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ABSTRACT

Estimating counterfactual outcomes in time series from observational data is im-
portant for effective decision-making in many fields, such as determining the opti-
mal timing for a medical intervention. However, this task is challenging, primarily
because of the unobservability of counterfactual outcomes and the complexity of
confounding in time series. To this end, we introduce a representation learning-
based framework for counterfactual estimation in time series with two novel tech-
niques: Sub-treatment Group Alignment (SGA) and Random Temporal Mask-
ing (RTM). The first technique focuses on reducing confounding at each time
point. While the common approach is to align the distributions of different treat-
ment groups in the latent space, our proposed approach, SGA, first identifies sub-
treatment groups through Gaussian Mixture Models (GMMs) and subsequently
aligns the corresponding sub-groups. We demonstrate that, both theoretically and
empirically, SGA achieves improved alignment, thus leading to more effective de-
confounding. The second technique, RTM, masks covariates at random time steps
with Gaussian noises. This approach promotes the time series models to select
information not only important for the outcome estimation at current time point
but also crucial for the time points in the future where the covariates are masked
out, thus preserving the causal information and reducing the risk of overfitting
to factual outcomes. We observe in experiments on synthetic and semi-synthetic
datasets that applying SGA and RTM individually improves counterfactual out-
come estimation, and when combined, they achieve state-of-the-art performance.

1 INTRODUCTION

Estimating causal effects in time series is important in various fields such as healthcare, politics, and
economics (Morid et al., 2023; Freeman, 1983; Bisgaard & Kulahci, 2011). For example, consider
the treatment of Ductal Carcinoma In Situ (DCIS) where the timing of surgical intervention is crit-
ical to the treatment effect: if surgery is too late, the cancer may progress to an invasive stage; if
conducted too early, the procedure may be unnecessarily invasive (Grimm et al., 2022).

Motivated by this, we explore counterfactual outcome estimation in time series from observational
data. The success of causal inference in time series relies on effective reduction of time-dependent
confounding. However, this task is challenging, primarily because of the unobservability of coun-
terfactual outcomes and the complexity of confounding in time series. A well-established group of
approaches for reducing confounding in static causal inference is to minimize the upper bound of
the counterfactual estimation error (Johansson et al., 2016; 2022; Li & Fu, 2017; Yao et al., 2018),
which can be decomposed into two key components: (i) the factual loss and (ii) the statistical dis-
crepancy between treated and control groups in the learned representation space. Algorithmically,
these methods minimize the prediction error of the factual outcomes while aligning the two treat-
ment groups in the latent space. By ensuring that the representations of two treatment groups
are brought closer together, they provably reduce the bias introduced by confounders (Johansson
et al., 2022). Building on this idea to reduce confounding for time series, existing approaches aim
to learn representations that remain invariant to the treatment assignment at each time step (Bica
et al., 2020; Melnychuk et al., 2022). However, in practice, with adversarial training, they typically
result in optimizing relatively loose upper bounds on the counterfactual error at individual time
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steps (Arjovsky & Bottou, 2017). Moreover, the error can accumulate over time steps and cause
compromised estimation of long-term effects.

To this end, we provide two novel contributions that can be added to many current representation
learning-based frameworks for counterfactual estimation on time series to tighten the upper bound
and provide improved estimation: Sub-treatment Group Alignment (SGA) and Random Temporal
Masking (RTM). Specifically, our techniques improve the existing approaches on two dimensions:

• SGA improves the alignment at each individual time point by first identifying sub-
treatment groups and subsequently aligning the corresponding sub-groups.

• RTM blocks the accumulation of error by randomly selecting time points and masking the
covariates at these time points with Gaussian noises.

Sub-treatment Group Alignment (SGA). SGA first identifies sub-treatment groups in the rep-
resentation space through Gaussian Mixture Models (GMMs), and subsequently aligns the corre-
sponding sub-groups of different treatment groups. See Figure 1 for a visual illustration. On an
intuition level, alignment of sub-groups enables a more refined alignment of treatment groups, thus
more effectively reducing confounding. In Section 4, we establish that sub-group alignments in-
deed lead to a tighter bound on the counterfactual estimation error. This allows us to reduce the
estimation error more effectively than existing methods.

Random Temporal Masking (RTM). While SGA addresses confounding at individual time points,
RTM enhances the model’s ability to generalize across time series. Inspired by masked language
modeling, RTM uses random covariate masking, where the input covariates at randomly selected
time points are replaced with Gaussian noise during training. There are multiple perspectives to
understand the benefits of RTM:

• At the time points where the input covariates are replaced with noise, the time series models
are forced to extract useful information from previous time steps to predict the factual
outcome in the future. In other words, we encourage the model to focus on the causal
relationships that span across time, leading to better counterfactual predictions.

• RTM can prevent model from becoming overly reliant on the information from the current
time points, thus reducing overfitting to the factual distribution.

• RTM resets the time series by completely replacing the covariates at selected time steps
with noise, blocking the accumulation of error.

Empirical Validation. Our approach is general and can be built upon and adapted to the objective
function of a wide range of time series estimation methods, offering broad applicability. We validate
this through comprehensive experiments on synthetic and semi-synthetic datasets, demonstrating
state-of-the-art performance in counterfactual outcome estimation.

Organization. We first formally define the problem in Section 2 and review related works in Sec-
tion 3. Then in Section 4, we theoretically establish how sub-treatment group alignment achieves
improved alignment, thus motivating our SGA technique. In Section 5, we present our framework
with SGA and RTM as components. Experimental results in Section 6 show that applying SGA and
RTM individually enhances performance, and when combined, they achieve state-of-the-art results.

2 PROBLEM SETUP

Notations. We use upper-case letters (e.g., A, Y ) for scalar random variables and lower-case letters
(e.g., a, y) for their corresponding realizations. Multi-dimensional random variables and realizations
are denoted using bold fonts (e.g., X and x).

Observational Data. Following the setup in Melnychuk et al. (2022); Bica et al. (2020); Li et al.
(2020), we consider a dataset containing N samples. Observations are recorded over T time steps,
i.e., t = 1, ..., T . At each time step t, a discrete treatment At ∈ A = {a0, a1, ..., a|A|−1} is assigned
to the sample. Thus, for each sample i, we observe time-varying covariates X(i)

t ∈ Rd, the factual
treatment A(i)

t , and the outcome Y
(i)
t associated with the factual treatment.

2
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Figure 1: Conceptual Overview of Our Method. This figure illustrates our approaches Sub-
treatment Group Alignment (SGA) and Random Temporal Masking (RTM) to improve counterfac-
tual outcome estimation in time series from observational data. Here, k represents the sub-treatment
group index. For simplicity, only two treatment groups are shown: treatment and control.

We use the following notation to represent the process up to time step t for each unit i:

H̄
(i)
t =

{
X̄

(i)
t , Ȳ

(i)
t , Ā

(i)
t−1,V

(i)
}
, where:

• X̄
(i)
t = {X(i)

s : s ≤ t} denotes the sequence of time-varying covariates up to time t,

• Ȳ
(i)
t = {Y (i)

s : s ≤ t} represents the sequence of observed outcomes up to time t,

• Ā
(i)
t−1 = {A(i)

s : s ≤ t− 1} is the sequence of treatments up to time t− 1,

• V(i) ∈ Rp denotes the static covariates (those that do not change over time).

Objective. Given the process up to current time t and assuming a specific treatment sequence
a
(i)
t:t+τ−1 from time t to t + τ − 1 applied to sample i, our goal is to estimate, for each unit i, the

future outcome at time step t+ τ . That is, τ time steps after the current time t. To ensure that these
counterfactual outcomes are identifiable, we follow the potential outcomes framework and make
several standard assumptions to support identifiability (Rosenbaum & Rubin, 1983; Rubin, 2005).
Due to space constraint, details on the assumptions are provided in Appendix A.

Specifically, we aim to estimate:

E
[
Y

(i)
t+τ

(
a
(i)
t:t+τ−1

) ∣∣∣∣ H̄(i)
t

]
, (1)

where Y
(i)
t+τ

(
a
(i)
t:t+τ−1

)
denotes the potential outcome at time t + τ for unit i under the treatment

sequence a
(i)
t:t+τ−1.

3 RELATED WORK

We review the most relevant work below and provide a comprehensive discussion in Appendix C.

Estimating counterfactual outcomes under static scenarios. Many methods have been proposed
to learn a balanced representation that aligns the distributions across treatment groups, effectively
addressing confounding in static settings. A foundational work in this area, CFRNet proposed by
Shalit et al. (2017), establishes a counterfactual error bound illustrating that the expected error in
estimating individual treatment effects (ITE) is bounded by the sum of its standard generalization
error and the discrepancy between treatment group distributions induced by the representation. This
concept has been further explored in several subsequent studies on deep causal inference (Yao et al.,
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2018; Kallus, 2020; Du et al., 2021). However, these methods primarily focus on static data, and
their approach of aligning overall treated and control group distributions may not sufficiently adapt-
able to time-series data (Hernán et al., 2000; Mansournia et al., 2012), where time-dependent con-
founders make it difficult to disentangle the true effect of a treatment from these caused by the
confounding variables.

Estimating counterfactual outcomes over time. Estimating counterfactual outcomes in time-series
data is challenging due to time-varying confounders. Traditional methods such as G-computation
and marginal structural models (Robins, 1986; Robins et al., 2000; Hernán et al., 2001; Robins &
Hernan, 2008; Xu et al., 2016) often lack flexibility for complex datasets and rely on strong assump-
tions. To address these limitations, researchers have developed models that build on the potential
outcomes framework initially proposed by Rubin (1978) and extended to time series by Robins
& Hernan (2008). Notable among recent methods are Recurrent Marginal Structural Networks
(RMSNs) (Lim, 2018), G-Net (Li et al., 2020), Counterfactual Recurrent Networks (CRN) (Bica
et al., 2020), and the Causal Transformer (CT) (Melnychuk et al., 2022), which use approaches such
as propensity networks and adversarial learning to mitigate the effects of time-varying confound-
ing. However, practical challenges with adversarial training can affect the stability of causal effect
estimations. Specifically, training adversarial networks can be challenging due to issues such as
mode collapse and oscillations (Liang et al., 2018). Additionally, adversarial training minimizes
the Jensen-Shannon divergence (JSD) only when the discriminator is optimal (Arjovsky & Bottou,
2017), which may not always be achievable in practice; even when the discrminator is optimal,
using JSD optimizing relatively loose upper bounds on the counterfactual error. To address these
challenges, we propose using the Wasserstein-1 distance and provides stronger theoretical guaran-
tees (Redko et al., 2017; Mansour et al., 2012).

Masked language modeling. Masked language modeling (MLM) is a common self-supervised
pre-training technique for large language models. It operates by randomly masking certain words
or tokens in the input, with the model trained to predict the masked tokens. BERT (Devlin, 2018)
is the most well-known model that uses this technique. Recent studies have also demonstrated
the effectiveness of MLM in enhancing generalization across sequence-based tasks. For example,
Chaudhary et al. (2020) shows that when combined with cross-lingual dictionaries, MLM improves
predictions for the original masked word and also generalizes to its cross-lingual synonyms. Inspired
by the success of masking strategies in language models, we introduce Random Temporal Masking
(RTM) for time-series data. Unlike MLM, which focuses on predicting the masked inputs, RTM
encourages the model to focus on information that is crucial for both the current time point and future
time points, preserve causal information, and reduce the risk of overfitting to factual outcomes.

4 THEORETICAL MOTIVATION FOR SUB-TREATMENT GROUP ALIGNMENT

This section provides a theoretical motivation for our proposed Sub-treatment Group Alignment
(SGA) method, rigorously illustrating that aligning sub-treatment groups in the latent space leads
to more effective deconfounding in estimating counterfactual outcomes over time series.

From Static to Time Series. We first note that SGA is in essence an improved alignment method
for static causal inference problems where the total number of time steps is 1. In this setting,
alignment of treatment groups has proven effective in reducing confounding. By aligning the cor-
responding sub-treatment groups, SGA results in more refined alignment and thus more effective
confounding reduction. Building on the idea of alignment in static setting, existing approaches for
time series align the covariates at individual time steps. In other words, these approaches consider
the confounding problems at individual time steps to be static problems, and align them individually.
To this end, replacing existing alignment method at each time step with SGA improves alignment
at every time step, leading to more effective confounding reduction for the whole time series.

Section Organization. Given that existing approaches for time series consider alignments at vary-
ing time steps as individual static problems and we aim to establish that SGA improves alignment
at every time step, it is sufficient to consider static settings. Thus, in Section 4.1 we briefly review
representation learning-based models which are based on the idea of alignment and why alignment
helps preventing bias from confounders in the static setting. In Section 4.2, we theoretically estab-
lish that SGA indeed improves alignment in the static setting, implying that it improves alignment
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for existing approaches for time series at each individual time step. It follows naturally that SGA
leads to overall improvement for the time series.

4.1 ALIGNMENT FOR STATIC SETTING

Since there is only one time step t = 1 in the static setting, we will omit all notations about the time
step for clarity. We will use the Wasserstein-1 distance W1 to measure the statistical discrepancy
between two random variables. Due to space constraint, we defer mathematical definition of W1 to
Appendix D.11.

Representation Learning-based Models. Let Φ : X → R be a representation-learning function
and h : R× {0, 1} → Y be an hypothesis. We have h(Φ(x), a) as a predictor for an individual x’s
potential outcome under treatment assignment a. The goal is to find a pair of (h,Φ) that optimizes
both the factual loss ϵ⋆F (h,Φ) and counterfactual loss ϵCF (h,Φ), which are defined in Appendix D.2
and D.9 due to space constraint. Note that low factual and counterfactual losses are both necessary
and sufficient conditions for accurate potential outcome prediction (Aloui et al., 2023).

Counterfactual Error Estimation. However, the counterfactual loss ϵCF (h,Φ) cannot be directly
optimized because the counterfactual outcomes are not observed in real-world scenarios. To this end,
a group of well-established approaches minimize upper bounds of ϵCF (h,Φ). These approaches are
mainly based on the following result from Shalit et al. (2017), which provides an upper bound for
ϵCF (h,Φ) with observable quantities.
Theorem 4.1 (Simplified Lemma A8 from Shalit et al. (2017), complete version provided in Ap-
pendix D.10.). Let Φ : X → R be a one-to-one and Jacobian-normalized representation function.
Let h : R× {0, 1} → Y be a hypothesis with Lipschitz constant:

ϵCF (h,Φ) ≤ ϵ⋆F (h,Φ) + 2 ·BΦ ·W1(p
0
Φ, p

1
Φ), (2)

where BΦ is a constant and paΦ is the distribution of the random variable Φ(X) conditioned on
A = a, that is, representations for individuals receiving treatment a ∈ {0, 1}.

Motivation for Alignment. This theorem implies that a model (Φ, h) has low counterfactual er-
ror if (i) it has low factual error (which can be easily achieved by minimizing the prediction error
on the observational data) and (ii) the covariates of individuals from distinct treatment groups are
statistically similar to each other in the latent (representation) space. Motivated by these, represen-
tation learning-based methods aim to align the treated and control groups in the latent space while
minimizing the factual error. In particular, successful alignment and low factual error guarantee a
small value for the upper bound in Equation (2), implying the model has low counterfactual error.
However, in practice, the error bound may be loose, leaving the model performance suboptimal.

4.2 BENEFITS OF SUB-TREATMENT GROUP ALIGNMENT

To this end, we propose to use the sub-treatment group structures to achieve tighter counterfactual
error bound, thus supporting more effective alignment.

Sub-treatment Groups. We assume that each treatment group is a mixture of K sub-treatment
groups in the latent space, and that the sub-treatment groups across different treatment groups cor-
respond to one another. For example, in medical studies, patients may naturally form sub-groups
before the beginning of experiments based on latent variables such as demographic characteris-
tics or genetic factors. Consider a scenario where patients are sub-grouped according to age (e.g.,
children, adults, seniors), gender, or genetic markers that influence their response to treatment. Even
though these patients receive different treatments, the underlying characteristics defining the sub-
groups are consistent across treatment groups. By aligning these corresponding sub-groups in the
latent space, we can more effectively account for hidden confounders like genetic predispositions or
socio-demographic factors, leading to more accurate estimation of treatment effects.

Specifically, we have:

p0Φ =
∑K

k=1 w
0
kP

0
Φ,k, p1Φ =

∑K
k=1 w

1
kP

1
Φ,k,

where for a ∈ {0, 1}, wa
k represents the proportion of the k-th sub-group in treatment group a, and

P a
Φ,k denotes the distribution of the representations of the individuals in the k-th sub-group under

treatment a.
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Sub-treatment Group Alignment (SGA). SGA has the following alignment objective:∑K
k=1 w

1
kW1

(
P 0
Φ,k, P

1
Φ,k

)
. (3)

In particular, SGA minimizes the weighted sum of the Wasserstein distances between these corre-
sponding sub-treatment groups. By aligning on a sub-treatment group level, SGA achieves more
refined alignment. Indeed, motivated by the generalization bound in the field of domain adapta-
tion (Liu et al., 2023), we next prove in Theorem 4.2 that SGA is at least as tight as the original
alignment under reasonable assumptions, thus resulting in more effective deconfounding.
Theorem 4.2 (SGA Improves Generalization Bounds). Under the following assumptions:

A1. For all k, the sub-distributions P 0
Φ,k and P 1

Φ,k are Gaussian distributions with means m0
k

and m1
k, and covariances Σ0

k and Σ1
k, respectively. The distance between corresponding sub-

distributions is less than or equal to the distance between non-corresponding sub-distributions, i.e.,
W1(P

0
Φ,k, P

1
Φ,k) ≤W1(P

0
Φ,k, P

1
Φ,k′) for k ̸= k′.

A2. There exists a small constant ϵ > 0, such that max
1≤k≤K

(tr(Σ0
k)) ≤ ϵ and max

1≤k≤K
(tr(Σ1

k)) ≤ ϵ.

Then the following inequalities hold:

ϵCF (h,Φ) ≤ ϵF (h,Φ) + 2BΦ

(∑K
k=1 w

1
kW1(P

0
Φ,k, P

1
Φ,k)

)
and∑K

k=1 w
1
kW1(P

0
Φ,k, P

1
Φ,k) ≤W1(p

0
Φ, p

1
Φ) + δc,

where BΦ is the same constant in Theorem 4.1 and δc is 4
√
ϵ.

Proof of Theorem 4.2. See in Appendix D.16.

Remark 4.3. Theorem 4.2 proves that sub-treatment group alignment improves the original coun-
terfactual error bound in Theorem 4.1 by optimizing an upper bound that is at least as tight as
the original bound. In Appendix F.1.3, we provide empirical evidence that SGA indeed results in a
much tighter upper bound compared to the original counterfactual error bound.

5 FRAMEWORK

We propose a framework for counterfactual estimation in time-series data that incorporates our two
novel techniques: Sub-treatment Group Alignment (SGA) and Random Temporal Masking (RTM).

Model Architecture. Importantly, our framework is not restricted to any specific architecture and
can be integrated with various representation-based approaches for causal inference in time series.
Figure 2 illustrates our framework. In particular, we consider approches consisting of an time series
encoder ϕE , parameterized by θE , which learns representations of the input time series data, and a
regressor fY , parameterized by θY , which predicts the outcome at the next time point. We note that
the encoder ϕE can be instantiated with any sequence model architecture, such as RNNs, LSTMs
(Hochreiter, 1997), or transformers (Vaswani, 2017). In Section 6, we experiment with two such
approaches Causal Transformer (Melnychuk et al., 2022) and Counterfactual Recurrent Networks
(CRN) (Bica et al., 2020), which are well-established for causal inference in time series.

Random Temporal Masking (RTM). RTM is applied to the observational data before the train-
ing of models. To implement RTM, we mask covariates at a set of randomly selected time steps by
replacing them with Gaussian noise. The model is subsequently trained to predict the outcomes de-
spite these masked covariates, encouraging it to focus on causal information that is robust over time.
RTM also reduces the risk of overfitting to factual outcomes at those selected time steps because,
after masking, the covariates at current time is independent of the outcome. This is particularly
helpful when the potential outcomes at the current time steps are strongly correlated with cur-
rent covariates because under these scenarios the models are inclined to heavily rely on current
covariates, thus overfitting to the factual distribution.

Objective Function. Our framework optimizes the following objective function at each time step t:

min
θY ,θE

Lt
Y (θY , θE) + λLt

D(θE),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Overview of our method at each timepoint t - for simplicity, we only show binary treatment
scenario. Our method is flexible, and can be integrated with many representation-based approaches
for time-series causal inference, including CRN Bica et al. (2020) and CT Melnychuk et al. (2022),
among others.

where Lt
Y represents the factual outcome loss and Lt

D denotes the SGA loss calculated with the
Wasserstein-1 distance, balanced by λ. We next elaborate on them in detail.

Factual Outcome Loss. At each time step t, the model learns to predict the observed outcomes,
conditioned on H

(i)
t which contains the information from previous steps and the current covariates,

by optimizing the following objective loss:

Lt
Y (θY , θE) =

1

N

N∑
i=1

(ℓ(yt+1
i , ŷt+1

i )),

where ŷt+1
i = fY

(
ϕE

(
H

(i)
t , A

(i)
t

))
, and ℓ denotes the loss function (e.g., mean squared error).

SGA Loss. Motivated by Section 4, our framework aligns the sub-treatment groups across distinct
treatment groups. To this end, at each time step t and for each treatment group a, we use Gaussian
Mixture Models (GMMs) to cluster the individuals’ features in the representation space into a pre-
specifed K sub-treatment groups. Let the random variable ϕt,a,k

E (Ht) denote the representations of
samples in the k-th sub-group of treatment group a at time step t.

To accommodate the applications with multiple treatment groups (more than two), we propose,
for each time step t and each corresponding sub-treatment group, to align the sub-treatment groups
with the uniform mixtures of them. That is, for all the k-th sub-treatment groups in all |A| treatment
groups where |A| is the total number of treatments, we first create a mixture of them with uniform
weights and align all of them with the uniform mixture. Note that by triangle inequality of the
Wasserstein distance, this is a sufficient condition to align multiple groups well. Specifically, the
SGA loss is defined as:

Lt
D(θE) =

K∑
k=1

∑
a∈A

wt,a
k W1(ϕ

t,a,k
E (Ht), ϕ

t,k
E (Ht)),
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where wt,a
k represents the proportion of samples in sub-group k of treatment group a, and ϕt,k

E (Ht)

is the uniform mixture of {ϕt,a,k
E (Ht)}a∈A. Note that all the quantities in Lt

D(θE) can be estimated
from the observational data. We provide implementation details and our algorithm in Appendix E.

6 EXPERIMENTS

We conduct experiments on a fully-synthetic dataset and a semi-synthetic dataset to evaluate the
effectiveness of our proposed methods.. The detailed experimental setup is provided in Appendix F.
In our experiments, we demonstrate the effectiveness and flexibility of our proposed methods, SGA
and RTM, by integrating them with existing state-of-the-art models. Specifically, we incorporate
our techniques into the architectures of the LSTM-based Counterfactual Recurrent Networks (CRN)
(Bica et al., 2020) and the transformer-based Causal Transformer (CT) (Melnychuk et al., 2022).
We observe that integration of SGA and RTM into CRN and CT improves their performance, estab-
lishing new state-of-the-art (SOTA) performance.

Baseline Methods We compare our methods against baseline approaches that have shown SOTA
performance in the literature for time-series counterfactual outcome estimation. These include:
Marginal Structural Models (Robins et al., 2000; Hernán et al., 2001), Recurrent Marginal Structural
Networks (RMSNs) (Lim, 2018), G-Net (Li et al., 2020), Counterfactual Recurrent Networks (CRN)
(Bica et al., 2020), and Causal Transformer (CT) (Melnychuk et al., 2022).

6.1 EXPERIMENTS WITH FULLY-SYNTHETIC DATA

We first consider a fully-synthetic benchmark frequently used in the counterfactual outcome es-
timation literature (Bica et al., 2020; Melnychuk et al., 2022). This dataset is generated with a
Pharmacokinetic-Pharmacodynamic (PK-PD) model of tumor growth (Geng et al., 2017), allowing
us to simulate treatment-response dynamics and varying levels of time-dependent confounding.

Metric and Tasks. Following Melnychuk et al. (2022), we assess the performance of our methods
by computing the normalized Root Mean Squared Error (RMSE) between the true counterfactual
outcomes and the estimated counterfactual outcomes on both one-step-ahead prediction and τ -
step-ahead prediction tasks. These evaluations are conducted under varying levels of time-varying
confounding, indexed by γ. Detailed information on dataset generation and hyperparameter settings
is provided in Appendix F.1.

Results Overview. We first show that combining SGA and RTM achieves SOTA performance,
outperforming existing methods. We then demonstrate that applying SGA and RTM individually
also improves counterfactual outcome estimation compared to baseline models.

6.1.1 COMBINED PERFORMANCE OF SGA AND RTM

As shown in Figure 3, applying SGA and RTM on top of CT and CRN significantly improves their
performance compared to the vanilla models, on both one-step-ahead and τ -step-ahead prediction
tasks. Furthermore, our methods also achieve superior performance compared to all other bench-
mark methods in almost all of the settings. Notably, our methods perform exceptionally well in
scenarios with high levels of confounding, indicating their effectiveness in deconfounding. The
performance of the benchmark methods is sourced from Melnychuk et al. (2022).

6.1.2 INDIVIDUAL PERFORMANCE OF SGA

We next evaluate the individual performance of SGA. As shown in Table 1, incorporating SGA into
both CRN and CT achieves superior results compared to the vanilla models. The introduction
of SGA consistently improves prediction accuracy, with more pronounced improvements in set-
tings with higher levels of confounding. This supports our claim that SGA results in more refined
alignment and thus more effective confounding reduction.

It is important to note that in scenarios with no confounding (γ = 0), our methods do not perform
as strongly. This is because aligning distributions across different treatment groups is unnecessary
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(a) One-step-ahead prediction (b) τ -step-ahead prediction

Figure 3: Performance comparison on (a) one-step-ahead prediction and (b) τ -step-ahead pre-
diction tasks under varying levels of time-varying confounding (indexed by γ). Our methods
(CT+SGA+RTM and CRN+SGA+RTM) significantly outperform baseline models, especially in
high-confounding scenarios. Note that CT (α = 0) refers to CT without domain confusion loss to
balance the representation.

Table 1: Normalized RMSE for one-step-ahead
and τ -step-ahead predictions on fully synthetic
data, comparing vanilla CRN/CT with CRN/CT
enhanced with SGA.

τ Method γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

τ = 1

CRN 0.755 0.788 0.881 1.062 1.358
CRN + SGA 0.808 0.764 0.819 0.986 1.208

CT 0.770 0.783 0.864 1.098 1.413
CRN + SGA 0.816 0.754 0.843 1.010 1.191

τ = 2

CRN 0.671 0.666 0.741 1.668 1.151
CRN + SGA 0.633 0.632 0.656 0.722 1.036

CT 0.681 0.677 0.713 0.908 1.274
CT + SGA 0.645 0.645 0.718 0.848 1.116

τ = 3

CRN 0.700 0.692 0.818 1.959 1.360
CRN + SGA 0.656 0.650 0.698 0.864 1.116

CT 0.703 0.712 0.770 1.010 1.536
CT + SGA 0.662 0.691 0.762 0.925 1.300

τ = 4

CRN 0.734 0.722 0.898 2.201 1.573
CRN + SGA 0.689 0.668 0.743 0.998 1.223

CT 0.726 0.748 0.822 1.089 1.762
CT + SGA 0.682 0.723 0.813 0.979 1.390

τ = 5

CRN 0.769 0.755 0.976 2.361 1.730
CRN + SGA 0.726 0.686 0.782 1.114 1.341

CT 0.756 0.786 0.870 1.154 1.922
CT + SGA 0.708 0.762 0.854 1.022 1.454

τ = 6

CRN 0.807 0.790 1.047 2.480 1.827
CRN + SGA 0.757 0.701 0.810 1.218 1.465

CT 0.789 0.821 0.909 1.205 2.052
CT + SGA 0.742 0.800 0.876 1.040 1.440

Table 2: Normalized RMSE for one-step-ahead
and τ -step-ahead predictions on fully synthetic
data, comparing vanilla CRN/CT with CRN/CT
enhanced with RTM.

τ Method γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

τ = 1

CRN 0.755 0.788 0.881 1.062 1.358
CRN + RTM 0.702 0.712 0.757 0.815 0.930

CT 0.770 0.783 0.864 1.098 1.413
CT + RTM 0.735 0.746 0.762 0.901 1.038

τ = 2

CRN 0.671 0.666 0.741 1.668 1.151
CRN + RTM 0.705 0.674 0.745 0.990 1.153

CT 0.681 0.677 0.713 0.908 1.274
CT + RTM 0.686 0.677 0.693 0.785 1.004

τ = 3

CRN 0.700 0.692 0.818 1.959 1.360
CRN + RTM 0.726 0.687 0.791 0.893 1.219

CT 0.703 0.712 0.770 1.010 1.536
CT + RTM 0.691 0.697 0.720 0.856 1.194

τ = 4

CRN 0.734 0.722 0.898 2.201 1.573
CRN + RTM 0.756 0.724 0.862 0.973 1.377

CT 0.726 0.748 0.822 1.089 1.762
CT + RTM 0.707 0.735 0.752 0.921 1.362

τ = 5

CRN 0.769 0.755 0.976 2.361 1.730
CRN + RTM 0.783 0.765 0.907 1.041 1.474

CT 0.756 0.786 0.870 1.154 1.922
CT + RTM 0.725 0.765 0.787 0.968 1.522

τ = 6

CRN 0.807 0.790 1.047 2.480 1.827
CRN + RTM 0.802 0.796 0.934 1.094 1.541

CT 0.789 0.821 0.909 1.205 2.052
CT + RTM 0.745 0.800 0.819 1.022 1.663

Note: The values in blue indicate lower RMSE for CRN-based models, and values in violet indicate lower
RMSE for CT-based models. The results demonstrate that both SGA and RTM consistently improve perfor-
mance, especially in settings with higher levels of confounding (indexed by γ).

when there is no confounding. Consequently, introducing an extra alignment loss in such cases can
interfere training, leading to suboptimal performance.

6.1.3 INDIVIDUAL PERFORMANCE OF RTM

We evaluate the individual performance of RTM by comparing the vanilla CRN and CT models
against their counterparts enhanced with RTM. As shown in Table 2, introducing RTM consistently
improves prediction accuracy, with more improvements in later time steps and settings with higher
levels of confounding. This confirms that RTM encourages the model to focus on causal relation-
ships that span across time, and mitigating error accumulation.

9
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Table 3: RMSE for one-step-ahead and τ -step-ahead predictions on semi-synthetic data based on
real-world medical data (MIMIC-III).

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10
MSMs 0.37 0.57 0.74 0.88 1.14 1.95 3.44 > 10.0 > 10.0 > 10.0
RMSNs 0.24 0.47 0.60 0.70 0.78 0.84 0.89 0.94 0.97 1.00
G-Net 0.34 0.67 0.83 0.94 1.03 1.10 1.16 1.21 1.25 1.29
CRN 0.30 0.48 0.59 0.65 0.68 0.71 0.72 0.74 0.76 0.78
CRN + SGA + RTM 0.27 0.43 0.52 0.58 0.62 0.65 0.67 0.69 0.72 0.73
CT (α = 0) 0.20 0.38 0.46 0.50 0.52 0.54 0.56 0.57 0.59 0.60
CT 0.21 0.38 0.46 0.50 0.53 0.54 0.55 0.57 0.58 0.59
CT + SGA + RTM 0.21 0.38 0.44 0.50 0.52 0.52 0.56 0.57 0.58 0.58

Note: The values in blue indicate lower RMSE for CRN-based models, and values in violet indicate lower
RMSE for CT-based models.

6.2 EXPERIMENTS WITH SEMI-SYNTHETIC DATA

To further validate our proposed methods, SGA and RTM, we conduct experiments on a semi-
synthetic dataset based on real-world medical data from intensive care units. This dataset is gener-
ated following the approach of Melnychuk et al. (2022), which builds upon the MIMIC-III dataset
(Johnson et al., 2016) to simulate patient trajectories with outcomes that reflect both endogenous
and exogenous dependencies while incorporating treatment effects. Detailed information on dataset
generation and hyperparameter settings is provided in Appendix F.2.

Results and Analysis. As shown in Table 3, applying SGA and RTM on top of CT and CRN
improves their performance compared to the vanilla models. Furthermore, our methods yield
performance comparable to the SOTA models. This is consistent with the findings reported in
Melnychuk et al. (2022) that confounding may not be the primary challenge in this task, as there is
also minimal difference between the performance of CT and CT (α). This observation implies that,
in this semi-synthetic dataset, the level of confounding may be relatively low. To this end, given
that the strength of our approach lies in reducing confounding, it is expected that the performance
gain is marginal compared to existing state-of-the-art methods.

7 CONCLUSION

In this work, we introduce two novel techniques—Sub-treatment Group Alignment (SGA) and
Random Temporal Masking (RTM)—to enhance counterfactual outcome estimation in time series.
SGA addresses time-varying confounding by aligning sub-treatment group distributions in the latent
space, leading to tighter counterfactual error bound and more effective deconfounding, as supported
by our theoretical analysis. RTM improves model robustness and generalization by encouraging
focus on causal relationships through the random masking of covariates over time.

Our methods are flexible and can be integrated into various architectures, as we have demonstrated
in our experiments that incorporating them into SOTA models like CRN and CT improve their
performance. Experiments on fully synthetic and semi-synthetic datasets showed that combining
SGA and RTM achieves superior performance, outperforming existing methods. Individually, each
technique also contributes to performance improvements, highlighting their respective effectiveness.

REPRODUCIBILITY STATEMENT. We include rigorous definitions and complete proofs of
our theoretical analysis in Appendix D. The code required to replicate all experiments is included in
the supplementary materials, attached with the submission. Detailed descriptions of the experiments
are located in Appendix F.1 for the fully synthetic dataset and Appendix F.2 for the semi-synthetic
dataset. The hyperparameters necessary for reproducing our results are also included in these sec-
tions. Benchmark method performance is sourced from the GitHub repository of Melnychuk et al.
(2022). The MIMIC-III dataset, used in our semi-synthetic experiment, is available for free down-
load from the MIMIC-III Clinical Database Demo (version 1.4) on PhysioNet, licensed under the
Open Data Commons Open Database License v1.0. All experiments were conducted on a computer
cluster with A100-SXM4-40GB GPUs.
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A POTENTIAL OUTCOMES FRAMEWORK WITH TIME-VARYING
TREATMENTS AND OUTCOMES

Building on the potential outcomes framework (Rosenbaum & Rubin, 1983; Rubin, 2005), we ex-
tend these assumptions to accommodate time-varying treatments and outcomes, following Robins
& Hernan (2008).

Assumption A.1. (Consistency) If Āt = āt is a given sequence of treatments for some patient,
then Yt+1[āt] = Yt+1 This means an individual’s potential outcome under the observed treatment
history is the observed outcome.

Assumption A.2. (Sequential Positivity) Positivity states that there is non-zero probability or not
receiving any of the counterfactual treatment. It can be expressed as 0 ≤ P (At = at|H̄t = h̄t) ≤ 1,
if P (H̄t = h̄t) > 0.

Assumption A.3. (Sequantial Ignorability) There is no unobserved confounding of treatment at any
time and any future outcome. This can be expressed as At ⊥⊥ Yt+1[at]|H̄t,∀ at ∈ A.

Using assumptions A.1–A.3, Robins (1986) establishes the sufficient conditions for identifiability
through G-computation, ensuring that causal effects can be appropriately identified.

B CAUSAL GRAPH

Fig 4 visualizes Causal Directed Acyclic Graphs (DAGs) illustrating causal relationships. In the
static (non-time-series) scenario, we have A as the treatment assignment, X as the covariate, and Y
as the outcome. In the time-series scenario, T is the treatment sequence, Xt∪V represents observed
covariates at time t), and Yt is the outcome at time t. Here, V denotes static covariates that do not
change over time. The diagrams capture the dynamics of treatment effects over time, showing how
each component influences subsequent outcomes within the causal framework.

A

X

Y

(a)

Xt−1 ∪ V Xt ∪ V V

At−1 At [At+1]

Yt−1 Yt Yt+1

(b)

Figure 4: Causal Directed Acyclic Graphs (DAGs) Illustrating Causal Relationships. (a) demon-
strate a static (non-time-series) scenario. (b) illustrates a time-series scenario.

C RELATED WORK

Estimating counterfactual outcomes under static scenarios. Many methods have been proposed
to learn a balanced representation that aligns the distributions across various treatment groups, ef-
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fectively addressing confounding in static settings. A foundational work in this area, CFRNet intro-
duced by Shalit et al. (2017), establishes a generalization-error bound illustrating that the expected
error in estimating individual treatment effects (ITE) is bounded by the sum of its standard gen-
eralization error and the discrepancy between the treated and control distributions induced by the
representation. This concept has been further explored in several subsequent studies on deep causal
inference (Yao et al., 2018; Kallus, 2020; Du et al., 2021; Jiang et al., 2023a;b). However, these
methods primarily focus on binary treatments and static data, and their approach of aligning overall
treated and control group distributions may not sufficiently adaptable to time-series data (Hernán
et al., 2000; Mansournia et al., 2012), where time-dependent confounders make it difficult to disen-
tangle the true effect of a treatment from these caused by the confounding variables.

Estimating counterfactual outcomes over time. Estimating counterfactual outcomes in time-series
data is challenging due to time-varying confounders. Traditional methods such as G-computation
and marginal structural models (Robins, 1986; Robins et al., 2000; Hernán et al., 2001; Robins
& Hernan, 2008; Xu et al., 2016) often lack flexibility for complex datasets and rely on strong
assumptions. To address these limitations, researchers have developed models that build on the
potential outcomes framework initially proposed by Rubin (Rubin, 1978) and extended to time se-
ries by Robins & Hernan (2008). Notable among recent methods are Recurrent Marginal Struc-
tural Networks (RMSNs) (Lim, 2018), G-Net (Li et al., 2020), Counterfactual Recurrent Networks
(CRN) (Bica et al., 2020), and the Causal Transformer (CT) (Melnychuk et al., 2022), which use
approaches such as propensity networks and adversarial learning to mitigate the effects of time-
varying confounding. The CRN employs recurrent neural networks like LSTMs, while the CT uses
Transformer-based architectures, representing the state-of-the-art in this domain. However, practical
challenges with adversarial training can affect the stability of causal effect estimations. Specifically,
training adversarial networks can be challenging due to issues such as mode collapse and oscillations
(Liang et al., 2018). Additionally, adversarial training minimizes the Jensen-Shannon divergence
(JSD) only when the discriminator is optimal (Arjovsky & Bottou, 2017), which may not always
be achievable in practice; even when the discrminator is optimal, using JSD optimizing relatively
loose upper bounds on the counterfactual error. To address these challenges, we propose using
the Wasserstein-1 distance. The Wasserstein distance is bounded above by the Kullback-Leibler
divergence (JSD is a symmetrized and smoothed version of the Kullback–Leibler divergence) and
provides stronger theoretical guarantees (Redko et al., 2017; Mansour et al., 2012). Moreover, the
Wasserstein distance has stable gradients even when the compared distributions are far apart (Gul-
rajani et al., 2017), which enhances training stability and effectiveness.

Masked language modeling. Masked language modeling (MLM) is a common self-supervised
pre-training technique for large language models. It operates by randomly masking certain words
or tokens in the input, with the model trained to predict the masked tokens. BERT (Devlin, 2018)
is the most well-known model that employs this technique. Recent studies have also demonstrated
the effectiveness of MLM in enhancing generalization across various sequence-based tasks. For
example, Chaudhary et al. (2020) showed that when combined with cross-lingual dictionaries, MLM
not only improves predictions for the original masked word but also generalizes to its cross-lingual
synonyms. Additionally, Czinczoll et al. (2024) illustrated how MLM enhances generalization in
long-document tasks by leveraging higher-level semantic representations. Inspired by the success of
masking strategies in language models, we introduce Random Temporal Masking (RTM) for time-
series data. Unlike MLM, which focuses on predicting the masked inputs, RTM encourages the
model to focus on information that is crucial not only for the current time point but also for future
time points, preserve causal information, and reduce the risk of overfitting to factual outcomes.

D THEOREMS AND PROOFS

Definition D.1 (Definition A4 in Shalit et al. (2017)). Let Φ : X → R be a representation function.
Let h : R × {0, 1} → Y be an hypothesis defined over the representation space R. The expected
loss for the unit and treatment pair (x, t) is:

ℓh,Φ(x, t) =

∫
Y
L(Yt, h(Φ(x), t))p(Yt|x)dYt,

where L(·, ·) is a loss function, from Y × Y to R+.
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Definition D.2 (Definition A5 in Shalit et al. (2017)). The expected factual loss and counterfactual
losses of h and Φ are, respectively:

ϵF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, t)p(x, t)dxdt,

ϵCF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, t)p(x, 1− t)dxdt,

where p(x, t) is distribution over X × {0, 1}

Definition D.3. For some K ≥ 0, the set of K-Lipschitz functions denotes the set of functions f
that verify:

∥f(x)− f(x′)∥ ≤ K∥x− x′∥, ∀x, x′ ∈ X

Here, we assume that the hypothesis class H is a subset of λH -Lipschitz functions, where λH is a
positive constant, and we assume that the true labeling functions are λ-Lipschitz for some positive
real number λ. Also if f is differentiable, then a sufficient condition for K-Lipschitz constant is if
∥∂f∂x∥ ≤ x for all s ∈ X .

Assumption D.4 (Assumption A2 in Shalit et al. (2017)). There exists a constant K > 0 such that
for all x ∈ X , t ∈ {0, 1}, ∥∂p(Yt|x)

∂x ∥ ≤ K.

Assumption D.5 (Assumption A3 in Shalit et al. (2017)). The loss function L is differentiable, and
there exists a constant KL > 0 such that

∣∣∣dL(y1,y2)
dyi

∣∣∣ ≤ KL for i = 1, 2. Additionally, there exists a

constant M such that for all y2 ∈ Y , M ≥
∫
Y L(y1, y2)dy1.

Definition D.6 (Definition A12 in Shalit et al. (2017)). Let ∂Φ(x)
∂x be the Jacobian matrix of Φ

at point x, i.e., the matrix of the partial derivatives of Φ. Let σmax(A) and σmin(A) denote re-

spectively the largest and smallest singular values of a matrix A. Define ρ(Φ) = supx∈X σmax(
∂Φ(x)

∂x )

σmin(
∂Φ(x)

∂x )
.

Definition D.7 (Definition A13 in Shalit et al. (2017)). We will call a representation function Φ :

X → R Jacobian-normalized if supx∈X σmax(
∂Φ(x)
∂x ) = 1

Note that any non-constant representation function Φ can be Jacobian-normalized by a simple scalar
multiplication.

Lemma D.8 (Lemma A3 in Shalit et al. (2017)). Let u = p(t = 1), then we have,

ϵF (h,Φ) = u · ϵt=1
F (h,Φ) + (1− u) · ϵt=0

F (h,Φ)

ϵCF (h,Φ) = (1− u) · ϵt=1
CF (h,Φ) + u · ϵt=0

CF (h,Φ)

Definition D.9. Let u = p(t = 1) be the marginal probability of treatment and assume 0 < u < 1.

ϵ⋆F (h,Φ) = (1− u)ϵt=1
F (h,Φ) + uϵt=0

F (h,Φ)

Now using the Definition D.9, we rewrite Lemma A8 from Shalit et al. (2017). Then we get:

Theorem D.10 (Lemma A8 from Shalit et al. (2017)). Let u = p(t = 1) be the marginal probability
of treatment and assume 0 < u < 1. Let Φ : X → R be a one-to-one and Jacobian-normalized
representation function. Let K be the Lipschitz constant of the functions p(Yt|x) on X . Let KL be
the Lipschitz constant of the loss function L, and M be as in Assumption D.5. Let h : R×{0, 1} → Y
be an hypothesis with Lipschitz constant bK:

ϵCF (h,Φ) ≤ ϵ⋆F (h,Φ) + 2 (Mρ(Φ) + b) ·K ·KL ·W1(p
0
Φ, p

1
Φ), (4)

where BΦ = (Mρ(Φ) + b) ·K ·KL is a constant and paΦ is the distribution of the random variable
Φ(X) conditioned on A = a, that is, representations for individuals receiving treatment a ∈ {0, 1}.
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Definition D.11. Wasserstein Distance. The Kantorovich-Rubenstein dual representation of the
Wasserstein-1 distance (Villani, 2009) between two distributions p0Φ and p1Φ is defined as

W1(p
0
Φ, p

1
Φ) = sup∥f∥L≤1 Ex∼p0

Φ
[f(x)]− Ex∼p1

Φ
[f(x)],

where the supremum is over the set of 1-Lipschitz functions (all Lipschitz functions f with Lipschitz
constant L ≤ 1. For notational simplicity, we use D(X1, X2) to denote a distance between the
distributions of any pair of random variables X1 and X2. For instance, W1(Φ(X0),Φ(X1)) denotes
the Wasserstein-1 distance between the distributions of the random variables Φ(X0) and Φ(X1) for
any transformation Φ.

Next, motivated by the generalization bound in the field of domain adaptation Liu et al. (2023), we
prove that sub-treatment group alignment improves the original alignment method in Theorem 4.1
by optimizing a tighter upper bound of the counterfactual error.

Definition D.12. (Wasserstein-like distance between Gaussian Mixture Models) Assume that both
X0 and X1 are mixtures of K sub-domains. In other words, we have p0Φ =

∑K
k=1 w

0
kP

0
Φ,k and

p1Φ =
∑K

k=1 w
1
kP

1
Φ,k where for a ∈ 0, 1, wa

k represents the proportion of the k-th sub-distribution in
treatment group a. P a

Φ,k denotes the distribution of the representations in the k-th sub-group under
treatment a. We define:

MW1(p
0
Φ, p

1
Φ) = min

w∈Π(w0,w1)

K∑
k=1

K∑
k′=1

wk,k′W1(P
0
Φ,k, P

1
Φ,k′) (5)

where w0 .
= [w0

1, . . . , w
0
K ] and w1 .

= [w1
1, . . . , w

1
K ] belong to ∆K (the K−1 probability simplex).

Π(w0, w1) represents the simplex ∆K×K with marginals w0 and w1.

Lemma D.13 (Extension to Lemma 4.1 of Delon & Desolneux (2020)). Let µ0 =
∑K0

k=1 π
k
0µ

k
0

with µk
0 = N (mk

0 ,Σ
k
0) and µ1 =

∑K1

k=1 π
k
1δmk

1
. Let µ̃0 =

∑K0

k=1 π
k
0δmk

0
(µ̃0 only retains the means

of µ0). Then,

MW1(µ0, µ1) ≤W1(µ̃0, µ1) +

K0∑
k=1

πk
0

√
tr (Σk

0)

where π0
.
= [π1

0 , . . . , π
k
0 ] and π1

.
= [π1

1 , . . . , π
k
1 ] belong to ∆K (the K − 1 probability simplex)

Proof.

MW1(µ0, µ1) = inf
w∈Π(π0,π1)

∑
k,l

wk,lW1(µ
k
0 , δml

1
)

≤ inf
w∈Π(π0,π1)

∑
k,l

wk,lW2(µ
k
0 , δml

1
)

= inf
w∈Π(π0,π1)

∑
k,l

wk,l

[√
||ml

1 −mk
0 ||2 + tr (Σk

0)

]
≤ inf

w∈Π(π0,π1)

∑
k,l

wk,l||ml
1 −mk

0 ||+
∑
k

πk
0

√
tr (Σk

0)

≤W1(µ̃0, µ1) +

K0∑
k=1

πk
0

√
tr (Σk

0)

(6)

Remark D.14. We use µ0, µ1, and µ̃0 to represent a general scenario for measuring the distance
between a Gaussian mixture and a mixture of Diract distributions. In the following proofs, we will
utilize the defined notation. For instance, µ0 can be denoted as p0Φ, while µ̃0 corresponds to p̃0Φ.
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Theorem D.15 (Extension to Proposition 6 in (Delon & Desolneux, 2020)). Let p0Φ and p1Φ be two
Gaussian mixtures with p0Φ =

∑K
k=1 w

0
kP

0
Φ,k and p1Φ =

∑K
k=1 w

1
kP

1
Φ,k. For all k, P 0

Φ,k / P 1
Φ,k are

Gaussian distributions with mean m0
k / m1

k and covariance Σ0
k / Σ1

k. If for ∀ k, k′, we assume there
exists a small constant ϵ > 0, such that maxk(trace(Σ0

k)) ≤ ϵ and maxk′(trace(Σ1
k′)) ≤ ϵ. then:

MW1(p
0
Φ, p

1
Φ) ≤W1(p

0
Φ, p

1
Φ) + 4

√
ϵ (7)

Proof. Here, we follow the same structure of the proof for Wassertein-2 in Delon & Desolneux
(2020). Let (P 0

ϕ)
n
n and ((P 1

ϕ)
n
n be two sequences of mixtures of Dirac masses respectively converg-

ing to P 0
ϕ and P 1

ϕ in P1(Rd). Since MW1 is a distance,

MW1(P
0
ϕ , P

1
ϕ) ≤MW1((P

0
ϕ)

n, (P 1
ϕ)

n) +MW1(P
0
ϕ , (P

0
ϕ)

n) +MW1(P
1
ϕ , (P

1
ϕ)

n)

= W1((P
0
ϕ)

n, (P 1
ϕ)

n) +MW1(P
0
ϕ , (P

0
ϕ)

n) +MW1(P
1
ϕ , (P

1
ϕ)

n)

We can study the limits of these three terms when n→ +∞
First, observe that MW1(P

0
ϕ , P

1
ϕ) = W1((P

0
ϕ)

n, (P 1
ϕ)

n) →
n→+∞

W1(P
0
ϕ , P

1
ϕ) since W1 is continu-

ous on P1(Rd).

Second, based on Lemma D.13, we have that

MW1(P
0
ϕ , (P

0
ϕ)

n) ≤W1(P̃ 0
ϕ , (P

0
ϕ)

n) +

K∑
k=1

w0
k

√
tr(Σ0

k) →
n→+∞

W1(P̃ 0
ϕ , P

0
ϕ) +

K∑
k=1

w0
k

√
tr(Σ0

k)

We observe that x 7→
√
x is a concave function, thus by Jensen’s inequality, we have that

K∑
k=1

w0
k

√
tr(Σ0

k) ≤

√√√√ K∑
k=1

w0
k tr(Σ0

k)

Also By Jensen’s inequality, we have that,

W1(P̃ 0
ϕ , P

0
ϕ) ≤W2(P̃ 0

ϕ , P
0
ϕ).

And from Proposition 6 in (Delon & Desolneux, 2020), we have

W2(P̃ 0
ϕ , P

0
ϕ) ≤

√√√√ K∑
k=1

w0
k tr(Σ0

k)

Similarly for MW1(P
1
ϕ , (P

1
ϕ)

n) the same argument holds. Therefore we have,

lim
n→∞

MW1(P
0
ϕ , (P

0
ϕ)

n) ≤ 2

√√√√ K∑
k=1

w0
k tr(Σ0

k)

And

lim
n→∞

MW1(P
1
ϕ , (P

1
ϕ)

n) ≤ 2

√√√√ K∑
k=1

w1
k tr(Σ1

k)

We can conclude that:

MW1(P
0
ϕ , P

1
ϕ) ≤ lim inf

n→∞
(W1((P

0
ϕ)

n, (P 1
ϕ)

n) +MW1(P
0
ϕ , (P

0
ϕ)

n) +MW1(P
1
ϕ , (P

1
ϕ)

n))

≤W1(P
0
ϕ , P

1
ϕ) + 2

√√√√ K∑
k=1

w0
k tr(Σ0

k) + 2

√√√√ K∑
k=1

w1
k tr(Σ1

k)

≤W1(P
0
ϕ , P

1
ϕ) + 4

√
ϵ

This concludes the proof.
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Theorem D.16 (SGA Improves Generalization Bounds). Under the following assumptions: A1. For
all k, the sub-distributions P 0

Φ,k and P 1
Φ,k are Gaussian distributions with means m0

k and m1
k, and

covariances Σ0
k and Σ1

k, respectively. The distance between corresponding sub-distributions is less
than or equal to the distance between non-corresponding sub-distributions, i.e., W1(P

0
Φ,k, P

1
Φ,k) ≤

W1(P
0
Φ,k, P

1
Φ,k′) for k ̸= k′.

A2. There exists a small constant ϵ > 0, such that max
1≤k≤K

(tr(Σ0
k)) ≤ ϵ and max

1≤k≤K
(tr(Σ1

k)) ≤ ϵ.

Then the following inequalities hold:∑K
k=1 w

1
kW1(P

0
Φ,k, P

1
Φ,k) ≤W1(p

0
Φ, p

1
Φ) + δc,

where δc is 4
√
ϵ.

This theorem shows that the weighted sum of the Wasserstein distances between the aligned sub-
treatment groups (as performed by SGA) is bounded above by the Wasserstein distance between the
overall treatment and control distributions, plus a small constant δc. Therefore, by minimizing the
sum of distances between corresponding sub-groups, SGA effectively tightens the generalization
bound compared to methods that align the overall distributions.

Proof. Let w0 .
= [w0

1, . . . , w
0
K ] and w1 .

= [w1
1, . . . , w

1
K ] belong to ∆K (the K − 1 probability

simplex). Π(w0, w1) represents the simplex ∆K×K with marginals w0 and w1. For any w ∈
Π(w0, w1), we can express w1

k =
∑K

k′=1 wk,k′ . Based on assumption A1, we have:

K∑
k=1

w1
kW1(P

0
Φ,k, P

1
Φ,k) =

K∑
k=1

K∑
k′=1

wk,k′W1(P
0
Φ,k, P

1
Φ,k)

≤
K∑

k=1

K∑
k′=1

wk,k′W1(P
0
Φ,k, P

1
Φ,k′).

Thus, we have (with MW1(p
0
Φ, p

1
Φ) defined in Appendix D.12):

K∑
k=1

w1
kW1(P

0
Φ,k, P

1
Φ,k) ≤ min

w∈Π(w0,w1)

K∑
k=1

K∑
k′=1

wk,k′W1(P
0
Φ,k, P

1
Φ,k′)

= MW1(p
0
Φ, p

1
Φ).

(8)

From Theorem D.15, we have:

MW1(p
0
Φ, p

1
Φ) ≤W1(p

0
Φ, p

1
Φ) + 4

√
ϵ. (9)

Combining the above results:

K∑
k=1

w1
kW1(P

0
Φ,k, P

1
Φ,k) ≤W1(p

0
Φ, p

1
Φ) + 4

√
ϵ. (10)

With Theorem 4.2, we demonstrate that aligning sub-treatment groups via SGA leads to a tighter
bound on the counterfactual loss at each time step. Specifically, the new generalization bound incor-
porates the weighted sum of distances between corresponding sub-groups, which SGA minimizes
through targeted alignment.
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E IMPLEMENTATION DETAILS AND ALGORITHM

Computing the Uniform Mixture of Sub-treatment Groups In our implementation of the SGA
loss, for each time step t and each cluster k, we compute the uniform mixture of sub-treatment
groups ϕt,k

E .
To compute this uniform mixture, we perform the following steps:

1. Concatenate representations across treatments:
For the k-th cluster at time t, we collect the representations from all treatment groups:

ϕt,k
E (Ht) =

⋃
a∈A

ϕt,a,k
E (Ht),

where ϕt,a,k
E (Ht) denotes the representations of samples in the k-th sub-group of treatment

a at time t.
2. Shuffle and subsample:

We shuffle the concatenated representations to ensure that samples from different treat-
ments are thoroughly mixed. Then we select 1

|A| from the concatenated representations as

ϕt,k
E .

Algorithm 1 Counterfactual Outcome Estimation with Sub-treatment Group Alignment (SGA) and
Random Temporal Masking (RTM)

Require:
D = {(Xt

i,A
t
i,Y

t+1
i )}Ni=1: Training data for N individuals for t = 1,...,T

θE , θY : Parameters of encoder ϕE and regressor fY
λ: Hyperparameter for LD

K: Number of sub-treatment groups (clusters)
A: Set of possible treatments
MaskProb: Probability of masking covariates in RTM
η: Learning rate
ℓ(·, ·): Loss function (e.g., mean squared error)

1: Apply Random Temporal Masking (RTM):
2: for each time step t = 1 to T do
3: With probability MaskProb, replace Xt with Gaussian noise
4: end for
5: Initialize LY = 0, LD = 0
6: for each time step t = 1 to T do
7: ΦE(Ht) = ϕE(Ht, A

t)

8: Ŷ = fY (ΦE(Ht))
9: Compute Factual Outcome Loss:

10: LY = LY + ℓ(Y t+1, Ŷ t+1)
11: Compute SGA Loss:
12: for each treatment a ∈ A do
13: Cluster representations into K sub-groups:
14: Apply GMM to ΦE(Ht) to obtain clusters {ϕt,a,k

E }Kk=1

15: Compute weights wt,a
k =

nt,a
k

nt,a , where nt,a
k is the number of samples in cluster k, nt,a is

the total number of samples with treatment a at time t
16: end for
17: Compute uniform mixture of sub-groups ϕt,k

E
18: Compute SGA loss at time t:
19: LD = LD +

∑K
k=1

∑
a∈A wt,a

k ·W1

(
ϕt,a,k
E , ϕt,k

E

)
20: Compute Total Loss:
21: L = LY + λLD

22: Update model parameters:
23: θE ← θE − η∇θEL
24: θY ← θY − η∇θY L
25: end for
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F EXPERIMENTS

F.1 FULLY SYNTHETIC DATASET

F.1.1 DATASET GENERATION

Dataset generation follows the identical setup as Bica et al. (2020); Melnychuk et al. (2022). The
tumor growth simulator (Geng et al., 2017) models the tumor volume Yt+1 after t + 1 days of
diagnosis. It includes two binary treatments: (i) radiotherapy Ar

t and (ii) chemotherapy Ac
t . These

treatments influence tumor progression as follows:

• Radiotherapy has an immediate impact, denoted by d(t), on the tumor volume at the next
time step.

• Chemotherapy impacts future tumor progression with an exponentially decaying effect
C(t).

The model is described by the equation:

Yt+1 =

(
1 + ρ log

(
K

Yt

)
− βcCt − (αrdt + βrd

2
t ) + εt

)
Yt

where εt ∼ N(0, 0.012) is independent noise, and the variables βc, αr, βr represent the response
characteristics for each individual. These parameters are drawn from truncated normal distributions
comprising three mixture components. For a full list of parameter values, the code implementation
should be consulted.

Time-varying confounding is accounted for through biased treatment assignments, where treatment
allocation is identical across both therapies Ar

t and Ac
t :

Ar
t , A

c
t ∼ Bernoulli

(
σ

(
γ

Dmax
(D̄15Ȳt−1 −

Dmax

2
)

))
In this formula, σ(·) represents the sigmoid function, Dmax is the maximum tumor diameter in the
last 15 days, and γ is the confounding parameter. D̄15(Ȳt−1) refers to the average tumor diameter
over the previous 15 days. If γ = 0, the treatment assignment is fully randomized, but for increasing
values of γ, time-varying confounding gradually intensifies. More details can be found in Appendix
J in CT Melnychuk et al. (2022).

F.1.2 EXPERIMENTS SETUP

One-step-ahead prediction. To evaluate one-step-ahead predictions, we utilize the counterfactual
trajectories simulated in CT. Our approach involves comparing our estimated outcomes Yt+1 against
all four possible combinations of one-step-ahead counterfactual outcomes. This effectively captures
the tumor volumes under every possible treatment assignment at the next time step.

τ -step-ahead prediction. For multi-step-ahead predictions, the number of potential outcomes for
Yt+2,...,Yt+τmax

grows exponentially with the prediction horizon τmax. To manage this complexity,
and following the methodology in CT, we employ a single sliding treatment strategy. This approach
is motivated by the importance of treatment timing in clinical settings. As discussed in the intro-
duction, consider the treatment of Ductal Carcinoma In Situ (DCIS), where the timing of surgical
intervention is critical: delaying surgery might allow the cancer to progress to an invasive stage,
while performing it too early could lead to unnecessary invasiveness. To assess whether our models
can identify the optimal timing for treatment, we simulate trajectories with a single treatment event
that is iteratively shifted across a window ranging from time t to t+ τmax − 1.

Performance evaluation.In line with Melnychuk et al. (2022), we evaluate model performance
using the mean Root Mean Square Error (RMSE) on the test set, which consists of hold-out data. The
RMSE is normalized by dividing by the maximum tumor volume Vmax = 1150cm3. Additionally,
we report the test RMSE calculated exclusively on the counterfactual outcomes following the rolling
origin, thereby isolating the evaluation from historical factual patient trajectories.
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F.1.3 EMPIRICAL ANALYSIS OF OUR PROPOSED GENERALIZATION BOUND

As shown in Fig 5, here we empirically evaluate the proposed generalization bound. we provide em-
pirical evidence that Sub-treatment Group Alignment (SGA) results in a much tighter upper bound
compared to the original method in Theorem 4.1.

(a) Confounding level - γ = 1 (b) Confounding level - γ = 2

(c) Confounding level - γ = 3 (d) Confounding level - γ = 4

Figure 5: Empirical results for Sub-treatment Group Alignment (SGA) vs. the original method in
Theorem 4.1 with varying confounding levels.

F.1.4 ANALYSIS OF REPRESENTATION SPACE

We visualize the feature spaces learned by our Sub-treatment Group Alignment (SGA) method.
As shown in Figure 6, SGA is able to learn treatment-invariant representations, which improves
performance in counterfactual outcome estimation.

F.1.5 MODEL HYPERPARAMETERS

Benchmark method hyperparameters and performance are sourced from the GitHub repository of
Melnychuk et al. (2022).

Table 4: Model hyperparameters used for the fully-synthetic dataset.

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

CT + SGA + RTM

batch size = 2048,
learning rate = 0.025,

λ = 0.0001,
dropout rate = 0.2,

Adam

batch size = 1024,
learning rate = 0.02,

λ = 0.0001,
dropout rate = 0.1,

Adam

batch size = 512,
learning rate = 0.02,

λ = 0.001,
dropout rate = 0.1,

Adam

batch size = 512,
learning rate = 0.03,

λ = 0.001,
dropout rate = 0.1,

Adam

batch size = 1024,
learning rate = 0.01,

λ = 0.001,
dropout rate = 0.1,

Adam

CRN + SGA + RTM

encoder batch size = 1024,
encoder learning rate = 0.005,

encoder dropout rate = 0.1,
decoder batch size = 4096,

decoder learning rate = 0.01,
decoder dropout rate = 0.2

, λ = 0.0001,
Adam

encoder batch size = 1024,
encoder learning rate = 0.005,

encoder dropout rate = 0.1,
decoder batch size = 4096,

decoder learning rate = 0.01,
decoder dropout rate = 0.1

, λ = 0.0001,
Adam

encoder batch size = 1024,
encoder learning rate = 0.005,

encoder dropout rate = 0.2,
decoder batch size = 4096,

decoder learning rate = 0.01,
decoder dropout rate = 0.1

, λ = 0.0001,
Adam

encoder batch size = 1024,
encoder learning rate = 0.005,

encoder dropout rate = 0.2,
decoder batch size = 4096,

decoder learning rate = 0.01,
decoder dropout rate = 0.1

, λ = 0.001,
Adam

encoder batch size = 1024,
encoder learning rate = 0.005,

encoder dropout rate = 0.2,
decoder batch size = 4096,

decoder learning rate = 0.01,
decoder dropout rate = 0.1

, λ = 0.01,
Adam

F.2 SEMI-SYNTHETIC DATASET

We used the identical semi-synthetic dataset generated by Melnychuk et al. (2022), which is based
on real-world medical data from intensive care units, to validate our model with high-dimensional,
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Figure 6: Representations at the last time point in training under high-confounding scenarios (i.e.,
γ = 4), with features projected to two dimensions using UMAP.

long-range patient trajectories. As outlined in Melnychuk et al. (2022), this dataset builds on the
MIMIC-III dataset and simulates patient trajectories with both endogenous and exogenous depen-
dencies, taking treatment effects into account (Johnson et al., 2016). This setup allows us to control
for confounding in our experiments. The use of semi-synthetic data is important here, as real-world
data lacks ground-truth counterfactuals, which are necessary for evaluating our methods’ perfor-
mances. To make our manuscript self-sustained, we hereby summarize the setup elaborated in
Causal Transformer (Melnychuk et al., 2022). Full details on the data generation process can be
found in Appendix K Melnychuk et al. (2022).

Following (Melnychuk et al., 2022), we utilized MIMIC-extract (Wang et al., 2020) based on the
MIMIC-III dataset (Johnson et al., 2016). The data were preprocessed with forward and backward
imputation for missing values and standardization of continuous features. Our dataset included
25 time-varying signals and 3 static covariates (gender, ethnicity, age), yielding 44 total features
(dw = 44) after one-hot-encoding.

The simulation follows four main steps:

1. Cohort Selection
1,000 patients whose ICU stays lasted between 20 and 100 hours are sampled .

2. Untreated Outcomes
For each patient i, simulated dy untreated outcomes Zj,(i)

t are simulated by combining:

• A B-spline term as an endogenous component
• Random function gj,(i)(t)

• Exogenous covariate dependencies f j
Z(Xt

(i))

• Independent Gaussian noise ϵt ∼ N(0, 0.0052)

Z
j,(i)
t = αj

SB-spline(t) + αj
gg

j,(i)(t) + αj
ff

j
Z(Xt

(i)) + ϵt

3. Treatment Assignment
We generated binary treatment indicators At

l, l = 1, ..., da, based on previous outcomes
and covariates, using a sigmoid function:

pAt
l = σ(γl

AĀTl
(Ȳt−1) + γl

Xf l
Y (Xt) + bl)
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At
l ∼ Bernoulli(pAt

l)

Confounding is added by a subset of current time-varying covariates via a random function
f l
Y (Xt), and f l

Y (·) is sampled from an RFF approximation of a Gaussian process.

4. Treatment Effects
In this step, treatments are applied to the initial untreated outcomes. We start by setting
Y1 = Z1, where each treatment l influences an outcome j with an immediate, maximum
effect βlj after application. The treatment effect occurs within a time window from t− wl

to t, with effect decreasing according to an inverse-square decay over time. The effect is
also scaled by the treatment probability pAl

t
. When multiple treatments are involved, their

combined effect is calculated by taking the minimum across all treatment impacts.
The aggregated treatment effect is given by:

Ej(t) =

t∑
i=t−wl

minl=1,...,da 1[A
l
i = 1]pAl

i
βlj

(wl − i)2

5. Combining Treatment Effects
We then add the simulated treatment effect Ej(t) to the untreated outcome Zj

t to get the
final outcome:

Y j
t = Zj

t + Ej(t)

6. Dataset Generation
The semi-synthetic dataset was generated using the above framework. For the exact pa-
rameter values used in the simulation, please refer to the GitHub repository of Melnychuk
et al. (2022). Following the setup in CT, we used the simulated three synthetic binary treat-
ments (da = 3) and two synthetic outcomes (dy = 2). We also use the identical setup and
split the 1000-patient cohort into training, validation, and test sets, with a 60%/20%/20%
split. For one-step-ahead prediction, all 23 = 8 counterfactual outcomes were simulated.
For multiple-step-ahead prediction, we sampled 10 random trajectories for each patient and
time step, with τmax = 10.

F.2.1 MODEL HYPERPARAMETERS

Benchmark method hyperparameters and performance are sourced from the GitHub repository of
Melnychuk et al. (2022).

Table 5: Model hyperparameters used for the semi-synthetic dataset.

CT + SGA + RTM

batch size = 64,
learning rate = 0.01,

λ = 0.0001,
dropout rate = 0.1,

Adam

CRN + SGA + RTM

encoder batch size = 128,
encoder learning rate = 0.001,

encoder dropout rate = 0.1,
decoder batch size = 512,

decoder learning rate = 0.0001,
decoder dropout rate = 0.1

, λ = 0.0001,
Adam
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