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Abstract

Low-precision training has emerged as a promising low-cost technique to enhance the train-
ing efficiency of deep neural networks without sacrificing much accuracy. Its Bayesian
counterpart can further provide uncertainty quantification and improved generalization ac-
curacy. This paper investigates low-precision sampling via Stochastic Gradient Hamilto-
nian Monte Carlo (SGHMC) with low-precision and full-precision gradient accumulators for
both strongly log-concave and non-log-concave distributions. Theoretically, our results show
that to achieve ϵ-error in the 2-Wasserstein distance for non-log-concave distributions, low-
precision SGHMC achieves quadratic improvement (Õ

(
ϵ−2µ∗−2 log2 (ϵ−1))) compared to

the state-of-the-art low-precision sampler, Stochastic Gradient Langevin Dynamics (SGLD)
(Õ
(
ϵ−4λ∗−1 log5 (ϵ−1))). Moreover, we prove that low-precision SGHMC is more robust

to the quantization error compared to low-precision SGLD due to the robustness of the
momentum-based update w.r.t. gradient noise. Empirically, we conduct experiments on
synthetic data, and MNIST, CIFAR-10 & CIFAR-100 datasets, which validate our theoreti-
cal findings. Our study highlights the potential of low-precision SGHMC as an efficient and
accurate sampling method for large-scale and resource-limited machine learning.

1 Introduction

In recent years, while deep neural networks (DNNs) stand out for their state-of-art performance across various
AI tasks, accompanied by an increase in model and computation complexity (Simonyan & Zisserman, 2014;
He et al., 2016; Vaswani et al., 2017; Radford et al., 2018; Chen et al., 2023). Addressing this challenge,
techniques that enable efficient DNN processing become imperative to enhance efficiency and facilitate the
widespread deployment of DNNs in AI systems (Courbariaux et al., 2015; Sze et al., 2017). Consequently,
there is a growing interest in utilizing low-precision optimization techniques to address the computational and
memory costs associated with these complex models (Sze et al., 2017). By employing reduced precision for
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Table 1: Theoretical results of the achieved 2-Wasserstein distance and the required gradient complexity
for both log-concave (italic) and non-log-concave (bold) target distributions, where ϵ is any sufficiently
small constant, ∆ is the quantization error, and µ∗ and λ∗ denote the contraction rate of underdamped
and overdamped Langevin dynamics respectively (Definition 1). Under non-log-concave target distributions,
low-precision SGHMC achieves a better upper bound within shorter iterations compared with low-precision
SGLD.

Condition Gradient Complexity Achieved 2-Wasserstein
Full-precision gradient accumulators
SGLD/SGHMC (Theorem 4) Strongly log-concave Õ

(
log
(
ϵ−1) ϵ−2) Õ (ϵ+ ∆)

SGLD (Theorem 7) Non-log-concave Õ
(
ϵ−4λ∗−1 log5 (ϵ−1)) Õ

(
ϵ+ log

(
ϵ−1)√∆

)
SGHMC (Theorem 1) Non-log-concave Õ

(
ϵ−2µ∗−2 log2 (ϵ−1)) Õ

(
ϵ+

√
log (ϵ−1) ∆

)
Low-precision gradient accumulators
SGLD/SGHMC (Theorem 5) Strongly log-concave Õ

(
log
(
ϵ−1) ϵ−2) Õ

(
ϵ+ ϵ−1∆

)
VC SGLD/VC SGHMC (Theorem 6) Strongly log-concave Õ

(
log
(
ϵ−1) ϵ−2) Õ

(
ϵ+
√

∆
)

SGLD (Theorem 8) Non-log-concave Õ
(
ϵ−4λ∗−1 log5 (ϵ−1)) Õ

(
ϵ+ log5 (ϵ−1) ϵ−4

√
∆
)

VC SGLD (Theorem 9) Non-log-concave Õ
(
ϵ−4λ∗−1 log3 (ϵ−1)) Õ

(
ϵ+ log3 (ϵ−1) ϵ−2

√
∆
)

SGHMC (Theorem 2) Non-log-concave Õ
(
ϵ−2µ∗−2 log2 (ϵ−1)) Õ

(
ϵ+ log3/2 (ϵ−1) ϵ−2

√
∆
)

VC SGHMC (Theorem 3) Non-log-concave Õ
(
ϵ−2µ∗−2 log2 (ϵ−1)) Õ

(
ϵ+ log

(
ϵ−1) ϵ−1

√
∆
)

both model and data representations ( e.g. mixed-precision, low-bits fixed-point, low-bit block floating point),
significant improvements can be achieved in terms of DNN training speed and resource efficiency (Micikevicius
et al., 2017; Gupta et al., 2015; Li et al., 2017; De Sa et al., 2017; Zhou et al., 2016). Notably, several recent
studies (Wang et al., 2018; Banner et al., 2018; Wu et al., 2018; Lin et al., 2019; Sun et al., 2019) demonstrated
the successful application of 8-bit training techniques in accelerating the training of different models, such
as VGG (Wu et al., 2018), ResNet (Banner et al., 2018), LSTMs, Transformers (Sun et al., 2019), and
vision-language models (Wortsman et al., 2023).

With the increasing demand and huge success of complicated architecture such as Large Languages Mod-
els (LLMs) and Vision-transformers, a wide range of quantization methods are adopted to reduce the com-
puting and memory consumption while retaining acceptable performances(Liu et al., 2023; Zhao et al., 2023;
Li et al., 2023; Xu et al., 2023; Xiao et al., 2023). Readers can find more information on low-precision
optimization and model compression in the survey papers (Sze et al., 2017; Deng et al., 2020; Liang et al.,
2021).

As a counterpart of low-precision optimization, low-precision sampling is relatively unexplored but has
shown promising preliminary results. Zhang et al. (2022) studied the effectiveness of Stochastic Gradient
Langevin Dynamics (SGLD) (Welling & Teh, 2011) in the context of low-precision arithmetic, highlighting
its superiority over the optimization counterpart, Stochastic Gradient Descent (SGD). This superiority stems
from SGLD’s inherent robustness to system noise compared with SGD.

Other than SGLD, Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014) is another
popular gradient-based sampling method closely related to the underdamped Langevin dynamics. Recently,
Cheng et al. (2018); Gao et al. (2022) showed that SGHMC converges to its target distribution faster than
the best-known convergence rate of SGLD in the 2-Wasserstein distance under both strongly log-concave and
non-log-concave assumptions. Beyond this, SGHMC is analogous to stochastic gradient methods augmented
with momentum, which is shown to have more robust updates w.r.t. gradient estimation noise (Liu et al.,
2020). Since the quantization-induced stochastic error in low-precision updates acts as extra gradient noise,
we believe SGHMC is particularly suited for low-precision arithmetic.

Our main contributions in this paper are threefold:
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• We conduct the first study of low-precision SGHMC, adopting the low-precision arithmetic (in-
cluding full- and low-precision gradient accumulators and the variance correction (VC) version of
low-precision gradient accumulators) to SGHMC.

• We present a thorough theoretical analysis of low-precision SGHMC for both strongly log-concave
and non-log-concave target distributions. Beyond Zhang et al. (2022)’s analysis for strongly log-
concave distributions, we introduce an intermediate process for quantization noise management
to facilitate the analysis of non-log-concave target distributions. All our theoretical results are
summarized in Table 1, where we compare the 2-Wasserstein convergence limit and the required
gradient complexity. The table highlights the superiority of HMC-based low-precision algorithms
over SGLD counterpart w.r.t. convergence speed and robustness to quantization error, especially
under the non-log concave distributions.

• We provide promising empirical results across various datasets and models. We show the sampling
capabilities of HMC-based low-precision algorithms and the effectiveness of the VC function in both
strongly log-concave and non-log-concave target distributions. We also demonstrate the superior
performance of HMC-based low-precision algorithms compared to SGLD in deep learning tasks.
Our code is available here.

In summary, low-precision SGHMC emerges as a compelling alternative to standard SGHMC due to its
ability to enhance speed and memory efficiency without sacrificing accuracy. These advantages position
low-precision SGHMC as an attractive option for efficient and accurate sampling in scenarios where reduced
precision representations are employed.

It is worth mentioning that low-precision gradient representations are also used in Federated Learning (FL)
for either optimization (Gorbunov et al., 2021; Tyurin & Richtárik, 2022) or sampling tasks (Vono et al.,
2022; Sun et al., 2022; Karagulyan & Richtárik, 2023). These methods use low-precision representations for
between-node communication, aiming to mitigate communication bottlenecks, but still utilize full-precision
arithmetic for local training. Thus these methods do not apply to the low-precision sampling challenge
studied in this paper.

2 Preliminaries

2.1 Low-Precision Quantization

Two popular low-precision number representation formats are known as the fixed point (FP) and block floating
point (BFP) (Song et al., 2018). Theoretical investigation of this paper only considers the fixed point case,
where the quantization error (i.e., the gap between two adjacent representable numbers) is denoted as ∆.
For example, if we use 8 bits to represent a number where 1 bit is assigned for the sign, 2 bits for the integer
part, and 5 bits for the fractional part, then the gap between two consecutive low-precision numbers is 2−5,
i.e., ∆ = 2−5. Furthermore, all representable numbers are truncated to an upper limit Ū and a lower limit
L̄.

Given the low-precision number representation, a quantization function is desired to round real-valued num-
bers to their low-precision counterparts. Two common quantization functions are deterministic rounding and
stochastic rounding. The deterministic rounding function, denoted as Qd, quantizes a number to its nearest
representable neighbor. The stochastic rounding, denoted as Qs (refer to (19) in Appendix D), randomly
quantizes a number to its close representable neighbor satisfying the unbiased condition, i.e. E[Qs(θ)] = θ. In
what follows, QW and QG denote stochastic rounding quantizers for the weights and gradients respectively,
allowing different quantization errors (i.e., different ∆’s for QW and QG). For simplicity in the analysis and
experiments, we use the same number of bits to represent the weights and gradients.
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2.2 Low-precision Stochastic Gradient Langevin Dynamics

When performing gradient updates in low-precision training, there are two common choices, full-precision
and low-precision gradient accumulators depending on whether we store an additional copy of full-precision
weights. Low-precision SGLD (Zhang et al., 2022) considers both choices.

Low-precision SGLD with full-precision gradient accumulators (SGLDLP-F) only quantizes weights before
computing the gradient. The update rule can be defined as:

xk+1 = xk − ηQG

(
∇̃U(QW (xk))

)
+
√

2ηξk+1, (1)

∇̃U is the unbiased gradient estimation of U . Zhang et al. (2022) showed that the SGLDLP-F outperforms
its counterpart low-precision SGD with full-gradient accumulators (SGDLP-F). The computation costs can
be further reduced using low-precision gradient accumulators by only keeping low-precision weights. Low-
precision SGLD with low-precision gradient accumulators (SGLDLP-L) can be defined as the following:

xk+1 = QW

(
xk − ηQG(∇̃U(xk)) +

√
2ηξk+1

)
. (2)

Zhang et al. (2022) studied the convergence property of both SGLDLP-F and SGLDLP-L under strongly-
log-concave distributions and showed that a small step size deteriorates the performance of SGLDLP-L. To
mitigate this problem, Zhang et al. (2022) proposed a variance-corrected quantization function (Algorithm
2 in Appendix D).

2.3 Stochastic Gradient Hamiltonian Monte Carlo

Given a dataset D, a model with weights (i.e., model parameters) x ∈ Rd, and a prior p(x), we are inter-
ested in sampling from the posterior p(x|D) ∝ exp(−U(x)), where U(x) = − log p(D|x) − log p(x) is the
energy function. In order to sample from the target distribution, SGHMC (Chen et al., 2014) is proposed
and strongly related to the underdamped Langevin dynamics. Cheng et al. (2018) proposed the following
discretization of underdamped Langevin dynamics (10) with stochastic gradient:

vk+1 = vke
−γη − uγ−1(1− e−γη)∇̃U(xk) + ξv

k (3)
xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)∇̃U(xk) + ξx

k ,

where u, γ denote the hyperparameters of the inverse mass and friction respectively, and ξv
k , ξx

k are normal
distributed in Rd satisfying that :

Eξv
k (ξv

k )⊤ = u(1− e−2γη) · I,
Eξx

k (ξx
k )⊤ = uγ−2(2γη + 4e−γη − e−2γη − 3) · I, (4)

Eξx
k (ξv

k )⊤ = uγ−1(1− 2e−γη + e−2γη) · I.

3 Low-Precision Stochastic Gradient Hamiltonian Monte Carlo

In this section, we investigate the convergence property of low-precision SGHMC under non-log-concave
target distributions. We defer the convergence analysis of low-precision SGHMC under strongly log-concave
target distributions, as well as the extension analysis under non-log-concave target distributions of low-
precision SGLD (Zhang et al., 2022) to Appendix A and B respectively. All of our theorems are based on
the fixed point representation and omit the clipping effect. We show that low-precision SGHMC exhibits
superior convergence rates and mitigates the performance degradation caused by the quantization error than
low-precision SGLD, especially for non-log-concave target distributions. Similar to Zhang et al. (2022),
we also observe an overdispersion phenomenon in sampling distributions obtained by SGHMC with low-
precision gradient accumulators, and we examine the effectiveness of variance-corrected quantization function
in resolving this overdispersion problem.
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In the statement of theorems, the big-O notation Õ gives explicit dependence on the quantization error ∆
and concentration parameters (λ∗, µ∗) but hides multiplicative terms that polynomially depend on the other
parameters (e.g., dimension d, friction γ, inverse mass u and gradients variance σ2). We refer readers to the
appendix for all the theorems’ proof. Before diving into theorems, we first introduce necessary assumptions
for the convergence analysis as follows:
Assumption 1 (Smoothness). The energy function U is M -smooth, i.e., there exists a positive constant M
such that

∥∇U(x)−∇U(y)∥2 ≤M2 ∥x− y∥2
, for any x,y ∈ Rd.

Assumption 2 (Dissaptiveness). There exist constants m2, b > 0, such that the following holds

⟨∇U(x),x⟩ ≥ m2 ∥x∥2 − b, for any x ∈ Rd.

Assumption 3 (Bounded Variance). There exists a constant σ2 > 0, such that the following holds

E
∥∥∥∇̃U(x)−∇U(x)

∥∥∥2
≤ σ2, for any x ∈ Rd.

Beyond the above assumptions, we further define κ1 = M/m1 (refer to Assumption 4 in Appendix A) and
κ2 = M/m2 as the condition numbers for strongly log-concave and non-log-concave target distribution,
respectively, and denote the global minimum of U(x) as x∗. All of our assumptions are standard and
commonly used in the sampling literature. In particular, Assumption 2 is a standard assumption (Raginsky
et al., 2017; Zou et al., 2019; Gao et al., 2022) in the analysis of sampling from non-log-concave distributions
and is essential to guarantee the convergence of underdamped Langevin dynamics. Assumption 3 can be
further relaxed, allowing the variance of ∇̃U(x) scale up w.r.t x. Please refer to the appendix H-P.
Definition 1. Let λ∗ and µ∗ denote the contraction rates for continuous-time overdamped Langevin dy-
namics and underdamped Langevin dynamics respectively. In other words, let xt follow the overdamped (or
underdamped) Langevin dynamics initialized at x0 = 0, πz be the invariant distribution, pt be the marginal
distribution xt, then λ∗ and µ∗ satisfy

W2
2 (pt, πz) ≤ Ce−λ∗t/d, or W2

2 (pt, πz) ≤ Ce−µ∗t/d,

for some constant C.

The contraction rates µ∗ and λ∗ are related to the nature of the Langevin dynamics. In general, the
contraction rates exponentially depend on the dimension d. For example, two popular approaches to analyze
the Wasserstein distance convergence property are the couplings method (Dalalyan & Riou-Durand, 2020;
Eberle et al., 2019) and Bakry–Émery method based on which the exponential convergence of the kinetic
Fokker–Planck equation is proved (Bakry & Émery, 2006; Baudoin, 2016; 2017). Unfortunately, both rates
lead to exponential dependency on dimension in general. It raises a crucial open question of whether restricted
models can exhibit improved dimensional dependence. While overdamped Langevin diffusions have seen
corresponding advancements, as evidenced in (Eberle et al., 2019; Zimmer, 2017), analogous progress for
underdamped Langevin diffusions remains underexplored. More detailed discussions of µ∗ and λ∗ (and their
uniform bounds) can be found in the Appendix C.

3.1 Full-Precision Gradient Accumulators

Adopting the update rule in equations (3), we propose low-precision SGHMC with full gradient accumulators
(SGHMCLP-F) as the following:

vk+1 = vke
−γη − uγ−1(1− e−γη)QG(∇̃U(QW (xk))) + ξv

k (5)
xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(QW (xk))) + ξx

k ,

which keeps full-precision parameters vk, xk at each iteration and quantizes them to low-precision represen-
tations before taking the gradient. Our analysis for non-log-concave distributions utilizes similar techniques
in Raginsky et al. (2017). We are now ready to present our first theorem:

5



Published in Transactions on Machine Learning Research (04/2024)

Theorem 1. Assuming 1, 2 and 3 hold. Let p∗ denote the target distribution of (x,v). If γ2 ≤ 4Mu and
setting the step size η = Õ

(
µ∗ϵ2

log(1/ϵ)

)
satisfying

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
1

8γ ,
γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ

}
,

then after K steps starting at the initial point x0 = v0 = 0, the output (xK ,vK) of SGHMCLP-F in (5)
satisfies

W2(p(xK ,vK), p∗) ≤ Õ
(
ϵ+ Ã

√
log
(

1
ϵ

))
,

for some K satisfying

K = Õ
(

1
ϵ2µ∗2 log2

(
1
ϵ

))
,

where constants are defined as: Ã = max
{√

∆2d+ σ2, 4
√

∆2d+ σ2
}

.

Similar to the convergence result of full-precision SGHMC or SGLD (Raginsky et al., 2017; Gao et al.,
2022), the above upper bound of the 2-Wasserstein distance contains an ϵ term and a log(ϵ−1) term. The
difference is that for the SGHMCLP-F algorithm, the quantization error ∆ affects the multiplicative constant
of the log(ϵ−1) term. Focusing on the effect of quantization error ∆, due to the fact that log(x) ≤ x1/e,
one can tune the choice of ϵ and η and obtain a Õ

(
∆e/(1+2e)) 2-Wasserstein bound. As for the non-

convergence of our result (i.e, log(ϵ−1) term), we note that even for full-precision sample algorithms, the
best non-asymptotic convergence result in the 2-Wasserstein distance (Zou et al., 2019; Raginsky et al., 2017;
Gao et al., 2022) also contain a log(ϵ−1) factor which is brought by stochastic gradient noise, and diverge
as ϵ → 0. The non-convergence of our Wasserstein upper bound is due to the accumulation of stochastic
gradient noise and stochastic discretion error. Conceptually, these random errors may average out over
iterations when the iteration number increases to infinity (i.e., the law of large numbers), as in the classical
ergodic theory of Markov chain (Theorem 17.25, 17.28 of Kallenberg & Kallenberg (1997)). However, our
mathematical tools lead to an upper bound that involves some weighted summation of the norm of these
random errors over iterations rather than the summation of these random errors. Under strongly log-concave
target distributions with no discretion error, this sum is bounded as t→∞ and proportional to the stepsize,
allowing for a sufficiently small step size to zero the bound Dalalyan & Karagulyan (2019); Cheng et al.
(2018). However, for general cases, this sum grows to infinity. It is yet an open question to sharpen this
type of analysis.

With the same technical tools, we conduct a similar convergence analysis of SGLDLF-P for non-
log-concave target distributions. The details are deferred in Theorem 7 of Appendix B. Compar-
ing Theorems 1 and 7, we show that SGHMCLP-F can achieve lower 2-Wasserstein distance (i.e.,
Õ
(

log1/2 (ϵ−1)∆1/2
)

versus Õ
(
log
(
ϵ−1)∆1/2)) for non-log-concave target distribution within fewer itera-

tions (i.e., Õ
(
ϵ−2µ∗−2 log2 (ϵ−1)) versus Õ

(
ϵ−4λ∗−1 log5 (ϵ−1))). Furthermore, by the same argument in

the previous paragraph, after carefully choosing the stepsize η, the 2-Wasserstein distance of the SGLDLF-P
algorithm can be further bounded by Õ

(
∆e/(2+2e)) which is worse than the bound Õ

(
∆e/(1+2e)) obtained

by SGHMC. We verify the advantage of SGHMCLF-P over SGLDLF-P by our simulations in section 4.

3.2 Low-Precision Gradient Accumulators

The storage and computation costs of low-precision algorithms can be further reduced by low-precision
gradient accumulators. We can adopt low-precision SGHMC with low-precision gradient accumulators
(SGHMCLP-L) as

vk+1 = QW

(
vke

−γη − uγ−1(1− eγη)QG(∇̃U(xk)) + ξv
k

)
, (6)

xk+1 = QW

(
xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xk)) + ξx

k

)
.
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Similar to the observation of Zhang et al. (2022), we also empirically find that the output xK ’s distribution
has a larger variance than the target distribution (see Figures 1 (a) and 2 (a)), as the update rule (6)
introduces extra rounding noise. Our theorem in the section aims to support this argument. We present the
convergence theorem of SGHMCLP-L under non-log-concave target distributions.
Theorem 2. Assuming 1, 2 and 3 hold. Let p∗ denote the target distribution of (x,v). If γ2 ≤ 4Mu and
setting the step size η = Õ

(
µ∗ϵ2

log(1/ϵ)

)
satisfying

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
1

8γ ,
γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ

}
,

then after K steps starting at the initial point x0 = v0 = 0, the output (xK ,vK) of SGHMCLP-L in (6)
satisfies

W2(p(xK ,vK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1
ϵ

)
+

log3/2 ( 1
ϵ

)
ϵ2

√
∆
)
, (7)

for some K satisfying

K = Õ
(

1
ϵ2µ∗2 log2

(
1
ϵ

))
.

For non-log-concave target distribution, the output of the naïve SGHMCLP-L has a worse convergence upper
bound than Theorem 1. The source of the observed problem is the variance introduced by the quantization
QW , causing actual variances of (xk,vk) to be larger than the variances needed. In Theorem 8, we generalize
the result of the naïve SGLDLP-L in (Zhang et al., 2022) to non-log-concave target distributions, and we defer
this theorem to appendix B. Similarly, we observe that SGHMCLP-L needs fewer iterations than SGLDLP-
L in terms of the order w.r.t. ϵ and log(ϵ−1) (Õ

(
ϵ−2µ∗−2 log2 (ϵ−1)) versus Õ

(
ϵ−4λ∗−1 log5 (ϵ−1))) and

achieves better upper bound Õ
(
ϵ−2 log3/2 (ϵ−1)√∆

)
versus Õ

(
ϵ−4 log5 (ϵ−1)√∆

)
.

By the same argument in Theorem 1’s discussion, after carefully choosing the stepsize η, the 2-Wasserstein
distance between samples obtained by SGHMCLP-L and non-log-concave target distributions can be further
bounded as Õ

(
∆e/(3+6e)), whilst the distance between the samples obtained by SGLDLP-L to the target

can be bounded as Õ
(
∆e/10(1+e)). Thus, low-precision SGHMC is more robust to the quantization error

than SGLD.

3.3 Variance Correction

To resolve the overdispersion caused by low-precision gradient accumulators, Zhang et al. (2022) proposed
a quantization function Qvc (refer to Algorithm 2 in Appendix D) that directly samples from the discrete
weight space instead of quantizing a real-valued Gaussian sample. This quantization function aims to reduce
the discrepancy between the ideal sampling variance (i.e., the required variance of full-precision counterpart
algorithms) and the actual sampling variance in our low-precision algorithms. We adopt the variance-
corrected quantization function to low-precision SGHMC (VC SGHMCLP-L) and study its convergence
property for non-log-concave target distributions. We extend the convergence analysis of VC SGLDLP-L
in Zhang et al. (2022) to the case of the non-log-concave distributions as well. The details are deferred to
Appendix B for comparison purposes. Let Varhmc

v = u(1−e−2γη) and Varhmc
x = uγ−2(2γη+4e−γη−e−2γη−3),

which are the variances added by the underdamped Langevin dynamics in (3). The VC SGHMCLP-L can
be done as follows:

vk+1 = Qvc
(

vke
−γη − uγ−1(1− e−γη)QG(∇̃U(xk)),Varhmc

v ,∆
)
, (8)

xk+1 = Qvc
(

xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xk)),Varhmc
x ,∆

)
.

The variance corrected quantization function Qvc aims to output a low-precision random variable with the
desired mean and variance. When the desired variance v is larger than ∆2/4, which is the largest possible
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variance introduced by the quantization Qs, the variance-corrected quantization first adds a small Gaussian
noise to compensate for the variance and then adds a categorical random variable with a desired variance.
When v is less than ∆2/4 the variance-corrected quantization computes the actual variance introduced by
Qs. If it is larger than v, a categorical random variable is added to the weights to match the desired variance
v. If it is less than v, we will not be able to match the variance after quantization. However, this case arises
only with exceptionally small step sizes. With the variance-corrected quantization Qvc in hand, we now
present the convergence analysis of the VC SGHMCLP-L for non-log-concave distributions.

Theorem 3. Assuming 1, 2 and 3 hold and E
∥∥∥QG(∇̃U(x))

∥∥∥2

2
≤ G2. Let p∗ be the target distribution of x.

If γ2 ≤ 4Mu and setting the step size η = Õ
(

µ∗ϵ2

log(1/ϵ)

)
satisfying

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
1

8γ ,
γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ

}
,

then after K steps starting at the initial point x0 = v0 = 0 the output (xK) of the VC SGHMCLP-L in (9)
satisfies

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1
ϵ

)
+

log
( 1

ϵ

)
ϵ

√
∆
)
, (9)

for some K satisfying

K = Õ
(

1
ϵ2µ∗2 log2

(
1
ϵ

))
.

Compared with Theorem 1, we cannot show that the variance corrected quantization fully resolves the
overdispersion problem observed for non-log-concave target distributions. However comparing with Theo-
rem 2, we show in Theorem 3 that the variance-corrected quantization can improve the upper bound w.r.t.
ϵ from Õ

(
ϵ−2 log3/2 (ϵ−1)√∆

)
to Õ

(
ϵ−1 log

(
ϵ−1)√∆

)
. In Theorem 9, we generalize the result of the

VC SGLDLP-L in (Zhang et al., 2022) to non-log-concave target distributions, and we defer this theorem
to appendix B. Similarly, we observe that VC SGHMCLP-L needs fewer iterations than VC SGLDLP-L in
terms of the order w.r.t. ϵ and log(ϵ−1) (Õ

(
ϵ−2µ∗−2 log2 (ϵ−1)) versus Õ

(
ϵ−4λ∗−1 log5 (ϵ−1))).

Beyond the above analysis, we apply similar mathematical tools and study the convergence property of VC
SGHMCLP-L and VC SGLDLP-L in terms of ∆ for non-log-concave target distributions. Based on the
Theorem 2 and 3, the variance-corrected quantization can improve the upper bound from Õ

(
∆e/(3+6e))

to Õ
(
∆e/(2+4e)). Compared with VC SGLDLP-L, the VC SGHMCLP-L has a better upper bound (i.e.

Õ
(
∆e/(2+4e)) versus Õ

(
∆e/6(1+e))). Interestingly, the naïve SGHMCLP-L has similar dependence on the

quantization error ∆ with VC SGLDLP-L but saves more computation resources since the variance corrected
quantization requires sampling discrete random variables. We verify our findings in Table 4.

4 Experiments

We evaluate the performance of the proposed low-precision SGHMC algorithms across various experiments:
Gaussian and Gaussian mixture distributions (Section 4.1), Logistic Regression and Multi-Layer Perceptron
(MLP) applied to the MNIST dataset (Section 4.2), and ResNet-18 on both CIFAR-10 and CIFAR-100
datasets (Section 4.3). Additionally, we compare the accuracy of our proposed algorithms with their SGLD
counterparts. Throughout all experiments, low-precision arithmetic is implemented using qtorch (Zhang
et al., 2019). Beyond our theoretical settings, our experiments encompass a range of low-precision setups, in-
cluding fixed point, block floating point, as well as quantization of weights, gradients, errors, and activations.
For more details of our low-precision settings used in experiments, please refer to Appendix D

4.1 Sampling from standard Gaussian and Gaussian mixture distributions

We first demonstrate the performance of low-precision SGHMC for fitting synthetic distributions. We use
the standard Gaussian distribution and Gaussian mixture distribution to represent strongly log-concave and
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Figure 1: Low-precision SGHMC on a Gaussian distribution. (a): SGHMCLP-L. (b): VC SGHMCLP-L.
(c): SGHMCLP-F. VC SGHMCLP-L and SGHMCLP-F converge to the true distribution, whereas naïve
SGHMCLP-L suffers a larger variance.
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Figure 2: Low-precision SGHMC with on a Gaussian mixture distribution. (a): SGHMCLP-L. (b): VC
SGHMCLP-L. (c): SGHMCLP-F. VC SGHMCLP-L and SGHMCLP-F converge to the true distribution,
whereas naïve SGHMCLP-L suffers a larger variance.
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Figure 3: Log L2 distance from sample density estimation obtained by low-precision SGHMC and SGLD
to the Gaussian mixture distribution. (a) Low-precision gradient accumulators. (b): Full-precision gradient
accumulators. Overall, SGHMC methods enjoy a faster convergence speed. In particular, SGHMCLP-L
achieves a lower distance compared to SGLDLP-L and VC SGLDLP-L.

non-log-concave distribution, respectively. The density of the Gaussian mixture example is defined as

e−U(x) = e2∥x−1∥2
+ e2∥x+1∥2

.

We use 8-bit fixed point representation with 4 of them representing the fractional part. For hyper-parameters
please the Appendix D. The simulation results are shown in Figure 1 and 2. From Figure 1(a) and 2(a),
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we see that the sample from naïve SGHMCLP-L has a larger variance than the target distribution. This
verifies the results we prove in Theorem 2. In Figure 1(b) and 2(b), we verify that the variance-corrected
quantizer mitigates this problem by matching variance of the quantizer to the variance Varhmc

x defined
by the underdamped Langevin dynamics (10). In Figure 3, we compare the performance of low-precision
SGHMC with low-precision SGLD for sampling from Gaussian mixture distribution. Since calculating the 2-
Wasserstein distance over long iterations is time-consuming, instead of computing the Wasserstein distance,
we resort to L2 distance of the sample density estimation to the true density function. It shows that low-
precision SGHMC enjoys faster convergence speed and smaller distance, especially SGHMCLP-L compared
to SGLDLP-L and VC SGLDLP-L.
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Figure 4: Mean (dotted line) and 95% confidence inter-
val (shaded area) of 2-Wasserstein error ratio between VC
SGHMCLP-L & SGHMCLP-L (Smaller means the variance
correction is more effective), computed over 5 experimental
runs. The x-axis represents the ratio between Varhmc

x and
∆2/4.

We also study in which case the variance-
corrected quantizer is advantageous over the
naïve stochastic quantization function. We
test the 2-Wasserstein sampling error of VC
SGHMCLP-L and SGHMCLP-L over differ-
ent variances. The result is shown in Figure
4. We find that when the variance Varhmc

x
is close to the largest quantization variance
∆2/4, the variance corrected quantization func-
tion shows the largest advantage over the naïve
quantization. When the variance Varhmc

x is
less than ∆2/4, the correction has a chance to
fail. When the variance Varhmc

x is 100 times
the quantization variance, the advantage of
variance-corrected quantizer shows less advan-
tage. One possible reason is that the quan-
tization variance eliminated by the variance-
corrected quantizer is not critical compared
to Varhmc

x which is the intrinsic variance for
SGHMC. We advocate for the adoption of
variance-corrected quantization under the specific condition where the ideal variance approximates ∆2/4.
Our observations indicate that this scenario yields the most significant performance gains. Conversely, in
other situations, we suggest employing naïve low-precision gradient accumulators, as they offer comparable
performance while conserving computational resources.

4.2 MNIST

In this section, we further examine the sampling performance of low-precision SGHMC and SGLD on strongly
log-concave distributions and non-log-concave distributions on real-world data. We use logistic and multilayer
perceptron (MLP) models to represent the class of strongly log-concave and non-log-concave distributions,
respectively. The results are shown in Figure 5 and 6. We use N

(
0, 10−2) as the prior distribution and fixed

point number representation, where we set 2 integer bits and various fractional bits. A smaller number of
fractional bits corresponds to a larger quantization gap ∆. For MLP model, we use two-layer MLP with 100
hidden units and ReLu nonlinearities. We report the training negative log-likelihood (NLL) with different
numbers of fractional bits in Figure 5 and 6. For detailed hyperparameters and experiment setup, please see
Appendix D.

From the results on MNIST, we can see that when using full-precision gradient accumulators, low-precision
SGHMC are robust to the quantization error. Even when we use only 2 fractional bits, SGHMCLP-F can
still converge to a distribution with a small and stable NLL but with more iterations. However, regarding
low-precision gradient accumulators, SGHMCLP-L and SGLDLP-L are less robust to the quantization error.
As the precision error increases, both SGHMCLP-L and SGLDLP-L have a worse convergence pattern com-
pared to SGHMCLP-F and SGLDLP-F. We showed empirically that SGHMCLP-L and VC SGHMCLP-L
outperform SGLDLP-L and VC SGLDLP-L. As shown in Figure 5 and 6, when we increase the quanti-
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Figure 5: Training NLL of low-precision SGHMC and SGLD on logistic model with MNIST in terms of
different numbers of fractional bits. (a): Full-precision gradient accumulators. (b): Low-precision gradient
accumulators. (c): Variance-corrected quantizer. SGHMCLP-F achieves comparable results with SGLDLP-
F. However, both SGHMCLP-L and VC SGHMCLP-L show more robustness to quantization error, especially
when the number of representable bits is low. Please be aware of the different scales of y-axis across three
figures.
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Figure 6: Training NLL of low-precision SGHMC and SGLD on MLP with MNIST in terms of different num-
bers of fractional bits. (a): Full-precision gradient accumulators. (b): Low-precision gradient accumulators.
(c): Variance-corrected quantizer. SGHMCLP-F achieves comparable results with SGLDLP-F. However,
both SGHMCLP-L and VC SGHMCLP-L show more robustness to quantization error, especially when the
number of representable bits is low. Please be aware of the different scales of y-axis across three figures.

zation error, SGHMCLP-L and VC SGHMCLP-L are more robust than SGLDLP-L and VC SGLDLP-L,
respectively.

4.3 CIFAR-10 & CIFAR-100

We consider image tasks CIFAR-10 and CIFAR-100 on the ResNet-18. We use 8-bit number representation
following Zhang et al. (2022). We report the test errors averaging over 3 runs in Tables 2 and 4. For detailed
hyperparameters and experiment setup, please see Appendix D.

Fixed Point We employ fixed point representations for both weights and gradients while retaining full
precision for activations and errors following previous work (Zhang et al., 2022). From the figure, unsur-
prisingly the full-precision algorithms outperform their low-precision counterparts. But with long enough
iterations the performance gap between SGHMC/SGLD and SGHMCLP-F/SGLDLP-F converges toward
zero. Similar to the results in previous sections, SGHMCLP-F is comparable with SGDLP-F, and the naïve
SGHMCLP-L significantly outperforms naïve SGLDLP-L and SGDLP-L across datasets and architectures.
For example, SGHMCLP-L outperforms SGLDLP-L by 1.19% on CIFAR-10, and SGHMCLP-L outperforms
SGLDLP-L by 0.58% on CIFAR-100. Furthermore, from the result in Figure 7, we empirically show that
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Figure 7: Log of training NLL of low-precision SGHMC and SGLD on ResNet-18 with CIFAR-100. (a):
8-bits Fixed Point. (b): 8-bits Block Floating Point. For fixed point representations, low-precision SGHMC
shows faster convergence and SGHMCLP-L outperforms SGLDLP-L and VC SGLDLP-L.

the convergence speed of SGHMC is way better than the convergence speed of SGLD. SGHMCLP-L even
achieves faster convergence than SGLDLP-F. When the variance Varhmc

x is comparable with or less than
∆2/4, we recommend implementing SGHMCLP-L rather than VC SGHMCLP-L. This is the case when we
assess the performance of low-precision SGHMC on CIFAR-10 and CIFAR-100. Notably, even in the absence
of the performance enhancement provided by the variance-corrected quantization function, the test results
indicate that SGHMCLP-L’s performance is on par with its SGLD counterpart with variance correction.
This result verifies our findings in Theorems 2 and 9.

Block Floating Point We also consider the block floating point (BFP) representation adopted with deep
models, which causes less quantization error and thus performs better compared with fixed point represen-
tation (Song et al., 2018). Given sufficient iterations, the performance differences between SGHMC/SGLD
and SGHMCLP-F/SGLDLP-F almost disappear. As illustrated in plot b) of Figure 7, SGHMCLP-F out-
performs full-precision SGLD in block floating point low-precision format. By using BFP, the performance
of all low-precision methods improves over fixed point representation. The naïve SGHMCLP-L outperforms
the naïve SGLDLP-L 0.82%. Moreover, the naïve SGHMCLP-L achieves comparable results with the VC
SGLDLP-L method, and SGHMCLP-L can save more computation resources since the variance-corrected
quantization function would need to sample an additional categorical random vector c ∈ Rd at each iter-
ation. Let Varsgld

x = 2η denote the variance added by overdamped Langevin dynamics in (14). For most
deep learning tasks, a small step size is preferred, and thus there is a large chance that Varsgld

x ≤ ∆2/4 in
which case we recommend running the naïve SGHMCLP-L to achieve comparable accuracy and save more
computation resources.

Expected Calibration Error To study the model calibration of low-precision SGHMC, we further report
the results of expected calibration error (ECE) (Guo et al., 2017) in Table 3 and 5. We observe that
sometimes SGLDLP-L and SGLDLP-F achieve a lower ECE than the full-precision SGLD counterpart,
implying that the corresponding sample distributions deviate from the true target posterior. We conjecture
that it is caused by the implicit regularization effect of the operator QW . On the other hand, we observe
that SGHMCLP-F and SGHMCLP-L have almost the same ECE as full-precision SGHMC in CIFAR-10,
showing that low-precision arithmetic does not degrade the calibration ability of SGHMC. In the CIFAR-100
dataset, HMC-based low-precision algorithms outperform their SGLD counterparts, especially SGHMCLP-
F, which outperforms SGLDLP-F around 1.4% in fixed point representation for the CIFAR-100 task. For
the low-precision gradient a ccumulators method, SGHMCLP-L and VC SGHMCLP-L achieve comparable
or better ECE with SGLDLP-L and VC SGLDLP-L and dramatically outperform low-precision SGD.
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Table 2: Test errors (%) of full-precision gradient ac-
cumulators on CIFAR with ResNet-18. SGHMCLP-F
achieves comparable results with SGLDLP-F.

CIFAR-10 CIFAR-100
32-bit Float
SGD 4.73 ± 0.10 22.34 ± 0.22
SGLD 4.52 ± 0.07 22.40 ± 0.04
SGHMC 4.78 ± 0.08 22.37 ± 0.04

8-bit Fixed Point
SGD 5.19 ± 0.09 23.71 ± 0.18
SGLD 5.07 ± 0.04 23.36 ± 0.10
SGHMC 5.08 ± 0.08 23.54 ± 0.10

8-bit Block Floating Point
SGD 4.75 ± 0.21 22.86 ± 0.14
SGLD 4.58 ± 0.07 22.70 ± 0.22
SGHMC 4.93 ± 0.09 22.39 ± 0.11

Table 3: ECE (%) of full-precision gradient accu-
mulators on CIFAR with ResNet-18. SGHMCLP-F
achieves comparable ECE with SGLDLP-F.

CIFAR-10 CIFAR-100
32-bit Float
SGD 2.50 4.97
SGLD 1.12 3.71
SGHMC 0.72 1.52
8-bit Fixed Point
SGD 2.79 7.11
SGLD 0.86 3.57
SGHMC 1.11 1.92
8-bit Block Floating Point
SGD 2.43 5.97
SGLD 1.01 3.87
SGHMC 1.12 3.65

Table 4: Test errors (%) of low-precision gradient accumu-
lators on CIFAR with ResNet-18. SGHMCLP-L and VC
SGHMCLP-L outperform SGLDLP-L and VC SGLDLP-
L, respectively. SGHMCLP-L achieves comparable results
with VC SGLDLP-L.

CIFAR-10 CIFAR-100
32-bit Float
SGD 4.73 ± 0.10 22.34 ± 0.22
SGLD 4.52 ± 0.07 22.40 ± 0.04
SGHMC 4.78 ± 0.08 22.37 ± 0.04

8-bit Fixed Point
SGD 8.50 ± 0.22 28.42 ± 0.35
SGLD 7.81 ± 0.07 27.15 ± 0.35
VC SGLD 7.03 ±0.23 26.73 ±0.12
SGHMC 6.63 ± 0.10 26.57 ± 0.10

VC SGHMC 6.60 ± 0.06 26.43 ± 0.19

8-bit Block Floating Point
SGD 5.86 ±0.18 26.75 ±0.11
SGLD 5.75 ±0.05 26.11±0.38
VC SGLD 5.51 ±0.01 25.14 ±0.11
SGHMC 5.38 ±0.06 25.29 ±0.03

VC SGHMC 5.15 ±0.08 24.45 ±0.16

Table 5: ECE (%) of low-precision gradient ac-
cumulators on CIFAR with ResNet-18. Low-
precision SGHMC are less affected by the quan-
tization error.

CIFAR-10 CIFAR-100
32-bit Float
SGD 2.50 4.97
SGLD 1.12 3.71
SGHMC 0.72 1.52
8-bit Fixed Point
SGD 5.12 12.92
SGLD 1.67 1.11
VC SGLD 0.60 2.89
SGHMC 0.72 2.46
VC SGHMC 0.70 2.44
8-bit Block Floating Point
SGD 4.62 13.93
SGLD 0.67 5.63
VC SGLD 0.60 5.09
SGHMC 0.78 4.94
VC SGHMC 0.67 5.02

5 Conclusion

We provide the first comprehensive investigation for low-precision SGHMC in both strongly log-concave and
non-log-concave target distributions with several variants of low-precision training. In particular, we prove
that for non-log-concave distributions, low-precision SGHMC with full-precision, low-precision, and variance-
corrected gradient accumulators all achieve an acceleration in iterations and have a better convergence upper
bound w.r.t the quantization error compared to low-precision SGLD counterparts. Moreover, we study
the improvement of variance-corrected quantization applied to low-precision SGHMC under different cases.
Under certain conditions, the naïve SGHMCLP-L can replace the VC SGLDLP-L to get comparable results,
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saving more computation resources. We conduct empirical experiments on Gaussian, Gaussian mixture
distribution, logistic regression, and Bayesian deep learning tasks to justify our theoretical findings.
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A Additional Results for Low-precision Stochastic Gradients Hamiltonian Monte
Carlo

In this section, we mainly summarize the theoretical results of Low-precision SGHMC under strongly log-
concave target distribution. The underdamped Langevin dynamics can be defined as:

dvt = −γvtdt− u∇U(xt)dt+
√

2γudBt

dxt = vtdt,
(10)

where (xt,vt) ∈ R2d, and u, γ denote the hyperparameters of inverse mass and friction respectively. We
introduce the the strongly-log-concave assumption as:
Assumption 4 (Strongly Log-Convex). The energy function U is m-strongly log-convex, i.e., there exists a
positive constant m such that,

U(y) ≥ U(x) + ⟨∇U(x),y− x⟩+ m1

2 ∥y− x∥2
, for any x,y ∈ Rd.

Once we introduce the continuous underdamped Langevin dynamics (10), we are ready to find a contraction
rate for (10). According to
Theorem 4. Suppose Assumptions 1, 3, and 4 hold and the minimum satisfies ∥x∗∥2

< D2. Furthermore,
let p∗ denote the target distribution of x and v. Given any sufficiently small ϵ, if we set the step size to be

η = min
{

ϵκ−1
1√

479232/5(d/m1 +D2)
,

ϵ2

1440κ1u2
[
(M2 + 1) ∆2d

4 + σ2
]} ,

then after K steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-F in (5)
satisfies

W2(p(xK ,vK), p∗) ≤ Õ (ϵ+ ∆) ,
for some K satisfying

K ≤ κ1

η
log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(
ϵ−1)∆2) .

Theorem 1 in Zhang et al. (2022) implies that for strongly log-concave target distribution, the low-precision
SGLD with full-precision gradient accumulators can achieve ϵ accuracy within Õ

(
ϵ−2 log

(
ϵ−1)∆2) itera-

tions. Thus, the theorem of SGHMCLP-F does not showcase any advantage over SGLDLP-F. This is not
surprising, since the quantization applied to the gradients in the full-precision gradient accumulator algo-
rithm is equivalent to adding extra noise to the stochastic gradients. As theoretically shown by Cheng et al.
(2018) for strongly-log-concave target distribution, SGHMC doesn’t exhibit any advantage over the over-
damped Langevin algorithm when stochastic gradients are used. Now we present the convergence analysis
of SGHMCLP-L under strongly log-concave target distributions.
Theorem 5. Let Assumption 1, 4 and 3 hold and the minimum satisfies ∥x∗∥2

< D2. Furthermore, let p∗

denote the target distribution of v and x. Given any sufficiently small ϵ, if we set the step size η to be

η = min


ϵκ−1

1√
663552/5

(
d

m1
+D2

) , ϵ2

2880κ1u
(∆2d

4 + σ2
)
 ,

then after K steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-L in (6)
satisfies

W2(p(xK ,vK), p∗) = Õ
(
ϵ+ ∆

ϵ

)
, (11)
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for some K such that

K ≤ κ1

η
log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(
ϵ−1)∆2) .

Comparing Theorem 4 and Theorem 5, we show that for strongly log-concave target distribution the naïve
SGHMCLP-L has worse convergence upper bound than SGHMCLP-F. Since SGHMCLP-L directly quantizes
the weights after each update, a small stepsize update is often quantized to zero, resulting in the sample
distribution converging to a Dirac distribution at the initial point. In such cases, ensuring convergence
becomes challenging. Compared with Theorem 2 in Zhang et al. (2022), We cannot show the advantages
of low-precision SGHMC over SGLD. Next, we present the theorem for VC SGHMCLP-L under strongly
log-concave target distribution.
Theorem 6. Let Assumption 1, 4 and 3 hold and the minimum satisfies ∥x∗∥2

< D2. Furthermore, let p∗

denote the target distribution of x and v. Given any sufficiently small ϵ, if we set the stepsize to be

η = min

 ϵ

479232/5
(

d
m1

+D2
)
κ1
,

ϵ2

90u2∆2dκ1 + 360u2σ2κ1


after K steps starting from the initial point x0 = v0 = 0 the output (xK ,vK) of the VC SGHMCLP-L in
(9) satisfies

W2(p(xK ,vK), p∗) = Õ
(
ϵ+
√

∆
)
, (12)

for some K satisfied

K ≤ κ1

η
log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(
ϵ−1)∆2) .

Theorem 6 shows that the variance corrected quantization function can solve the overdispersion problem
we observe for the naïve SGHMCLP-L algorithm for strongly log-concave distribution. The W2 distance
between the sample distribution and target distribution can be arbitrarily close to Õ(

√
∆). Compared

to the Theorem 3 in Zhang et al. (2022), the VC SGHMCLP-L doesn’t showcase its advantage over VC
SGLDLP-L for strongly log-concave distribution.

B Stochastic Gradient Langevin Dynamics Result

In order to sample from the target distribution, Langevin dynamics-based samplers, such as overdamped
Langevin MCMC and underdamped Langevin MCMC methods, are widely used when the evaluation of
U(x) is expansive due to a large sample size. The continuous-time overdamped Langevin MCMC can be
represented by the following stochastic differential equation(SDE):

dxt = −∇U(xt) +
√

2dBt, (13)

where Bt represents the standard Brownian motion in Rd. Under some mild conditions, it can be proved
that the invariant distribution of (13) converges the target distribution exp(−U(x)). To reduce the com-
putational cost of evaluating ∇U(x), Welling & Teh (2011) proposed the Stochastic Gradient Langevin
Dynamics (SGLD) and updates the weights using stochastic gradients:

xk+1 = xk − η∇Ũ(xk) +
√

2ηξk+1, (14)

where η is the stepsize, the ξk+1 is a standard Gaussian noise, and ∇Ũ(xk) is an unbiased estimation of
∇U(xk). Despite the additional noise induced by stochastic gradient estimations, SGLD can still converge
to the target distribution.

In this section, we present the theoretical result for SGLD. We start from the SGLDLP-F’s result.

19



Published in Transactions on Machine Learning Research (04/2024)

Theorem 7. Suppose Assumptions 1, 2 and 3 hold. Let p∗ denote the target distribution of x, Ã have the
same definition in Theorem 1. After K steps starting with initial point x0 = 0, if we set the stepsize to be

η = Õ
((

ϵ
log(1/ϵ)

)4
)

. The output xK of SGLDLP-F in (1) satisfies

W2(p(xK), p∗) ≤ Õ
(
ϵ+ Ã log

(
1
ϵ

))
, (15)

for some K satisfied

K = Õ
(

1
ϵ4λ∗ log5

(
1
ϵ

))
.

Theorem 7 shows that the low-precision SGLD with full-precision gradient accumulators can converge to the
non-log-concave target distribution if provided a small gradient variance and quantization error. Next, we
present the SGLDLP-L’s result.
Theorem 8. Let Assumptions 1, 2 and 3 hold. Let p∗ denote the target distribution of x. If we set the

step size to be η = Õ
((

ϵ
log(1/ϵ)

)4
)

, after K steps starting at the initial point x0 = 0 the output xK of the

SGLDLP-L in (2) satisfies

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1
ϵ

)
+

log5 ( 1
ϵ

)
ϵ4

√
∆
)
, (16)

for some K satisfied

K = Õ
(

1
ϵ4λ∗ log5

(
1
ϵ

))
.

The VC SGLDLP-L can be done as:

xk+1 = Qvc
(
xk − ηQG(∇Ũ(xk)), 2η,∆

)
(17)

We present the convergence analysis of VC SGLDLP-L in the following theorem:
Theorem 9. Let Assumption 1, 2 and 3 hold. Let p∗ denote the target distribution of x. If we set the

stepsize to be η = Õ
(

ϵ4

log4( 1
ϵ )

)
, after K steps from the initial point x0 = 0 the output xK of VC SGLDLP-L

in (17) satisfies

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1
ϵ

)
+

log3 ( 1
ϵ

)
ϵ2

√
∆
)
, (18)

for some K satisfied

K = Õ
(

1
ϵ4λ∗ log5

(
1
ϵ

))
.

C Uniform Bound of Contraction Rate

According to reference (Raginsky et al., 2017), under Assumptions 1 and 2, one can choose λ∗ to be the
uniform lower bound of the contraction rate, i.e.,

λ∗ := inf
{∫

Rd ∥∇g∥2
dp∗∫

Rd g2dp∗ : g ∈ C1 (Rd
)
∩ L2(p∗), g = 0,

∫
Rd

gdp∗ = 0
}
,

which satisfied
1
λ∗ ≤

2
m2(d+ b) + 4C(d+ b)

m2
exp

(
2
m2

(M +B)(b+ d) + (A+B)
)
,
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where A, B denote bounds such that |U(0)| ≤ A, ∥∇Ũ(0)∥ ≤ B. In other words, asymptotically w.r.t. the
dimension, we have λ∗−1 = exp(O(d)).

Similarly, (Zou et al., 2019) derives a contraction rate as

µ∗ = 2d
768γeΛ min

{
λMueΛ,Λ1/2Mu, γΛ1/2

}
,

where the constants are defined as:

λ = 2m2

4M + u−1γ2

Λ = 12(1 + 2α+ 2α2)(d+A)Mu

5γ2λ(1− 2λ)

A = 2m2(U(x∗) +M∥x∗∥2)
4M + u−1γ2 + b

2 .

Note that the above rate also satisfies µ∗−1 = exp(O(d)).

D Technical Detail

In this section, we disclose more details of empirical experiments. We can define the stochastic quantization
function Qs as:

Qs(θ) =
{

∆
⌊

θ
∆
⌋
, w.p.

⌈
θ
∆
⌉
− θ

∆
∆
⌈

θ
∆
⌉
, w.p. 1−

(⌈
θ
∆
⌉
− θ

∆
)
.

(19)

In practice, to implement stochastic rounding based on the rule (19), the computer still needs a full-precision
Unif(0, 1) random number generator (note that we ignore the discretization gap between full precision values
and real values), then compares this random number with the residual and rounds up if it is smaller otherwise
rounds down. This full precision random number generator can be shared for all rounding steps, hence won’t
affect memory usage too much. For more details about the implementation of stochastic rounding, please
refer to (Gupta et al., 2015; Croci et al., 2022).

Now, we show the details of the experiment setup. For the standard normal distribution experiment, we use
8-bit fixed point low-precision representation with 4 of them representing fractional parts. Moreover, we set
the step size η = 0.09, inverse mass u = 2, and friction γ = 3. Similarly, for Gaussian mixture distribution,
we also use 8-bit fixed point low-precision representation with 4 of them representing fractional parts for
both low-precision SGHMC and SGLD, but we set the step size η = 0.1, inverse mass u = 1, and friction
γ = 3.

Next, for both logistic, MLP models, low-precision SGLD and SGHMC in MNIST task, we set N
(
0, 10−2)

as the prior distribution, and step size η = 0.01. Moreover, for SGHMC, we set the inverse mass u = 2, and
friction γ = 2.

Then we introduce the training detail of low-precision SGHMC for CIFAR-10 & CIFAR-100. We adopt the
quantization framework from previous research Wu et al. (2018); Wang et al. (2018); Yang et al. (2019) to
apply quantization to weights, activations, backpropagation errors, and gradients. Please see the Algorithm 1.
We use N

(
0, 10−4) as the prior distribution. Furthermore, we set the set the step size η = 0.1, and

u = 2, γ = 2 for low-precision SGHMC.

Algorithm 1 is a practical version of the three different types of low-precision SGHMC updates proposed
in our main text, i.e. equations (5), (6), and (9). Additional components in the algorithm include (i) How
to compute the stochastic gradient via forward/back-propagation (steps colored by red in the Algorithm
box). Due to the low-precision nature of the algorithm, we also quantize all intermediate results along the
propagation process by proper quantizers QA and QE . (ii) Additional optional scale/re-scale step (colored
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by blue in the Algorithm box). The reason for adding this step is that: in practice, we found that the
momentum term vk tends to be close to 0. When vk is represented in the low-precision fixed-point format,
the information carried by vk is lost since the low-precision fixed-point is loose around 0, and only 2 or 3
bits are used representing the momentum (i.e., the other bits are wasted). With this observation, we store
a scaled-up momentum to fully utilize all bits, thus the information carried will be kept in an optimal way.

Algorithm 2 is proposed by (Zhang et al., 2022). The rationale behind Algorithm 2 is that: if we directly
quantize the SGLD update result, i.e. the mean shift plus a Gaussian noise variable, it essentially introduces
an additional quantization noise to the sample, leading to a larger sampling variance. Instead of quantizing
the mean shift plus Gaussian noise, we can first quantize the mean shift, then plus a low-precision discrete
random variable. In this way, we guarantee the sampler yields low-precision values and have the freedom to
design the variance of the low-precision discrete random variable, such that overall sampling variance (i.e.,
variance due to stochastic round and low-precision discrete random variable) matches the idea sampling
variance of full-precision Langevin update.

When implementing low-precision SGHMC on classification tasks in the MNIST, CIFAR-10 and CIFAR-100
dataset, we observed that the momentum term v tend to gather in a small range around zero in which
case the low-precision representations of v end up in using few bits, thus the momentum information is
seriously lost and cause in performance degradation. In order to tackle this problem and fully utilize all the
low-precision representations, we borrowed the idea of rescaling from the bit-centering trick and adopted the
low-precision SGHMC method. The detailed algorithm is listed in Algorithms 1.

Now, we give a brief introduction of the variance-corrected quantization function Qvc. Instead of adding real
value Gaussian noise and quantizing the weights, we can design a categorical sampler that samples from the
space {∆,−∆, 0} with the desired expectation µ and variance v as

Cat(µ, v) =


∆, w.p.v+µ2+µ∆

2∆2

−∆, w.p.v+µ2−µ∆
2∆2

0, otherwise.
(20)

Based on the sampler (20), one can design the variance-corrected quantization function Qvc in the Algo-
rithm 2.

E Proof of Main Theorems

E.1 Proof of Theorem 1

In this section we analyze the Wasserstein distance between the sample (xk, vK) in (5) and the target
distribution, given the target distribution satisfies the assumption 1 and 2. We follow the proof in Raginsky
et al. (2017). To analyze the Wasserstein distance, we first calculate the distance between solutions of
low-precision discrete underdamped Langevin dynamics and solutions of the ideal continuous underdamped
Langevin dynamics, also the distance between solutions of the ideal continuous underdamped Langevin
dynamics and the target distribution.

Again let pk = (xk, vk) denote the low-precision sample from (5) at k-th iteration, let p̂t = (x̂t, v̂t) denote the
sample from the ideal continuous underdamped Langevin dynamics in (41) at time t. Then the Wasserstein
distance between the pk and the target distribution p∗ can be bounded as:

W2(pK , p
∗) ≤ W2(pK , p̂Kη) +W2(p̂Kη, p

∗).

Then we bound the first termW2(pK , p̂Kη) by invoking the weighted CKP inequality Bolley & Villani (2005),

W2
2 (pK , p̂Kη) ≤ Λ

(√
DKL(pK ||p̂Kη) + 4

√
DKL(pK ||p̂Kη)

)
,
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Algorithm 1 Low-Precision Training for SGHMC.
given: L layers DNN {f1 . . . , fL}. Weight, gradient, activation, and error quantizers QW , QG, QA, QE .
Variance-corrected quantization Qvc, and quantization gap of weights ∆. Data batch sequence
{(θk, hk)}K

k=1, where the θk is the input, and hk is the target. The loss function L(a,h) measures the
loss between the prediction a and target h. And xfp

k denotes the full-precision buffer of the weight. Let
Varhmc

v = u(1− e−2γη) and Varhmc
x = uγ−2(2γη + 4e−γη − e−2γη − 3) and Sv = 1. {Initialize the scaling

parameter}
for k = 1 : K do

1. Forward Propagation:
a

(0)
k = θk

a
(l)
k = QA(fl(a(l−1)

k ,xl
k)),∀l ∈ [1, L]

2. Backward Propagation:
e(L) = ∇

a
(L)
k

L(a(L)
k , hk)

e(l−1) = QE

(
∂fl(a

(l)
k

)
∂a

(l−1)
k

e
(l)
k

)
,∀l ∈ [1, L]

g
(l)
k = QG

(
∂fl

∂θ
(l)
k

e
(l)
k

)
,∀l ∈ [1, L]

3. SGHMC Update:
full-precision gradient accumulators:

v(l)
k+1 ← v(l)

k − uγ−1(1− e−γη)g(l)
k + ξv

k ,∀l ∈ [1, L],
x(l),fp

k+1 ← x(l),fp
k +γ−1(1−e−γη)v(l)

k +uγ−2(γη+e−γη−1)g(l)
k +ξx

k , x(l)
k+1 ← QW

(
x(l),fp

k+1

)
,∀l ∈

[1, L]
low-precision gradient accumulators:

v(l)
k = v(l)

k ∗ S
(l)
v ,∀l ∈ [1, L] {Restore the velocity before update}

µ(v(l)
k+1)← v(l)

k e−γη − uγ−1(1− e−γη)g(l)
k ,∀l ∈ [1, L]

S
(l)
v =

∥∥µ(v(l)
k+1)

∥∥
∞

Ū
,∀l ∈ [1, L] {Update the Scaling}

v(l)
k+1 ← QW (

(
µ(v(l)

k+1) + ξv
k

)
/S

(l)
v ),∀l ∈ [1, L]

x(l)
k+1 ← QW

(
x(l)

k + γ−1(1− e−γη)v(l)
k + uγ−2(γη + e−γη − 1)g(l)

k + ξx
k

)
,∀l ∈ [1, L]

Variance-corrected low-precision gradient accumulators:
v(l)

k = v(l)
k ∗ S

(l)
v ,∀l ∈ [1, L] {Restore the velocity before update}

µ(v(l)
k+1) = v(l)

k e−γη − uγ−1(1− e−γη)g(l)
k ,∀l ∈ [1, L]

µ(x(l)
k+1) = x(l)

k + γ−1(1− e−γη)v(l)
k + uγ−2(γη + e−γη − 1)g(l)

k ,∀l ∈ [1, L]

S
(l)
v =

∥∥µ(v(l)
k+1)

∥∥
∞

Ū
,∀l ∈ [1, L] {Update the Scaling}

v(l)
k+1 ← Qvc

(
µ(v(l)

k+1)/S(l)
v , V arhmc

v /(S(l)
v )2,∆

)
,∀l ∈ [1, L]

x(l)
k+1 ← Qvc

(
µ(x(l)

k+1), V arhmc
x ,∆

)
,∀l ∈ [1, L]

end for
output: samples {(v(l)

k ,x(l)
k )}

where Λ = 2 infθ>0

√
1/θ

(
3/2 + logEp̂Kη

[exp(θ(∥x̂Kη∥2 + ∥v̂Kη∥2))]
)
. We define a Lyapunov function for

every (x, v) ∈ Rd × Rd

E(x,v) = ∥x∥2 + ∥x + 2v/γ∥2 + 8u(U(x)− U(x∗))/γ2.

Note that ∥a∥2 + ∥b∥2 ≥ ∥a− b∥2
/2 and U(x) ≥ U(x∗), we can have:

E(x, v) ≥ ∥x∥2 + ∥x+ 2v/γ∥2 ≥ max{∥x∥2
, 2 ∥v/γ∥2}.
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Algorithm 2 Variance-Corrected Quantization Function Qvc. (Zhang et al., 2022)
input: (µ, v, ∆) {Qvc returns a variable with mean µ and variance v}
v0 ← ∆2/4 {∆2/4 is the largest possible variance that stochastic rounding can cause}
if v > v0 then {add a small Gaussian noise and sample from the discrete grid to make up the remaining
variance}
x← µ+

√
v − v0ξ, where ξ ∼ N (0, Id)

r ← x−Qd(x)
for all i do

sample ci from Cat(|ri|, v0) as in (20)
end for
θ ← Qd(x) + sign(r)⊙ c

else {sample from the discrete grid to achieve the target variance}
r ← µ−Qs(µ)
for all i do
vs ←

(
1− |ri|

∆

)
· r2

i + |ri|
∆ · (−ri + sign(ri)∆)2

if v > vs then
sample ci from Cat(0, v − vs) as in (20)
θi ← Qs(µ)i + ci

else
θi ← Qs(µ)i

end if
end for

end if
clip θ if outside representable range
return θ

Given assumptions 4 and 2 hold and apply Lemma B.4 in Zou et al. (2019), we can get

Λ ≤2 inf
0<θ≤min{ γ

128u ,
m2
32 }

√
1
θ

(
3
2 + 2θE(X0,V0) + 32Mθu(4d+ 2b+m2∥x∗∥2)

γ2m2

)

≤2

√
2E(X0,V0) + 32Mθu(4d+ 2b+m2∥x∗∥2) + 16(12um2 + 3γ2)

γ2m2
:= Λ̄.

It remains to bound the divergence between the distribution pK and p̂Kη. We first define a continuous
interpolation of the low-precision sample (xk,vk),

dvt = −γvtdt− uGtdt+
√

2γudBt (21)
dxt = vtdt, (22)

where Gt =
K∑

k=0
g̃(xk)1t∈[kη,(k+1)η). Integrating this equation from time 0 to t, we can get

vt = v0 −
∫ t

0
γvsds−

∫ t

0
uGsdt+

∫ t

0

√
2γudBs

xt = x0 +
∫ t

0
vsds.

Notice that when t = kη, the solution of (21) has the same distribution with the low-precision sample
(xk,vk). Now by Girsanov formula, we can compute the Radon-Nikodym derivative of p̂Kη with respect to
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pK as follows:

dp̂Kη

dpK
= exp

{√
γu

2

∫ t

0
(∇U(xs)−Gs)dBs− γu

4

∫ T

0
∥∇U(xs)−Gs∥ds

}
.

It follows that

DKL(pK ||p̂Kη) = EpK

[
log
(
dp̂Kη

dpK

)]
(23)

= γu

4 E
∫ Kη

0
∥∇U(xs)−Gs∥2

ds

= γu

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−Gs∥2

]
ds

= γu

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)− g̃(xk)∥2

]
ds.

Furthermore, in the k-th interval, we have

E
[
∥∇U(xs)− g̃(xk)∥2

]
≤ 2E

[
∥∇U(xs)−∇U(xk)∥2

]
+ 2E

[
∥∇U(xk)− g̃(xk)∥2

]
. (24)

We now bound the first term in the RHS of the (24). By the smooth Assumption1, we have

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤M2E

[
∥xs − xk∥2

]
.

Notice that

xs = xk +
∫ s

kη

vrdr

= xk +
∫ s

kη

(
vkηe

−γ(r−kη) − u
(∫ r

kη

e−γ(r−z)g̃(xk)dz
)

+
√

2γu
∫ r

kη

e−γ(r−z)dBz

)
dr.

This further implies that:

∥xs − xk∥2 =
∥∥∥∥∫ s

kη

(
vkηe

−γ(r−kη) − u
(∫ r

kη

e−γ(r−z)g̃(xk)dz
)

+
√

2γu
∫ r

kη

e−γ(r−z)dBz

)
dr

∥∥∥∥2

≤3
∥∥∥∥∫ s

kη

vkηe
γ(kη−r)dr

∥∥∥∥2
+ 3

∥∥∥∥∫ s

kη

∫ r

kη

ug̃(xk)eγ(z−r)dzdr

∥∥∥∥2
+ 6ru

∥∥∥∥∫ s

kη

∫ s

0
e−γ(r−z)dBzdr

∥∥∥∥2

≤3η2 ∥vk∥2 + 3u2η4 ∥g̃(xk)∥2 + 3
[
u

γ2

(
2γ(s− kη) + 4e−γ(s−kη) − e−2γ(s−kη) − 3

)
d

]
≤3η2

(
∥vk∥2 + u2η2 ∥g̃(xk)∥2 + 2du

)
, (25)

where we use inequality 1−x ≤ e−x ≤ 1−x+x2/2 for x > 0 and kη ≤ s ≤ (k+1)η to get the last inequality.
Given this analysis we can bound the first term in the RHS of (24)

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤ 3M2η2

(
E ∥vk∥2 + u2η2E ∥g̃(xk)∥2 + 2du

)
.

By lemma 12, the second term in the RHS of (24) can be bounded as:

E
[
∥∇U(xk)− g̃(xk)∥2

]
≤ (M2 + 1)∆2d

4 + σ2.

We need to introduce a lemma to bound the sup
k
∥xk∥2, sup

k
∥vk∥2 and sup

k
∥g̃(xk)∥2.
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Lemma 10. Under Assumptions 1 and 2, if we set the step size statisfied the following condition:

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,

1
8γ ,

γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ

}
,

then for all k ≥ 0 the E
[
∥xk∥2

]
, E
[
∥vk∥2

]
and E

[
∥g̃(xk)∥2

]
can be bounded as

E
[
∥xk∥2

]
≤ E + C0

(
(M2 + 1)∆2d

4 + σ2
)

E
[
∥vk∥2

]
≤ γ2E/2 + γ2C0/2

(
(M2 + 1)∆2d

4 + σ2
)

E
[
∥g̃(xk)∥2

]
≤ 2

(
(M2 + 1)∆2d

4 + σ2
)

+ 4M2E + 4G2

where E and C0 are defined as:

E = E [E(x0,v0)] + 24(21u+ γ)uM
m2γ3 G2 + 96(d+ b)uM

m2γ2 , G = ∥∇U(0)∥

C0 =
96u

(
γ2 + 2u

)
m2γ4 .

The proof of Lemma 10 can be found in Appendix F.3. We now ready to bound E
[
∥∇U(xs − g̃(xk))∥2

]
as:

E
[
∥∇U(xs)− g̃(xk)∥2

]
≤ 2E

[
∥∇U(xs)−∇U(xk)∥2

]
+ 2E

[
∥∇U(xk)− g̃(xk)∥2

]
≤ 6M2η2

(
E ∥vk∥2 + u2η2E ∥g̃(xk)∥2 + 2du

)
+ 2

(
(M2 + 1)∆2d

4 + σ2
)

≤ 6M2η2
(

(γ2/2 + 4M2u2η2)E + (γ2C0/2 + 2u2η2)
(

(M2 + 1)∆2d

4 + σ2
)

+ 4u2η2G2 + 2du
)

+ 2
(

(M2 + 1)∆2d

4 + σ2
)

≤ 6M2η2 [(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du
]

+
(
6M2η2(γ2C0/2 + 2u2η2) + 2

)(
(M2 + 1)∆2d

4 + σ2
)
.

Thus the divergence can be bounded as:

DKL(pK ||p̂Kη) ≤ 3γu
2 M2Kη3 [(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
+ γu

4 Kη
(
6M2η2(γ2C0/2 + 2u2η2) + 2

)(
(M2 + 1)∆2d

4 + σ2
)
.

By the weighted CKP inequality and given Kη ≥ 1,

W2(pK , p̂Kη) ≤ Λ
(√

DKL(pK ||p̂Kη) + 4
√
DKL(pK ||p̂Kη)

)
≤ Λ

(
C̃0
√
η + C̃1Ã

)√
Kη,
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where the constants C̃0, C̃1 and Ã are defined as:

C̃0 =
√

3γu
2 M2

[
(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
+ 4

√
3γu

2 M2
[
(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
C̃1 =

√
γu

4 (6M2η2(γ2C0/2 + 2u2η2) + 2) + 4

√
γu

4 (6M2η2(γ2C0/2 + 2u2η2) + 2)

Ã = max
{√(

(M2 + 1)∆2d

4 + σ2
)
, 4

√(
(M2 + 1)∆2d

4 + σ2
)}

.

Finally by the Lemma A.2 in Zou et al. (2019), we can have

W2(p̂Kη, p
∗) ≤ Γ0e

−µ∗Kη,

where µ∗ = e−Õ(d) denotes the concentration rate of the underdamped Langevin dynamics and Γ0 is a
constant of order O(1/µ∗). Combining this inequality with the previous analysis we can prove:

W2(pK , p
∗) ≤ Λ

(
C̃0
√
η + C̃1Ã

)√
Kη + Γ0e

−µ∗Kη. (26)

To bound the Wasserstein distance, we need to set

ΛC̃0
√
Kη2 = ϵ

2 and Γ0e
−µ∗Kη = ϵ

2 . (27)

Solving the equation (27), we can have

Kη =
log
( 2Γ0

ϵ

)
µ∗ and η = ϵ2

4Λ2
C̃0

2
Kη

.

Combining these two we can have

η = ϵ2µ∗

4Λ2
C̃0

2
log
( 2Γ0

ϵ

) and K =
4Λ2

C̃0
2

log2 ( 2Γ0
ϵ

)
ϵ2 (µ∗)2 .

Plugging in (26) completes the proof.

E.2 Proof of Theorem 2

In this section, we analyze the convergence of SGHMCLP-L when the target distribution is non-log-concave.
In this proof, unlike in the SGHMCLP-F algorithm where gradients are unbiased, additional noise applied
to the state x causes deviation from the underdamped Langevin dynamics, leading us to establish an inter-
mediate process to address this noise.

Recall the continuous interpolation of the SGHMCLP-L,

vt = v0 −
∫ t

0
γvsds− u

∫ t

0
Gsds+

√
2γu

∫ t

0
e−γ(t−s)dBs +

∫ t

0
αv(s)ds

xt = x0 +
∫ t

0
vsds+

∫ t

0
αx(s)ds,

where Gs =
∞∑

k=0
QG (∇U(x′

k)) 1s∈(kη,(k+1)η).And we define an intermediate process by let v′
t = vt + αx(t):

v′
t = v′

0 −
∫ t

0
γ (v′

s − αx(s)) ds− u
∫ t

0
Gsds+

√
2γu

∫ t

0
e−γ(t−s)dBs +

∫ t

0

(
αv(s) + 1

t
αx(t)

)
ds

x′
t = x′

0 +
∫ t

0
v′

sds. (28)
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By integrating the underdamped Langevin dynamic (10), we can have:

vt = v0 −
∫ t

0
γ (vs − αx(s)) ds− u

∫ t

0
∇U(xs)ds+

√
2γu

∫ t

0
e−γ(t−s)dBs

xt = x0 +
∫ t

0
vsds. (29)

Notice that the process x′
t has the same distribution with xt, thus in the following analysis we study the

convergence of the intermediate process p′
k = (x′

kη, v
′
kη). By taking the difference of equation (28) with (29)

and the Girsanov formula, we can derive the Radon-Nikodym derivative of P̂Kη w.r.t p′
K :

dp̂Kη

dp′
K

= exp

{√
u

2γ

∫ T

0
(γαx(s) + αv(s) + 1

T
αx(T ) +∇U(xs)−Gs)dBs

− u

4γ

∫ T

0
∥γαx(s) + αv(s) + 1

T
αx(T ) +∇U(xs)−Gs∥2ds

}
.

Thus the divergence can be bouned as:

DKL(pK ||p̂Kη) = EpK

[
log
(
dp̂Kη

dpK

)]
= u

4γ

∫ T

0
E
∥∥∥∥γαx(s) + αv(s) + 1

T
αx(T ) +∇U(xs)−Gs

∥∥∥∥2
ds

= u

4γT E
[
∥αx(T )∥2

]
+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv(s) + αx(s) +∇U(xs)−Gs∥2

]
ds

≤ u

4γTη2E
[
∥αx

k∥
2
]

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv(s)∥2

]
ds+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx(s)∥2

]
ds

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−Gs∥2

]
ds

≤ u

4γTη2E
[
∥αx

k∥
2
]

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥
2
]
ds+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥
2
]
ds

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−QG(∇U(xk))∥2

]
ds

≤ u

4γTη2E
[
∥αx

k∥
2
]

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥
2
]
ds+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥
2
]
ds (30)

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−∇U(xk)∥2

]
ds+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xk)−QG(∇U(xk))∥2

]
ds.

By assumption 1, we know that:

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤M2E

[
∥xs − xk∥2

]
.

From the same analysis in (25), we can derive:

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤ 3M2η2

(
E
[
∥v′

k∥
2
]

+ u2η2E
[
∥QG(∇U(xk))∥2

]
+ 2du

)
.

Now we need to derive a uniform bound of E
[
∥xk∥2

]
and E

[
∥v′

k∥
2
]
.
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Lemma 11. Let Assumptions 2 and 1 hold. If we set the step size to the following condition

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
γm2

6 (22u+ γ)M2

}
,

then for all k > 0 E
[
∥xk∥2

]
and E

[
∥vk∥2

]
can be bouned as follow:

E
[
∥xk∥2

]
≤ E + C∆2d, E

[
∥v′

k∥
2
]
≤ γ2E/2 + γ2C∆2d/2,

where constants E and C are defined as:

E = E [E(x0,v0)] +
54
(
4u+ γ2)u
m2γ4 σ2 + 12(22u+ γ)uM3

m2γ3 G2 + 96 (d+ b)uM
m2γ2

C =
27
(
4u+ γ2)u
2m2γ4 .

The proof of Lemma 11 can be found in Appendix F.5. Thus,

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤ 3M2η2

(
E
[
∥vk∥2

]
+ u2η2

(
∆2d

4 + σ2 + 2M2E
[
∥xk∥2

]
+ 2G2

)
+ 2du

)
≤ 3M2η2

(
γ2E/2 + γ2C∆2d/2 + u2η2

(
∆2d

4 + σ2 + 2M2E + 2M2C∆2d+ 2G2
)

+ 2du
)

≤ 3M2η2 ((γ2 + 2u2M2) E +
(
γ2 + 2u2M2)C∆2d+ u2σ2 + 2u2G2 + 2du

)
.

Now we can go back to the divergence of pK and p̂Kη,

DKL(pK ||p̂Kη)

≤ u

4γTη2E
[
∥αx

k∥
2
]

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥
2
]
ds+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥
2
]
ds

+ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E +
(
γ2 + 2u2M2)C∆2d+ u2σ2 + 2u2G2 + 2du

)
+ u

4γKη
(

∆2d

4 + σ2
)

≤ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E +
(
γ2 + 2u2M2)C∆2d+ u2σ2 + 2u2G2 + 2du

)
+ u

4γKη
(

∆2d

4 + σ2
)

+ u∆2d

16γTη2 + uK∆2d

8γη
≤ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E + u2σ2 + 2u2G2 + 2du
)

+ u

4γKησ
2

+
(
u

4γ 3M2Kη3C
(
γ2 + 2u2M2)+ uKη

16γ + u

16γTη2 + uK

8γη

)
∆2d

=: C0Kη
3 + C1Kησ

2 + C2K∆2,

where the constants C0, C1 and C2 are defined as:

C0 = u

4γ 3M2 ((γ2 + 2u2M2) E + u2σ2 + 2u2G2 + 2du
)

C1 = u

4γ

C2 =
(
u

4γ 3M2η3C
(
γ2 + 2u2M2)+ u

16γ + u

16γT 2η
+ u

8γη

)
d.

By the weighted CKP inequality and given Kη ≥ 1,
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W2(pK , p̂Kη) ≤ Λ
(√

DKL(pK ||p̂Kη) + 4
√
DKL(pK ||p̂Kη)

)
≤
(
C̃0
√
η + C̃1Ã

)√
Kη + C̃2

√
K∆, (31)

where the constants are defined as:
C̃0 =

(√
C0 + 4

√
C0

)
C̃1 =

(√
C1 + 4

√
C1

)
C̃2 =

(√
C2 + 4

√
C2

)
Ã = max

{
σ,
√
σ
}
.

From the same analysis in (26), we can have:

W2(pK , p
∗) ≤ Λ

(
C̃0
√
η + C̃1Ã

)√
Kη + C̃2

√
Kη + Γ0e

−µ∗Kη. (32)

In order to bound the Wasserstein distance, we need to set

ΛC̃0
√
Kη2 = ϵ

2 and Γ0e
−µ∗Kη = ϵ

2 . (33)

Solving the equation (33), we can have

Kη =
log
( 2Γ0

ϵ

)
µ∗ and η = ϵ2

4Λ2
C̃0

2
Kη

.

Combining these two we can have

η = ϵ2µ∗

4Λ2
C̃0

2
log
( 2Γ0

ϵ

) and K =
4Λ2

C̃0
2

log2 ( 2Γ0
ϵ

)
ϵ2 (µ∗)2 .

Plugging in (32) completes the proof.

E.3 Proof of Theorem 3

In this section, we analyze the convergence of VC SGHMCLP-L when the target distribution is non-log-
concave. Similarly, the gradients are unbiased, additional noise applied to the state x causes deviation
from the underdamped Langevin dynamics. This proof is similar to the proof of Theorem 2, however, the
variance-corrected quantization function gives us a bound for the difference between the quantized value and
the full-precision value. This bound can scale with the learning rate. This fact leads to the advantage of
variance-corrected quantization over naive stochastic rounding.

Similarily, from the analysis in (57), we know that

E
[
∥αv

k∥
2
]
≤ γηA, (34)

where A = max
{

∆
√
d (A′ + G) , 4ud

}
. By the analysis in (55), we know that if Varhmc

x ≥ ∆2

4 , we can have

E
[
∥αx

k∥
2
]
≤ 4udη2 (35)

by (58), if Varhmc
x < ∆2

4 ,
E
[
∥αx

k∥
2
]
≤ ηB, (36)
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where B = max
{

2∆
√
dA′ + uη

√
dG, 4udη

}
. Thus, we can define the following:

E
[
∥αx

k∥
2
]

= ηB, (37)

where B is defined as:

B =
{

4udη, if Varhmc
x ≥ ∆2

4
B, else.

Combining the bound of E
[
∥αx

k∥
2
]
, E
[
∥αv

k∥
2
]

with (30), we can show,

DKL(pK ||p̂Kη)

≤ u

4γTη2E
[
∥αx

k∥
2
]

+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥
2
]
ds+ u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥
2
]
ds

+ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E +
(
γ2 + 2u2M2)C∆2d+ u2σ2 + 2u2G2 + 2du

)
+ u

4γKη
(

∆2d

4 + σ2
)

≤ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E +
(
γ2 + 2u2M2)C∆2d+ u2σ2 + 2u2G2 + 2du

)
+ u

4γKη
(

∆2d

4 + σ2
)

+ uB
4γT + uKA

4 + uKB
4γ

≤ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E +
(
γ2 + 2u2M2)C∆2d+ u2σ2 + 2u2G2 + 2du

)
+ u

4γKη
(

∆2d

4 + σ2
)

+ uKA
4 + uKB

2γ

≤ u

4γ 3M2Kη3 ((γ2 + 2u2M2) E + u2σ2 + 2u2G2 + 2du
)

+ u

4γKησ
2 + u

16γKη∆2d+ uKA
4 + uKB

2γ
=: C0Kη

3 + C1Kησ
2 + C2Kη∆2 + C3KA+ C4KB,

where the constants are defined as

C0 = u

4γ 3M2 ((γ2 + 2u2M2) E + u2σ2 + 2u2G2 + 2du
)

C1 = u

4γ
C2 = u

16γ d

C3 = u

4
C4 = u

2γ .

By the weighted CKP inequality and given Kη ≥ 1,

W2(pK , p̂Kη) ≤ Λ
(√

DKL(pK ||p̂Kη) + 4
√
DKL(pK ||p̂Kη)

)
≤
(
C̃0
√
η + C̃1Ã+ C̃2

√
∆
)√

Kη + C̃3
√
KA+ C̃4

√
KB,
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where the constants are defined as:
C̃0 = Λ

(√
C0 + 4

√
C0

)
C̃1 = Λ

(√
C1 + 4

√
C1

)
C̃2 = Λ

(√
C2 + 4

√
C2

)
C̃3 = Λ

(√
C3 + 4

√
C3

)
C̃4 = Λ

(√
C4 + 4

√
C4

)
Ã2 = Λ max

{
σ2,
√
σ2
}
.

From the same analysis of (26), we can have:

W2(pK , p
∗) ≤

(
C̃0
√
η + C̃1Ã

)√
Kη + C̃2

√
Kη∆ + C̃3

√
KA+ C̃4

√
KB + Γ0e

−µ∗Kη. (38)

To bound the Wasserstein distance, we need to set

ΛC̃0
√
Kη2 = ϵ

2 and Γ0e
−µ∗Kη = ϵ

2 . (39)

Solving the equation (39), we can have

Kη =
log
( 2Γ0

ϵ

)
µ∗ and η = ϵ2

4Λ2
C̃0

2
Kη

.

Combining these two we can have

η = ϵ2µ∗

4Λ2
C̃0

2
log
( 2Γ0

ϵ

) and K =
4Λ2

C̃0
2

log2 ( 2Γ0
ϵ

)
ϵ2 (µ∗)2 .

Plugging in (38) completes the proof.

E.4 Proof of Theorem 4

In this section, we analyze the convergence of full-precision gradient accumulators (SGHMCLP-F) introduced
in Section 3.1 when the target distribution is strongly log-concave. Again SGHMCLP-F uses biased gradients
because we quantize the parameter before taking the gradients. We need to derive the upper bound given
biased gradients.

The SGHMCLP-F update follows

vvk+1 = vke
−γη − uγ−1(1− e−γη)QG(∇̃U(QW (xk))) + ξv

k

vxk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(QW (xk))) + ξx
k ,

In this section, we prove the convergence of SGHMCLP-F in terms of 2-Wasserstein distance for strongly-
log-concave target distribution via coupling argument. To simplify the notation we define the quantized
stochastic gradients at x as:

g̃(x) := QG(∇̃U(QW (x)))
=: ∇U(x) + ξ. (40)
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Lemma 12. For any x ∈ Rd, the random noise ξ of the low-precision gradients defined in (40) satisfies:

∥Eξ∥2 ≤M2 ∆2d

4

E[∥ξ∥2] ≤ (M2 + 1)∆2d

4 + σ2.

The proof of Lemma 12 can be found in Appendix F.1. We follow the proof in Cheng et al. (2018). Denote by
B(Rd) the Borel σ-field of Rd. Given probability measures µ and ν on (Rd,B(Rd)), we define a transference
plan ζ between µ and ν as a probability measure on (Rd × Rd,B(Rd × Rd)) such that for all sets A ∈ Rd,
ζ(A × Rd) = µ(A) and ζ(Rd × A) = ν(A). We denote Γ(µ, ν) as the set of all transference plans. A pair
of random variables (x,y) is called a coupling if there exists a ζ ∈ Γ(µ, ν) such that (x,y) is distributed
according to ζ. (With some abuse of notation, we will also refer to ζ as the coupling.)

To calculate the Wasserstein distance from the proposed sample (xK ,vK) and the target distribution sample
(x∗,v∗), we define sample qk = (xk,xk + vk) and the target distribution sample q∗ = (x∗,x∗ + v∗). Let
pk = (xk,vk) and Φ̂η be the operator that maps from pk to pk+1 i.e.

pk+1 = Φ̂ηpk.

The solution (xt,vt) of the continuous underdamped Langevin dynamics with exact gradient satisfies the
following equations:

vt = v0e
−γt − u

(∫ t

0
e−γ(t−s)∇U(xs)ds

)
+
√

2γu
∫ t

0
e−γ(t−s)dBs, (41)

xt = x0 +
∫ t

0
ṽsds.

Let Φη denote the operator that maps p0 to the solution of continuous underdamped Langevin dynamics in
(41) after time step η. Notice the solution (ṽt, x̃t) of the discrete underdamped Langevin dynamics as in
(10) with an exact gradient can be written as

ṽt = ṽ0e
−γt − u

(∫ t

0
e−γ(t−s)∇U(x̃0)ds

)
+
√

2γu
∫ t

0
e−γ(t−s)dBs, (42)

x̃t = x̃0 +
∫ t

0
ṽsds.

We can also define a similar operator for the discrete underdamped Langevin dynamics solution p̃t = (x̃t, ṽt),
let Φ̃t be the operator that maps p̃0 to p̃t. Furthermore the SGHMCLP-F can be written as:

vt = v0e
−γt − u

(∫ t

0
e−γ(t−s)g̃(x0)ds

)
+
√

2γu
∫ t

0
e−γ(t−s)dBs, (43)

xt = x̃0 +
∫ t

0
vsds.

Given g̃(x0) = ∇U(x0) + ξ0 and x0 = x̃0, we know:

vt = ṽt − u
(∫ t

0
e−γ(t−s)ds

)
ξ (44)

xt = x̃t − u
(∫ t

0

(∫ r

0
e−γ(t−s)ds

)
dr

)
ξ.

Lemma 13. Let q0 be some initial distribution and Φ̃η and Φη be the operator we defined above for discrete
Langevin dynamics with exact full-precision gradients and low-precision gradients respectively. If the stepszie
1 > η > 0, then the Wasserstein distance satisfies

W2
2 (Φηq0, q

∗) ≤
(
W2(Φ̃ηq0, q

∗) +
√

5/2uη
√
dM∆

)2
+ 5u2η2

(
(M2 + 1)∆2d

4 + σ2
)
.
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The proof of Lemma 13 can be found in Appendix F.2. The lemma 13 says that if starting from the same
distribution after one step of low-precision update the Wasserstein distance from the target distribution is
bounded by the distance after one step of exact gradients plus O(η2∆2). Furthermore from the corollary 7
in Cheng et al. (2018) we know that for any i ∈ {1, · · · ,K}:

W2
2 (Φηqi, q

∗) ≤ e−η/2κ1W2
2 (qi, q

∗), (45)

where κ1 = M/m1 is the condtion number. Let EK denote the 26
(
d/m1 +D2), and from the discretization

error bound from Theorem 9 and Lemma 8 (sandwich inequality) in Cheng et al. (2018), we get

W2(Φηqi, Φ̃ηqi) ≤ 2W2(Φηpi, Φ̃ηpi) ≤ η2
√

8EK

5 .

By triangle inequality:
W2(Φ̃ηqi, q

∗) ≤ W2(Φηqi, Φ̃ηqi) +W2(Φηqi, q
∗)

≤ η2
√

8EK

5 + e−η/2κ1W2(qi, q
∗).

Combine this with the result in Lemma 13 we have,

W2
2 (Φ̂ηqi, q

∗) ≤
(
e−η/2κ1W2(qi, q

∗) + η2
√

8EK

5 +
√

5/2uη
√
dM∆

)2

+ 5u2η2
(

(M2 + 1)∆2d

4 + σ2
)
. (46)

By invoking the Lemma 7 in Dalalyan & Karagulyan (2019) we can bound the 2-Wasserstein distance by:

W2(qK , q
∗) ≤ e−Kη/2κ1W2(q0, q

∗) +
η2
√

8EK

5 + uηM∆
√

5d
2

1− e−η/2κ1

+
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

η2
√

8EK

5 + uηM∆
√

5d
2 +

√
1− e−η/κ1

√
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
) .

Finally, by sandwich inequality we have:

W2(pK , p
∗) ≤ 4e−Kη/2κW2(p0, p

∗) + 4
η2
√

8EK

5 + uηM∆
√

5d
2

1− e−η/2κ

+
20u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

η2
√

8EK

5 + uηM∆
√

5d
2 +

√
1− e−η/κ

√
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
) .

Now we let the first term less than ϵ/3, from the lemma 13 in (Cheng et al., 2018) we know thatW2(pK , p
∗) ≤

3
(

d
m1

+D2
)

. So we can choose K as the following,

K ≤ 2κ1

η
log
(

36
(
d

m1
+D2

))
.

Next, we choose a step size η ≤ ϵκ−1
1√

479232/5(d/m1+D2)
to ensure the second term is controlled below ϵ/3 +

16κ1uM∆
√

5d
2 . Since 1− e−η/2κ1 ≥ η/4κ1 and definition of EK ,

4
η2
√

8EK

5 + uηM∆
√

5d
2

1− e−η/2κ
≤ 4

η2
√

8EK

5 + uηM∆
√

5d
2

η/4κ1
≤ 16κ1

(
η

√
8EK

5 + uM∆
√

5d
2

)

≤ ϵ/3 + 16κ1uM∆
√

5d
2 .
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Finally by choosing the step size satisfied that,

η ≤ ϵM∆
√

5d
120u

[
(M2 + 1) ∆2d

4 + σ2
] ,

the third term can be bounded as:

20u2η2
(

(M2 + 1) ∆2d
4 + σ2

)
η2
√

8EK

5 + uηM∆
√

5d
2 +

√
1− e−η/κ

√
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

≤
20u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

uηM∆
√

5d
2

= 40uη

(
(M2 + 1) ∆2d

4 + σ2
)

M∆
√

5d
≤ ϵ/3.

This complete the proof.

E.5 Proof of Theorem 5

In this section, we analyze the convergence of SGHMCLP-L when the target distribution is strongly log-
concave. We mainly follow the proof in Cheng et al. (2018), the difference is we need to handle the noise.
Recall the SGHMCLP-L update rule:

vk+1 = QW

(
vvke

−γη − uγ−1(1− eγη)QG(∇̃U(xk)) + ξv
k

)
xk+1 = QW

(
xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xk)) + ξx

k

)
.

If we let αx
k and αv

k denote the quantization error,

αx
k = QW

(
vke

−γη − uγ−1(1− eγη)QG(∇̃U(xs)) + ξv
k

)
−
(

vke
−γη − uγ−1(1− eγη)QG(∇̃U(xs)) + ξv

k

)
αv

k = QW

(
xs + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xs)) + ξx

k

)
−
(

xs + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xs)) + ξx
k

)
,

we can rewrite the update rule as:

vk+1 = vke
−γη − uγ−1(1− eγη)QG(∇̃U(xs)) + ξv

k + αv
k

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xk)) + ξx
k + αx

k . (47)

Similarly, we can define a continuous interpolation of (47) for t ∈ (0, η].

vt = v0e
−γt − u

(∫ t

0
e−γ(t−s) (∇U(x0) + ζ) ds

)
+
√

2γu
∫ t

0
e−γ(t−s)dBs +

∫ t

0
αv(s)ds

xt = x0 +
∫ t

0
vsds+

∫ t

0
αx(s)ds, (48)

where the ζ = QG

(
∇̃U(x̂0)

)
− ∇̃U(x̂0) the function αv(s), αx(s) are defined as:

αv(s) =
∞∑

k=0
αv

k/η1s∈(kη,(k+1)η)

αx(s) =
∞∑

k=0
αx

k/η1s∈(kη,(k+1)η).
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If we let p̂0 = (x̂0, v̂0) be the initial sample and p̂t = (x̂t, v̂t) be the sample that satisfies the previous
equations, we can define an operator Φ̂t that maps p̂0 to p̂t i.e., p̂t = Φ̂tp̂0. Notice that since p̂t is the
continuous interpolation of (6), thus p̂kη = pk = (xk, vk). Similarly, we define qk = (xk, vk + xk) =: (xk, ωk)
as a tool to analyze the convergence of pk.

We are now ready to compute the Wasserstein distance between Φ̂ηq0 and q∗. Let Γ1 be all of the couplings
between Φ̃ηq0 and q∗, and Γ2 be all of the couplings between Φ̂ηq0 and q∗. Let r1 be the optimal coupling
between Φ̃ηq0 and q∗. By taking the difference between (48) and (42),[

x
ω

]
=
[
x̃
ω̃

]
+ u

[ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)
ζ +

∫ η

0 αx(s)ds(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ η

0 e
−γ(s−η)ds

)
ζ +

∫ η

0 αx(s) + αv(s)ds

]
.

Let us now analyze the Wasserstein distance between Φ̂ηq0 and q∗,

W2
2

(
Φ̂ηq0, q

∗
)

(49)

≤ Er1

∥∥∥∥[x̃ω̃
]

+ u

[ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)
ζ +

∫ η

0 αx(s)ds(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ η

0 e
−γ(s−η)ds

)
ζ +

∫ η

0 (αx(s) + αv(s)) ds

]
−
[
x∗

ω∗

]∥∥∥∥2

≤ Er1

∥∥∥∥[x̃ω̃
]
−
[
x∗

ω∗

]∥∥∥∥2
+ u2E

∥∥∥∥[ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)
ζ +

∫ η

0 αx(s)ds(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ η

0 e
−γ(s−η)ds

)
ζ +

∫ η

0 (αx(s) + αv(s)) ds

]∥∥∥∥2

≤ W2
2

(
Φ̃ηq0, q

∗
)

+ 4u2

(∫ δ

0

(∫ r

0
e−γ(s−r)ds

)
dr

)2

+
(∫ δ

0
e−γ(s−δ)ds

)2
(∆2d

4 + σ2
)

+ u2E

[∥∥∥∥∫ η

0
(αx(s)) ds

∥∥∥∥2
]

+ u2E

[∥∥∥∥∫ η

0
(αx(s) + αv(s)) ds

∥∥∥∥2
]

≤ W2
2

(
Φ̃ηq0, q

∗
)

+ 4u2
(
η4

4 + η2
)(

∆2d

4 + σ2
)

+ u2E
[
∥αx

k∥
2
]

+ u2E
[
∥αx

k + αv
k∥

2
]

≤ W2
2

(
Φ̃ηq0, q

∗
)

+ 5u2η2
(

∆2d

4 + σ2
)

+ 2u2
(
E ∥αx

k∥
2 + E ∥αv

k∥
2
)

≤ W2
2

(
Φ̃ηq0, q

∗
)

+ 5u2η2
(

∆2d

4 + σ2
)

+ 2u2 (A+B) , (50)

where the constant A, B are the uniform bounds of E [∥αx
k∥] and E [∥αv

k∥] respectively. Furthermore from
the corollary 7 in Cheng et al. (2018) we know that for any i ∈ {1, · · · ,K}:

W2
2 (Φηqi, q

∗) ≤ e−η/2κ1W2
2 (qi, q

∗), (51)

where κ1 = M/m1 is the condtion number. From the discretization error bound from theorem 9 and lemma
8(sandwich inequality) in Cheng et al. (2018), we get

W2(Φηqi, Φ̃ηqi) ≤ 2W2(Φηpi, Φ̃ηpi) ≤ η2
√

8EK

5 .

By triangle inequality:
W2(Φ̃ηqi, q

∗) ≤ W2(Φηqi, Φ̃ηqi) +W2(Φηqi, q
∗)

≤ η2
√

8EK

5 + e−η/2κ1W2(qi, q
∗),

further implies the following inequality:

W2
2

(
Φ̂ηqi, q

∗
)
≤

(
e−η/2κ1W2 (qi, q

∗) + η2
√

8EK

5

)2

+ 5u2η2
(

∆2d

4 + σ2
)

+ 2u2 (A+B) . (52)
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By invoking the Lemma 7 in Dalalyan & Karagulyan (2019) we can bound the Wasserstein distance by:

W2(qK , q
∗) ≤ e−Kη/2κ1W2(q0, q

∗) +
η2
√

8EK

5

1− e−η/2κ1

+
5u2η2

(
∆2d

4 + σ2
)

+ 2u2 (A+B)

η2
√

8EK

5 +
√

1− e−η/2κ1

√
5u2η2

(∆2d
4 + σ2

)
+ 2u2 (A+B)

.

Finally, by sandwich inequality we have:

W2(pK , p
∗) ≤ 4e−Kη/2κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/2κ1
(53)

+
20u2η2

(
∆2d

4 + σ2
)

+ 8u2 (A+B)

η2
√

8EK

5 +
√

1− e−η/2κ1

√
5u2η2

(∆2d
4 + σ2

)
+ 2u2 (A+B)

.

And in this case, we know that E [∥αx
k∥] and E [∥αv

k∥] can be bouned by ∆2d
4 . Finally, we can have:

W2(pK , p
∗) ≤ 4e−Kη/2κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/2κ1

+
20u2η2

(
∆2d

4 + σ2
)

+ 4u2∆2d

η2
√

8EK

5 +
√

1− e−η/2κ1

√
5u2η2

(∆2d
4 + σ2

)
+ u2∆2d

.

Now we let the first term less than ϵ/3, from the lemma 13 in (Cheng et al., 2018) we know thatW2(q0, q
∗) ≤

3
(

d
m1

+D2
)

. So we can choose K as the following,

K ≤ 2κ1

η
log
(

36
(
d

m1
+D2

))
.

Next, we choose a step size η ≤ ϵκ−1
1√

479232/5(d/m1+D2)
to ensure the second term is controlled below ϵ/3. Since

1− e−η/2κ1 ≥ η/4κ1 and definition of EK ,

4
η2
√

8EK

5

1− e−η/2κ
≤ 4

η2
√

8EK

5

η/4κ1
≤ 16κ1

(
η

√
8EK

5

)
≤ ϵ/3.

Finally by choosing the step size satisfied that,

η ≤ ϵ2

2880κ1u
(∆2d

4 + σ2
) ,
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the third term can be bounded as:

20u2η2
(

(M2 + 1) ∆2d
4 + σ2

)
+ 4u2∆2d

η2
√

8EK

5 +
√

1− e−η/2κ1

√
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

≤
20u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

+ 4u2∆2d

√
1− e−η/2κ1

√
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
) ≤ 20u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

+ 4u2∆2d√
η/4κ1

√
5u2η2

(
(M2 + 1) ∆2d

4 + σ2
)

≤ 4

√
20κ1u2η

(
(M2 + 1)∆2d

4 + σ2
)

+ 8u2∆2d
√
κ1

η3/2
√

5u2η2
(
(M2 + 1) ∆2d

4 + σ2
)

≤ ϵ/3 + 8u2∆2d
√
κ1

η3/2
√

5u2η2
(
(M2 + 1) ∆2d

4 + σ2
) .

This completes the proof.

E.6 Proof of Theorem 6

In this section, we analyze the convergence of VC SGHMCLP-L when the target distribution is strongly
log-concave. This proof is similar to the proof of Theorem 5, however, the variance-corrected quantization
function gives us a bound for the difference between the quantized value and the full-precision value. This
bound can scale with the learning rate. This fact leads to the advantage of variance-corrected quantization
over naive stochastic rounding. Recall the VC SGHMCLP-L update rule is the following,

vk+1 = Qvc
(
vke

−γη − uγ−1 (1− e−γη
)
QG

(
∇̃U(xk)

)
, V arv,∆

)
xk+1 = Qvc

(
xk + γ−1 (1− e−γη

)
vk + uγ−2 (γη + e−γη − 1

)
QG(∇̃U(xk)), V arx,∆

)
. (54)

If we let αx
k and αv

k denote the quantization error,

αv
k =Qvc

(
vke

−γη − uγ−1 (1− e−γη
)
QG

(
∇̃U(xk)

)
, V arv,∆

)
−
(

vke
−γη − uγ−1(1− eγη)QG(∇̃U(xk)) + ξv

k

)
αx

k =Qvc
(

xk + γ−1 (1− e−γη
)
vk + uγ−2 (γη + e−γη − 1

)
QG(∇̃U(xk)), V arx,∆

)
−
(

xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xk)) + ξx
k

)
,

we can rewrite the update rule as:

vk+1 = vke
−γη − uγ−1(1− eγη)QG(∇̃U(xk)) + ξv

k + αv
k

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇̃U(xk)) + ξx
k + αx

k .

Next, we first derive a uniform bound of E
[
∥αv

k∥
2
]
. In this section and the following section, we further

assume the norm of quantized stochastic gradients are bounded.

Assumption 5. For any x ∈ Rd, there exists a constant G and the quantized stochastic gradients at x
satisfies the following

E
[∥∥∥QG(∇̃U(x))

∥∥∥2
]
≤ G2.
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By the definition of the variance corrected quantization function Qvc, when V arv > ρ0 = ∆2

4 , if we let ψk

denote vke
−γη − uγ−1 (1− e−γη)QG

(
∇̃U(xk)

)
,

E
[
∥αv

k∥
2
∣∣∣ψk

]
=E

[∥∥∥(vke
−γη − uγ−1 (1− e−γη

)
QG(∇̃U(xk))

)
+
√
V arvξk

−Qd
(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk)) +

√
V arv − ρ0ξk

)
− sign(r)c

∥∥∥2
∣∣∣∣ψk

]
Let

b = Qd
(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk)) +

√
V arv − ρ0ξk

)
−
(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk)) +

√
V arv − ρ0ξk

)
,

then

E
[
∥αv

k∥
2
∣∣∣ψk

]
=E

[∥∥∥(vke
−γη − uγ−1 (1− e−γη

)
QG(∇̃U(xk))

)
+
√
V arvξk

−
(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk)) +

√
V arv − ρ0ξk

)
− b− sign(r)c

∥∥∥2
∣∣∣∣ψk

]
=E

[∥∥∥√V arvξk −
√
V arv − ρ0ξk − b− sign(r)c

∥∥∥2
∣∣∣∣ψk

]
≤E

[∥∥∥√V arvξk −
√
V arv − ρ0ξk

∥∥∥2
]

+ E
[
∥b+ sign(r)c∥2

∣∣∣ψk

]
≤2V arvd− ρ0d+ ρ0d

≤4γudη. (55)

When V arv <
∆2

W

4 ,

E[∥αv
k∥

2]

= E
[∥∥∥(vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)
− vk+1 +

√
V arvξk

∥∥∥2
]

= E
[∥∥∥(vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)
− vk+1

∥∥∥2
]

+ E
[∥∥∥√V arvξk

∥∥∥2
]

≤ max
(

2E
[∥∥∥(vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)
−Qs

(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)∥∥∥2
]
, 2V arvd

)
.

(56)

Using the bound equation (6) in Li & De Sa (2019) gives us,

E
[∥∥∥(vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)
−Qs

(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)∥∥∥2
]

≤ ∆
(
1− e−γη

)
E
[∥∥∥vk − uγ−1QG(∇̃U(xk))

∥∥∥
1

]
≤ ∆

(
1− e−γη

)√
d
(
E [∥vk∥] + E

[∥∥∥QG(∇̃U(xk))
∥∥∥]) .
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Now we need to derive a uniform bound of E [∥vk∥], by the update rule, we know that,

E
[
∥vk+1∥2

]
= E

[∥∥∥vke
−γη − uγ−1(1− eγη)QG(∇̃U(xk)) + ξv

k + αv
k

∥∥∥2
]

≤ (1 + γη/2) (1− γη/2)2E
[
∥vk∥2

]
+
(

2
γη

+ 1
)
u2η2E

[∥∥∥QG(∇̃U)
∥∥∥2
]

+ 2γudη + E
[
∥αv

k∥
2
]

≤ (1− γη/2)E
[
∥vk∥2

]
+ 3u2η/γG2 + 2γudη + E

[
∥αv

k∥
2
]
.

When E
[
∥αv

k∥
2
]
≤ 2V arvd < 4γudη, the inequality can be further written as:

E
[
∥vk+1∥2

]
≤ (1− γη/2)E

[
∥vk∥2

]
+ 3u2η/γG2 + 6γudη

≤ E
[
∥v0∥2

]
+ 6u2ηG2

γ2η
+ 12γudη

γη

≤ E
[
∥v0∥2

]
+ 6u2ηG2

γ2 + 12ud.

If E
[
∥αv

k∥
2
]
≤ 2E

[∥∥∥(vke
−γη − uγ−1 (1− e−γη)QG(∇̃U(xk))

)
−Qs

(
vke

−γη − uγ−1 (1− e−γη)QG(∇̃U(xk))
)∥∥∥2

]
,

the ineuqality can be wirtten as:

E
[
∥vk+1∥2

]
≤ (1− γη/2)E

[
∥vk∥2

]
+ 3u2η/γG2 + 2γudη + 2∆

(
1− e−γη

)√
d
(
E [∥vk∥] + E

[∥∥∥QG(∇̃U(xk))
∥∥∥])

≤ (1− γη/2)E
[
∥vk∥2

]
+ 3u2η/γG2 + 2γudη + 2∆γη

√
d

(√
E
[
∥vk∥2

]
+ G

)

≤

(√
1− γη/2

√
E
[
∥vk∥2

]
+ ∆γη

√
d√

1− γη/2

)2

+ 3u2η/γG2 + 2γudη + 2∆γη
√
dG.

Thus,

E [∥vk∥] ≤
√
E
[
∥v0∥2

]
+ ∆γη

√
d(

1−
√

1− γη/2
)√

1− γη/2
+ 3u2η/γG2 + 2γudη + 2∆γη

√
dG

∆γη
√

d√
1−γη/2

+
√
γη/2

(
3u2η/γG2 + 2γudη + 2∆γη

√
dG
)

≤
√

E
[
∥v0∥2

]
+ ∆γη

√
d

1− γη/2 +
√

6u2/γ2G2 + 4ud+ 4∆
√
dG

≤
√
E
[
∥v0∥2

]
+ ∆
√
d+

√
6u2/γ2G2 + 4ud+ 4∆

√
dG.

Finally, we can have:

E [∥vk∥] ≤max
{√

E
[
∥v0∥2

]
+ ∆
√
d+

√
6u2/γ2G2 + 4ud+ 4∆

√
dG,

√
E
[
∥v0∥2

]
+

√
6u2ηG2

γ2 +
√

12ud
}

=: A′.

Thus, we can have,

E
[∥∥∥(vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)
−Qs

(
vke

−γη − uγ−1 (1− e−γη
)
QG(∇̃U(xk))

)∥∥∥2
]

≤ ∆γη
√
d (A′ + G) ,
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and we can bound the E
[
∥αv

k∥
2
]

as,

E
[
∥αv

k∥
2
]
≤ max

{
∆γη
√
d (A′ + G) , 4γudη

}
= γηmax

{
∆
√
d (A′ + G) , 4ud

}
=: γηA. (57)

Now we bound the E
[
∥αx

k∥
2
]
. When V arx ≥ ρ0, as the same analysis in (55) we can show,

E
[
∥αx

k∥
2
]
≤ 2V arxd ≤ 4udη2.

If V arx < ρ0, and let µx = xk +γ−1 (1− e−γη) vk +uγ−2 (γη + e−γη − 1)QG(∇̃U(xk)), by the same analysis
in (56) we can have:

E
[
∥αx

k∥
2
]

≤ max
{

2E
[
∥µx −Qs (µx)∥2

]
, 2V arxd

}
.

Again using the bound equation (6) in Li & De Sa (2019) gives us,

E
[
∥µx −Qs(µx)∥2

]
≤ ∆E

[∥∥∥γ−1 (1− e−γη
)
vk + uγ−2 (γη + e−γη − 1

)
QG(∇̃U(xk))

∥∥∥
1

]
≤ ∆ηE [∥vk∥1] + uη2

2 E
[∥∥∥QG(∇̃U(xk))

∥∥∥
1

]
≤ ∆η

√
dE [∥vk∥] + uη2

2
√
dE
[∥∥∥QG(∇̃U(xk))

∥∥∥]
≤ ∆η

√
dA′ + uη2

2
√
dG.

Thus, we can have,

E
[
∥αx

k∥
2
]
≤ max

{
2∆η
√
dA′ + uη2

√
dG, 4udη2

}
≤ ηmax

{
2∆
√
dA′ + uη

√
dG, 4udη

}
=: ηB. (58)

Then follow the same analysis of (53), we can show

W2(pK , p
∗) ≤ 4e−Kη/2κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/2κ1
(59)

+
20u2η2

(
∆2d

4 + σ2
)

+ 8u2η (γA+B)

η2
√

8EK

5 +
√

1− e−η/κ1

√
5u2η2

(∆2d
4 + σ2

)
+ 2u2η (γA+B)

. (60)

Now we let the first term less than ϵ/3, from the Lemma 13 in (Cheng et al., 2018) we know thatW2(q0, q
∗) ≤

3
(

d
m1

+D2
)

. So we can choose K as the following,

K ≤ 2κ1

η
log
(

36
(
d

m1
+D2

))
.
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Next, we choose a step size η ≤ ϵκ−1
1√

479232/5(d/m1+D2)
to ensure the second term is controlled below ϵ/3. Since

1− e−η/2κ1 ≥ η/4κ1 and definition of EK ,

4
η2
√

8EK

5

1− e−η/2κ1
≤ 4

η2
√

8EK

5

η/4κ1
≤ 16κ1

(
η

√
8EK

5

)
≤ ϵ/3.

Finally choosing the step size satisfied that,

η ≤ ϵ2

2880κ1u
(∆2d

4 + σ2
) ,

the third term can be bounded as:

20u2η2
(

∆2d
4 + σ2

)
+ 8u2η (γA+B)

η2
√

8EK

5 +
√

1− e−η/κ1

√
5u2η2

(∆2d
4 + σ2

)
+ 2u2η (γA+B)

≤
20u2η2

(
∆2d

4 + σ2
)

+ 8u2η (γA+B)
√

1− e−η/κ1

√
5u2η2

(∆2d
4 + σ2

)
+ 2u2η (γA+B)

≤
20u2η2

(
∆2d

4 + σ2
)

+ 8u2η (γA+B)√
η/4κ1

√
5u2η2

(∆2d
4 + σ2

)
+ 2u2η (γA+B)

≤ 4

√
20u2κ1η

(
∆2d

4 + σ2
)

+ 8κ1u2 (γA+B)

≤ ϵ/3 + 8
√

2κ1u2 (γA+B).

This completes the proof.

E.7 Proof of Thoerem 7

In this section we generalize the convergence analysis of LPSGLDLP-F in Zhang et al. (2022) to non-log-
concave target distribution. We prove a more general version of theorem 7 following the same proof outlines
in Raginsky et al. (2017). We further introduce an assumption about the initial distribution p0.
Assumption 6. The probability p0 of the initial hypothesis x0 has a bounded and strictly positive density
and satisfies the following:

κ0 := log
∫
Rd

e∥x∥2
p0(x)dx <∞.

Note that the for initial distribution x0 = 0, the value κ0 = 0 is bounded and the assumption is satisfied.
Recall the Overdamped Langevin dynamics is

dxt = −∇U(xt)dt+
√

2dBt. (61)

We further define the value of the energy function and the gradient at point 0 at the following:

|U(0)| = G0, ∥∇U(0)∥ = G1.

In order to analyze the convergence of SGLD for non-log-concave distribution, we need to introduce extra
assumptions.

Then the solution of the Langevin dynamics should satisfies

xt = x0 −
∫ t

0
∇U(xs)ds+

√
2
∫ t

0
dBs. (62)

To analyze the LPSGLDLP-F in (1), we define a continuous interpolation of the low-precision sample as:

x̂t = x̂0 −
∫ t

0
Gsds+

√
2
∫ t

0
dBs. (63)
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where Gs =
K∑

k=0
g̃(x̂k)1s∈[kη,(k+1)η). The Wasserstein distance can be bounded as

W2(pK , p
∗) ≤ W2(pK , p̂Kη) +W2(p̂Kη, p

∗). (64)

Now, we are ready to introduce the contraction rate λ∗ of the overdamped Langevin dynamics (13). By
borrowing the proposition 9 of (Raginsky et al., 2017), we can have:

Lemma 14 (Proposittion 9 in Raginsky et al. (2017)). Suppose Assumptions 1 and 2 hold. Then

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ + d

2 log 3π
m

+
(
Mκ0

3 +B
√
κ0 +G0 + b

2 log 3
))

e−Kη/CLS

≤ C̃3e
−Kη/CLS , (65)

with constant

CLS ≤
2m2

2 + 8M2

m2
2M

+ 1
λ∗

(
6Md

m2
+ 2
)
.

where the λ∗ = e−Õ(d) denotes the contraction rate of overdamped Langevin dynamics.

Here, λ∗ acts as a contraction rate of the Markov process initiated by (13), with an exponential dependency
on the dimension d being inescapable in the worst-case scenario proved in Appendix B in (Raginsky et al.,
2017).

The first term of equation 64 can be bounded via the weighted CKP inequality

W2(pK , p̂Kη) ≤ Cp̂Kη

[√
DKL (pK ||p̂Kη) +

(
DKL (pK ||p̂Kη)

2

)1/4
]
,

where the constant Cp̂Kη
= 2 inf

λ>0

(
1
λ

(
3
2 + log

∫
Rd

eλ∥ω∥2
P̂Kη(dω)

))
. By Lemma 4 in Raginsky et al. (2017)

and assuming Kη > 1, we can wrtie:

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d)Kη)

(
DKL (pK ||p̂Kη) +

√
DKL (pK ||p̂Kη)

)
.

Now we bound the term DKL (pK ||p̂Kη). The Radon-Nikodym derivative of the P̂Kη w.r.t pK is the following

dp̂Kη

dpK
= exp

{
1
2

∫ t

0
(∇U(xs)−Gs)dBs− 1

4

∫ T

0
∥∇U(xs)−Gs∥ds

}
.
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Thus, we have:

DKL(pK ||p̂Kη) = EpK

[
log
(
dp̂Kη

dpK

)]
= 1

4

∫ Kη

0
E
[
∥∇U(xs)−Gs∥2

]
ds

= 1
4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)− g̃(xk)∥2

]
ds

≤ 1
2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−∇U(xk)∥2

]
+ 1

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xk)− g̃(xk)∥2

]
≤ M2

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥xs − xk∥2

]
+ 1

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xk)− g̃(xk)∥2

]
. (66)

We now bound the first term in the RHS of the equation (66), from the update rule in (63) we know:

xs − xk = −(s− kη)g̃(xk) +
√

2 (Bs −Bkη)
= −(s− kη)∇U(xk) + (s− kη) (∇U(xk)− g̃(xk)) +

√
2 (Bs −Bkη) ,

thus,

E
[
∥xs − xk∥2

]
≤ 3η2E

[
∥∇U(xk)∥2

]
+ 3η2E

[
∥∇U(xk)− g̃(xk)∥2

]
+ 6ηd

≤ 3η2 (ME [∥xk∥] +G)2 + 3η2
(

(M2 + 1)∆2d

4 + σ2
)

+ 6ηd. (67)

Similarly, we need a uniform bound of E
[
∥xk∥2

]
.

Lemma 15. Under assumptions 1, 2 and 3, if we set the step size η ∈
(
0, 1 ∧ m2

2M2

)
, then for all k ≥ 0, the

E
[
∥vxk∥2

]
can be bounded as

E
[
∥xk∥2

]
≤ E +

2
(
M2 + 1

)
∆2d

4m2
,

provided E = E
[
∥x0∥2

]
+ M

m2

(
2b+ 2ηG2 + 2d

)
.

The proof of Lemma 15 can be found in Appendix F.4. Using this bound, we can further bound
E
[
∥xs − xs∥2

]
as:

E
[
∥xs − xs∥2

]
≤ 6η2M2

(
E +

2
(
M2 + 1

)
m2

∆2d

4

)
+ 6η2G2 + 3η2

(
(M2 + 1)∆2d

4 + σ2
)

+ 6ηd

≤ 6η2M2E + 6η2G2 + 6ηd+
(

12η2M2 (M2 + 1
)

m2
+ 3(M2 + 1)

)
η2 ∆2d

4 + 3η2σ2

=: Eη + Cη2 ∆2d

4 + 3η2σ2

,
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where the costant E and C are defined as:

E = 6M2E + 6G2 + 6d

C =
12η2M2 (M2 + 1

)
m2

+ 3(M2 + 1).

Thus the divergence can be bounded as:

DKL(pK ||p̂Kη) ≤ M2

2

(
E + Cη

∆2d

4 + 3ησ2
)
Kη2 + 1

2

(
(M2 + 1)∆2d

4 + σ2
)
Kη

= M2

2 EKη
2 +

(
M2

2 Cη2 + 1
2(M2 + 1)

)
∆2d

4 Kη + 3M2η2 + 1
2 σ2Kη

= M2

2 EKη
2 +

(
M2

2 C + 1
2(M2 + 1)

)
∆2d

4 Kη + 3M2 + 1
2 σ2Kη

=: C0Kη
2 + C1

∆2d

4 Kη + C2σ
2Kη.

We are ready to bound the Wasserstein distance,

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d))

(
(C0 +

√
C0)√η +

(
C1 +

√
C1

)
A+

(
C2 +

√
C2

)
B
)

(Kη)2

=:
(
C̃0

2√
η + C̃1

2
A+ C̃2

2
B
)

(Kη)2
,

where the constants are defined as:

A = max
{

∆2d

4 ,

√
∆2d

4

}
B = max

{
σ2,
√
σ2
}

C̃0
2

= (12 + 8 (κ0 + 2b+ 2d))
(
C0 +

√
C0

)
C̃1

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C1 +

√
C1

)
C̃2

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C2 +

√
C2

)
.

From Proposition 9 in the paper Raginsky et al. (2017), we know that

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ + d

2 log 3π
m

+
(
Mκ0

3 +B
√
κ0 +G0 + b

2 log 3
))

e−Kη/CLS

=: C̃3e
−Kη/CLS

Finally, we can have

W2(pK , p
∗) ≤

(
C̃0η

1/4 + C̃1
√
A+ C̃2

√
B
)
Kη + C̃3e

−Kη/CLS . (68)

To bound the Wasserstein distance, we need to set

C̃0Kη
5/4 = ϵ

2 and C̃3e
−Kη/CLS = ϵ

2 . (69)

Solving the (69), we can have

Kη = CLS log
(

2C̃3

ϵ

)
and η = ϵ4

16C̃0
4

(Kη)4
.
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Combining these two we can have

η = ϵ4

16C̃0
4
C4

LS log4
(

2C̃3
ϵ

) and K =
16C̃0

4
C5

LS log5
(

2C̃3
ϵ

)
ϵ4

.

Plugging K and η into (68) completes the proof.

E.8 Proof of Theorem 8

In this section we generalize the convergence analysis of SGLDLP-L in Zhang et al. (2022) to non-log-concave
target distribution. Following the same proof outlines in Raginsky et al. (2017). Recall the SGLDLP-L
update rule (2) is the following,

xk+1 = QW (xk − η∇̃U(xk) +
√

2ηξk+1)
=: xk − η∇̃U(xk) +

√
2ηξk+1 + αk,

where αk is defined as:

αk = QW (xk − η∇̃U(xk) +
√

2ηξk+1)− xk − η∇̃U(xk) +
√

2ηξk+1.

Thus, we can define a continuous interpolation of the SGLDLP-L as:

xt = x0 −
∫ t

0
Gsds+

√
2
∫ t

0
dB(s) +

∫ t

0
α(s)ds,

where Gs =
∞∑

k=0
QG(∇̃U(xk))1s∈(kη,(k+1)η) and α(s) =

∞∑
k=0

αk/η1s∈(kη,(k+1)η). By taking the difference

of the interpolation with the discrete estimation of Langevin process in equation (62), we can derive the
Radon-Nikodym derivative of the p̂Kη w.r.t pK as:

dp̂Kη

dpK
= exp

{
1
2

∫ t

0
(∇U(xs)−Gs − α(s))dBs− 1

4

∫ T

0
∥∇U(xs)−Gs − α(s)∥2ds

}
.

Thus, the divergence can be computed as:

DKL(pK ||p̂Kη) =1
4

∫ Kη

0
E
[
∥∇U(xs)−Gs − α(s)∥2

]
ds

=1
4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xs)−QG(∇̃U(xk))− αk/η

∥∥∥2
]
ds

=1
4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xs)−QG(∇̃U(xk))

∥∥∥2
]
ds+ 1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥αk/η∥2

]
ds

=1
4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−∇U(xk)∥2

]
ds+ 1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xk)−QG(∇̃U(xk))

∥∥∥2
]
ds

+ 1
4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥αk/η∥2

]
ds

≤M
2

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥xs − xk∥2

]
ds+ 1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xk)−QG(∇̃U(xk))

∥∥∥2
]
ds

+ 1
4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥αk/η∥2

]
ds. (70)
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From the same analysis in (25), we know that

E
[
∥xs − xk∥2

]
≤ 3η2E

[
∥∇U(xk)∥2

]
+ 3η2E

[∥∥∥∇U(xk)−QG(∇̃U(xk))
∥∥∥2
]

+ 6ηd

≤ 3η2
(
ME

[
∥xk∥2

]
+G

)2
+ 3η2

(
∆2d

4 + σ2
)

+ 6ηd.

Again, we need to derive a uniform bound of E
[
∥xk∥2

]
,

E
[
∥xk+1∥2

]
=E

[∥∥∥xk − ηQG(∇̃U(xk))
∥∥∥2
]

+ 2E
[
∥ξk+1∥2

]
+ E

[
∥αk∥2

]
=E

[∥∥∥xk − η∇U(xk) + η∇U(xk)− ηQG(∇̃U(xk))
∥∥∥2
]

+ 2ηd+ E
[
∥αk∥2

]
=E

[∥∥∥xk − η∇U(xk) + η∇U(xk)− ηQG(∇̃U(xk))
∥∥∥2
]

+ E
[
∥αk∥2

]
+ 2ηd

=E
[
∥xk − η∇U(xk)∥2

]
+ η2E

[∥∥∥∇U(xk)−QG(∇̃U(xk))
∥∥∥2
]

+ E
[
∥αk∥2

]
+ 2ηd.

By plugging in the inequality we derived before:

E
[
∥xk − η∇U(xk)∥2

]
≤
(
1− 2ηm2 + 2η2M2)E [∥xk∥2

]
+ 2ηb+ 2η2G2.

we can have:

E
[
∥xk+1∥2

]
≤
(
1− 2ηm2 + 2η2M2)E [∥xk∥2

]
+ 2ηb+ 2η2G2 + η2∆2d

4 + η2σ2 + E
[
∥αk∥2

]
+ 2ηd. (71)

Thus for any η ∈ (0, 1 ∧ m2
2M2 ) and 1− 2ηm2 + 2η2M2 > 0, we can bound E

[
∥xk∥2

]
for any k > 0 as:

E
[
∥xk∥2

]
≤E

[
∥x0∥2

]
+ 1

2 (m2 − ηM2)

(
2b+ 2G2 + ∆2d

4 + σ2 + 2d
)

+
E
[
∥αk∥2

]
2η (m2 − ηM2)

≤E
[
∥x0∥2

]
+ 1
m2

(
2b+ 2G2 + ∆2d

4 + σ2 + 2d
)

+
E
[
∥αk∥2

]
ηm2

≤E + ∆2d

4m2
+

E
[
∥αk∥2

]
ηm2

,

where the constant E is defined as:

E = E
[
∥x0∥2

]
+ 1
m2

(
2b+ 2G2 + σ2 + 2d

)
.

Thus, we can have,

E
[
∥xs − xk∥2

]
≤6η2

E + ∆2d

4m2
+

E
[
∥αk∥2

]
ηm2

+ 6η2G2 + 3η2
(

∆2d

4 + σ2
)

+ 6ηd

≤Eη + 3η2σ2 + 6 + 3m2

4m2
η2∆2d+

6ηE
[
∥αk∥2

]
m2

.
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Plugging this into the equation (70), we can have,

DKL(pK ||p̂Kη) ≤ME4 Kη2 + 3Mσ2Kη3

4 + (6 + 3m2)M∆2d

16m2
Kη3 +

6ME
[
∥αk∥2

]
Kη2

4m2
+ 1

4

(
∆2d

4 + σ2
)
Kη +

KE
[
∥αk∥2

]
4η

≤ME4 Kη2 + 3M + 1
4 σ2Kη + ((6 + 3m2)M +m2) d

16m2
∆2Kη +

(
6Mη

4m2
+ 1

4η

)
KE

[
∥αk∥2

]
.

By the fact that E
[
∥αk∥2

]
≤ ∆2d

4 , we can further bound the divergence as:

DKL(pK ||p̂Kη) ≤ME4 Kη2 + 3M + 1
4 σ2Kη +

(
((12 + 3m2)M +m2) d

16m2
+ d

16η

)
∆2K

=:C0Kη
2 + C1σ

2Kη + C2∆2K,

where the constants are defined as:

C0 = ME
4

C1 = 3M + 1
4

C2 =
(

((12 + 3m2)M +m2) d
16m2

+ d

16η

)
.

We are ready to bound the Wasserstein distance,

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d))

[(
C0 +

√
C0 +

(
C1 +

√
C1

)
A
)

(Kη)2 +
(
C2 +

√
C2

)
∆K2η

]
=:
(
C̃0

2√
η + C̃1

2
A
)

(Kη)2 + C̃2
2
∆K2η,

where the constants are defined as:

A = max
{
σ2,
√
σ2
}

C̃0
2

= (12 + 8 (κ0 + 2b+ 2d))
(
C0 +

√
C0

)
C̃1

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C1 +

√
C1

)
C̃2

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C2 +

√
C2

)
.

From Proposition 9 in the paper Raginsky et al. (2017), we know that

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ + d

2 log 3π
m

+
(
Mκ0

3 +B
√
κ0 +G0 + b

2 log 3
))

e−Kη/CLS

=: C̃3e
−Kη/CLS

Finally, we can have

W2(pK , p
∗) ≤

(
C̃0η

1/4 + C̃1
√
A
)
Kη + C̃2

√
∆
√
K2η + C̃3e

−Kη/CLS . (72)

To bound the 2-Wasserstein distance, we need to set

C̃0Kη
5/4 ≤ ϵ

2 and C̃3e
−Kη/CLS = ϵ

2 . (73)
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Solving the (73), we can have

Kη = CLS log
(

2C̃3

ϵ

)
and η ≤ ϵ4

16C̃0
4

(Kη)4
.

Combining these two we can have

η ≤ ϵ4

16C̃0
4
C4

LS log4
(

2C̃3
ϵ

) and K ≥
16C̃0

4
C5

LS log5
(

2C̃3
ϵ

)
ϵ4

.

Plugging K and η into (72) completes the proof.

E.9 Proof of Theorem 9

In this section we generalize the convergence analysis of VC SGLDLP-F in Zhang et al. (2022) to non-log-
concave target distribution. The proof is similar to the proof of Theorem 8, but the variance corrected-
quantization function The variance-corrected quantization technique establishes a scalable bound for the
discrepancy between quantized and full-precision values, contingent on the learning rate. This enables
variance-corrected quantization advantage over simple stochastic rounding.

Recall that the update of VC SGLDLP-L is

xk+1 = Qvc
(

xk − ηQG(∇̃U(xk)), 2η,∆
)

= xk − ηQG(∇̃U(xk)) +
√

2ηξk + αk,

where αk is defined as

αk = Qvc
(

xk − ηQG(∇̃U(xk)), 2η,∆
)
− xk − ηQG(∇̃U(xk)) +

√
2ηξk.

From analysis in Zhang et al. (2022), we know that

E
[
∥αk∥2

]
≤ max (2∆ηG, 5ηd)

=: ηA.

Combining the analysis in section E.8, we can show,

DKL(pK ||p̂Kη) ≤ME4 Kη2 + 3M + 1
4 σ2Kη + ((6 + 3m2)M +m2) d

16m2
∆2Kη +

(
6Mη

4m2
+ 1

4η

)
KE

[
∥αk∥2

]
≤ME4 Kη2 + 3M + 1

4 σ2Kη + ((6 + 3m2)M +m2) d
16m2

∆2Kη +
(

6Mη

4m2
+ 1

4η

)
KηA

≤ME4 Kη2 + 3M + 1
4 σ2Kη + ((6 + 3m2)M +m2) d

16m2
∆2Kη + 6M +m2

m2
KA

=:C0Kη
2 + C1Kησ

2 + C2Kη∆2 + C3KA,

where the constant C0, C1, C2 and C3 are defined as:

C0 = ME
4

C1 = 3M + 1
4

C2 = ((6 + 3m2)M +m2) d
16m2

C3 = 6M +m2

m2
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We are ready to bound the Wasserstein distance,

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d))

[((
C0 +

√
C0

)
η +

(
C1 +

√
C1

)
Ã
)

(Kη)2 +
(
C2 +

√
C2

)
∆(Kη)2

+
(
C3 +

√
C3

)
AK2η

]
=:
(
C̃0

2
η + C̃1

2
Ã+ C̃2

2
∆
)

(Kη)2 + C̃3
2
AK2η,

where the constants are defined as:

Ã = max
{
σ2,
√
σ2
}

A = max
{
A,
√
A
}

C̃0
2

= (12 + 8 (κ0 + 2b+ 2d))
(
C0 +

√
C0

)
C̃1

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C1 +

√
C1

)
C̃2

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C2 +

√
C2

)
C̃3

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C3 +

√
C3

)
.

From Proposition 9 in the paper Raginsky et al. (2017), we know that

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ + d

2 log 3π
m

+
(
Mκ0

3 +B
√
κ0 +G0 + b

2 log 3
))

e−Kη/CLS

=: C̃4e
−Kη/CLS

Finally, we can have

W2(pK , p
∗) ≤

(
C̃0
√
η + C̃1

√
A+ C̃2

√
∆
)
Kη + C̃3

√
A
√
K2η + C̃4e

−Kη/CLS . (74)

Too bound the 2-Wasserstein distance, we need to set

C̃0Kη
5/4 = ϵ

2 and C̃3e
−Kη/CLS = ϵ

2 . (75)

Solving the (75), we can have

Kη = CLS log
(

2C̃3

ϵ

)
and η = ϵ4

16C̃0
4

(Kη)4
.

Combining these two we can have

η = ϵ4

16C̃0
4
C4

LS log4
(

2C̃3
ϵ

) and K =
16C̃0

4
C5

LS log5
(

2C̃3
ϵ

)
ϵ4

.

Plugging K and η into (74) completes the proof.
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F Techinical Proofs

F.1 Proof of Lemma 12

Proof. By the definition of ξ in (E.4)

∥Eξ∥2 = ∥Eg̃(x)− E∇U(x)∥2

= ∥E∇U(Qw(x))− E∇U(x)∥2

≤ E
[
∥∇U(Qw(x))−∇U(x)∥2

]
≤M2E

[
∥Qw(x)−∇U(x)∥2

]
≤M∆2d

4 .

We also know that from the definition that

E ∥ξ∥2 = E ∥g̃(x)−∇U(x)∥2

= E
∥∥QG(∇Ũ(QW (x)))−∇Ũ(QW (x)) +∇Ũ(QW (x))−∇U(QW (x)) +∇U(QW (x))−∇U(x)

∥∥2

= E
∥∥QG(∇Ũ(QW (x)))−∇Ũ(QW (x))

∥∥2 + E
∥∥∇Ũ(QW (x))−∇U(QW (x))

∥∥2 + E ∥∇U(QW (x))−∇U(x)∥2

≤ ∆2d

4 + σ2 +M2E ∥QW (x)− x∥2

≤ (M2 + 1)∆2d

4 + σ2,

where in the first inequality, we apply Assumptions 1 and 3.

F.2 Proof of Lemma 13

Proof. Let Γ1 be the set of all couplings between Φ̃ηq0 and q∗ and Γ2 be the set of all couplings between
Φ̂ηq0 adn q∗. Let r1 be the optimal coupling between Φ̃ηq0 and q∗, i.e.

E(θ,ϕ)∼r1 [∥θ − ϕ∥2] =W2
2 (Φ̃ηq0, q

∗).

Let
([

x̃
ω̃

]
,

[
x∗

ω∗

])
∼ r1. We define the random variable

[
x
ω

]
as

[
x
ω

]
=
[
x̃
ω̃

]
+ u

[ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)
ξ(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ η

0 e
−γ(s−η)ds

)
ξ

]
.

By equation (44),
([

x
ω

]
,

[
x∗

ω∗

])
define a valid coupling between Φηq0 and q∗. Now we can analyze the

Wasserstein distance between Φηq0 and q∗.
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W2
2 (Φ̂ηq0, q

∗) ≤ Er1

∥∥∥∥∥
[
x̃
ω̃

]
+ u

[ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)
ξ(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ δ

0 e
−γ(s−η)ds

)
ξ

]
−
[
x∗

ω∗

]∥∥∥∥∥
2
 (76)

≤ Er1

∥∥∥∥∥
[
x̃− x∗

ω̃ − ω∗

]
+ u

[ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)
Eξ(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ δ

0 e
−γ(s−η)ds

)
Eξ

]∥∥∥∥∥
2


+ Er1

[∥∥∥∥u [ (∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr
)

(ξ − Eξ)(∫ η

0
(∫ r

0 e
−γ(s−r)ds

)
dr +

∫ η

0 e
−γ(s−η)ds

)
(ξ − Eξ)

]∥∥∥∥2]

≤
(
W2(Φ̃ηq0, q

∗) + 2u
√
η4/4 + η2 ∥Eξ∥

)2
+ 4u2(η4/4 + η2)Er1

[
∥ξ − Eξ∥2

]
≤
(
W2(Φ̃ηq0, q

∗) +
√

5/2uη
√
dM∆

)2
+ 5u2η2

(
(M2 + 1)∆2d

4 + σ2
)
. (77)

F.3 Proof of Lemma 10

Proof. In order to get the upper bound of ∥xk∥ and ∥vk∥, we bound the Lyapunov function E(xk,vk). By
the smooth Assumption 1, we know

U(xk+1)− U(x∗) ≤ U(xk) + ⟨∇U(xk),xk+1 − xk⟩+M2/2 ∥xk+1 − xk∥2 − U(x∗).

Recall the definition of the Lyapunov function

E(xk+1,vk+1) = ∥xk+1∥2 + ∥xk+1 + 2vk+1/γ∥2 + 8u (U(xk+1)− U(x∗)) /γ2.

For the first two terms we have

∥xk+1∥2 = ∥xk∥2 + 2⟨xk,xk+1 − xk⟩+ ∥xk+1 − xk∥2

∥xk+1 + 2vk+1/γ∥2 = ∥xk + 2vk/γ∥2 + 2⟨xk + 2vk/γ,xk+1 − xk + 2(vk+1 − vk)/γ⟩
+ ∥xk+1 − xk + 2(vk+1 − vk)/γ∥2

.

This implies the following:

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)] + 4E [⟨xk,xk+1 − xk⟩] + 4
γ
E [⟨xk,vk+1 − vk⟩] + 4

γ
E (⟨vk,xk+1 − xk⟩)

(78)

+ 8
γ2E [⟨vk,vk+1 − vk⟩] + 8u

γ2 E
[
⟨∇U(xk),xk+1 − xk⟩+M/2 ∥xk+1 − xk∥2

]
+ E

[
∥xk+1 − xk∥2

]
+ E

[
∥xk+1 − xk + 2(vk+1 − vk)/γ∥2

]
.

By the update rule in (5), we know that

E [⟨xk,xk+1 − xk⟩] = 1− e−γη

γ
E [⟨xk,vk⟩] + u(γη + e−γη − 1)

γ2 E [⟨xk, g̃(xk)⟩] ,

E [⟨xk,vk+1 − vk⟩] = −(1− e−γη)E [⟨xk,vk⟩]−
u(1− e−γη)

γ
E [⟨xk, g̃(xk)⟩] ,

E [⟨vk,xk+1 − xk⟩] = 1− e−γη

γ
E
[
∥vk∥2

]
+ u(γη + e−γη − 1)

γ2 E [⟨vk, g̃(xk)⟩] ,

E [⟨vk,vk+1 − vk⟩] = −(1− e−γη)E
[
∥vk∥2

]
− u(1− e−γη)

γ
E [⟨vk, g̃(xk)⟩] .

52



Published in Transactions on Machine Learning Research (04/2024)

Plug into the (78) yields:

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 4u(2− γη − 2e−γη)
γ2 E [⟨xk, g̃(xk)⟩]− 4(1− e−γη)

γ2 E
[
∥vk∥2

]
+ 4u(γη + e−γη − 1)

γ3 E [⟨vk, g̃(xk)⟩] + 8u(1− e−γη)
γ3 E [⟨vk,∇U(xk)− g̃(xk)⟩]

+ 8u2(γη + e−γη − 1)
γ4 E [⟨∇U(xk), g̃(xk)⟩] +

(
4Mu

γ2 + 3
)
E
[
∥xk+1 − xk∥2

]
+ 8
γ2E

[
∥vk+1 − vk∥2

]
. (79)

By Assumption 2, we know that ⟨xk,∇U(xk)⟩ ≥ m2 ∥xk∥2 − b. We then assume η ≤ 1/(8γ) and use the
inequality −x ≤ e−x − 1 ≤ x2/2− x for any x ≥ 0, it follows that

− 4u(2− γη − 2e−γη)
γ2 E [⟨xk, g̃(xk)⟩]

= −4u(2− γη − 2e−γη)
γ2 (E [⟨xk,∇U(xk)⟩] + E [⟨xk, g̃(xk)−∇U(xk)⟩])

≤ −4u(2− γη − 2e−γη)
γ2

(
m2E

[
∥xk∥2

]
− b
)

+ 4u(2− γη − 2e−γη)
γ2

(
1
8E
[
∥xk∥2

]
+ 2E

[
∥g̃(xk)−∇U(xk)∥2

])
≤ −3m2uη

γ
E
[
∥xk∥2

]
+ 4uηb

γ
+ 8uη

γ
E
[
∥g̃(xk)−∇U(xk)∥2

]
,

where the first inequality is because of the Young’s inequaltiy and Assumption 1 and the last inequality is
based on the inequality that γη− (γη)2 ≤ 2−γη−2e−γη ≤ γη. Again by Young’s inequality and the update
rule in (5) we have:

E
[
∥xk+1 − xk∥2

]
≤ 2η2E

[
∥vk∥2

]
+ u2η4/2E

[
∥g̃(xk)∥2

]
+ E

[
∥ξx

k∥
2
]

E
[
∥vk+1 − vk∥2

]
≤ 2γ2η2E

[
∥vk∥2

]
+ 2u2η2E

[
∥g̃(xk)∥2

]
+ E

[
∥ξv

k∥
2
]
.

It is easy to verify the fact that E
[
∥ξv

k∥
2
]
≤ 2γudη and E

[
∥ξx

k∥
2
]
≤ 2udη2. Thus,

E [E(xk+1,vk+1)]

≤ E [E(xk,vk)]− 3umη2

γ
E
[
∥xk∥2

]
− 3(1− e−γη)− η2(8Mu+ uγ + 22γ2)

γ2 E
[
∥vk∥2

]
+

36u2η2 + 2γuη2 +
(
4Mu+ 3γ2) η4

2γ2 E
[
∥g̃(xk)∥2

]
+ 2u2η2

γ2 E
[
∥∇U(xk)∥2

]
+ 8uη(γ2 + 2u)

γ3 E
[
∥∇U(xk)− g̃(xk)∥2

]
+ (8Mu+ 6γ2)udη2 + 4(4d+ b)uγη

η2 .

If we set

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d

}
,

we can obtain the following,

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ (20u+ γ)uη2

γ2 E
[
∥g̃(xk)∥2

]
+ 2u2η2

γ2 E
[
∥∇U(xk)∥2

]
+

8uη
(
γ2 + 2u

)
γ3 E

[
∥∇U(xk)− g̃(xk)∥2

]
+ 16(d+ b)uη

γ
. (80)
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Furthermore we can bound E
[
∥g̃(xk)∥2

]
by the following analysis:

E
[
∥g̃(xk)∥2

]
≤ 2E

[
∥g̃(xk)−∇U(xk)∥2

]
+ 2E

[
∥∇U(xk)∥2

]
≤ 2

(
(M2 + 1)∆2d

4 + σ2
)

+ 4M2E
[
∥xk∥2

]
+ 4G2,

(81)

where G2 is the bound of the gradient at 0, i.e. ∥∇U(0)∥2 ≤ G2. Thus we can have:

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ (21u+ γ)4M2uη2

γ2 E
[
∥xk∥2

]
(82)

+
(

2(20u+ γ)uη2

γ2 +
8uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)∆2d

4 + σ2
)

(83)

+ (21u+ γ)4uη2

γ2 G2 + 16(d+ b)uη
γ

. (84)

If we set the stepsize

η ≤ min
{

γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ

}
,

then we have:
E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 8um2η

3γ E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+
(

16uη
(
γ2 + 2u

)
γ3

)(
(M2 + 1)∆2d

4 + σ2
)

+ (21u+ γ)4uη2

γ2 G2 + 16(d+ b)uη
γ

.

Furthermore by Young’s inequality and Assumption 1, we can bound the Lyapunov function by the following:

E(x, v) ≤ 5/2 ∥x∥2 + 12
γ2 + 2uM

γ2

(
3 ∥x∥2 + 6 ∥x∗∥2

)
.

Then if γ2 ≤ 4Mu, we have

E(x, v) ≤ 16uM
γ2 ∥x∥2 + 12

γ2 ∥v∥
2 + 12uM

γ2 ∥x∗∥2
. (85)

Thus,

E [E(xk+1,vk+1)] ≤
(

1− γm2η

6M

)
E [E(xk,vk)] +

(
16uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)∆2d

4 + σ2
)

+ (21u+ γ)4uη2

γ2 G2 + 16(d+ b)uη
γ

.

Finally we show that

sup
k≥0

E [E(xk,vk)] ≤ E [E(x0, v0)] + 6M
γm2η

(
16uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)∆2d

4 + σ2
)

+ 6M
γm2η

(21u+ γ)4uη2

γ2 G2 + 6M
γm2η

16(d+ b)uη
γ

≤ E [E(x0, v0)] +
96u

(
γ2 + 2u

)
m2γ4

(
(M2 + 1)∆2d

4 + σ2
)

+ 24(21u+ γ)uM
m2γ3 G2 + 96(d+ b)uM

m2γ2

≤ E + C0

(
(M2 + 1)∆2d

4 + σ2
)
, (86)
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where E = E [E(x0, v0)] + 24(21u+γ)uM
m2γ3 G2 + 96(d+b)uM

m2γ2 and C0 = 96u(γ2+2u)
m2γ4 . Moreover by the definition of

Laypunov function, we know E(x, v) ≥ max{∥x∥2
, 2 ∥v/γ∥2}. This further implies that

E
[
∥xk∥2

]
≤ E + C0

(
(M2 + 1)∆2d

4 + σ2
)

E
[
∥vk∥2

]
≤ γ2E/2 + γ2C0/2

(
(M2 + 1)∆2d

4 + σ2
)
.

Combining with equation (81) we can bound E
[
∥g̃(xk)∥2

]
as:

E
[
∥g̃(xk)∥2

]
≤ 2

(
(M2 + 1)∆2d

4 + σ2
)

+ 4M2E + 4G2. (87)

F.4 Proof of Lemma 15

Proof. By the update rule in (1), we have:

E
[
∥xk+1∥2

]
=E

[
∥xk − ηg̃(xk)∥2

]
+
√

8ηE [⟨xk − ηg̃(xk), ξk+1⟩] + 2ηE
[
∥ξk+1∥2

]
=E

[
∥xk − ηg̃(xk)∥2

]
+ 2ηd

=E
[
∥xk − η∇U(xk)− η (g̃(xk)−∇U(QW (xk)))− η (∇U(QW (xk))−∇U(xk))∥2

]
+ 2ηd

=E
[
∥xk − η∇U(xk)− η (∇U(QW (xk))−∇U(xk))∥2

]
+ η2E

[
∥g̃(xk)−∇U(QW (xk))∥2

]
+ 2ηd

= (E [∥xk − η∇U(xk)∥] + ηE [∥∇U(QW (xk))−∇U(xk)∥])2 + η2
(

∆2d

4 + σ2
)

+ 2ηd.

We know the fact that:

E
[
∥xk − η∇U(xk)∥2

]
= E

[
∥xk∥2

]
− 2ηE [⟨xk,∇U(xk)⟩] + η2E

[
∥∇U(xk)∥2

]
= E

[
∥xk∥2

]
+ 2η

(
b−m2E

[
∥xk∥2

])
+ 2η2

(
M2E

[
∥xk∥2

]
+G2

)
=
(
1− 2ηm2 + 2η2M2)E [∥xk∥2

]
+ 2ηb+ 2η2G2.

For any η ∈
(
0, 1 ∧ m2

2M2

)
, if 0 < 1− 2ηm2 + 2η2M2 < 1 and set c = ηm2−η2M2

1−2ηm+2η2M2 , then we have:

E
[
∥xk+1∥2

]
≤ (1 + c)E

[
∥xk − η∇U(xk)∥2

]
+
(

1 + 1
c

)
η2E

[
∥∇U(QW (xk))−∇U(xk)∥2

]
+ η2

(
∆2d

4 + σ2
)

+ 2ηd

(88)

≤
(
1− ηm2 + η2M2)E [∥xk∥2

]
+ 1− ηm2 + η2M

ηm2 − η2M

M2η2∆2d

4 + 1− ηm2 + η2M

1− 2ηm2 + 2η2M2

(
2ηb+ 2η2G2)

(89)

+ η2
(

∆2d

4 + σ2
)

+ 2ηd. (90)
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For any k > 0 we can bound the recursive equations as:

E
[
∥xk∥2

]
≤ E

[
∥x0∥2

]
+ 1− ηm2 + η2M2

η2(m2 − ηM2)2
M2η2∆2d

4 + 1− ηm2 + η2M2

η(1− 2ηm2 + 2η2M2)(m2 − ηM2)
(
2ηb+ 2η2G2)

+ 1
η(m2 − ηM)

(
η2 ∆2d

4 + 2ηd
)

= E
[
∥x0∥2

]
+ 1− ηm2 + η2M2

(m2 − ηM2)2
M2∆2d

4 + 1− ηm2 + η2M2

(1− 2ηm2 + 2η2M2) (m2 − ηM2)
(
2b+ 2ηG2)

+ 1
m2 − ηM2

(
η

∆2d

4 + ησ2 + 2d
)

≤ E
[
∥x0∥2

]
+ 2M2

m2

∆2d

4 + 2
m2

(
2b+ 2ηG2)+ 2

m2

(
η

∆2d

4 + ησ2 + 2d
)
.

Now if we let E = E
[
∥x0∥2

]
+ M

m2

(
2b+ 2ηG2 + 2d

)
, then we can write:

E
[
∥xk∥2

]
≤ E +

2
(
M2 + 1

)
m2

∆2d

4 + 2σ2

m2
.

F.5 Proof of Lemma 11

Proof. From the same analysis in (80), if we set

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d

}
,

we can obtain the following,

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ (20u+ γ)uη2

γ2 E
[∥∥QG(∇Ũ(xk))

∥∥2]
+ 2u2η2

γ2 E
[
∥∇U(xk)∥2

]
+

8uη
(
γ2 + 2u

)
γ3 E

[∥∥∇U(xk)−QG(∇Ũ(xk))
∥∥2]+ 16(d+ b)uη

γ
.

(91)

By assumption 1, we can bound E
[∥∥QG(∇Ũ(xk))

∥∥2] by the following,

E
[
∥QG(∇U(xk))∥2

]
= E

[∥∥QG(∇Ũ(xk))−∇U(xk) +∇U(xk)−∇U(0) +∇U(0)
∥∥2]

≤ E
[∥∥QG(∇Ũ(xk))−∇U(xk)

∥∥2]+ 2E
[
∥∇U(xk)−∇U(0)∥2

]
+ 2E

[
∥∇U(0)∥2

]
≤
(

∆2d

4 + σ2
)

+ 2M2E
[
∥xk∥2

]
+ 2G2.
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Plugging this bound into equation (91), we can have:

E [E (xk+1,vk+1)] ≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ 2(20u+ γ)uη2M2

γ2 E
[
∥xk∥2

]
+ (20u+ γ)uη2

γ2

(
∆2d

4 + σ2 + 2G2
)

+ 2u2η2

γ2

(
2M2E

[
∥xk∥2

]
+ 2G2

)
+

8uη
(
γ2 + 2u

)
γ3

(
∆2d

4 + σ2
)

+ 16 (d+ b)uη
γ

≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ 2(22u+ γ)uη2M2

γ2 E
[
∥xk∥2

]
+

(20u+ γ) γuη2 + 8
(
γ2 + 2u

)
uη

γ3

(
∆2d

4 + σ2
)

+ 2(22u+ γ)uη2M2

γ2 G2 + 16 (d+ b)uη
γ

≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ 2(22u+ γ)uη2M2

γ2 E
[
∥xk∥2

]
+
(
36u+ 9γ2)uη

γ3

(
∆2d

4 + σ2
)

+ 2(22u+ γ)uη2M2

γ2 G2 + 16 (d+ b)uη
γ

.

If we set the step size η ≤ γm2
6(22u+γ)M2 , we can have:

E [E (xk+1,vk+1)] ≤ E [E(xk,vk)]− 8um2η

3γ E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
(92)

+
(
36u+ 9γ2)uη

γ3

(
∆2d

4 + σ2
)

+ 2(22u+ γ)uη2M2

γ2 G2 + 16 (d+ b)uη
γ

. (93)

Again from the same analysis in (85), if γ2 ≤ 4Mu, we have

E(x, v) ≤ 16uM
γ2 ∥x∥2 + 12

γ2 ∥v∥
2 + 12uM

γ2 ∥x∗∥2
.

Thus,

E [E(xk+1,vk+1)] ≤
(

1− γm2η

6M

)
E [E(xk,vk)] +

(
36u+ 9γ2)uη

γ3

(
∆2d

4 + σ2
)

+ 2(22u+ γ)uη2M2

γ2 G2 + 16 (d+ b)uη
γ

.

Finally, we show that for any k > 0,

E [E(xk,vk)] ≤ E [E(x0, v0)] + 6M
γm2η

(
36u+ 9γ2)uη

γ3

(
∆2d

4 + σ2
)

+ 6M
γm2η

2(22u+ γ)uη2M2

γ2 G2 + 6M
γm2η

16 (d+ b)uη
γ

≤ E [E(x0, v0)] +
54
(
4u+ γ2)u
m2γ4

(
∆2d

4 + σ2
)

+ 12(22u+ γ)uM3

m2γ3 G2 + 96 (d+ b)uM
m2γ2

=: E + C∆2d.

Finally by the fact that E
[
∥xk∥2

]
≤ E [E(xk,vk)] and E

[
∥vk∥2

]
≤ γ2E [E(xk,vk)] /2 we can get our claim

in Lemma 11.
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(a) (b) (c)

Figure 8: Train NLL of low-precision SGHMC on logistic model with MNIST in terms of different numbers
of fractional bits. (a): Methods with Full-precision gradient accumulators. (b): Methods with Low-precision
gradients accumulators. (c): Variance corrected quantization.

(a) (b) (c)

Figure 9: Train NLL of low-precision SGHMC on MLP with MNIST in terms of different numbers of
fractional bits. (a): Methods with full-precision gradient accumulators. (b): Methods with low-precision
gradient accumulators. (c): Variance corrected quantization.

G Additional experiment results

In this section, we provide additional experiment results.

G.1 Logistic model

In this section, we present the low-precision SGHMC with logistic models on the MNIST dataset. The results
are shown in Figure 8. We can see that SGHMCLP-F is robust to the quantization error, even though only
2 bits are used to represent the fractional part the SGHMCLP-F can converge to a good point.

G.2 Multi-layer perception

We present the low-precision SGHMC with MLP on MNIST dataset in Figure 9. We observe similar results
as the low-precision SGHMC with the logistic model.

H Generalization of Theorem 4 under Relaxed Variance Assumption 7

All theorems presented in the paper assume bounded variance for the stochastic variance (i.e., Assumption
3). Another more flexible yet commonly used variance assumption (e.g., Raginsky et al., 2017; Gao et al.,

58



Published in Transactions on Machine Learning Research (04/2024)

2022) allows the variance scales with ∥x∥2. In the rest of this supplementary material (Sections G-O), we
generalize all the theorems in the main text to such a variance assumption, i.e. Assumption 7. Note that most
of the arguments used in the proofs under Assumption 3 still hold, necessitating only slight modifications.
Hence for the sake of readability, we only present the key changes due to the differences in the variance
assumptions.

Assumption 7 (Bouned Variance). There exists a constant B̃ ≥ 0, such that
∥∥∥∇̃U(0)

∥∥∥2
≤ B̃. And there

exists a constant δ ∈ [0, 1) such that:

E
∥∥∥∇̃U(x)−∇U(x)

∥∥∥2
≤ 2δ

(
M2 ∥x∥2 + B̃2

)
, for any x ∈ Rd.

Let Assumption 7 be true, we can then derive the following lemma.

Lemma 16. For any x ∈ Rd, the random noise ξ of the low-precision gradients defined in (40) satisfies:

∥Eξ∥2 ≤M2 ∆2d

4 , (94)

E[∥ξ∥2] ≤
(
2M2 + 1

) ∆2d

4 + 2δM2E ∥x∥2 + 2δB̃2. (95)

Now, we are ready to present the Theorem 4 after revision.

Theorem 17. Suppose Assumptions 1, 4, and 7 hold and the minimum satisfies ∥x∗∥2
< D2. Furthermore,

let p∗ denote the target distribution of x and v. Given any sufficiently small ϵ, if we set the step size to be

η = min
{

ϵκ−1
1√

479232/5(d/m1 +D2)
,

ϵ2

72
(
20u2δM2κ1(d/m1 +D2) + 5u2

(
(2M2 + 1) ∆2d

4
)

+ δB̃2
) ,√e1/(4κ1) − 1

10uδM2

}
,

then after K steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-F in (5)
satisfies

W2(p(xK ,vK), p∗) ≤ Õ (ϵ+ ∆) ,

for some K satisfying

K ≤ κ1

η
log

36
(

d
m1

+D2
)

ϵ

 = Õ
(√

δϵ−2 log
(
ϵ−1)∆2

)
.

Proof. For strongly log-concave target distributions, the equation (77) in Lemma 10 needs to be updated as
the following,
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W2
2 (Φ̂ηq0, q

∗) ≤
(
W2(Φ̃ηq0, q

∗) +
√

5/2uη
√
dM∆

)2
+ 5u2η2

(
(2M2 + 1)∆2d

4 + δM2Eq0 ∥x∥
2 + δδB̃2

)
≤
(
W2(Φ̃ηq0, q

∗) +
√

5/2uη
√
dM∆

)2
+ 10u2η2δM2Eζ ∥x− x′∥2 + 10u2η2δM2Ep∗ ∥x∥2

+ 5u2η2
(

(2M2 + 1)∆2d

4 + δδB̃2
)

(96)

=
(
W2(Φ̃ηq0, q

∗) +
√

5/2uη
√
dM∆

)2
+ 10u2η2δM2W2

2 (Φ̃ηq0, q
∗) + 10u2η2δM2Ep∗ ∥x∥2

+ 5u2η2
(

(2M2 + 1)∆2d

4 + δδB̃2
)

(97)

≤
((

1 + 10u2η2δM2)W2(Φ̃ηq0, q
∗) +

√
5/2uη

√
dM∆

)2
+ 10u2η2δM2Ep∗ ∥x∥2

+ 5u2η2
(

(2M2 + 1)∆2d

4 + δB̃2
)
.

(98)

In the second inequality, ζ is an optimal coupling between q0 and q∗. x/x′ are from the distributions q0/q∗.

Then we choose η ≤
√

e1/(4κ1)−1
10uδM2 , and following the same argument for deriving equation (46), we can have:

W2
2 (Φ̂ηqi, q

∗) ≤
(
e−η/4κ1W2(qi, q

∗) + η2
√

8EK

5 +
√

5/2uη
√
dM∆

)2

+ 10u2η2δM2Ep∗ ∥x∥2 (99)

+ 5u2η2
(

(2M2 + 1)∆2d

4 + δM2B2
)
. (100)

Moreover, we know the fact that

Ep∗ ∥x∥2 = Ep∗ ∥x− x0∥2 (101)
≤ 2E ∥x− x∗∥2 + 2 ∥x∗ − x0∥2 (102)

≤ 2d
m

+ 2D2 (103)

Thus plug it into the equation (99), we can have

W2(Φ̂ηqi, q
∗) ≤

(
e−η/4κ1W2(qi, q

∗) + η2
√

8EK

5 +
√

5/2uη
√
dM∆

)2

+ 10u2η2δM2
(

2d
m

+ 2D2
)

(104)

+ 5u2η2
(

(2M2 + 1)∆2d

4 + δB̃2
)
. (105)

Finally, by invoking Lemma 7 Dalalyan & Karagulyan (2019), we can have

W2(qK , q
∗) ≤ e−Kη/4κ1W2

2 (q0, q
∗) +

η2
√

8EK

5 + uηM∆
√

5d
2

1− e−η/2κ1
(106)

+
10u2η2δM2 ( 2d

m + 2D2)+ 5u2η2
(

(2M2 + 1) ∆2d
4 + δB̃2

)
η2
√

8EK

5 + uηM∆
√

5d
2 +

√
1− e−η/2κ1

√
10u2η2δM2

( 2d
m + 2D2

)
+ 5u2η2

(
(2M2 + 1) ∆2d

4 + δB̃2
) .

(107)
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Thus for some K satisfied
K ≤ 2κ1

η
log
(

36
(
d

m1
+D2

))
,

we can get the following

W2(pK , p
∗) ≤ ϵ+ 16κ1uM∆

√
5d

2 . (108)

I Generalization of Theorem 5 under Relaxed Variance Assumption 7

Now, we are ready to present the Theorem 5 after revision.
Theorem 18. Suppose Assumptions 1, 4, and 7 hold and the minimum satisfies ∥x∗∥2

< D2. Furthermore,
let p∗ denote the target distribution of x and v. Given any sufficiently small ϵ, if we set the step size to be

η = min
{

ϵκ−1
1√

663552/5(d/m1 +D2)
,

ϵ2

144
(
20u2δM2κ1(d/m1 +D2) + 5u2

(
(2M2 + 1) ∆2d

4
)

+ δB̃2
) ,√e1/(4κ1) − 1

10uδM2

}
,

then after K steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-L in (5)
satisfies

W2(p(xK ,vK), p∗) ≤ Õ
(
ϵ+ ∆

ϵ

)
,

for some K satisfying

K ≤ κ1

η
log

36
(

d
m1

+D2
)

ϵ

 = Õ
(√

δϵ−2 log
(
ϵ−1)∆2

)
.

Proof. Now we revise the proof of Theorem 5. The revision is similar to the revision for Theorem 5.

By similar argument in (98), equation (52) need to be changed as the following:

W2
2

(
Φ̂ηq0, q

∗
)
≤ W2

2 (Φ̃ηq0, q
∗) + 5u2η2

(
∆2d

4 + δM2Eqi
∥x∥2 + B̃2

)
+ 2u2 (A+B) (109)

≤ W2
2 (Φ̃ηq0, q

∗) + 10u2η2δM2Eζ ∥x− x′∥2 + 10u2η2δM2Ep∗ ∥x∥2 (110)

+ 5u2η2B̃2 + 5u2η2 ∆2d

4 + 2u2(A+B) (111)

≤
(
1 + 10u2η2δM2)W2

2 (Φ̃ηq0, q
∗) + 10u2η2δM2

(
2d
m

+D2
)

+ 5u2η2B̃2 + 5u2η2 ∆2d

4 + 2u2(A+B).

(112)

Then we choose η ≤
√

e1/(4κ1)−1
10uδM2 , and following the same argument for (52), we can have

W2
2

(
Φ̂ηqi, q

∗
)
≤

(
e−η/4κ1W2 (qi, q

∗) + η2
√

8EK

5

)2

+ 10u2η2δM2
(

2d
m

+D2
)

(113)

+ 5u2η2B̃2 + 5u2η2 ∆2d

4 + 2u2(A+B). (114)

Then the remaining analysis follows the proof in the original Theorem 5.
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J Generalization of Theorem 6 under Relaxed Variance Assumption 7

Theorem 19. Let Assumption 1, 4 and 7 hold and the minimum satisfies ∥x∗∥2
< D2. Furthermore, let p∗

denote the target distribution of v and x. Given any sufficiently small ϵ, if we set the step size η to be

η = min


ϵκ−1

1√
663552/5

(
d

m1
+D2

) , ϵ2

144
(
20u2δM2κ1(d/m1 +D2) + 5u2

(
(2M2 + 1) ∆2d

4
)

+ δB̃2
) ,√e1/(4κ1) − 1

10uδM2

 ,

then after K steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-L in (6)
satisfies

W2(p(xK ,vK), p∗) = Õ
(
ϵ+
√

∆
)
, (115)

for some K such that

K ≤ κ1

η
log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(√
δϵ−1

)
∆2
)
.

The revision closely mirrors the revised proof of Theorem 5, based on the assumption that Assumption 3
holds.

The only equation we need to revise is (60). Given the similar argument in (98), we can have

W2(pK , p
∗) ≤ 4e−Kη/4κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/4κ1
(116)

+
40u2η2δM2

(
2d
m1

+ 2D2
)

+ 20u2η2
(

∆2d
4 + δB̃2

)
+ 8u2η (γA+B)

η2
√

8EK

5 +
√

1− e−η/κ1

√
10u2η2δM2

(
2d
m1

+ 2D2
)

+ 5u2η2
(∆2d

4 + δB̃2
)

+ 2u2η (γA+B)
.

(117)

K Generalization of Theorem 1 under Relaxed Variance Assumption 7

This section updates Theorem 1’s proof, replacing Assumption 3 with 7, and introduces the revised theorem.
Theorem 20. Assuming 1, 2, 7, and 8 hold. Let p∗ denote the target distribution of (x,v). If γ2 ≤ 4Mu

and setting the step size η = Õ
(

µ∗ϵ2

log(1/ϵ)

)
satisfying

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
1

8γ ,
γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ ,

m2γ
2

12(γ2 + 2u)M2

}
,

then after K steps starting at the initial point x0 = v0 = 0, the output (xK ,vK) of SGHMCLP-F in (5)
satisfies

W2(p(xK ,vK), p∗) ≤ Õ
(
ϵ+ Ã

√
log
(

1
ϵ

))
,

for some K satisfying

K = Õ
(

1
ϵ2µ∗2 log2

(
1
ϵ

))
,

where constants are defined as: Ã = max
{√

∆2d+ δ1/4,
4
√

∆2d+ δ1/4
}

, and constant 1/µ∗ = exp (O(d))
denotes the contraction rate of underdamped Langevin dynamics (10).
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Proof. We first need to introduce a further assumption on the variance parameter δ as the following assump-
tion.

Assumption 8. Given Assumption 7, we further assume the δ satisfies the following condition:

δ ≤ min
{

γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ ,

m2γ

3(20u+ γ) ,
m2γ

2

12(γ2 + 2u)M2

}
.

We need to revise the (84) as the following:

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+ (21u+ γ)4M2uη2

γ2 E
[
∥xk∥2

]
(118)

+
(

2(20u+ γ)uη2

γ2 +
8uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)∆2d

4 + δM2E ∥xk∥2 + δB̃2
)

(119)

+ (21u+ γ)4uη2

γ2 G2 + 16(d+ b)uη
γ

. (120)

If we choose η satisfy the following condition

δ ≤ η ≤ min
{

γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ ,

m2γ

3(20u+ γ) ,
m2γ

2

12(γ2 + 2u)M2

}
, (121)

then we can have

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]− 4um2η

3γ E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
(122)

+
(

16uη
(
γ2 + 2u

)
γ3

)(
(M2 + 1)∆2d

4 + δB̃2
)

(123)

+ (21u+ γ)4uη2

γ2 G2 + 16(d+ b)uη
γ

. (124)

The remainder of the analysis is unchanged.

L Generalization of Theorem 2 under Relaxed Variance Assumption 7

This section updates Theorem 2’s proof, replacing Assumption 3 with 7, and introduces the revised theorem.
Theorem 21. Assuming 1, 2, 7 and 8 hold. Let p∗ denote the target distribution of (x,v). If γ2 ≤ 4Mu

and setting the step size η = Õ
(

µ∗ϵ2

log(1/ϵ)

)
satisfying

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
1

8γ ,
γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ ,

m2γ
2

12(γ2 + 2u)M2

}
,

then after K steps starting at the initial point x0 = v0 = 0, the output (xK ,vK) of SGHMCLP-L in (6)
satisfies

W2(p(xK ,vK), p∗) = Õ
(
ϵ+ δ1/4

√
log
(

1
ϵ

)
+

log3/2 ( 1
ϵ

)
ϵ2

√
∆
)
, (125)

for some K satisfying

K = Õ
(

1
ϵ2µ∗2 log2

(
1
ϵ

))
.
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Proof. We need to revise the equation (93) as the following:

E [E (xk+1,vk+1)] ≤ E [E(xk,vk)]− 8um2η

3γ E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
(126)

+
(
36u+ 9γ2)uη

γ3

(
∆2d

4 + δM2E ∥xk∥2 + δB̃2
)

+ 2(22u+ γ)uη2M2

γ2 G2 + 16 (d+ b)uη
γ

.

(127)

If we further choose η ≤ 4γ2m2
3(36u+9γ2)M2 and assume δ ≤ η, then we can have

E [E (xk+1,vk+1)] ≤ E [E(xk,vk)]− 4um2η

3γ E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
(128)

+
(
36u+ 9γ2)uη

γ3

(
∆2d

4 + δB̃2
)

+ 2(22u+ γ)uη2M2

γ2 G2 + 16 (d+ b)uη
γ

. (129)

M Generalization of Theorem 3 under Relaxed Variance Assumption 7

In this section, we present Theorem 3 after revision.
Theorem 22. Assuming 1, 2, 7 and 8 hold. Let p∗ denote the target distribution of (x,v). If γ2 ≤ 4Mu

and setting the step size η = Õ
(

µ∗ϵ2

log(1/ϵ)

)
satisfying

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2) ,

√
4u2

4Mu+ 3γ2 ,
6γbu

(4Mu+ 3γ2) d ,
1

8γ ,
γm2

12(21u+ γ)M2 ,
8(γ2 + 2u)
(20u+ γ)γ ,

m2γ
2

12(γ2 + 2u)M2

}
,

then after K steps starting at the initial point x0 = v0 = 0, the output (xK ,vK) of SGHMCLP-L in (6)
satisfies

W2(p(xK ,vK), p∗) = Õ
(
ϵ+ δ1/4

√
log
(

1
ϵ

)
+

log
( 1

ϵ

)
ϵ

√
∆
)
, (130)

for some K satisfying

K = Õ
(

1
ϵ2µ∗2 log2

(
1
ϵ

))
.

The revision of Theorem 3 is the same as the revision for Theorem 2.

N Generalization of Theorem 7 under Relaxed Variance Assumption 7

In this proof, we revise the proof of Theorem 7 if the Assumption 3 is replaced by Assumption 7.
Theorem 23. Suppose Assumptions 1, 2, and 7 hold. Let p∗ denote the target distribution of x, Ã have
the same definition in Theorem 1, and 1/λ∗ = exp (O(d)) be the concentration number of (13). After K

steps starting with initial point x0 = 0, if we set the stepsize to be η = Õ
((

ϵ
log(1/ϵ)

)4
)

. The output xK of

SGLDLP-F in (1) satisfies

W2(p(xK), p∗) ≤ Õ
(
ϵ+

(√
∆ + δ1/4

)
log
(

1
ϵ

))
, (131)

for some K satisfied

K = Õ
(

1
ϵ4λ∗ log5

(
1
ϵ

))
.
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Proof. We need to revise the equation (90) as the following:

E
[
∥xk+1∥2

]
≤
(
1− ηm2 + 2η2M2)E [∥xk∥2

]
+ 1− ηm2 + η2M

ηm2 − η2M

M2η2∆2d

4 + 1− ηm2 + η2M

1− 2ηm2 + 2η2M2

(
2ηb+ 2η2G2)

(132)

+ η2
(

∆2d

4 + δB̃2
)

+ 2ηd. (133)

Then we can have the following:

E
[
∥xk∥2

]
≤ E +

2
(
M2 + 1

)
m2

∆2d

4 + 2δB̃2

m2
.

Moreover, the equation (67) is also needed to revised as the accordingly:

E
[
∥xs − xk∥2

]
≤ 3η2 (ME [∥xk∥] +G)2 + 3η2

(
(M2 + 1)∆2d

4 + δM2E ∥xk∥2 + δB̃2
)

+ 6ηd

≤ 3η2 (2ME [∥xk∥] +G)2 + 3η2
(

(M2 + 1)∆2d

4 + δB̃2
)

+ 6ηd. (134)

The remaining analysis should be the same as the proof of Theorem 7.

O Generalization of Theorem 8 under Relaxed Variance Assumption 7

In this proof, we revise the proof of Theorem 8 if the Assumption 3 is replaced by Assumption 7.
Theorem 24. Let Assumptions 1, 2 and 7 hold. Let p∗ denote the target distribution of x and 1/λ∗ =

exp (O(d)) be the concentration number of (13). If we set the step size to be η = Õ
((

ϵ
log(1/ϵ)

)4
)

, after K

steps starting at the initial point x0 = 0 the output xK of the SGLDLP-L in (2) satisfies

W2(p(xK), p∗) = Õ
(
ϵ+ δ1/4 log

(
1
ϵ

)
+

log5 ( 1
ϵ

)
ϵ4

√
∆
)
, (135)

for some K satisfied

K = Õ
(

1
ϵ4λ∗ log5

(
1
ϵ

))
.

We need to revise the (71)

E
[
∥xk+1∥2

]
≤
(
1− 2ηm2 + 2η2M2)E [∥xk∥2

]
+ 2ηb+ 2η2G2 + η2∆2d

4 + η2
(

2δM2E ∥xk∥2 + 2δB̃2
)

(136)

+ E
[
∥αk∥2

]
+ 2ηd. (137)

≤
(
1− 2ηm2 + 4η2M2)E [∥xk∥2

]
+ 2ηb+ 2η2G2 + η2∆2d

4 + η2δB̃2 + E
[
∥αk∥2

]
+ 2ηd.

(138)
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P Generalization of Theorem 9 under Relaxed Variance Assumption 7

In this proof, we update Theorem 9 if the Assumption 3 is replaced by Assumption 7.
Theorem 25. Let Assumptions 1, 2 and 7 hold. Let p∗ denote the target distribution of x and 1/λ∗ =

exp (O(d)) be the concentration number of (13). If we set the step size to be η = Õ
((

ϵ
log(1/ϵ)

)4
)

, after K

steps starting at the initial point x0 = 0 the output xK of the SGLDLP-L in (2) satisfies

W2(p(xK), p∗) = Õ
(
ϵ+ δ1/4 log

(
1
ϵ

)
+

log3 ( 1
ϵ

)
ϵ2

√
∆
)
, (139)

for some K satisfied

K = Õ
(

1
ϵ4λ∗ log5

(
1
ϵ

))
.

The key revision is the same as the Theorem 8.
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