
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WORDS IN MOTION: EXTRACTING INTERPRETABLE
CONTROL VECTORS FOR MOTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based models generate hidden states that are difficult to interpret. In
this work, we aim to interpret these hidden states and control them at inference, with
a focus on motion forecasting. We leverage the phenomenon of neural collapse
and use linear probes to measure interpretable features in hidden states. Our
experiments reveal meaningful directions and distances between hidden states
of opposing features, which we use to fit control vectors for activation steering.
We further refine our approach using sparse autoencoders to optimize our control
vectors. Notably, we show that enforcing sparsity leads to a more linear relationship
between control vector temperatures and forecasts. Our approach not only enables
mechanistic interpretability but also zero-shot generalization to unseen dataset
characteristics.1

1 INTRODUCTION

Accurately predicting sequential data while maintaining interpretability is crucial for many real-world
applications. However, these two objectives often conflict, as achieving higher accuracy frequently
comes at the cost of lower interpretability. This trade-off is primarily linked to the representational
capacity of the underlying model: methods achieving higher accuracy tend to rely on the increased
complexity of their underlying models (Kaplan et al., 2020; Bahri et al., 2024). This, in turn, renders
them difficult to understand and interpret in terms of semantically meaningful patterns.

Deep learning models employ loss functions that encourage the clustering of data samples based
on their patterns (Papyan et al., 2020). Together with regularizers that prevent overfitting, clusters
become more distinct over the course of training, i.e. neural collapse (Galanti et al., 2022; Wu &
Papyan, 2024). We leverage this phenomenon to analyze the learned representations of transformer-
based models with respect to human-interpretable features during training. Specifically, we use linear
probing (Alain & Bengio, 2017) to measure the degree to which these features are embedded in
hidden states. In this way, we identify that interpretable features are embedded in the hidden states of
transformer-based models.

Building on these insights, we fit control vectors to opposing features, enabling the control of forecasts
at inference. To further enhance this approach, we employ sparse autoencoders to extract more distinct
features from hidden states (Bricken et al., 2023). Experiments with sparse autoencoders of varying
hidden dimensions reveal that enforcing sparsity leads to a more linear relationship between control
vector temperatures and the resulting forecasts. Consequently, our method allows for controlling
transformer-based forecasting models through interpretable control vectors, providing a novel and
intuitive interface that facilitates zero-shot generalization.

Our application focuses on recent multimodal transformer-based motion forecasting models
(Nayakanti et al., 2023; Zhang et al., 2023b; Wagner et al., 2024). They process features of past
motion sequences (i.e., past positions, orientation, acceleration, speed) and environment context
(i.e., map data and traffic light states), and transform them into future motion sequences. Like other
transformer models, they rely on learned representations of these features, resulting in hidden states
that are difficult to interpret and control.

Our contributions are:

1We plan to make our software implementation and trained models publicly available.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We use linear probes to measure neural collapse towards interpretable features in hidden states of
recent motion transformer models. We show that the collapse of hidden states creates meaningful
directions and distances in latent space.

• We leverage these latent space properties to fit control vectors for each interpretable feature. We
optimize our control vectors with sparse autoencoding. Notably, we show that enforcing sparsity
leads to a more linear relationship between control vector temperatures and forecasts.

• We apply our method to motion forecasting models with various fusion mechanisms and
environment representations. Furthermore, we address domain shift using our interpretable
control vectors and enable zero-shot generalization.

2 RELATED WORK

2.1 NATURAL LANGUAGE AS AN INTERFACE FOR MODEL INTERACTION AND CONTROL

Linking learned representations to natural language has gained significant attention (e.g., (Radford
et al., 2021; Alayrac et al., 2022; Liu et al., 2024)). Broadly, approaches incorporating language in
models can be categorized into four types.

Conditioning. Numerous works leverage natural language to condition generative models in diverse
tasks such as image synthesis (Ramesh et al., 2021; Zhang et al., 2023a), video generation (Blattmann
et al., 2023), and 3D modeling (Tevet et al., 2022; Wu et al., 2023).

Prompting. Some works use language as an interface to interact with models, enabling users to
request assistance or information. This includes obtaining explanations of underlying reasoning, and
human-centric descriptions of model behavior (Brown et al., 2020; Sanh et al., 2021).

Enriching. Another line of work leverages LLMs’ generalization abilities to enrich context embed-
dings, providing additional information for better prediction and planning (Guan et al., 2023).

Instructing. Natural language can be used to issue explicit commands for specific tasks, distinct
from conditioning (Ouyang et al., 2022; Brooks et al., 2023). The main challenge is connecting the
abstractions and generality of language with environment-grounded actions (Raad et al., 2024).

In the appendix, we provide further examples of these language incorporation approaches in robotics
and self-driving applications. While these works align learned text representations with embeddings
of other modalities, they do not measure the degree to which interpretable features are embedded
within hidden states. To the best of our knowledge, no prior work has explored the mechanistic
interpretability of transformers in robotics applications.

2.2 METHODS FOR MODEL INTERPRETABILITY AND EXPLAINABILITY

Latent space regularities. Mikolov et al. (2013) show that consistent regularities naturally emerge
from the training process of word embeddings. This phenomenon, commonly referred to as the
“word2vec hypothesis”, suggests that learned embeddings capture both semantic and syntactic
relationships between words through consistent vector offsets in latent space. Many multimodal
models, including CLIP (Radford et al., 2021), use contrastive learning to align embeddings across
different modalities and maximize their cosine similarity. It should be emphasized that these works
measure the similarity of embeddings of all features per sample, rather than focusing on distinct
features within the latent space.

Neural collapse. A recent line of work (Papyan et al., 2020; Galanti et al., 2022; Wu & Papyan, 2024)
introduces the term neural collapse to describe a desirable learning behavior of deep neural networks
for classification.2 It refers to the phenomenon that learned top-layer representations form semantic
clusters, which collapse to their means at the end of training (see Appendix A.10 for details). In
addition, the cluster means transform progressively into equidistant vectors when centered around the
global mean. Therefore, neural collapse facilitates classification tasks and is considered a desirable
learning behavior for both supervised (Papyan et al., 2020) and self-supervised learning (Ben-Shaul
et al., 2023).

2Neural collapse is not to be confused with representation collapse (Hua et al., 2021; Barbero et al., 2024),
where learned representations across all classes collapse to redundant or trivial solutions (e.g., zero vectors).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Hidden state activations. Transformers consist of attention blocks, followed by simple feed-forward
networks, whose hidden state activations are analyzed for interpretability. Elhage et al. (2022) explore
two key hypotheses that describe how these activations capture meaningful structures: the linear
representation hypothesis (Pennington et al., 2014) and the superposition hypothesis (Arora et al.,
2018). These hypotheses essentially state that the neural networks represent features as directions in
their activation space, and that representations can be decomposed into independent features.

Control vectors. In natural language processing (Zou et al., 2023; Subramani et al., 2022; Turner
et al., 2023), control vectors allow targeted adjustments to model outputs by steering hidden state
activations without the need for fine-tuning or prompt engineering. Control vectors are a set of
vectors that capture the difference of hidden states from opposing concepts or features (Rimsky et al.,
2023). This approach requires a well-structured latent space, where samples are clustered according
to classes or features (e.g., a high degree of neural collapse, see Section 3.2).

Sparse autoencoders. A key goal of interpretability research is to decompose models and gain
a mechanistic interpretation of how their components function. Sparse autoencoders leverage the
linear representation hypothesis and approximate the model’s activations with a linear combination
of feature directions. By enforcing sparsity in latent space, they separate features into distinct,
interpretable representations (Bricken et al., 2023; Cunningham et al., 2023).

Our method differs from prior works in several aspects. We measure neural collapse in multimodal
models for motion forecasting (i.e., regression) instead of unimodal vision classifiers (Papyan et al.,
2020) or language models (Wu & Papyan, 2024). Rather than steering hidden state changes across all
modules (i.e., neural trajectories) as in Zou et al. (2023), we steer only the hidden states in the last
module of the motion encoder. Furthermore, we do not use our sparse autoencoders during inference
(Cunningham et al., 2023), but to optimize control vectors beforehand, resulting in negligible
computational overhead.

3 METHOD

A vehicle is
moving right at a
moderate speed

while decelerating.

(a) Interpretable motion features

Control
vectors

Motion
tokens

Motion encoder

Motion decoder

Sparse autoencoder

E D

PC
A

Module m

M0

M1

...

Probe m

×m

V0

V1

...

V ′
0

V ′
1

...

S0

S1

...

×τ+H0

H1

...

(b) Controllable motion encoder

Figure 1: Words in Motion. (a) We classify motion features in an interpretable way, as in natural
language. (b) We measure the degree to which these interpretable features are embedded in the
hidden states Hi of transformer models with linear probes. Furthermore, we use our discrete features
and sparse autoencoding to fit interpretable control vectors Vi that allow for controlling motion
forecasts at inference. The training of the sparse autoencoder is shown with red arrows (→) and the
fitting of control vectors with blue arrows (→).

3.1 MOTION FEATURE CLASSIFICATION USING NATURAL LANGUAGE

In contrast to natural language, where words naturally carry semantic meaning, motion lacks prede-
fined labels. Therefore, we identify human-interpretable motion features by quantizing them into
discrete subclasses as in natural language. Our classes of motion features are based on insights from
Seff et al. (2023).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Initially, we classify motion direction using the cumulative sum of differences in yaw angles, as-
signing it to either left, straight, or right. Additionally, we introduce a stationary class
for stationary objects, where direction lacks semantic significance. We define further classes for
speed, dividing the speed values into four intervals: high, moderate, low, and backwards.
Lastly, we analyze the change in acceleration by comparing the integral of speed over time to the
projected displacement with initial speed. Accordingly, we classify acceleration profiles as either
accelerating, decelerating, or constant (see Figure 1a). The threshold values used for
classification are detailed in the appendix.

3.2 NEURAL COLLAPSE AS A METRIC OF INTERPRETABILITY

We propose to measure neural collapse as a metric of interpretability. Specifically, we focus on
interpreting hidden states (i.e., latent representations) and evaluate whether hidden states embed
human-interpretable features. We measure how close abstract hidden states are related to interpretable
semantics using linear probing accuracy (Alain & Bengio, 2017).3 We train linear probes (i.e., linear
classifiers detached from the overall gradient computation) on top of hidden states (Hi in Figure 1).
During training, we track their accuracy in classifying our interpretable features on validation sets.
Adapted to motion forecasting, we choose the aforementioned motion features as interpretable
semantics.

Besides linear probing accuracy, following Chen & He (2021), we use the mean of the standard
deviation of the ℓ2-normalized embedding to measure representation collapse. Representation collapse
refers to an undesirable learning behaviour where learned embeddings collapse into redundant or
trivial representations (Hua et al., 2021; Barbero et al., 2024). Redundant representations have a
standard deviation close to zero. In a way, representing the opposite of neural collapse. As shown in
(Chen & He, 2021), rich representations have a standard deviation close to 1/

√
dim, where dim is the

hidden dimension.

3.3 INTERPRETABLE CONTROL VECTORS

We use interpretable features to build pairs of opposing features. For each pair, we build a dataset
and extract the corresponding hidden states. Afterwards, we compute the element-wise difference
between the hidden states of samples with opposing features. Finally, we follow Zou et al. (2023)
and use principal component analysis (PCA) with one component as pooling method to reduce the
computed differences to one scalar per hidden dimension and to generate control vectors (Vi in
Figure 1b).

We optimize our control vectors using sparse autoencoders (Cunningham et al., 2023). The sparse
autoencoder is trained as an auxiliary network. It extracts distinct features in hidden states by
encoding and reconstructing them from a sparse intermediate representation. We hypothesize that
this sparse intermediate representation (Si in Figure 1b) enables a more linear decomposition of
our interpretable features, and hence, more distinct control vectors. Therefore, we use these sparse
intermediate representations to generate intermediate control vectors V ′

i by pooling the differences
of samples with opposing features. Leveraging the Johnson-Lindenstrauss Lemma,4 we use the
SAE decoder to project the intermediate control vectors back to the hidden dimension of the motion
encoder. This enables using sparse autoencoders of arbitrary sparse intermediate dimensions for
generating control vectors of fixed dimension.

At inference, we scale the control vectors with a temperature parameter (τ in Figure 1b) to control
the strength of the corresponding features of a given sample. Consequently, we propose sparse
autoencoding to generate control vectors with a more linear relationship between control temperatures
and forecasts.

3Ben-Shaul et al. (2023) show that linear probing accuracy is consistent with the accuracy of nearest class
center classifiers, which are typically used to measure neural collapse.

4Johnson & Lindenstrauss (1984) state that a set of points in high-dimensional space can be projected into a
lower-dimensional space while approximately preserving the pairwise distances between points.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL SETUP

4.1 MOTION FORECASTING MODELS

We study three recent transformer models for motion forecasting in self-driving vehicles. Wayformer
(Nayakanti et al., 2023) and RedMotion (Wagner et al., 2024) models employ attention-based
scene encoders to learn agent-centric embeddings of past motion, map, and traffic light data. To
efficiently process long token sequences, Wayformer uses latent query attention (Jaegle et al., 2021)
for subsampling, RedMotion lowers memory requirements via local-attention (Beltagy et al., 2020)
and redundancy reduction. HPTR (Zhang et al., 2023b) models learn pairwise-relative environment
representations via kNN-based attention mechanisms. For Wayformer, we use the implementation
by Zhang et al. (2023b) and the early fusion configuration. Therefore we analyze the hidden states
generated by MLP-based input projectors for motion data, which consists of three layers. For
RedMotion, we use the publicly available implementation with a late fusion encoder for motion data
(Wagner et al., 2024). For HPTR, we use the implementation by Zhang et al. (2023b) and a custom
hierarchical fusion setup with a modality-specific encoder for past motion and a shared encoder for
environment context. Further details on fusion mechanisms and model architectures are presented in
appendix A.5 and A.12.

4.2 LINEAR PROBES

We add linear probes for our quantized motion features to each hidden state of all models (H [m]
i in

Figure 1, where m ∈ {0, 1, 2} is the module number and i is the token index). These classifiers are
learned during training using regular cross-entropy loss to classify speed, acceleration, direction,
and the agent classes from hidden states. We decouple this objective from the overall gradient
computation. Therefore, these classifiers do not contribute to the alignment of latent representations,
but exclusively measure the corresponding neural collapse into interpretable clusters.

4.3 CONTROL VECTORS

Using our interpretable motion features (see Section 3.1), we build pairs of opposing features.
Specifically, we generate speed control vectors representing the transition from low to high speed,
acceleration control vectors representing the transition from decelerating to accelerating, and direc-
tion control vectors representing the transition from the left and right direction, and agent control
vectors representing the transition from pedestrian to vehicle (see Section 3.3). For each pair, we use
the hidden states H [m]

i from module m = 2 and the last token per motion sequence (with i = −1), as
it is closest to the start of the prediction.

4.4 TRAINING DETAILS AND HYPERPARAMETERS

Motion forecasting transformers. We provide Wayformer and HPTR models with the nearest 512
map polylines, and RedMotion model with the nearest 128 map polylines. All models process a
maximum of 48 surrounding traffic agents as environment context. For the Argoverse 2 Forecasting
(abbr. AV2F) dataset, we use past motion sequences with 50 timesteps (representing 5 s) as input.
For the Waymo Open Motion (abbr. Waymo) dataset, we use past motion sequences with 11 steps
(representing 1.1 s) as input. As the main loss, we use a common combination loss terms for motion
forecasting. Following Zhang et al. (2023b), we use the unweighted sum of the negative log-likelihood
loss for positions, cross-entropy for confidences, the cosine loss for the heading angle, and the Huber
loss for velocities as motion loss. We use AdamW (Loshchilov & Hutter, 2019) in its default
configuration as optimizer and set the initial learning rate to 2 × 10−4. All models have a hidden
dimension of 128 and are configured to forecast k = 6 motion modes per agent. As post-processing,
we do not perform trajectory aggregation, but follow Zhang et al. (2023b) and modify only the
predicted confidences of redundant forecasts.

Sparse autoencoders. We train sparse autoencoders with sparse intermediate dimensions of 512,
256, 128, 64, 32, and 16. The total loss combines L2 reconstruction loss with an L1 sparsity penalty:
L2 ensures accurate reconstruction, while L1 promotes sparsity by minimizing small, noise-like
activations. The L1 must be carefully scaled to avoid deadening important features (Rajamanoharan

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

et al., 2024a). We scale it scaled by 3× 10−4. We optimize the models over 10 000 epochs using the
Adam optimizer (Kingma & Ba, 2015). The final loss values are provided in the appendix.

5 RESULTS

5.1 EXTRACTING INTERPRETABLE FEATURES FOR MOTION

Our approach relies on a well-structured latent space, where samples are clustered with respect to
classes of features. Before evaluating the clustering behaviour, we ensure that our features are not
highly correlated, as confirmed by the Spearman feature correlation analysis in the appendix. We
report linear probing accuracy for interpretable features during training on both datasets.

Figure 2 shows the linear probing accuracies for our interpretable motion features on the Argoverse 2
Forecasting (abbr. AV2F) dataset. The scores are computed on the validation split over the course of
training. All models achieve similar accuracy scores, while the Wayformer model achieves a slightly
higher acceleration and lower agent accuracies. Overall, high linear probing accuracies for all motion
features are achieved. This shows that all models likely exhibit neural collapse towards interpretable
motion features.

0 1 2 3

0.55

0.60

0.65

0.70

Step ·104

Probing acccuracy

(a) Acceleration

0 1 2 3

0.70

0.72

0.74

0.76

Step ·104

Probing acccuracy

(b) Speed

0 1 2 3

0.75

0.80

Step ·104

Probing acccuracy

(c) Direction

0 1 2 3

0.94

0.96

0.98

1.00

Step ·104

Probing acccuracy

(d) Agent

Figure 2: Linear accuracies for RedMotion, Wayformer, and HPTR on the validation split of the
AV2F dataset.

0 1 2 3
0
2
4
6
8

1√
dim

Step ·104

std-ℓ2-norm ·10−2

Figure 3: Normalized standard devia-
tion representation quality metric for
RedMotion, Wayformer, and HPTR.

The representation quality metric normalized standard devi-
ation of embeddings is shown in Figure 3. Both HPTR and
RedMotion learn to generate embeddings with a normalized
standard deviation close to the desired value of 1/

√
dim.

While the Wayformer model achieves lower scores in this
metric. This reflects differences between attention-based
and MLP-based motion encoders.

Figure 4 shows the linear probing accuracies for our inter-
pretable motion features on the Waymo dataset. Here, we
report the scores for each of the three hidden states Hi in the
RedMotion model (i.e., after each module m in the motion
encoder, see Figure 1). Similar accuracy scores are reached
for all features at all three hidden states. The accuracies for

the acceleration and speed features progressively improve, while the direction feature reach a score
of 80% early on. Compared to the direction scores on the AV2F dataset, the scores on the Waymo
dataset “jump” earlier. We hypothesize that this is linked to the shorter input motion sequence on
Waymo (1.1 s vs. 5 s), which limits the amount possible movements and thus simplifies classifying
direction. In contrast to the AV2F dataset, higher accuracies for the speed class are achieved. Overall,
the highest scores are reached for the agent features, alike on the AV2F dataset.

On the Waymo dataset, the within-class and between-class normalized variance values for RedMotion
are 10.68 and 11.24, respectively, resulting in a class-distance normalized variance (CDNV) of 0.95
(Galanti et al., 2022). On the AV2F dataset, these values are 5.73 and 2.32, yielding a CDNV of 2.46.
We hypothesize that the higher CDNV value on AV2F is caused by the longer past motion sequence
(i.e., 5 s vs. 1.1 s on Waymo), allowing for a greater range of potential movements.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2
0.76

0.78

0.80

Step ·105

Probing acccuracy

(a) Acceleration

0 1 2
0.91

0.92

0.93

0.94

0.95

Step ·105

Probing acccuracy

(b) Speed

0 1 2

0.70

0.75

0.80

Step ·105

Probing acccuracy

(c) Direction

0 1 2
0.998

0.999

1.000

Step ·105

Probing acccuracy

(d) Agent

Figure 4: Linear probing accuracies at module 0, module 1 and module 2 for acceleration, direction,
and speed on the validation split of the Waymo dataset.

5.2 QUALITATIVE RESULTS FOR CONTROLLING AT INFERENCE

Building on the insight that hidden states are likely collapsed towards our quantized motion features,
we fit control vectors to opposing motion features. These control vectors allow for controlling motion
forecasts at inference. Specifically, we use our quantized motion features to build pairs of opposing
features for the AV2F and the Waymo dataset. Afterwards, we fit sets of control vectors (Vi in
Figure 1) as described in Section 3.3.

Figure 5 shows a qualitative example from the AV2F dataset. In subfigure (b) and (c), we apply
our acceleration control vector with τ = −20 and τ = 100 to enforce a strong deceleration and a
moderate acceleration, respectively.

(a) Default motion forecast (b) Enforced strong deceleration (c) Enforced acceleration

Figure 5: Controlling a vehicle at an intersection. In subfigure (b) and (c), we apply our accel-
eration control vector with τ = −20 and τ = 100 to enforce a strong deceleration and a moderate
acceleration. The focal agent is highlighted in orange, dynamic agents are blue, and static agents are
grey. Lanes are black lines and road markings are white lines.

Figure 6 shows qualitative results on the Waymo dataset for controlling a motion forecast with the
set of control vectors for speed and different temperatures τ . Subfigure (a) shows the default (i.e.,
non-controlled) top-1 (i.e., most likely) motion forecast. In subfigure (b) and (c), we apply our speed
control vector to de- and increase the driven speed of a vehicle. Both controls affect the future speed
analogously, while increasing the speed also changes the route to fit the given environment context
(i.e., lanes and surrounding vehicles).

In the appendix, we include an example of our direction control and stability under varying tempera-
tures. Overall, these qualitative results support the finding that the hidden states of motion sequences
are arranged with respect to our discrete sets of motion features.

5.3 QUANTITATIVE COMPARISON OF CONTROL VECTORS

In Section 3.3, we emphasized the advantage of sparse autoencoders in generating control vectors that
establish a more linear relationship between control vector temperatures and forecasts. In this section,
we evaluate how control vectors obtained using sparse autoencoders differ from those derived via
plain PCA.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Default motion forecast (b) Speed controlled τ = −32 (c) Speed controlled τ = 100

Figure 6: Controlling a vehicle before a predicted right turn. In subfigure (b) and (c), we apply our
speed control vector to de- and increase the driven speed of a vehicle. Both controls affect the future
speed analogously, while increasing the speed also changes the route to fit the given environment
context (lanes and surrounding vehicles).

For comparison, we train sparse autoencoders (SAE) with varying sparse intermediate dimensions:
512, 256, 128, 64, 32, and 16. For each control vector, we calculate its cosine similarity with control
vectors for controlling other features. Table 1 presents the cosine similarity values between control
vectors of speed, acceleration, direction, and agent generated with plain PCA and our SAE with
a sparse intermediate dimension 128. As expected, the similarity between speed and acceleration,
speed and agent, and acceleration and agent is notably high, while the similarity involving direction
and other vectors is significantly lower. This result aligns with expectations, as positive speed and
acceleration controls lead to faster movement, and our agent control vector represents transition
between agent types from pedestrian to vehicle, which is associated with faster movement, as well.
Cosine similarity values for the other sparse intermediate dimensions are provided in Table 4 in the
appendix. Among these values, the similarity between SAE of intermediate dimension of 128 is the
highest.

Table 1: Comparison of control vectors obtained using plain PCA and SAE, measured by cosine
similarity (in degrees).

Plain PCA & Plain PCA speed acceleration direction agent

speed 0.0 11.5 122.6 10.9
acceleration 0.0 126.8 6.8
direction 0.0 128.7
agent 0.0

SAE & SAE speed acceleration direction agent

speed 0.0 9.5 120.6 7.8
acceleration 0.0 122.9 7.0
direction 0.0 125.8
agent 0.0

We evaluate sparse autoencoders with different activation functions and layer types for a hidden
dimension of 128. Following Rajamanoharan et al. (2024b), we use JumpReLU with a threshold
θ = 0.001 and regular ReLU activation functions. Moreover, we evaluate regular SAEs with fully-
connected layers, with MLPMixer (Tolstikhin et al., 2021) layers (Sparse MLPMixer), and with
convolutional layers (ConvSAE). For Sparse MLPMixer and ConvSAE, we use large patch and kernel
sizes to approximate the global receptive fields of fully-connected hidden units in regular SAEs.

We empirically analyze the temporal causal relationship between hidden states of past motion and
motion forecasts. Specifically, we measure the linearity between temperature-scaled activation
steering with our speed control vectors and relative speed changes in forecasts. We use the Pearson
correlation coefficient, the coefficient of determination (R2), and the straightness index (S-idx)
(Benhamou, 2004) as linearity measures. Given the large range of scenarios in the Waymo dataset,
we focus on relative speed changes within a range of ±50% (see Appendix A.16). Higher linearity
implies improved controllability.

Table 2 presents linearity measures for activation steering with different control vectors derived
from both plain PCA pooling and SAE methods. Overall, the regular SAEs achieve the highest
Pearson and R2 scores. JumpReLU activation functions improve the R2 scores marginally compared
to ReLU activation functions. The ConvSAE with a kernel size of 64 achieves the highest straightness
index, yet the lowest R2 scores. As shown in Figure 7 the range of temperatures is much higher

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

for this ConvSAE than for e.g. the regular SAE. This lowers the R2 score but does not affect the
straightness index. We hypothesize that this is due to feature shrinkage (Rajamanoharan et al., 2024b).
Therefore, the JumpReLU configuration of this SAE-type leads to a significantly smaller τ range (see
Appendix A.17), which in turn leads to higher R2 scores (see Table 2). Notably, activation steering
with our SAE-based control vector has an almost 1-to-1 relationship between τ and relative speed
changes (i.e., τ = −50 corresponds to roughly -50%). This improves R2 scores and enables an
intuitive interface. Furthermore, improved controllability with sparse autoencoders indicates that
sparse intermediate representations capture more distinct features.

Table 2: Linearity measures for activation steering with control vectors: Pearson correlation coeffi-
cient, coefficient of determination (R2), and straightness index.

Autoencoder Activation function Pooling Patch/kernel size Pearson R2 S-idx

– – PCA – 0.988 0.969 0.981
SAE ReLU PCA – 0.993 0.984 0.988
SAE JumpReLU PCA – 0.993 0.986 0.988
Sparse MLPMixer ReLU PCA 64 0.992 0.980 0.986
Sparse MLPMixer JumpReLU PCA 64 0.992 0.981 0.986
Sparse MLPMixer ReLU PCA 32 0.990 0.978 0.985
Sparse MLPMixer JumpReLU PCA 32 0.991 0.980 0.986
ConvSAE ReLU PCA 64 0.986 0.383 0.991
ConvSAE JumpReLU PCA 64 0.987 0.861 0.978
ConvSAE ReLU PCA 32 0.988 0.622 0.986
ConvSAE JumpReLU PCA 32 0.989 0.623 0.986

−40 −20 0 20 40
−50

−25

0

25

50

τ

re
la

tiv
e

sp
ee

d
ch

an
ge

in
%

Calibration curve
Linear reference

(a) Plain PCA

−40 −20 0 20 40
−50

−25

0

25

50

τ

re
la

tiv
e

sp
ee

d
ch

an
ge

in
%

Calibration curve
Linear reference

(b) SAE

−200−150−100−50 0 50 100 150
−50

−25

0

25

50

τ

re
la

tiv
e

sp
ee

d
ch

an
ge

in
%

Calibration curve
Linear reference

(c) ConvSAE k64

Figure 7: Calibration curves for activation steering with plain PCA and SAE-based speed control
vectors for relative speed changes in forecasts of ±50%.

We ablate the sparse intermediate dimensions of regular sparse autoencoders (see Table 7), as well as
the sensitivity of our method to hidden states from different modules (see Table 8) and varying speed
thresholds (see Table 9). Our method performs best with a sparse intermediate dimension of 128 and
hidden states from module m = 2; and is more sensitive to low than to high speed thresholds.

5.4 ZERO-SHOT GENERALIZATION WITH CONTROL VECTORS

Domain shifts between training and test data significantly degrade the performance of many learning
algorithms. Zero-shot generalization methods compensate for such domain shifts without further
training or fine-tuning (Kodirov et al., 2015; Xian et al., 2017; Mistretta et al., 2024). In motion
forecasting, common domain shifts are more or less aggressive driving styles resulting in higher
or lower future speeds. We simulate this domain shift by reducing the future speed in the Waymo
validation split by approximately 50%. Specifically, we take the first half of future waypoints and
upsample this sequence to the original length using linear interpolation.

Table 3 shows the results of a RedMotion model trained on the regular training split on this validation
split with domain shift. We provide an overview of the used motion forecasting metrics in the
appendix. Without the use of our control vectors, high distance-based errors, miss, and overlap
rates are obtained. Using the calibration curve in Figure 7b, we compensate for this domain shift
by applying our SAE-128 control vector with a temperature τ = −50. This significantly reduces
the distance-based errors, the overlap, and the miss rates without further training. In addition, we

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

show the results of applying our control vector with a temperature of τ = −30 and τ = −70, which
improves all scores over the baseline as well.

Table 3: Zero-shot generalization to a Waymo dataset version with reduced future speeds using the
SAE-128 control vector. Best scores are bold, second best are underlined.

Control vector Temperature τ minADE↓ Brier minADE↓ minFDE↓ Brier minFDE↓ Overlap rate↓ Miss rate↓

None 3.271 6.547 4.617 8.933 0.220 0.580
SAE-128 −30 1.685 4.838 2.870 8.429 0.179 0.224
SAE-128 −50 1.174 2.759 1.798 4.329 0.174 0.236
SAE-128 −70 1.808 3.576 2.035 3.676 0.189 0.302

6 CONCLUSION

In this work, we take a significant step towards mechanistic interpretability and controllability of
motion transformers. We analyze “words in motion” by examining the representations associated
with motion features. First, we quantize motion features into discrete subclasses as in natural
language. Our experiments on large-scale motion datasets include models with varying environment
representations and fusion mechanisms. Furthermore, we analyze the hidden states of attention and
MLP-based motion encoders. Specifically, we show that neural collapse towards human-interpretable
classes of features occurs in recent motion transformers. Building on these insights, we fit control
vectors to opposing features, which allow for controlling forecasts at inference. We further refine
this approach by optimizing our control vectors using sparse autoencoding. Notably, this results
in a more linear relationship between control vector temperatures and forecasts. This supports the
effectiveness of sparse dictionary learning and the use of sparse autoencoders for interpretability.
With increased interpretability of our control vectors, we compensate for domain shift and enable
zero-shot generalization to unseen dataset characteristics.

Our findings not only improve the practical applicability of recent motion transformer models, but
also enable interpreting and manipulating internal representations of transformer models. Possible
applications in self-driving vehicles include applying control vectors to motion planning and adjusting
planned trajectories, whenever required. Future work can explore using other embedding methods
(e.g., Schneider et al. (2023)), as well as features from other modalities by incorporating both static
and dynamic scene elements.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
In ICLR, 2017.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a Visual Language
Model for Few-Shot Learning. NeurIPS, 2022.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear Algebraic
Structure of Word Senses, with Applications to Polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 2024.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João GM Araújo,
Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! Information
over-squashing in language tasks. arXiv:2406.04267, 2024.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document Transformer.
arXiv:2004.05150, 2020.

Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, and Yann LeCun. Reverse Engineering
Self-Supervised Learning. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), NeurIPS, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Simon Benhamou. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity,
or fractal dimension? Journal of Theoretical Biology, 2004.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your Latents: High-Resolution Video Synthesis with Latent Diffusion
Models. In CVPR, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L Turner, Cem Anil, Amanda Askell, et al. Towards Monosemanticity: Decompos-
ing Language Models With Dictionary Learning. Transformer Circuits Thread, 2023.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. InstructPix2Pix: Learning to Follow Image
Editing Instructions. In CVPR, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language Models are Few-Shot
Learners. arXiv:2005.14165, 2020.

Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. In CVPR, 2021.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse Autoen-
coders Find Highly Interpretable Features in Language Models. arXiv:2309.08600, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, et al. Toy models
of superposition. Transformer Circuits Thread, 2022.

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large Scale Interactive Motion Forecasting for
Autonomous Driving: The Waymo Open Motion Dataset. In ICCV, 2021.

Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, and Yu Qiao. Drive Like a
Human: Rethinking Autonomous Driving with Large Language Models. In WACV, 2024.

Tomer Galanti, András György, and Marcus Hutter. On the Role of Neural Collapse in Transfer
Learning. In ICLR, 2022.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging Pre-
trained Large Language Models to Construct and Utilize World Models for Model-based Task
Planning. In NeurIPS, 2023.

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature
decorrelation in self-supervised learning. In ICCV, 2021.

Yidong Huang, Jacob Sansom, Ziqiao Ma, Felix Gervits, and Joyce Chai. DriVLMe: Enhancing
LLM-based Autonomous Driving Agents with Embodied and Social Experiences. In First Vision
and Language for Autonomous Driving and Robotics Workshop, 2024.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In ICML, 2021.

William Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert space.
Contemporary Mathematics, 26:189–206, 01 1984. doi: 10.1090/conm/026/737400.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv:2001.08361, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Elyor Kodirov, Tao Xiang, Zhenyong Fu, and Shaogang Gong. Unsupervised domain adaptation for
zero-shot learning. In ICCV, 2015.

Yen-Ling Kuo, Xin Huang, Andrei Barbu, Stephen G McGill, Boris Katz, John J Leonard, and Guy
Rosman. Trajectory prediction with linguistic representations. In ICRA, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning. NeurIPS,
2024.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In ICLR, 2019.

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and Yue Wang. A Language Agent for Au-
tonomous Driving. arXiv:2311.10813, 2023.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the North American Association for Computational
Linguistics, 2013.

Marco Mistretta, Alberto Baldrati, Marco Bertini, and Andrew D Bagdanov. Improving zero-shot
generalization of learned prompts via unsupervised knowledge distillation. In ECCV, 2024.

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S Refaat, and Benjamin
Sapp. Wayformer: Motion Forecasting via Simple & Efficient Attention Networks. In ICRA, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, et al. Training language models to follow instructions
with human feedback. NeurIPS, 2022.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. PNAS, 2020.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global Vectors for Word
Representation. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014.

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton, Bethanie
Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling Instructable Agents Across
Many Simulated Worlds. arXiv:2404.10179, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos
Kramar, Rohin Shah, and Neel Nanda. Improving Sparse Decomposition of Language Model
Activations with Gated Sparse Autoencoders. In ICML Workshop on Mechanistic Interpretability,
2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU
Sparse Autoencoders. arXiv preprint arXiv:2407.14435, 2024b.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering Llama 2 via Contrastive Activation Addition. arXiv:2312.06681, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask Prompted Training Enables
Zero-Shot Task Generalization. arXiv:2110.08207, 2021.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023.

Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou, Nigamaa Nayakanti, Khaled S Refaat,
Rami Al-Rfou, and Benjamin Sapp. MotionLM: Multi-Agent Motion Forecasting as Language
Modeling. In ICCV, 2023.

Hao Shao, Yuxuan Hu, Letian Wang, Steven L. Waslander, Yu Liu, and Hongsheng Li. LMDrive:
Closed-Loop End-to-End Driving with Large Language Models. In CVPR, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. CLIPort:What and Where Pathways for Robotic
Manipulation. In CoRL, 2021.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Ping Luo,
Andreas Geiger, and Hongyang Li. DriveLM: Driving with Graph Visual Question Answering.
arXiv:2312.14150, 2023.

Nishant Subramani, Nivedita Suresh, and Matthew E Peters. Extracting Latent Steering Vectors from
Pretrained Language Models. In Findings of the Association for Computational Linguistics, pp.
566–581, 2022.

Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Kraehenbuehl. Language
Conditioned Traffic Generation. In CoRL, 2023.

Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano, and Daniel Cohen-Or. MotionCLIP:
Exposing Human Motion Generation to CLIP Space. In ECCV, 2022.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. MLP-Mixer: An
all-MLP Architecture for Vision. In NeurIPS, 2021.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
Activation Addition: Steering Language Models Without Optimization. arXiv:2308.10248, 2023.

Royden Wagner, Ömer Şahin Taş, Marvin Klemp, Carlos Fernandez, and Christoph Stiller. RedMo-
tion: Motion Prediction via Redundancy Reduction. TMLR, 2024.

Haiyang Wang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen Wang, Di He, Bernt Schiele, and Liwei
Wang. DSVT: Dynamic Sparse Voxel Transformer With Rotated Sets. In CVPR, 2023a.

Tsun-Hsuan Wang, Alaa Maalouf, Wei Xiao, Yutong Ban, Alexander Amini, Guy Rosman, Sertac
Karaman, and Daniela Rus. Drive Anywhere: Generalizable End-to-end Autonomous Driving
with Multi-modal Foundation Models. arXiv:2310.17642, 2023b.

Wayve Technologies Ltd. LINGO-1: Exploring Natural Language for
Autonomous Driving, 2023. URL https://wayve.ai/thinking/
lingo-natural-language-autonomous-driving/. Blog Post.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao MA, Pinlong Cai, Min Dou, Botian Shi, Liang
He, and Yu Qiao. DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models. In ICLR, 2024.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse 2: Next
Generation Datasets for Self-Driving Perception and Forecasting. arXiv:2301.00493, 2023.

Menghua Wu, Hao Zhu, Linjia Huang, Yiyu Zhuang, Yuanxun Lu, and Xun Cao. High-fidelity 3D
Face Generation from Natural Language Descriptions. In CVPR, 2023.

Robert Wu and Vardan Papyan. Linguistic Collapse: Neural Collapse in (Large) Language Models.
In NeurIPS, 2024.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the good, the bad and the ugly.
In CVPR, 2017.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kenneth KY Wong, Zhenguo Li,
and Hengshuang Zhao. DriveGPT4: Interpretable End-to-end Autonomous Driving via Large
Language Modell. arXiv:2310.01412, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding Conditional Control to Text-to-Image
Diffusion Models. In ICCV, 2023a.

Zhejun Zhang, Alexander Liniger, Christos Sakaridis, Fisher Yu, and Luc Van Gool. Real-Time
Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding. In
NeurIPS, 2023b.

13

https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/
https://wayve.ai/thinking/lingo-natural-language-autonomous-driving/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaoji Zheng, Lixiu Wu, Zhijie Yan, Yuanrong Tang, Hao Zhao, Chen Zhong, Bokui Chen, and Jiang-
tao Gong. Large Language Models Powered Context-aware Motion Prediction. arXiv:2403.11057,
2024.

Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic, Yulong Cao, Danfei Xu, Marco Pavone,
and Baishakhi Ray. Language-Guided Traffic Simulation via Scene-Level Diffusion. In CoRL,
2023.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, et al. RT-2: Vision-Language-
Action Models Transfer Web Knowledge to Robotic Control. In CoRL, 2023.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation Engineering: A
Top-Down Approach to AI Transparency. arXiv:2310.01405, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 COMPARISON OF CONTROL VECTORS USING PLAIN PCA AND SAE ACROSS VARIOUS
SPARSE INTERMEDIATE DIMENSIONS

Table 4: Comparison of cosine similarity in degrees between control vectors using PCA and SAE
across various sparse intermediate dimensions (512, 256, 128, 64, 32, 16). The tables on the left
represent the cosine similarity between control vectors of the same SAE model, whereas those on the
right represent the cosine similarity between control vectors of SAE and those derived from Plain
PCA. The control vector with a sparse intermediate dimension of 128 achieves the highest overall
similarity.

SAE-512 & SAE-512 speed acceleration direction agent

speed 0.0 10.2 121.8 7.6
acceleration 0.0 123.7 7.6
direction 0.0 126.9
agent 0.0

Plain PCA & SAE-512 speed acceleration direction agent

speed 20.7 28.6 123.8 23.4
acceleration 19.1 23.0 128.5 18.6
direction 115.9 116.6 13.7 120.8
agent 19.4 24.4 130.2 18.3

SAE-256 & SAE-256 speed acceleration direction agent

speed 0.0 9.9 120.9 7.9
acceleration 0.0 123.7 7.2
direction 0.0 126.3
agent 0.0

Plain PCA & SAE-256 speed acceleration direction agent

speed 21.5 26.8 123.8 23.3
acceleration 20.3 21.0 128.7 18.7
direction 114.7 116.9 13.7 120.1
agent 20.8 23.1 130.2 18.7

SAE-128 & SAE-128 speed acceleration direction agent

speed 0.0 9.5 120.6 7.8
acceleration 0.0 122.9 7.0
direction 0.0 125.8
agent 0.0

Plain PCA & SAE-128 speed acceleration direction agent

speed 19.7 25.3 124.3 21.6
acceleration 19.2 20.0 128.8 17.5
direction 115.2 117.1 12.1 120.5
agent 19.5 21.8 130.4 17.1

SAE-64 & SAE-64 speed acceleration direction agent

speed 0.0 9.7 121.0 8.0
acceleration 0.0 123.2 7.5
direction 0.0 126.3
agent 0.0

Plain PCA & SAE-64 speed acceleration direction agent

speed 18.1 23.7 124.7 19.3
acceleration 19.3 19.9 128.9 16.5
direction 115.0 116.6 13.3 120.5
agent 19.8 21.9 130.5 16.4

SAE-32 & SAE-32 speed acceleration direction agent

speed 0.0 9.8 120.3 8.3
acceleration 0.0 122.8 7.0
direction 0.0 125.8
agent 0.0

Plain PCA & SAE-32 speed acceleration direction agent

speed 14.7 18.8 126.4 15.5
acceleration 18.0 15.5 130.3 14.1
direction 114.4 116.9 10.9 120.2
agent 18.1 17.6 132.0 13.4

SAE-16 & SAE-16 speed acceleration direction agent

speed 0.0 9.5 124.1 9.3
acceleration 0.0 125.2 7.5
direction 0.0 129.3
agent 0.0

Plain PCA & SAE-16 speed acceleration direction agent

speed 23.5 25.1 126.6 21.8
acceleration 28.4 26.0 128.9 23.5
direction 110.2 111.9 24.6 116.6
agent 28.0 26.8 131.0 22.5

Table 5: Loss metrics for SAEs across sparse intermediate dimensions, trained for 10.000 epochs.

Dim #Epochs Total loss L1 loss L2 loss Total reconst loss

512 9805 4.01 1.52 8270.70 0.0016
256 9845 3.72 1.38 7823.98 0.0014
128 9820 4.14 1.56 8608.95 0.0017
64 9348 4.56 1.89 8894.97 0.0019
32 9864 7.14 3.90 10 795.54 0.0043
16 9956 17.44 13.37 13 576.57 0.0142

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 ADDITIONAL QUALITATIVE RESULTS

Figure 8 shows a qualitative example for our direction control from the Argoverse 2 Forecasting
dataset. The left control leads to accelerated future motion, which is consistent with the common
driving style of slowing down in front of a curve and accelerating again when exiting the curve. A
strong right control makes the focal agent stationary. We hypothesize that it cancels out the actually
driven left turn, resulting in a virtually stationary past.

(a) Default motion forecast (b) Left control τ = 10 (c) Right control τ = 100

Figure 8: Controlling a left turning vehicle. In subfigure (b) and (c), we apply our left-direction
control vector and right-direction control vector. The focal agent is highlighted in orange, dynamic
agents are blue, and static agents are grey. Lanes are black lines and road markings are white lines.

A.3 NATURAL LANGUAGE AS A MODALITY IN ROBOTICS AND SELF-DRIVING

We provide examples illustrating how natural language is utilized as a modality in robotics and
autonomous driving, building upon the general approaches introduced in the main body of the text.

Conditioning. Tan et al. (2023); Zhong et al. (2023) generate dynamic traffic scenes based on
user-specified descriptions expressed in natural language.

Prompting. Kuo et al. (2022) generate linguistic descriptions of predicted trajectories during
decoding, capturing essential information about future maneuvers and interactions. More recent
works employ large language models (LLMs) to analyze driving environments in a human-like
manner, providing explanations of driving actions and the underlying reasoning (Xu et al., 2023;
Fu et al., 2024; Sima et al., 2023; Wayve Technologies Ltd., 2023). This offers a human-centric
description of the driving environment and the model’s decision-making capabilities.

Enriching. Zheng et al. (2024) integrate the enriched context information of LLMs into motion
forecasting models. Wang et al. (2023b) use LLMs for data augmentation to improve out-of-
distribution generalization. Others use pre-trained LLMs for better generalization during decision-
making (Mao et al., 2023; Wen et al., 2024; Shao et al., 2024).

Instructing. Shridhar et al. (2021) enable robotic control through language-based instruction.
Zitkovich et al. (2023) incorporate web knowledge, enriching vision-language-action models for
more generalized task performance. Huang et al. (2024) demonstrate the use of instructions to guide
task execution in self-driving, with experiments in simulation environments.

Although these works create a language interfaces to interact with the underlying model, in contrast to
our work, they do not measure the degree to which human-interpretable motion features are embedded
within hidden states.

A.4 PARAMETERS FOR CLASSIFYING MOTION FEATURES

We classify motion trajectories with a sum less than 15◦ degrees as straight. When the cumulative
angle exceeds this threshold, a positive value indicates right direction, while a negative value –
exceeding the threshold in absolute terms – indicates a left direction. We classify speeds between
25 kmh−1 and 50 kmh−1 as moderate, speeds above this range as high, those below as low, and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

negative speeds as backwards. For acceleration, we classify trajectories as decelerating, if
the integral of speed over time to projected displacement with initial speed is less than 0.9 times. If
this ratio is greater than 1.1 times, we classify them as accelerating. For all other values, we
classify the trajectories as having constant speed. We determine all threshold values by analyzing
the distribution of the dataset.

Figure 9 presents the distribution of motion subclasses across the datasets. Both datasets predom-
inantly capture low-speed scenarios, with 62% of Waymo instances and 53% of AV2F instances
falling into this category. Furthermore, a notable difference lies in the proportion of stationary
vehicles, with AV2F exhibiting a significantly higher percentage (51%) compared to Waymo (28%).
The Waymo dataset predominantly features vehicles with constant acceleration (65%) and traveling
straight (49%), while the AV2F dataset showcases a higher proportion of accelerating instances (52%).
Additionally, AV2F stands out with a much larger proportion of instances involving backward motion
(24%) compared to Waymo (4%). This disparity in motion characteristics highlights that the two
datasets capture different driving environments and scenarios, with Waymo potentially focusing on
highway or structured urban driving, while AV2F encompasses more diverse traffic situations.

A.5 EARLY, HIERARCHICAL AND LATE FUSION IN MOTION ENCODERS

We define fusion types for motion transformers based on the information processed in the first
attention layers within a model. In early fusion, the first attention layers process motion data of the
modeled agent, other agents, and environment context. In hierarchical fusion, the first attention layers
process motion data of the modeled agent, and other agents. In late fusion, the first attention layers
exclusively process motion data of the modeled agent.

A.6 MOTION FORECASTING METRICS

Following (Wilson et al., 2023; Ettinger et al., 2021), we use the average displacement error (minADE),
the final displacement error (minFDE), and their respective Brier variants, which account for the
predicted confidences. Furthermore, we compute the miss rate, and overlap rate to evaluate motion
forecasts. All metrics are computed using the minimum mode for k = 6 modes. Accordingly, the
metrics for the mode closest to the ground truth are measured.

A.7 TITLE ORIGIN

The title of our work “words in motion” is inspired by our quantization method using natural language
and a common notion in the computer architecture literature. In computer architecture, a word is
a natural unit of data for a processing unit (e.g., CPU or GPU). In our work, words are classes of
motion features, which are embedded in the hidden states of motion sequences processed by motion
forecasting models.

backwards

high

moderate

low

4.47

12.66

20.68

62.19

24.17

4.16

18.49

53.32

(a) Speed

decelerating

constant

accelerating

11.69

65.32

22.99

31.17

16.76

52.08

(b) Acceleration

stationary

straight

right

left

27.88

48.62

12.26

11.24

51.48

26.09

11.65

10.77

(c) Direction

Figure 9: Distributions of our motion features for the Argoverse 2 Forecasting and the Waymo Open
Motion datasets. All numbers are percentages.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.8 FEATURE CORRELATION

lo
w

mo
de
ra
te
hi
gh

ba
ck
wa
rd
s

de
ce
le
ra
ti
ng

co
ns
ta
nt

ac
ce
le
ra
ti
ng

st
at
io
na
ry

st
ra
ig
ht

ri
gh
t

le
ft

ve
hi
cl
e

pe
de
st
ri
an

cy
cl
is
t

low

moderate

high

backwards

decelerating

constant

accelerating

stationary

straight

right

left

vehicle

pedestrian

cyclist

0.000 0.547 0.591 0.481 0.178 0.221 0.209 0.495 0.422 0.340 0.374 0.179 0.379 0.466

0.000 0.229 0.992 0.638 0.353 0.400 1.000 0.143 0.287 0.239 0.380 0.621 0.348

0.000 0.991 0.672 0.387 0.467 0.992 0.265 0.383 0.353 0.427 0.622 0.449

0.000 0.407 0.659 0.651 0.199 0.875 0.796 0.835 0.621 0.689 0.889

0.000 0.350 0.277 0.487 0.508 0.415 0.459 0.294 0.413 0.510

0.000 0.204 0.652 0.250 0.241 0.248 0.074 0.423 0.389

0.000 0.690 0.264 0.174 0.208 0.155 0.373 0.302

0.000 0.892 0.827 0.859 0.628 0.729 0.939

0.000 0.156 0.121 0.266 0.499 0.266

0.000 0.115 0.237 0.386 0.200

0.000 0.254 0.422 0.197

0.000 0.428 0.386

0.000 0.423

0.000

Combined Heatmap of Spearman Correlation (Color) and Distances (Annotations)

−0.2

0

0.2

0.4

0.6

0.8

1

Sp
ea

rm
an

C
or

re
la

tio
n

Figure 10: Heatmap representing Spearman correlation between feature cluster means for the
Waymo Open Motion dataset. The values in the matrix indicate pairwise distances between clusters,
normalized by the largest distance.

lo
w

mo
de
ra
te
hi
gh

ba
ck
wa
rd
s

de
ce
le
ra
ti
ng

co
ns
ta
nt

ac
ce
le
ra
ti
ng

st
at
io
na
ry

st
ra
ig
ht

ri
gh
t

le
ft

ve
hi
cl
e

pe
de
st
ri
an

cy
cl
is
t

low

moderate

high

backwards

decelerating

constant

accelerating

stationary

straight

right

left

vehicle

pedestrian

cyclist

0.000 0.628 0.815 0.318 0.193 0.484 0.125 0.302 0.455 0.413 0.430 0.122 0.455 0.312

0.000 0.403 0.890 0.790 0.169 0.523 0.879 0.200 0.269 0.248 0.539 0.806 0.587

0.000 1.000 0.925 0.436 0.706 0.995 0.488 0.564 0.545 0.711 0.956 0.764

0.000 0.137 0.752 0.380 0.026 0.739 0.709 0.724 0.359 0.610 0.520

0.000 0.647 0.274 0.122 0.627 0.593 0.609 0.252 0.526 0.428

0.000 0.386 0.741 0.097 0.156 0.139 0.402 0.654 0.444

0.000 0.368 0.364 0.337 0.349 0.039 0.507 0.306

0.000 0.727 0.697 0.711 0.346 0.602 0.511

0.000 0.127 0.113 0.382 0.648 0.449

0.000 0.056 0.359 0.580 0.386

0.000 0.371 0.598 0.396

0.000 0.521 0.324

0.000 0.361

0.000

Combined Heatmap of Spearman Correlation (Color) and Distances (Annotations)

−0.2

0

0.2

0.4

0.6

0.8

1

Sp
ea

rm
an

C
or

re
la

tio
n

Figure 11: Heatmap representing Spearman correlation between feature cluster means for the
Argoverse 2 Forecasting dataset. The values in the matrix indicate pairwise distances between
clusters, normalized by the largest distance.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.9 EXPLAINED VARIANCE

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.7
0

0
.0
4

0
.0
4

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
1

E
xp

la
in

ed
V

ar
ia

nc
e

Speed

1 2 3 4 5 6 7 8 9 10
0
.6
6

0
.0
6

0
.0
5

0
.0
2

0
.0
2

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

Acceleration

1 2 3 4 5 6 7 8 9 10

0
.3
1

0
.1
2

0
.0
8

0
.0
7

0
.0
5

0
.0
4

0
.0
4

0
.0
3

0
.0
3

0
.0
2

Direction

1 2 3 4 5 6 7 8 9 10

0
.5
8

0
.0
8

0
.0
5

0
.0
4

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

H
id

de
n

di
m

:5
12

Agent

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.7
0

0
.0
7

0
.0
4

0
.0
3

0
.0
2

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
1

E
xp

la
in

ed
V

ar
ia

nc
e

1 2 3 4 5 6 7 8 9 10

0
.6
1

0
.1
1

0
.0
5

0
.0
3

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

1 2 3 4 5 6 7 8 9 10

0
.2
9

0
.1
2

0
.0
9

0
.0
6

0
.0
5

0
.0
5

0
.0
4

0
.0
4

0
.0
3

0
.0
3

1 2 3 4 5 6 7 8 9 10

0
.5
8

0
.0
8

0
.0
6

0
.0
4

0
.0
3

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
1

H
id

de
n

di
m

:2
56

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.6
7

0
.0
7

0
.0
5

0
.0
4

0
.0
2

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
1

E
xp

la
in

ed
V

ar
ia

nc
e

1 2 3 4 5 6 7 8 9 10

0
.6
7

0
.1
0

0
.0
5

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
1

1 2 3 4 5 6 7 8 9 10

0
.3
6

0
.0
9

0
.0
8

0
.0
6

0
.0
5

0
.0
4

0
.0
4

0
.0
3

0
.0
3

0
.0
3
1 2 3 4 5 6 7 8 9 10

0
.5
7

0
.0
8

0
.0
7

0
.0
4

0
.0
3

0
.0
3

0
.0
3

0
.0
2

0
.0
1

0
.0
1

H
id

de
n

di
m

:1
28

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.6
8

0
.0
6

0
.0
4

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

0
.0
1

E
xp

la
in

ed
V

ar
ia

nc
e

1 2 3 4 5 6 7 8 9 10

0
.6
4

0
.0
9

0
.0
5

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

1 2 3 4 5 6 7 8 9 10

0
.3
1

0
.1
0

0
.0
9

0
.0
8

0
.0
6

0
.0
5

0
.0
4

0
.0
3

0
.0
3

0
.0
3

1 2 3 4 5 6 7 8 9 10

0
.5
5

0
.0
8

0
.0
6

0
.0
5

0
.0
3

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
2 H
id

de
n

di
m

:6
4

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.6
8

0
.0
6

0
.0
5

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
1

E
xp

la
in

ed
V

ar
ia

nc
e

1 2 3 4 5 6 7 8 9 10

0
.5
7

0
.1
0

0
.0
7

0
.0
5

0
.0
4

0
.0
3

0
.0
2

0
.0
2

0
.0
1

0
.0
1

1 2 3 4 5 6 7 8 9 10

0
.3
5

0
.1
3

0
.0
9

0
.0
8

0
.0
7

0
.0
5

0
.0
4

0
.0
4

0
.0
3

0
.0
2

1 2 3 4 5 6 7 8 9 10

0
.5
1

0
.1
3

0
.0
8

0
.0
5

0
.0
4

0
.0
4

0
.0
2

0
.0
2

0
.0
1

0
.0
1 H
id

de
n

di
m

:3
2

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.6
3

0
.0
9

0
.0
7

0
.0
4

0
.0
3

0
.0
3

0
.0
2

0
.0
2

0
.0
2

0
.0
1

Index

E
xp

la
in

ed
V

ar
ia

nc
e

1 2 3 4 5 6 7 8 9 10

0
.5
5

0
.1
3

0
.1
0

0
.0
7

0
.0
4

0
.0
2

0
.0
2

0
.0
1

0
.0
1

0
.0
1

Index

1 2 3 4 5 6 7 8 9 10

0
.3
9

0
.1
1

0
.0
9

0
.0
8

0
.0
6

0
.0
5

0
.0
5

0
.0
4

0
.0
3

0
.0
3

Index

1 2 3 4 5 6 7 8 9 10

0
.5
1

0
.1
3

0
.0
8

0
.0
5

0
.0
4

0
.0
4

0
.0
2

0
.0
2

0
.0
1

0
.0
1 H
id

de
n

di
m

:1
6

Index

Figure 12: Explained variance for SAE across hidden latent dimensions 512, 256, 128, 64, 32, and 16
shown vertically.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0
.7
3

0
.0
8

0
.0
6

0
.0
4

0
.0
3

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
0

Index

E
xp

la
in

ed
V

ar
ia

nc
e

Speed

1 2 3 4 5 6 7 8 9 10

0
.6
8

0
.0
9

0
.0
8

0
.0
4

0
.0
3

0
.0
2

0
.0
1

0
.0
1

0
.0
1

0
.0
1

Index

Acceleration

1 2 3 4 5 6 7 8 9 10

0
.4
8

0
.1
5

0
.1
3

0
.0
8

0
.0
5

0
.0
4

0
.0
2

0
.0
2

0
.0
1

0
.0
1

Index

Direction

1 2 3 4 5 6 7 8 9 10

0
.6
7

0
.1
1

0
.0
9

0
.0
3

0
.0
3

0
.0
2

0
.0
1

0
.0
1

0 0

Index

Agent

Figure 13: Explained variance for Plain-PCA.

A.10 NEURAL COLLAPSE

Neural collapse metrics capture structural patterns in feature representations, focusing on clustering,
geometry, and alignment. Class Distance Normalized Variance (CDNV), also referred to as “NC1”,
quantifies the degree to which features form class-wise clusters by measuring the variance within
feature clusters of each class c relative to the distances between class means. CDNV provides a
robust alternative to methods that compare between- and within-cluster variation for assessing feature
separability (Galanti et al., 2022).

NC1cdnv
c,c′ =

σ2
c + σ2

c′

2∥µc − µ′
c∥22

, ∀c ̸= c′

A.11 INFERENCE LATENCY

Table 6 shows inference latency measurements of a RedMotion model on the Waymo Open Motion
dataset with and without activation steering with our control vectors. Our activation steering adds only
about 1ms to the total inference latency. Since most datasets are recorded at 10Hz (e.g., Wilson et al.
(2023); Ettinger et al. (2021)), it is common to define the threshold for real-time capability of self-
driving stacks as ≤100ms. Considering the inference latency of recent 3D perception models (e.g.,
approx. 40ms for Wang et al. (2023a)), which must be called before motion forecasting, activation
steering should not add significantly to the forecasting latency.

Table 6: Inference latency without and with activation steering with our control vectors. We
measure the inference latency on one A6000 GPU using the PyTorch Lightning profiler and plain
eager execution. We report the mean of 1000 iterations per configuration for the predict_step,
including pre- and post-processing.

Activation steering Focal agents Inference latency

False 8 50.21 ms
True 8 51.08 ms

A.12 META-ARCHITECTURE OF MULTIMODAL MOTION TRANSFORMERS

We study multimodal motion transformers (Nayakanti et al., 2023; Wagner et al., 2024; Zhang et al.,
2023b), which process motion, lane and traffic light data. The meta-architecture of these models
is shown in Figure 14. These models generate motion Mi, map Kj , and traffic light Tk tokens
using learned tokenizers. Modality-specific encoders aggregate information of multiple tokens with
attention mechanisms (e.g., across multiple past timesteps for motion tokens). Afterwards, learned
motion queries Q (i.e., a form of learned anchors) cross-attend in the motion decoder to M , K, and T .
Finally, a learned de-tokenizer projects the last hidden state of Q into multiple motion forecasts, which
are represented as 2D Gaussians for future positions in bird’s-eye-view and associated confidences.
The difference between the models lay in the type of attention and fusion mechanisms as well as the
used reference frames.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Motion tokenizer

Map tokenizer

Traffic light token.

Mi

Kj

Tk

Motion encoder

Map encoder

Traffic light enc.

Motion
decoder

Q0 Q1 Q2 Q3

F0

F1

F2

F3

De-tokenizer

Figure 14: Motion transformer meta architecture of RedMotion, Wayformer, and HPTR.

A.13 LINEARITY ANALYSIS ACROSS SPARSE AUTOENCODER DIMENSIONS

Autoencoder Pearson R2 S-idx

SAE-512 0.990 0.974 0.984
SAE-256 0.990 0.974 0.985
SAE-128 0.993 0.984 0.988
SAE-64 0.991 0.976 0.985
SAE-32 0.990 0.959 0.985
SAE-16 0.982 0.770 0.958

Table 7: Scaling sparse autoencoders. SAE-128 has a sparse intermediate dimension of 128 and
achieves the highest linearity scores for activation steering with our control vector for speed. Linearity
measures for controlling: Pearson correlation coefficient, coefficient of determination (R2), and
straightness index.

A.14 CONTROL VECTORS ACROSS MODULES IN SPARSE AUTOENCODERS

Autoencoder Module m Pearson R2 S-idx

SAE-128 2 0.993 0.984 0.988
SAE-128 1 0.992 0.980 0.987
SAE-128 0 0.959 0.654 0.933

Table 8: Generating control vectors for hidden states of different modules. Control vectors for
speed generated in earlier modules achieve lower linearity scores for activation steering. Linearity
measures for controlling: Pearson correlation coefficient, coefficient of determination (R2), and
straightness index.

A.15 SENSITIVITY ANALYSIS FOR VARIOUS SPEED THRESHOLDS

Autoencoder Low speed High speed Pearson R2 S-idx

SAE-128 < 25kmh−1 > 50kmh−1 0.993 0.984 0.988

SAE-128 < 25kmh−1 25 to 50kmh−1 0.994 0.987 0.989

SAE-128 25 to 50kmh−1 > 50kmh−1 0.355 −0.734 0.533

Table 9: Generating speed control vectors with different thresholds for low and high speed.
Decreasing the threshold for high speed marginally improves linearity scores, while increasing the
threshold for low speed significantly worsens the linearity scores. Linearity measures for controlling:
Pearson correlation coefficient, coefficient of determination (R2), and straightness index.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.16 CHOOSING A RANGE OF RELATIVE CHANGES IN FUTURE SPEED

Given the large range of scenarios in the Waymo dataset, we focus on relative speed changes
within a range of ±50% to capture the most relevant speed variations (see Figure 3 in Ettinger et al.
(2021)). Considering the approximated mean and standard deviation for each agent type (vehicles:
µ ≈ 12m s−1, σ ≈ 5m s−1, pedestrians: µ ≈ 1.5m s−1, σ ≈ 0.7m s−1, and cyclists: µ ≈ 7m s−1,
σ ≈ 3m s−1) the ±50% range corresponds to speeds within approximately ±1σ of the mean for
each agent type.

A.17 JUMPRELU COMPENSATES FEATURE SHRINKAGE IN CONVSAES

−200 −150 −100 −50 0 50 100 150
−50

−25

0

25

50

τ

re
la

tiv
e

sp
ee

d
ch

an
ge

in
%

Calibration curve
Linear reference

(a) ConvSAE k64

−80 −60 −40 −20 0 20 40 60
−50

−25

0

25

50

τ

re
la

tiv
e

sp
ee

d
ch

an
ge

in
%

Calibration curve
Linear reference

(b) ConvSAE k64 JumpReLU

Figure 15: JumpReLU compensates feature shrinkage as reflected in a smaller range of τ values for
the same range of relative speed changes.

The range of temperatures is much higher for the ConvSAE than for the JumpReLU version of this
sparse autoencoder (ConvSAE k64 JumpReLU). We hypothesize that this is due to feature shrinkage
(Rajamanoharan et al., 2024b). Therefore, the JumpReLU configuration of this SAE-type leads to a
significantly smaller τ range, which in turn leads to higher R2 scores (see Table 2).

22


	Introduction
	Related Work
	Natural language as an interface for model interaction and control
	Methods for model interpretability and explainability

	Method
	Motion feature classification using natural language
	Neural collapse as a metric of interpretability
	Interpretable control vectors

	Experimental Setup
	Motion forecasting models
	Linear probes
	Control vectors
	Training details and hyperparameters

	Results
	Extracting interpretable features for motion
	Qualitative results for controlling at inference
	Quantitative comparison of control vectors
	Zero-shot generalization with control vectors

	Conclusion
	Appendix
	Comparison of control vectors using plain pca and sae across various sparse intermediate dimensions
	Additional qualitative results
	Natural language as a modality in robotics and self-driving
	Parameters for classifying motion features
	Early, hierarchical and late fusion in motion encoders
	Motion forecasting metrics
	Title origin
	Feature correlation
	Explained variance
	Neural collapse
	Inference latency
	Meta-Architecture of multimodal motion transformers
	Linearity analysis across sparse autoencoder dimensions
	Control vectors across modules in sparse autoencoders
	Sensitivity analysis for various speed thresholds
	Choosing a range of relative changes in future speed
	JumpReLU compensates feature shrinkage in ConvSAEs


