−|x− y|) (see appendix A of (Faury et al., 2022)). Let a = |z − z′|. Thus,∫ 1

0

vσ̇(z′ + v(z − z′))dv ≥
∫ 1

0

vσ̇(z′) exp(−va)dv = σ̇(z′)

∫ 1

0

v exp(−va)dv

= σ̇(z′)

(
1− (1 + a)e−a

a2

)
≥ σ̇(z′)

(
1− 1/a

a2

)
((1 + a)e−a < 1

a ∀a > 0)

= σ̇(z′)

(
a− 1

a3

)

13
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Again, from appendix A of (Faury et al., 2022), we have that α̃(z, z′) ≥ σ̇(z)/(2 + a) which can again be lower bounded
with σ̇(z′)e−a/(2 + a). Combining this lower bound with above, we get,

α̃(z, z′) ≥ max

{
e−a

2 + a
,
a− 1

a3

}
σ̇(z′)

Finally, we can lower bound the RHS with σ̇(z′)
C(2+a)2 for some C > 1.01. To do this, let f(x) = (2 + x)e−x. Thus,

f ′(x) = −(1 + x)e−x which implies that f(x) is decreasing for x > 0. Thus, f(x) = 1
C is satisfied for only one value of x

since f(0) = 2 > 1/C. For C = 1.01, this value is x0 = 1.1608. Then, for 0 ≤ x ≤ x0, e−x/(2 + x) ≥ 1/C(2 + x)2.
Again, let g(x) = (x − 1)(x + 2)2/x3. Simplifying, we have, g(x) = 1 + 3

x −
4
x3 . It is easy to see that for x ≥ 2/

√
3,

3
x ≥

4
x3 which implies that g(x) ≥ 1 for all x ≥ x1 = 2/

√
3 = 1.1547. So, for x ≥ 1.1547, g(x) ≥ 1/C (since C > 1)

which is equivalent to (x−1)
x3 ≥ 1

C(x+2)2 . The numeric solution to g(x) = 1/C for C = 1.01 is x2 = 1.1525. It can be
checked via first derivative test that g(x) is increasing in x2 ≤ x ≤ x1. Thus, indeed, g(x) ≥ 1/C for all x ≥ x2. Jence, we
have established so far that for C = 1.01,

x− 1

x3
≥ 1

C(x+ 2)2
∀ x ≥ x2 = 1.1525

e−x

2 + x
≥ 1

C(x+ 2)2
∀ x ≤ x0 = 1.1608

Since, x2 ≤ x0, we have the required result that max
{

e−a

2+a ,
a−1
a3

}
σ̇(z′) ≥ σ̇(z′)

C(2+a)2 for all a ≥ 0 which completes the
proof.

Lemma D.2 (Elliptic Potential Lemma). Let {zs}ts=1 be a sequence of vectors in Rd such that ∥zs∥ ≤ L for any s ∈ [t].
Let Vt =

∑t−1
s=1 zsz

⊺
s + λI . Then,

t∑
s=1

∥zs∥2V −1
s
≤ 2d log

(
1 +

tL2

λd

)
.

Now we present the confidence set properties of function approximation. We use the same notations as (Ayoub et al., 2020)

Let (Xp, Yp)p≥1 be a sequence of random elements, Xp ∈ X for some measurable set X and Yp ∈ R. Let F be a
subset of the set of real-valued measurable functions with domain X . Let F = (Fp)p≥0 be a filtration such that for
all p ≥ 1, (X1, Y1, . . . , Xp−1, Yp−1, Xp) is Fp−1 measurable and such that there exists some function f∗ ∈ F such
that E[Yp | Fp−1] = f∗(Xp) holds for all p ≥ 1. The (nonlinear) least-squares predictor given (X1, Y1, . . . , Xt, Yt) is
f̂t = argminf∈F

∑t
p=1(f(Xp) − Yp)

2. We say that Z is conditionally ρ-subgaussian given the σ-algebra F if for all
λ ∈ R, logE[exp(λZ) | F] ≥ 1

2λ
2ρ2. For α > 0, let Nα be the ∥·∥∞-covering number of F at scale α. That is, Nα is

the smallest integer for which there exist G ⊂ F with Nα elements such that for any f ∈ F , ming∈G∥f − g∥∞ ≤ α. For
β > 0, define Ft(β) = {f ∈ F :

∑t
s=1(f(Xs)− f̂t(Xp))

2 ≤ β}.

Lemma D.3 (Theorem 5 of (Ayoub et al., 2020)). Let F be the filtration defined above and assume that the functions in F
are bounded by the positive constant C > 0. Assume that for each s ≥ 1, (Yp − f∗(Xp))p is conditionally σ-subgaussian
given Fp−1. Then, for any α > 0, with probability 1− δ, for all t ≥ 1, f∗ ∈ Ft(βt(δ, α)), where

βt(δ, α) = 8σ2 log(2Nα/δ) + 4tα
(
C +

√
σ2 log(4t(t+ 1)/δ)

)
.

Lemma D.4 (Lemma 2 of (Russo and Van Roy, 2013)). LetF ∈ B∞(X , C) be a set of functions bounded by C > 0, (Ft)t≥1

and (xt)t≥1 be sequences such that Ft ⊂ F and xt ∈ X hold for t ≥ 1. Let F |x1:t
= {(f(x1), . . . , f(xt)) : f ∈ F}(⊂ Rt)

and for S ⊂ Rt, let diam(S) = supu,v∈S∥u− v∥2 be the diameter of S. Then, for any T ≥ 1 and α > 0 it holds that

T∑
t=1

diam(Ft |xt) ≤ α+ C(d ∧ T ) + 2δT
√
dT

where δT = max1≤t≤T diam(Ft |xt) and d = dimE(F , α) is the Eluder Dimension of F .
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E. Experiment Details
E.1. Results on Controlled Sentiment Generation Task

In our experiment on controlled sentiment generation, we consider a user group that prefers positive sentiment completions
for a prompt. Using the IMDb dataset as a basis for our inputs (Maas et al., 2011), the goal for the optimal policy
is to produce responses y that exhibit positive sentiment, catering to the user group’s preferences for a given prompt
x. For a controlled evaluation, we generated a set of preference pairs utilizing a pre-trained sentiment classifier where
p(positive | x, yw) > p(positive | x, yl) for the evaluation.

We implement the 3 phases of RLHF pipeline (Christiano et al., 2017; Ouyang et al., 2022): (i) Supervised Fine-tuning,
(ii) Reward Modelling, and (iii) RL Fine-tuning. For the SFT policy, we fine-tune GPT-2 (Radford et al., 2019) until
convergence on reviews from the (80-20) train split of the IMDb dataset with 8000 samples and use this GPT-2 backbone
for both the reward model and PPO training (Schulman et al., 2017). For the reward learning, we use a total size of 5000
preference and adaptively select samples and evaluate the performance on the 2000 validation set as shown in Figure 1. The
generations are evaluated against the ground truth reward r∗ for positive sentiment, provided by the pre-trained sentiment
classifier (similar to (Rafailov et al., 2023)). Hyperparameters for our experiments are given in Appendix F.

To demonstrate the performance of Algorithm 2 against random selection baselines, we use the feature representation ϕ(x, y)
given a prompt x and response y using the GPT-2 SFT backbone. We estimate the uncertainty bt(x, ychosen, yrejected)
for each (x, ychosen, yrejected) in our dataset D (step 3 of Algorithm 2) and select the top-B samples (step 6) to update
the reward model. We repeat this process K times and compare the same against random baseline (where we select the
B samples randomly) for different values of BK. Note that our total sample budget is now T = BK. Finally, we train
PPO (Schulman et al., 2017) with the learned reward model and evaluate the responses against the ground truth reward r∗

for positive sentiment.

Figure 1 shows the results of the experiment. It is clear that evaluation accuracy of the reward model learned by APO is
much higher than the one learned via random selection baseline even when APO’s sample budget is only 5% of the data and
random baseline’s 40% illustrating the suboptimality gap as shown in Theorem 3.2. Next, we compare the performance of
the aligned models trained via PPO using the respective reward models. For APO, we use the reward model trained on a
sample budget of 10% while for random baseline it is the highest accuracy reward model (corresponding to 40% sample).
From Figure 1 it is evident that APO outperforms the random baseline by a 60 : 40 win rate demonstrating the efficiency of
the proposed method. Hyperparameters are given in Appendix F.

E.2. Results on Single-Turn Dialogue Task

In this experiment, we use Anthropic helpful and harmless preference dataset (Bai et al., 2022), and gemma-2b2 (Team
et al., 2024) language model. We first collect all the prompts with single-turn dialogues. Then we split this collection into
two in 80 : 20 ratio. On the larger 80%-collection, we make inference with a Mistral-7b reward model3, which serves as
the latent reward model r∗. Then we obtain reward differences between chosen and rejected responses in this collection.
Based on these, we separate the dataset into three buckets: (i) reward difference between −1 to 1 (∼ 7500 samples), (ii)
reward difference between 1 to 3 (∼ 6500 samples), and (iii) reward difference more than 3 (∼ 3300 samples). These
buckets contain data points which are progressively easier to classify. With this, we create a train set of 8, 000 samples
containing 4500 from (i), 2500 from (ii) and 1000 samples from (iii). Such a training dataset highlights the importance
of selecting prompts more carefully to obtain useful information during learning. Randomly sampling prompts to collect
feedback is more likely to hurt the performance in such a setting. For the test set, we sample 2000 data points from the
smaller 20%-collection set aside previously.

Reward Evaluation. We compare the reward model learnt by our algorithm APO with that of random sampling baseline.
After the reward models are trained, we compute rewards for chosen and rejected responses in the test dataset. We define
reward evaluation accuracy as the % of the test samples for which the reward of chosen response is higher than that of
rejected response. We plot reward accuracy as a function of training samples for small (5) and large (20) no. of batches
keeping sample budget same. The results are shown in Fig. 1. We observe that APO outperforms the random-sampling
baseline. We also see that the reward accuracy increases with increasing number of epochs for a given sample budget. We

2Specifically the instruction-tuned version: https://huggingface.co/google/gemma-2b-it
3https://huggingface.co/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
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only vary no. of samples till 4000 as we want to compare performances under budget constraint.

Win Rate. We compare the win rate of the APO-policy with that of the random-sampling baseline. We train the reward
models on 2000 samples over 20 epochs, and then the final policies are trained using PPO. We then generate responses
from these policies for all the 2000 prompts in test set (except 21 prompts of length greater than 250 tokens, due to compute
bottleneck), and obtain a reward score for each generation using the Mistral-7b reward model. Win rate of APO over random
baseline is computed as the percentage of samples for which reward of APO-policy generation is higher than that of the
random-sampling based policy. From Fig. 1, we observe APO outperforms random baseline by a 60 : 40 win rate. Thus we
observe significant improvement in win rate by using APO over random sampling baseline. Hyperparameters are given in
Appendix F.

F. Hyperparameter Details
Any hyperparameters not explicitly mentioned use the default values in the TRL library.4

F.1. Experiments on Controlled Sentiment Generation

The hyperparameters for the experiments are outlined in Table 1.

Table 1. Hyperparameters used in our experiment

Parameter Value

regularizer in APO 1e-5
beta 0.1

learning rate 1.41e-5
batch size 16

max length 512
max prompt length 128

F.2. Experiment with Anthropic Dataset

All experiments in this section were performed using one A100 (80 GB) GPU. For reward learning for APO, we use
regularizer λ = 1× 10−5. The learning rate for both APO and random is set to 1× 10−2 with weight decay of 1× 10−5.
After every epoch of data collection, the training step on the logistic loss is run for 10 epochs.

The details for the PPO configuration is same for both APO and random. The details are given in Table 2.

Table 2. Hyperparameters used in PPO Training

Parameter Value

learning rate 1e-4
lora-rank 8
lora alpha 32

lora dropout 0.05
batch size 16

mini batch size 8
max new tokens 256

top k 80
top p 1

temperature 1.1
do sample True

4huggingface.co/docs/trl/index
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F.3. Additional Experimental Comparison with AE-DPO ((Mehta et al., 2023))

Figure 3. Win rates of APO (left), AE-DPO ((Mehta et al., 2023)) (middle) and random baselines (right) compared against SFT model on
the IMDb controlled generation task. We can see that APO outperforms all the other methods.
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