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ABSTRACT

Transformer-based models generate hidden states that are difficult to interpret. In
this work, we aim to interpret these hidden states and control them at inference, with
a focus on motion forecasting. We leverage the phenomenon of neural collapse
and use linear probes to measure interpretable features in hidden states. Our
experiments reveal meaningful directions and distances between hidden states
of opposing features, which we use to fit control vectors for activation steering.
We further refine our approach using sparse autoencoders to optimize our control
vectors. Notably, we show that enforcing sparsity leads to a more linear relationship
between control vector temperatures and forecasts. Our approach not only enables
mechanistic interpretability but also zero-shot generalization to unseen dataset
characteristics.1

1 INTRODUCTION

Accurately predicting sequential data while maintaining interpretability is crucial for many real-world
applications. However, these two objectives often conflict, as achieving higher accuracy frequently
comes at the cost of lower interpretability. This trade-off is primarily linked to the representational
capacity of the underlying model: methods achieving higher accuracy tend to rely on the increased
complexity of their underlying models (Kaplan et al., 2020; Bahri et al., 2024). This, in turn, renders
them difficult to understand and interpret in terms of semantically meaningful patterns.

Deep learning models employ loss functions that encourage the clustering of data samples based
on their patterns (Papyan et al., 2020). Together with regularizers that prevent overfitting, clusters
become more distinct over the course of training, i.e. neural collapse (Galanti et al., 2022; Wu &
Papyan, 2024). We leverage this phenomenon to analyze the learned representations of transformer-
based models with respect to human-interpretable features during training. Specifically, we use linear
probing (Alain & Bengio, 2017) to measure the degree to which these features are embedded in
hidden states. In this way, we identify that interpretable features are embedded in the hidden states of
transformer-based models.

Building on these insights, we fit control vectors to opposing features, enabling the control of forecasts
at inference. To further enhance this approach, we employ sparse autoencoders to extract more distinct
features from hidden states (Bricken et al., 2023). Experiments with sparse autoencoders of varying
hidden dimensions reveal that enforcing sparsity leads to a more linear relationship between control
vector temperatures and the resulting forecasts. Consequently, our method allows for controlling
transformer-based forecasting models through interpretable control vectors, providing a novel and
intuitive interface that facilitates zero-shot generalization.

Our application focuses on recent multimodal transformer-based motion forecasting models
(Nayakanti et al., 2023; Zhang et al., 2023b; Wagner et al., 2024). They process features of past
motion sequences (i.e., past positions, orientation, acceleration, speed) and environment context
(i.e., map data and traffic light states), and transform them into future motion sequences. Like other
transformer models, they rely on learned representations of these features, resulting in hidden states
that are difficult to interpret and control.

Our contributions are:

1We plan to make our software implementation and trained models publicly available.
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• We use linear probes to measure neural collapse towards interpretable features in hidden states of
recent motion transformer models. We show that the collapse of hidden states creates meaningful
directions and distances in latent space.

• We leverage these latent space properties to fit control vectors for each interpretable feature. We
optimize our control vectors with sparse autoencoding. Notably, we show that enforcing sparsity
leads to a more linear relationship between control vector temperatures and forecasts.

• We apply our method to motion forecasting models with various fusion mechanisms and
environment representations. Furthermore, we address domain shift using our interpretable
control vectors and enable zero-shot generalization.

2 RELATED WORK

2.1 NATURAL LANGUAGE AS AN INTERFACE FOR MODEL INTERACTION AND CONTROL

Linking learned representations to natural language has gained significant attention (e.g., (Radford
et al., 2021; Alayrac et al., 2022; Liu et al., 2024)). Broadly, approaches incorporating language in
models can be categorized into four types.

Conditioning. Numerous works leverage natural language to condition generative models in diverse
tasks such as image synthesis (Ramesh et al., 2021; Zhang et al., 2023a), video generation (Blattmann
et al., 2023), and 3D modeling (Tevet et al., 2022; Wu et al., 2023).

Prompting. Some works use language as an interface to interact with models, enabling users to
request assistance or information. This includes obtaining explanations of underlying reasoning, and
human-centric descriptions of model behavior (Brown et al., 2020; Sanh et al., 2021).

Enriching. Another line of work leverages LLMs’ generalization abilities to enrich context embed-
dings, providing additional information for better prediction and planning (Guan et al., 2023).

Instructing. Natural language can be used to issue explicit commands for specific tasks, distinct
from conditioning (Ouyang et al., 2022; Brooks et al., 2023). The main challenge is connecting the
abstractions and generality of language with environment-grounded actions (Raad et al., 2024).

In the appendix, we provide further examples of these language incorporation approaches in robotics
and self-driving applications. While these works align learned text representations with embeddings
of other modalities, they do not measure the degree to which interpretable features are embedded
within hidden states. To the best of our knowledge, no prior work has explored the mechanistic
interpretability of transformers in robotics applications.

2.2 METHODS FOR MODEL INTERPRETABILITY AND EXPLAINABILITY

Latent space regularities. Mikolov et al. (2013) show that consistent regularities naturally emerge
from the training process of word embeddings. This phenomenon, commonly referred to as the
“word2vec hypothesis”, suggests that learned embeddings capture both semantic and syntactic
relationships between words through consistent vector offsets in latent space. Many multimodal
models, including CLIP (Radford et al., 2021), use contrastive learning to align embeddings across
different modalities and maximize their cosine similarity. It should be emphasized that these works
measure the similarity of embeddings of all features per sample, rather than focusing on distinct
features within the latent space.

Neural collapse. A recent line of work (Papyan et al., 2020; Galanti et al., 2022; Wu & Papyan, 2024)
introduces the term neural collapse to describe a desirable learning behavior of deep neural networks
for classification.2 It refers to the phenomenon that learned top-layer representations form semantic
clusters, which collapse to their means at the end of training (see Appendix A.10 for details). In
addition, the cluster means transform progressively into equidistant vectors when centered around the
global mean. Therefore, neural collapse facilitates classification tasks and is considered a desirable
learning behavior for both supervised (Papyan et al., 2020) and self-supervised learning (Ben-Shaul
et al., 2023).

2Neural collapse is not to be confused with representation collapse (Hua et al., 2021; Barbero et al., 2024),
where learned representations across all classes collapse to redundant or trivial solutions (e.g., zero vectors).
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Hidden state activations. Transformers consist of attention blocks, followed by simple feed-forward
networks, whose hidden state activations are analyzed for interpretability. Elhage et al. (2022) explore
two key hypotheses that describe how these activations capture meaningful structures: the linear
representation hypothesis (Pennington et al., 2014) and the superposition hypothesis (Arora et al.,
2018). These hypotheses essentially state that the neural networks represent features as directions in
their activation space, and that representations can be decomposed into independent features.

Control vectors. In natural language processing (Zou et al., 2023; Subramani et al., 2022; Turner
et al., 2023), control vectors allow targeted adjustments to model outputs by steering hidden state
activations without the need for fine-tuning or prompt engineering. Control vectors are a set of
vectors that capture the difference of hidden states from opposing concepts or features (Rimsky et al.,
2023). This approach requires a well-structured latent space, where samples are clustered according
to classes or features (e.g., a high degree of neural collapse, see Section 3.2).

Sparse autoencoders. A key goal of interpretability research is to decompose models and gain
a mechanistic interpretation of how their components function. Sparse autoencoders leverage the
linear representation hypothesis and approximate the model’s activations with a linear combination
of feature directions. By enforcing sparsity in latent space, they separate features into distinct,
interpretable representations (Bricken et al., 2023; Cunningham et al., 2023).

Our method differs from prior works in several aspects. We measure neural collapse in multimodal
models for motion forecasting (i.e., regression) instead of unimodal vision classifiers (Papyan et al.,
2020) or language models (Wu & Papyan, 2024). Rather than steering hidden state changes across all
modules (i.e., neural trajectories) as in Zou et al. (2023), we steer only the hidden states in the last
module of the motion encoder. Furthermore, we do not use our sparse autoencoders during inference
(Cunningham et al., 2023), but to optimize control vectors beforehand, resulting in negligible
computational overhead.

3 METHOD

A vehicle is
moving right at a
moderate speed

while decelerating.

(a) Interpretable motion features

Control
vectors

Motion
tokens

Motion encoder

Motion decoder

Sparse autoencoder
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(b) Controllable motion encoder

Figure 1: Words in Motion. (a) We classify motion features in an interpretable way, as in natural
language. (b) We measure the degree to which these interpretable features are embedded in the
hidden states Hi of transformer models with linear probes. Furthermore, we use our discrete features
and sparse autoencoding to fit interpretable control vectors Vi that allow for controlling motion
forecasts at inference. The training of the sparse autoencoder is shown with red arrows (→) and the
fitting of control vectors with blue arrows (→).

3.1 MOTION FEATURE CLASSIFICATION USING NATURAL LANGUAGE

In contrast to natural language, where words naturally carry semantic meaning, motion lacks prede-
fined labels. Therefore, we identify human-interpretable motion features by quantizing them into
discrete subclasses as in natural language. Our classes of motion features are based on insights from
Seff et al. (2023).
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Initially, we classify motion direction using the cumulative sum of differences in yaw angles, as-
signing it to either left, straight, or right. Additionally, we introduce a stationary class
for stationary objects, where direction lacks semantic significance. We define further classes for
speed, dividing the speed values into four intervals: high, moderate, low, and backwards.
Lastly, we analyze the change in acceleration by comparing the integral of speed over time to the
projected displacement with initial speed. Accordingly, we classify acceleration profiles as either
accelerating, decelerating, or constant (see Figure 1a). The threshold values used for
classification are detailed in the appendix.

3.2 NEURAL COLLAPSE AS A METRIC OF INTERPRETABILITY

We propose to measure neural collapse as a metric of interpretability. Specifically, we focus on
interpreting hidden states (i.e., latent representations) and evaluate whether hidden states embed
human-interpretable features. We measure how close abstract hidden states are related to interpretable
semantics using linear probing accuracy (Alain & Bengio, 2017).3 We train linear probes (i.e., linear
classifiers detached from the overall gradient computation) on top of hidden states (Hi in Figure 1).
During training, we track their accuracy in classifying our interpretable features on validation sets.
Adapted to motion forecasting, we choose the aforementioned motion features as interpretable
semantics.

Besides linear probing accuracy, following Chen & He (2021), we use the mean of the standard
deviation of the ℓ2-normalized embedding to measure representation collapse. Representation collapse
refers to an undesirable learning behaviour where learned embeddings collapse into redundant or
trivial representations (Hua et al., 2021; Barbero et al., 2024). Redundant representations have a
standard deviation close to zero. In a way, representing the opposite of neural collapse. As shown in
(Chen & He, 2021), rich representations have a standard deviation close to 1/

√
dim, where dim is the

hidden dimension.

3.3 INTERPRETABLE CONTROL VECTORS

We use interpretable features to build pairs of opposing features. For each pair, we build a dataset
and extract the corresponding hidden states. Afterwards, we compute the element-wise difference
between the hidden states of samples with opposing features. Finally, we follow Zou et al. (2023)
and use principal component analysis (PCA) with one component as pooling method to reduce the
computed differences to one scalar per hidden dimension and to generate control vectors (Vi in
Figure 1b).

We optimize our control vectors using sparse autoencoders (Cunningham et al., 2023). The sparse
autoencoder is trained as an auxiliary network. It extracts distinct features in hidden states by
encoding and reconstructing them from a sparse intermediate representation. We hypothesize that
this sparse intermediate representation (Si in Figure 1b) enables a more linear decomposition of
our interpretable features, and hence, more distinct control vectors. Therefore, we use these sparse
intermediate representations to generate intermediate control vectors V ′

i by pooling the differences
of samples with opposing features. Leveraging the Johnson-Lindenstrauss Lemma,4 we use the
SAE decoder to project the intermediate control vectors back to the hidden dimension of the motion
encoder. This enables using sparse autoencoders of arbitrary sparse intermediate dimensions for
generating control vectors of fixed dimension.

At inference, we scale the control vectors with a temperature parameter (τ in Figure 1b) to control
the strength of the corresponding features of a given sample. Consequently, we propose sparse
autoencoding to generate control vectors with a more linear relationship between control temperatures
and forecasts.

3Ben-Shaul et al. (2023) show that linear probing accuracy is consistent with the accuracy of nearest class
center classifiers, which are typically used to measure neural collapse.

4Johnson & Lindenstrauss (1984) state that a set of points in high-dimensional space can be projected into a
lower-dimensional space while approximately preserving the pairwise distances between points.
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4 EXPERIMENTAL SETUP

4.1 MOTION FORECASTING MODELS

We study three recent transformer models for motion forecasting in self-driving vehicles. Wayformer
(Nayakanti et al., 2023) and RedMotion (Wagner et al., 2024) models employ attention-based
scene encoders to learn agent-centric embeddings of past motion, map, and traffic light data. To
efficiently process long token sequences, Wayformer uses latent query attention (Jaegle et al., 2021)
for subsampling, RedMotion lowers memory requirements via local-attention (Beltagy et al., 2020)
and redundancy reduction. HPTR (Zhang et al., 2023b) models learn pairwise-relative environment
representations via kNN-based attention mechanisms. For Wayformer, we use the implementation
by Zhang et al. (2023b) and the early fusion configuration. Therefore we analyze the hidden states
generated by MLP-based input projectors for motion data, which consists of three layers. For
RedMotion, we use the publicly available implementation with a late fusion encoder for motion data
(Wagner et al., 2024). For HPTR, we use the implementation by Zhang et al. (2023b) and a custom
hierarchical fusion setup with a modality-specific encoder for past motion and a shared encoder for
environment context. Further details on fusion mechanisms and model architectures are presented in
appendix A.5 and A.12.

4.2 LINEAR PROBES

We add linear probes for our quantized motion features to each hidden state of all models (H [m]
i in

Figure 1, where m ∈ {0, 1, 2} is the module number and i is the token index). These classifiers are
learned during training using regular cross-entropy loss to classify speed, acceleration, direction,
and the agent classes from hidden states. We decouple this objective from the overall gradient
computation. Therefore, these classifiers do not contribute to the alignment of latent representations,
but exclusively measure the corresponding neural collapse into interpretable clusters.

4.3 CONTROL VECTORS

Using our interpretable motion features (see Section 3.1), we build pairs of opposing features.
Specifically, we generate speed control vectors representing the transition from low to high speed,
acceleration control vectors representing the transition from decelerating to accelerating, and direc-
tion control vectors representing the transition from the left and right direction, and agent control
vectors representing the transition from pedestrian to vehicle (see Section 3.3). For each pair, we use
the hidden states H [m]

i from module m = 2 and the last token per motion sequence (with i = −1), as
it is closest to the start of the prediction.

4.4 TRAINING DETAILS AND HYPERPARAMETERS

Motion forecasting transformers. We provide Wayformer and HPTR models with the nearest 512
map polylines, and RedMotion model with the nearest 128 map polylines. All models process a
maximum of 48 surrounding traffic agents as environment context. For the Argoverse 2 Forecasting
(abbr. AV2F) dataset, we use past motion sequences with 50 timesteps (representing 5 s) as input.
For the Waymo Open Motion (abbr. Waymo) dataset, we use past motion sequences with 11 steps
(representing 1.1 s) as input. As the main loss, we use a common combination loss terms for motion
forecasting. Following Zhang et al. (2023b), we use the unweighted sum of the negative log-likelihood
loss for positions, cross-entropy for confidences, the cosine loss for the heading angle, and the Huber
loss for velocities as motion loss. We use AdamW (Loshchilov & Hutter, 2019) in its default
configuration as optimizer and set the initial learning rate to 2 × 10−4. All models have a hidden
dimension of 128 and are configured to forecast k = 6 motion modes per agent. As post-processing,
we do not perform trajectory aggregation, but follow Zhang et al. (2023b) and modify only the
predicted confidences of redundant forecasts.

Sparse autoencoders. We train sparse autoencoders with sparse intermediate dimensions of 512,
256, 128, 64, 32, and 16. The total loss combines L2 reconstruction loss with an L1 sparsity penalty:
L2 ensures accurate reconstruction, while L1 promotes sparsity by minimizing small, noise-like
activations. The L1 must be carefully scaled to avoid deadening important features (Rajamanoharan
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et al., 2024a). We scale it scaled by 3× 10−4. We optimize the models over 10 000 epochs using the
Adam optimizer (Kingma & Ba, 2015). The final loss values are provided in the appendix.

5 RESULTS

5.1 EXTRACTING INTERPRETABLE FEATURES FOR MOTION

Our approach relies on a well-structured latent space, where samples are clustered with respect to
classes of features. Before evaluating the clustering behaviour, we ensure that our features are not
highly correlated, as confirmed by the Spearman feature correlation analysis in the appendix. We
report linear probing accuracy for interpretable features during training on both datasets.

Figure 2 shows the linear probing accuracies for our interpretable motion features on the Argoverse 2
Forecasting (abbr. AV2F) dataset. The scores are computed on the validation split over the course of
training. All models achieve similar accuracy scores, while the Wayformer model achieves a slightly
higher acceleration and lower agent accuracies. Overall, high linear probing accuracies for all motion
features are achieved. This shows that all models likely exhibit neural collapse towards interpretable
motion features.
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Figure 2: Linear accuracies for RedMotion, Wayformer, and HPTR on the validation split of the
AV2F dataset.
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Figure 3: Normalized standard devia-
tion representation quality metric for
RedMotion, Wayformer, and HPTR.

The representation quality metric normalized standard devi-
ation of embeddings is shown in Figure 3. Both HPTR and
RedMotion learn to generate embeddings with a normalized
standard deviation close to the desired value of 1/

√
dim.

While the Wayformer model achieves lower scores in this
metric. This reflects differences between attention-based
and MLP-based motion encoders.

Figure 4 shows the linear probing accuracies for our inter-
pretable motion features on the Waymo dataset. Here, we
report the scores for each of the three hidden states Hi in the
RedMotion model (i.e., after each module m in the motion
encoder, see Figure 1). Similar accuracy scores are reached
for all features at all three hidden states. The accuracies for

the acceleration and speed features progressively improve, while the direction feature reach a score
of 80% early on. Compared to the direction scores on the AV2F dataset, the scores on the Waymo
dataset “jump” earlier. We hypothesize that this is linked to the shorter input motion sequence on
Waymo (1.1 s vs. 5 s), which limits the amount possible movements and thus simplifies classifying
direction. In contrast to the AV2F dataset, higher accuracies for the speed class are achieved. Overall,
the highest scores are reached for the agent features, alike on the AV2F dataset.

On the Waymo dataset, the within-class and between-class normalized variance values for RedMotion
are 10.68 and 11.24, respectively, resulting in a class-distance normalized variance (CDNV) of 0.95
(Galanti et al., 2022). On the AV2F dataset, these values are 5.73 and 2.32, yielding a CDNV of 2.46.
We hypothesize that the higher CDNV value on AV2F is caused by the longer past motion sequence
(i.e., 5 s vs. 1.1 s on Waymo), allowing for a greater range of potential movements.
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Figure 4: Linear probing accuracies at module 0, module 1 and module 2 for acceleration, direction,
and speed on the validation split of the Waymo dataset.

5.2 QUALITATIVE RESULTS FOR CONTROLLING AT INFERENCE

Building on the insight that hidden states are likely collapsed towards our quantized motion features,
we fit control vectors to opposing motion features. These control vectors allow for controlling motion
forecasts at inference. Specifically, we use our quantized motion features to build pairs of opposing
features for the AV2F and the Waymo dataset. Afterwards, we fit sets of control vectors (Vi in
Figure 1) as described in Section 3.3.

Figure 5 shows a qualitative example from the AV2F dataset. In subfigure (b) and (c), we apply
our acceleration control vector with τ = −20 and τ = 100 to enforce a strong deceleration and a
moderate acceleration, respectively.

(a) Default motion forecast (b) Enforced strong deceleration (c) Enforced acceleration

Figure 5: Controlling a vehicle at an intersection. In subfigure (b) and (c), we apply our accel-
eration control vector with τ = −20 and τ = 100 to enforce a strong deceleration and a moderate
acceleration. The focal agent is highlighted in orange, dynamic agents are blue, and static agents are
grey. Lanes are black lines and road markings are white lines.

Figure 6 shows qualitative results on the Waymo dataset for controlling a motion forecast with the
set of control vectors for speed and different temperatures τ . Subfigure (a) shows the default (i.e.,
non-controlled) top-1 (i.e., most likely) motion forecast. In subfigure (b) and (c), we apply our speed
control vector to de- and increase the driven speed of a vehicle. Both controls affect the future speed
analogously, while increasing the speed also changes the route to fit the given environment context
(i.e., lanes and surrounding vehicles).

In the appendix, we include an example of our direction control and stability under varying tempera-
tures. Overall, these qualitative results support the finding that the hidden states of motion sequences
are arranged with respect to our discrete sets of motion features.

5.3 QUANTITATIVE COMPARISON OF CONTROL VECTORS

In Section 3.3, we emphasized the advantage of sparse autoencoders in generating control vectors that
establish a more linear relationship between control vector temperatures and forecasts. In this section,
we evaluate how control vectors obtained using sparse autoencoders differ from those derived via
plain PCA.

7
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(a) Default motion forecast (b) Speed controlled τ = −32 (c) Speed controlled τ = 100

Figure 6: Controlling a vehicle before a predicted right turn. In subfigure (b) and (c), we apply our
speed control vector to de- and increase the driven speed of a vehicle. Both controls affect the future
speed analogously, while increasing the speed also changes the route to fit the given environment
context (lanes and surrounding vehicles).

For comparison, we train sparse autoencoders (SAE) with varying sparse intermediate dimensions:
512, 256, 128, 64, 32, and 16. For each control vector, we calculate its cosine similarity with control
vectors for controlling other features. Table 1 presents the cosine similarity values between control
vectors of speed, acceleration, direction, and agent generated with plain PCA and our SAE with
a sparse intermediate dimension 128. As expected, the similarity between speed and acceleration,
speed and agent, and acceleration and agent is notably high, while the similarity involving direction
and other vectors is significantly lower. This result aligns with expectations, as positive speed and
acceleration controls lead to faster movement, and our agent control vector represents transition
between agent types from pedestrian to vehicle, which is associated with faster movement, as well.
Cosine similarity values for the other sparse intermediate dimensions are provided in Table 4 in the
appendix. Among these values, the similarity between SAE of intermediate dimension of 128 is the
highest.

Table 1: Comparison of control vectors obtained using plain PCA and SAE, measured by cosine
similarity (in degrees).

Plain PCA & Plain PCA speed acceleration direction agent

speed 0.0 11.5 122.6 10.9
acceleration 0.0 126.8 6.8
direction 0.0 128.7
agent 0.0

SAE & SAE speed acceleration direction agent

speed 0.0 9.5 120.6 7.8
acceleration 0.0 122.9 7.0
direction 0.0 125.8
agent 0.0

We evaluate sparse autoencoders with different activation functions and layer types for a hidden
dimension of 128. Following Rajamanoharan et al. (2024b), we use JumpReLU with a threshold
θ = 0.001 and regular ReLU activation functions. Moreover, we evaluate regular SAEs with fully-
connected layers, with MLPMixer (Tolstikhin et al., 2021) layers (Sparse MLPMixer), and with
convolutional layers (ConvSAE). For Sparse MLPMixer and ConvSAE, we use large patch and kernel
sizes to approximate the global receptive fields of fully-connected hidden units in regular SAEs.

We empirically analyze the temporal causal relationship between hidden states of past motion and
motion forecasts. Specifically, we measure the linearity between temperature-scaled activation
steering with our speed control vectors and relative speed changes in forecasts. We use the Pearson
correlation coefficient, the coefficient of determination (R2), and the straightness index (S-idx)
(Benhamou, 2004) as linearity measures. Given the large range of scenarios in the Waymo dataset,
we focus on relative speed changes within a range of ±50% (see Appendix A.16). Higher linearity
implies improved controllability.

Table 2 presents linearity measures for activation steering with different control vectors derived
from both plain PCA pooling and SAE methods. Overall, the regular SAEs achieve the highest
Pearson and R2 scores. JumpReLU activation functions improve the R2 scores marginally compared
to ReLU activation functions. The ConvSAE with a kernel size of 64 achieves the highest straightness
index, yet the lowest R2 scores. As shown in Figure 7 the range of temperatures is much higher

8
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for this ConvSAE than for e.g. the regular SAE. This lowers the R2 score but does not affect the
straightness index. We hypothesize that this is due to feature shrinkage (Rajamanoharan et al., 2024b).
Therefore, the JumpReLU configuration of this SAE-type leads to a significantly smaller τ range (see
Appendix A.17), which in turn leads to higher R2 scores (see Table 2). Notably, activation steering
with our SAE-based control vector has an almost 1-to-1 relationship between τ and relative speed
changes (i.e., τ = −50 corresponds to roughly -50%). This improves R2 scores and enables an
intuitive interface. Furthermore, improved controllability with sparse autoencoders indicates that
sparse intermediate representations capture more distinct features.

Table 2: Linearity measures for activation steering with control vectors: Pearson correlation coeffi-
cient, coefficient of determination (R2), and straightness index.

Autoencoder Activation function Pooling Patch/kernel size Pearson R2 S-idx

– – PCA – 0.988 0.969 0.981
SAE ReLU PCA – 0.993 0.984 0.988
SAE JumpReLU PCA – 0.993 0.986 0.988
Sparse MLPMixer ReLU PCA 64 0.992 0.980 0.986
Sparse MLPMixer JumpReLU PCA 64 0.992 0.981 0.986
Sparse MLPMixer ReLU PCA 32 0.990 0.978 0.985
Sparse MLPMixer JumpReLU PCA 32 0.991 0.980 0.986
ConvSAE ReLU PCA 64 0.986 0.383 0.991
ConvSAE JumpReLU PCA 64 0.987 0.861 0.978
ConvSAE ReLU PCA 32 0.988 0.622 0.986
ConvSAE JumpReLU PCA 32 0.989 0.623 0.986
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Figure 7: Calibration curves for activation steering with plain PCA and SAE-based speed control
vectors for relative speed changes in forecasts of ±50%.

We ablate the sparse intermediate dimensions of regular sparse autoencoders (see Table 7), as well as
the sensitivity of our method to hidden states from different modules (see Table 8) and varying speed
thresholds (see Table 9). Our method performs best with a sparse intermediate dimension of 128 and
hidden states from module m = 2; and is more sensitive to low than to high speed thresholds.

5.4 ZERO-SHOT GENERALIZATION WITH CONTROL VECTORS

Domain shifts between training and test data significantly degrade the performance of many learning
algorithms. Zero-shot generalization methods compensate for such domain shifts without further
training or fine-tuning (Kodirov et al., 2015; Xian et al., 2017; Mistretta et al., 2024). In motion
forecasting, common domain shifts are more or less aggressive driving styles resulting in higher
or lower future speeds. We simulate this domain shift by reducing the future speed in the Waymo
validation split by approximately 50%. Specifically, we take the first half of future waypoints and
upsample this sequence to the original length using linear interpolation.

Table 3 shows the results of a RedMotion model trained on the regular training split on this validation
split with domain shift. We provide an overview of the used motion forecasting metrics in the
appendix. Without the use of our control vectors, high distance-based errors, miss, and overlap
rates are obtained. Using the calibration curve in Figure 7b, we compensate for this domain shift
by applying our SAE-128 control vector with a temperature τ = −50. This significantly reduces
the distance-based errors, the overlap, and the miss rates without further training. In addition, we

9
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show the results of applying our control vector with a temperature of τ = −30 and τ = −70, which
improves all scores over the baseline as well.

Table 3: Zero-shot generalization to a Waymo dataset version with reduced future speeds using the
SAE-128 control vector. Best scores are bold, second best are underlined.

Control vector Temperature τ minADE↓ Brier minADE↓ minFDE↓ Brier minFDE↓ Overlap rate↓ Miss rate↓

None 3.271 6.547 4.617 8.933 0.220 0.580
SAE-128 −30 1.685 4.838 2.870 8.429 0.179 0.224
SAE-128 −50 1.174 2.759 1.798 4.329 0.174 0.236
SAE-128 −70 1.808 3.576 2.035 3.676 0.189 0.302

6 CONCLUSION

In this work, we take a significant step towards mechanistic interpretability and controllability of
motion transformers. We analyze “words in motion” by examining the representations associated
with motion features. First, we quantize motion features into discrete subclasses as in natural
language. Our experiments on large-scale motion datasets include models with varying environment
representations and fusion mechanisms. Furthermore, we analyze the hidden states of attention and
MLP-based motion encoders. Specifically, we show that neural collapse towards human-interpretable
classes of features occurs in recent motion transformers. Building on these insights, we fit control
vectors to opposing features, which allow for controlling forecasts at inference. We further refine
this approach by optimizing our control vectors using sparse autoencoding. Notably, this results
in a more linear relationship between control vector temperatures and forecasts. This supports the
effectiveness of sparse dictionary learning and the use of sparse autoencoders for interpretability.
With increased interpretability of our control vectors, we compensate for domain shift and enable
zero-shot generalization to unseen dataset characteristics.

Our findings not only improve the practical applicability of recent motion transformer models, but
also enable interpreting and manipulating internal representations of transformer models. Possible
applications in self-driving vehicles include applying control vectors to motion planning and adjusting
planned trajectories, whenever required. Future work can explore using other embedding methods
(e.g., Schneider et al. (2023)), as well as features from other modalities by incorporating both static
and dynamic scene elements.
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A APPENDIX

A.1 COMPARISON OF CONTROL VECTORS USING PLAIN PCA AND SAE ACROSS VARIOUS
SPARSE INTERMEDIATE DIMENSIONS

Table 4: Comparison of cosine similarity in degrees between control vectors using PCA and SAE
across various sparse intermediate dimensions (512, 256, 128, 64, 32, 16). The tables on the left
represent the cosine similarity between control vectors of the same SAE model, whereas those on the
right represent the cosine similarity between control vectors of SAE and those derived from Plain
PCA. The control vector with a sparse intermediate dimension of 128 achieves the highest overall
similarity.

SAE-512 & SAE-512 speed acceleration direction agent

speed 0.0 10.2 121.8 7.6
acceleration 0.0 123.7 7.6
direction 0.0 126.9
agent 0.0

Plain PCA & SAE-512 speed acceleration direction agent

speed 20.7 28.6 123.8 23.4
acceleration 19.1 23.0 128.5 18.6
direction 115.9 116.6 13.7 120.8
agent 19.4 24.4 130.2 18.3

SAE-256 & SAE-256 speed acceleration direction agent

speed 0.0 9.9 120.9 7.9
acceleration 0.0 123.7 7.2
direction 0.0 126.3
agent 0.0

Plain PCA & SAE-256 speed acceleration direction agent

speed 21.5 26.8 123.8 23.3
acceleration 20.3 21.0 128.7 18.7
direction 114.7 116.9 13.7 120.1
agent 20.8 23.1 130.2 18.7

SAE-128 & SAE-128 speed acceleration direction agent

speed 0.0 9.5 120.6 7.8
acceleration 0.0 122.9 7.0
direction 0.0 125.8
agent 0.0

Plain PCA & SAE-128 speed acceleration direction agent

speed 19.7 25.3 124.3 21.6
acceleration 19.2 20.0 128.8 17.5
direction 115.2 117.1 12.1 120.5
agent 19.5 21.8 130.4 17.1

SAE-64 & SAE-64 speed acceleration direction agent

speed 0.0 9.7 121.0 8.0
acceleration 0.0 123.2 7.5
direction 0.0 126.3
agent 0.0

Plain PCA & SAE-64 speed acceleration direction agent

speed 18.1 23.7 124.7 19.3
acceleration 19.3 19.9 128.9 16.5
direction 115.0 116.6 13.3 120.5
agent 19.8 21.9 130.5 16.4

SAE-32 & SAE-32 speed acceleration direction agent

speed 0.0 9.8 120.3 8.3
acceleration 0.0 122.8 7.0
direction 0.0 125.8
agent 0.0

Plain PCA & SAE-32 speed acceleration direction agent

speed 14.7 18.8 126.4 15.5
acceleration 18.0 15.5 130.3 14.1
direction 114.4 116.9 10.9 120.2
agent 18.1 17.6 132.0 13.4

SAE-16 & SAE-16 speed acceleration direction agent

speed 0.0 9.5 124.1 9.3
acceleration 0.0 125.2 7.5
direction 0.0 129.3
agent 0.0

Plain PCA & SAE-16 speed acceleration direction agent

speed 23.5 25.1 126.6 21.8
acceleration 28.4 26.0 128.9 23.5
direction 110.2 111.9 24.6 116.6
agent 28.0 26.8 131.0 22.5

Table 5: Loss metrics for SAEs across sparse intermediate dimensions, trained for 10.000 epochs.

Dim #Epochs Total loss L1 loss L2 loss Total reconst loss

512 9805 4.01 1.52 8270.70 0.0016
256 9845 3.72 1.38 7823.98 0.0014
128 9820 4.14 1.56 8608.95 0.0017
64 9348 4.56 1.89 8894.97 0.0019
32 9864 7.14 3.90 10 795.54 0.0043
16 9956 17.44 13.37 13 576.57 0.0142
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A.2 ADDITIONAL QUALITATIVE RESULTS

Figure 8 shows a qualitative example for our direction control from the Argoverse 2 Forecasting
dataset. The left control leads to accelerated future motion, which is consistent with the common
driving style of slowing down in front of a curve and accelerating again when exiting the curve. A
strong right control makes the focal agent stationary. We hypothesize that it cancels out the actually
driven left turn, resulting in a virtually stationary past.

(a) Default motion forecast (b) Left control τ = 10 (c) Right control τ = 100

Figure 8: Controlling a left turning vehicle. In subfigure (b) and (c), we apply our left-direction
control vector and right-direction control vector. The focal agent is highlighted in orange, dynamic
agents are blue, and static agents are grey. Lanes are black lines and road markings are white lines.

A.3 NATURAL LANGUAGE AS A MODALITY IN ROBOTICS AND SELF-DRIVING

We provide examples illustrating how natural language is utilized as a modality in robotics and
autonomous driving, building upon the general approaches introduced in the main body of the text.

Conditioning. Tan et al. (2023); Zhong et al. (2023) generate dynamic traffic scenes based on
user-specified descriptions expressed in natural language.

Prompting. Kuo et al. (2022) generate linguistic descriptions of predicted trajectories during
decoding, capturing essential information about future maneuvers and interactions. More recent
works employ large language models (LLMs) to analyze driving environments in a human-like
manner, providing explanations of driving actions and the underlying reasoning (Xu et al., 2023;
Fu et al., 2024; Sima et al., 2023; Wayve Technologies Ltd., 2023). This offers a human-centric
description of the driving environment and the model’s decision-making capabilities.

Enriching. Zheng et al. (2024) integrate the enriched context information of LLMs into motion
forecasting models. Wang et al. (2023b) use LLMs for data augmentation to improve out-of-
distribution generalization. Others use pre-trained LLMs for better generalization during decision-
making (Mao et al., 2023; Wen et al., 2024; Shao et al., 2024).

Instructing. Shridhar et al. (2021) enable robotic control through language-based instruction.
Zitkovich et al. (2023) incorporate web knowledge, enriching vision-language-action models for
more generalized task performance. Huang et al. (2024) demonstrate the use of instructions to guide
task execution in self-driving, with experiments in simulation environments.

Although these works create a language interfaces to interact with the underlying model, in contrast to
our work, they do not measure the degree to which human-interpretable motion features are embedded
within hidden states.

A.4 PARAMETERS FOR CLASSIFYING MOTION FEATURES

We classify motion trajectories with a sum less than 15◦ degrees as straight. When the cumulative
angle exceeds this threshold, a positive value indicates right direction, while a negative value –
exceeding the threshold in absolute terms – indicates a left direction. We classify speeds between
25 kmh−1 and 50 kmh−1 as moderate, speeds above this range as high, those below as low, and
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negative speeds as backwards. For acceleration, we classify trajectories as decelerating, if
the integral of speed over time to projected displacement with initial speed is less than 0.9 times. If
this ratio is greater than 1.1 times, we classify them as accelerating. For all other values, we
classify the trajectories as having constant speed. We determine all threshold values by analyzing
the distribution of the dataset.

Figure 9 presents the distribution of motion subclasses across the datasets. Both datasets predom-
inantly capture low-speed scenarios, with 62% of Waymo instances and 53% of AV2F instances
falling into this category. Furthermore, a notable difference lies in the proportion of stationary
vehicles, with AV2F exhibiting a significantly higher percentage (51%) compared to Waymo (28%).
The Waymo dataset predominantly features vehicles with constant acceleration (65%) and traveling
straight (49%), while the AV2F dataset showcases a higher proportion of accelerating instances (52%).
Additionally, AV2F stands out with a much larger proportion of instances involving backward motion
(24%) compared to Waymo (4%). This disparity in motion characteristics highlights that the two
datasets capture different driving environments and scenarios, with Waymo potentially focusing on
highway or structured urban driving, while AV2F encompasses more diverse traffic situations.

A.5 EARLY, HIERARCHICAL AND LATE FUSION IN MOTION ENCODERS

We define fusion types for motion transformers based on the information processed in the first
attention layers within a model. In early fusion, the first attention layers process motion data of the
modeled agent, other agents, and environment context. In hierarchical fusion, the first attention layers
process motion data of the modeled agent, and other agents. In late fusion, the first attention layers
exclusively process motion data of the modeled agent.

A.6 MOTION FORECASTING METRICS

Following (Wilson et al., 2023; Ettinger et al., 2021), we use the average displacement error (minADE),
the final displacement error (minFDE), and their respective Brier variants, which account for the
predicted confidences. Furthermore, we compute the miss rate, and overlap rate to evaluate motion
forecasts. All metrics are computed using the minimum mode for k = 6 modes. Accordingly, the
metrics for the mode closest to the ground truth are measured.

A.7 TITLE ORIGIN

The title of our work “words in motion” is inspired by our quantization method using natural language
and a common notion in the computer architecture literature. In computer architecture, a word is
a natural unit of data for a processing unit (e.g., CPU or GPU). In our work, words are classes of
motion features, which are embedded in the hidden states of motion sequences processed by motion
forecasting models.

backwards
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Figure 9: Distributions of our motion features for the Argoverse 2 Forecasting and the Waymo Open
Motion datasets. All numbers are percentages.
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A.8 FEATURE CORRELATION

lo
w

mo
de
ra
te
hi
gh

ba
ck
wa
rd
s

de
ce
le
ra
ti
ng

co
ns
ta
nt

ac
ce
le
ra
ti
ng

st
at
io
na
ry

st
ra
ig
ht

ri
gh
t

le
ft

ve
hi
cl
e

pe
de
st
ri
an

cy
cl
is
t

low

moderate

high

backwards

decelerating

constant

accelerating

stationary

straight

right

left

vehicle

pedestrian

cyclist

0.000 0.547 0.591 0.481 0.178 0.221 0.209 0.495 0.422 0.340 0.374 0.179 0.379 0.466

0.000 0.229 0.992 0.638 0.353 0.400 1.000 0.143 0.287 0.239 0.380 0.621 0.348

0.000 0.991 0.672 0.387 0.467 0.992 0.265 0.383 0.353 0.427 0.622 0.449

0.000 0.407 0.659 0.651 0.199 0.875 0.796 0.835 0.621 0.689 0.889

0.000 0.350 0.277 0.487 0.508 0.415 0.459 0.294 0.413 0.510

0.000 0.204 0.652 0.250 0.241 0.248 0.074 0.423 0.389

0.000 0.690 0.264 0.174 0.208 0.155 0.373 0.302

0.000 0.892 0.827 0.859 0.628 0.729 0.939

0.000 0.156 0.121 0.266 0.499 0.266

0.000 0.115 0.237 0.386 0.200

0.000 0.254 0.422 0.197

0.000 0.428 0.386

0.000 0.423

0.000

Combined Heatmap of Spearman Correlation (Color) and Distances (Annotations)

−0.2

0

0.2

0.4

0.6

0.8

1

Sp
ea

rm
an

C
or

re
la

tio
n

Figure 10: Heatmap representing Spearman correlation between feature cluster means for the
Waymo Open Motion dataset. The values in the matrix indicate pairwise distances between clusters,
normalized by the largest distance.
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Figure 11: Heatmap representing Spearman correlation between feature cluster means for the
Argoverse 2 Forecasting dataset. The values in the matrix indicate pairwise distances between
clusters, normalized by the largest distance.
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A.9 EXPLAINED VARIANCE
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Figure 12: Explained variance for SAE across hidden latent dimensions 512, 256, 128, 64, 32, and 16
shown vertically.
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Figure 13: Explained variance for Plain-PCA.

A.10 NEURAL COLLAPSE

Neural collapse metrics capture structural patterns in feature representations, focusing on clustering,
geometry, and alignment. Class Distance Normalized Variance (CDNV), also referred to as “NC1”,
quantifies the degree to which features form class-wise clusters by measuring the variance within
feature clusters of each class c relative to the distances between class means. CDNV provides a
robust alternative to methods that compare between- and within-cluster variation for assessing feature
separability (Galanti et al., 2022).

NC1cdnv
c,c′ =

σ2
c + σ2

c′

2∥µc − µ′
c∥22

, ∀c ̸= c′

A.11 INFERENCE LATENCY

Table 6 shows inference latency measurements of a RedMotion model on the Waymo Open Motion
dataset with and without activation steering with our control vectors. Our activation steering adds only
about 1ms to the total inference latency. Since most datasets are recorded at 10Hz (e.g., Wilson et al.
(2023); Ettinger et al. (2021)), it is common to define the threshold for real-time capability of self-
driving stacks as ≤100ms. Considering the inference latency of recent 3D perception models (e.g.,
approx. 40ms for Wang et al. (2023a)), which must be called before motion forecasting, activation
steering should not add significantly to the forecasting latency.

Table 6: Inference latency without and with activation steering with our control vectors. We
measure the inference latency on one A6000 GPU using the PyTorch Lightning profiler and plain
eager execution. We report the mean of 1000 iterations per configuration for the predict_step,
including pre- and post-processing.

Activation steering Focal agents Inference latency

False 8 50.21 ms
True 8 51.08 ms

A.12 META-ARCHITECTURE OF MULTIMODAL MOTION TRANSFORMERS

We study multimodal motion transformers (Nayakanti et al., 2023; Wagner et al., 2024; Zhang et al.,
2023b), which process motion, lane and traffic light data. The meta-architecture of these models
is shown in Figure 14. These models generate motion Mi, map Kj , and traffic light Tk tokens
using learned tokenizers. Modality-specific encoders aggregate information of multiple tokens with
attention mechanisms (e.g., across multiple past timesteps for motion tokens). Afterwards, learned
motion queries Q (i.e., a form of learned anchors) cross-attend in the motion decoder to M , K, and T .
Finally, a learned de-tokenizer projects the last hidden state of Q into multiple motion forecasts, which
are represented as 2D Gaussians for future positions in bird’s-eye-view and associated confidences.
The difference between the models lay in the type of attention and fusion mechanisms as well as the
used reference frames.
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Motion encoder
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Figure 14: Motion transformer meta architecture of RedMotion, Wayformer, and HPTR.

A.13 LINEARITY ANALYSIS ACROSS SPARSE AUTOENCODER DIMENSIONS

Autoencoder Pearson R2 S-idx

SAE-512 0.990 0.974 0.984
SAE-256 0.990 0.974 0.985
SAE-128 0.993 0.984 0.988
SAE-64 0.991 0.976 0.985
SAE-32 0.990 0.959 0.985
SAE-16 0.982 0.770 0.958

Table 7: Scaling sparse autoencoders. SAE-128 has a sparse intermediate dimension of 128 and
achieves the highest linearity scores for activation steering with our control vector for speed. Linearity
measures for controlling: Pearson correlation coefficient, coefficient of determination (R2), and
straightness index.

A.14 CONTROL VECTORS ACROSS MODULES IN SPARSE AUTOENCODERS

Autoencoder Module m Pearson R2 S-idx

SAE-128 2 0.993 0.984 0.988
SAE-128 1 0.992 0.980 0.987
SAE-128 0 0.959 0.654 0.933

Table 8: Generating control vectors for hidden states of different modules. Control vectors for
speed generated in earlier modules achieve lower linearity scores for activation steering. Linearity
measures for controlling: Pearson correlation coefficient, coefficient of determination (R2), and
straightness index.

A.15 SENSITIVITY ANALYSIS FOR VARIOUS SPEED THRESHOLDS

Autoencoder Low speed High speed Pearson R2 S-idx

SAE-128 < 25kmh−1 > 50kmh−1 0.993 0.984 0.988

SAE-128 < 25kmh−1 25 to 50kmh−1 0.994 0.987 0.989

SAE-128 25 to 50kmh−1 > 50kmh−1 0.355 −0.734 0.533

Table 9: Generating speed control vectors with different thresholds for low and high speed.
Decreasing the threshold for high speed marginally improves linearity scores, while increasing the
threshold for low speed significantly worsens the linearity scores. Linearity measures for controlling:
Pearson correlation coefficient, coefficient of determination (R2), and straightness index.
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A.16 CHOOSING A RANGE OF RELATIVE CHANGES IN FUTURE SPEED

Given the large range of scenarios in the Waymo dataset, we focus on relative speed changes
within a range of ±50% to capture the most relevant speed variations (see Figure 3 in Ettinger et al.
(2021)). Considering the approximated mean and standard deviation for each agent type (vehicles:
µ ≈ 12m s−1, σ ≈ 5m s−1, pedestrians: µ ≈ 1.5m s−1, σ ≈ 0.7m s−1, and cyclists: µ ≈ 7m s−1,
σ ≈ 3m s−1) the ±50% range corresponds to speeds within approximately ±1σ of the mean for
each agent type.

A.17 JUMPRELU COMPENSATES FEATURE SHRINKAGE IN CONVSAES
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(a) ConvSAE k64
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(b) ConvSAE k64 JumpReLU

Figure 15: JumpReLU compensates feature shrinkage as reflected in a smaller range of τ values for
the same range of relative speed changes.

The range of temperatures is much higher for the ConvSAE than for the JumpReLU version of this
sparse autoencoder (ConvSAE k64 JumpReLU). We hypothesize that this is due to feature shrinkage
(Rajamanoharan et al., 2024b). Therefore, the JumpReLU configuration of this SAE-type leads to a
significantly smaller τ range, which in turn leads to higher R2 scores (see Table 2).
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