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ABSTRACT

In the causal effect estimation, most models have focused on estimating coun-
terfactual outcomes in the static setting, and it is still difficult to predict the out-
comes in the longitudinal setting due to time-varying confounder. To resolve the
time-varying confounder issue, while the balance representation learning-based
approaches have been primarily proposed, they inherently introduces a certain
degree of selection bias since the balance representations act as confounders for
both treatment and outcomes. In this paper, a new trend/seasonality decomposi-
tion based causal structure is proposed for the counterfactual outcome prediction
in the time-series setting. We leverage a decomposition methodology to reduce
the selection bias further. Specifically, it extracts meaningful decomposed rep-
resentations such as confounders and adjustment variables, which help to yield
more accurate treatment effect estimation with low variance. Inspired by the fact,
the proposed causal structure learns trend/seasonality representations as the con-
founders/adjustment variables in the direction of minimizing the selection bias,
and those representations are effective in the counterfactual outcome prediction
especially under the long time sequence and high time-varying confounding set-
tings. We evaluate the proposed causal structure with several trend/seasonality
decomposition algorithms on synthetic and real-world datasets. From various ex-
periments, the proposed causal structure achieves superior performance over the
state-of-the-art algorithms.

1 INTRODUCTION

Causal effect estimation, aiming at precisely predicting the potential outcomes under ’what-if’ sce-
narios, plays an essential role in the decision making processes. For example, the health conditions
of the each patient after applying some treatments should be accurately estimated to determine the
optimal timings for assigning treatment and to understand how diseases evolve under different treat-
ment plans.

Randomized controlled trial (RCT) is the best way to learn the treatment effect, where the treat-
ments are assigned in a random way to ensure that they are independent of the individual covariates.
However, conducting RCT experiments can be expensive, and in some cases, it may be deemed to
be impractical or unethical. Therefore, instead of the RCT experiments, numerous counterfactual
outcome prediction methods have been proposed by using the observational data only. However,
there are some challenges when predicting (time-series) counterfactual outcomes as follows:

(i) The primary challenge in counterfactual outcome prediction is that these potential outcomes
are never observed. Consequently, the traditional supervised learning frameworks cannot be
applied, which makes this task more difficult.

(ii) In observational dataset, there can exist few samples within each treatment, and this scarcity
can lead to the poor generalization performance and inferior the performance of the counter-
factual prediction at those treatments—a phenomenon termed as selection bias. This issue is
exacerbated in the time-series domain due to the time-dependent confounders. More specifi-
cally, the input covariates can be affected by the past treatments and also concurrently impact
both future treatment and outcomes, which yields a time-dependent confounding bias.
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To tackle the second challenge in the time series domain, several state-of-the-art machine learning
techniques have been recently introduced to predict the counterfactual outcomes over time. Recur-
rent neural network (RNN) based approaches have been mainly introduced, e.g., recurrent marginal
structural networks (RMSNs) (Lim et al., 2018), counterfactual recurrent network (CRN) (Bica
et al., 2020), and G-Net (Rui et al., 2021). Since they are based on the simple RNNs, their ability
to capture complex, long-term dependencies from the observational data can be limited. To allevi-
ate the long-term dependency problem, a transformer based architecture, called Causal Transformer
(CT), was proposed (Melnychuk et al., 2022). However, most of the aforementioned algorithms
focused on learning treatment invariant balance representations to reduce selection bias; therefore,
they structurally induce some selection bias because the balance representations act as confounders
for the treatments and outcomes (Hassanpour & Greiner, 2019).

In this paper, we propose a new trend/seasonality decomposition based causal structure for the
time series counterfactual outcome prediction. For that purpose, we follow the principle of
decomposition-based methods (Hassanpour & Greiner, 2019; 2020; Kuang et al., 2017), where the
main idea is to identify the relevant decomposed representations from the input covariates such as
the confounders and adjustment variables. Especially in Kuang et al. (2017), it should be noted
that considering the adjustment variables helps to give the accurate treatment effect estimation with
low variance, where the adjustment variables represent the variables affecting the outcomes only.
On the other hand, the trend/seasonality representations are most meaningful underlying factors in
the time series domain and effective in long sequence prediction task. Building on both ideas, if
the trend/seasonality representations, acting as the confounders/adjustment variables, are learned
in the direction of minimizing the selection bias, we believe that those representations can play a
particularly significant role in predicting counterfactual outcomes.

Our main contributions are as follows:

• The trend/seasonality decomposition based causal structure is newly proposed for the time
series counterfactual outcome prediction task. To the best of our knowledge, it is the first
decomposition based causal structure under the time series setting.

• In the proposed causal structure, the trend/seasonality representations are expected to be
learned in the direction of minimizing the selection bias. As a result, the performance of
the counterfactual outcome prediction is improved as illustrated in the experiments.

• By the virtue of the fact that the trend/seasonality are effective in the long sequence fore-
casting task, the trend/seasonality representations of the proposed causal structure are also
effective especially for long sequence counterfactual outcome prediction, as shown in the
experiments.

2 RELATED WORKS

Counterfactual outcome estimation. In the causal effect estimation, most algorithms have pre-
dominantly focused on predicting the counterfactual outcomes from observational data in static set-
tings, where there are no time-varying covariates, treatments, and outcomes. In the static settings,
the selection bias can also be introduced because the treatments depend on the static features. To
handle the selection bias under the static settings, several approaches have been proposed, such as
propensity matching, balance representation, and propensity-aware hyperparameter tuning.

On the other hand, there are also several works for the counterfactual outcome prediction in the
time series setting. Initial works include G-computation formula, structural nested model, marginal
structural model (MSM) (Mansournia et al., 2012; Robins et al., 2000). To address more complex
time-dependency scenarios, several algorithms such as Bayesian non-parametrics (Soleimani et al.,
2017) or RNN (Qian et al., 2021) have been proposed to replace the part of those initial works.
Recently, various fully deep learning-based approaches have been introduced with the advances in
machine learning. Specifically, the recurrent marginal structural network (RMSN) (Lim et al., 2018)
was proposed to improve the MSM by employing the RNN module to predict the inverse probability
of treatment weight (IPTW). However, it cannot resolve the high variance problem of the propen-
sity weights. To deal with the high variance issue in a novel way, another RNN based work, called
counterfactual recurrent network (CRN) (Bica et al., 2020), was presented by adopting the idea of
the representation learning to handle the time-varying confounders. More specifically, CRN extracts
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a sequence of the balance representations, which are predictive to the outcomes but not predictive
to the treatments for reducing the selection bias. Furthermore, G-Net (Rui et al., 2021) predicts the
potential outcomes and time-varying covariates, and performs G-computation for multi-step ahead
prediction. However, all the aforementioned networks were based on the RNN architecture; there-
fore, their performance can be restricted due to the limitation of capturing the long-range depen-
dencies. To resolve the long-range dependency issue, causal transformer (CT) (Melnychuk et al.,
2022) was also proposed with a novel counterfactual domain confusion (CDC) loss. However, most
of the aforementioned networks have focused on learning the balance representation to reduce the
selection bias; therefore, they cannot reduce all the selection bias since the balance representations
work as a confounder for both treatment and outcomes, which inherently would introduce some bias.
Consequently, their performance of the counterfactual outcome prediction can be limited.

Reducing selection bias. By adopting the idea of the representation learning, the pioneer work
(Johansson et al., 2016) and its variants (Shalit et al., 2017) were introduced to reduce the selection
bias in the causal effect estimation. The key idea is to minimize the discrepancy measures in the
representation space between treated and untreated samples. However, they cannot reduce all the
selection bias (Hassanpour & Greiner, 2019) since those representations work as a confounder for
both treatment and outcomes. Therefore, several decomposition-based works Hassanpour & Greiner
(2019); Kuang et al. (2017); Hassanpour & Greiner (2020); Wu et al. (2023) have been proposed
by identifying the relevant representations and discarding the irrelevant information from the in-
put covariates to reduce the selection bias further. Furthermore, a similarity preserved method was
also proposed (Yao et al., 2018). where it attempts to maintain the same neighbourhood relation-
ships in the learned representation space as in the original input space. In this paper, we propose a
trend/seasonality decomposition-based causal structure by adopting the idea of the decomposition
methods.

Trend/Seasonality decomposition. Time series decomposition, identifying meaningful underly-
ing patterns in time series data, is one of the most widely used analytical methods in the field
of time series analysis. Time series data is commonly assumed to be composed of three main
components: trend, seasonality, and residual. Therefore, we can analyze the time series data by
using the trend/seasonality decomposition techniques, which provide more insights to better under-
stand it. Recently, many deep learning-based networks have been introduced to extract meaningful
trend/seasonality representations, and those representations have been shown to yield a superior
performance in the various downstream tasks. For example, in the time series forecasting, the trend
representations are extracted by using the average pool or convolution neural network (Wu et al.,
2021; Woo et al., 2022; Zeng et al., 2023); on the other hand, the seasonality representations are
learned by using the discrete Fourier transform in the frequency domain (Zhou et al., 2022; Woo
et al., 2022). Furthermore, those trend/seasonality representations can be also extracted in a multi-
resolution way (Wang et al., 2023). In the prediction task, the trend/seasonality based algorithms
extract the trend/seasonality representations predictive to the future outcomes and they have been
shown a superior performance. In this paper, the trend/seasonality representations are learned in the
direction of minimizing the selection bias for the counterfactual outcome prediction task.

3 PROBLEM SETTINGS

Consider the following time-varying observational dataset D = {x(i)t , a(i)t , y(i)
t+1} with the static co-

variates v(i). For each ith time series data, x(i)
t denotes input covariates at time t, a(i)t ∈ {a1, . . . , ad}

is defined by d categorical treatments, and y(i)t+1 represents outcomes at time t + 1. For the sake of
the simplicity, the superscript (i) will be omitted from now on unless it is necessary. We first define
following two arbitrary vectors,

←−
Q t with the past P time steps and

−→
Q t with the future F time steps,

respectively:

←−
Q t = [qt−P+1, . . . ,qt] (1)

−→
Q t = [qt, . . . ,qt+F−1]. (2)

In addition, the sequence of an arbitrary vector Q̄t until time stamp t is denoted by
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Figure 1: The proposed causal structure for the counterfactual outcome prediction.

Q̄t = (q1, . . . ,qt). (3)

Then, given
←−
H t =

{←−
X t,
←−
A t−1,

←−
Y t,V

}
, we want to predict the next F time steps of the potential

outcomes
−→
Y t+1 under all possible sequences of treatments

−→
A t , i.e., E

{−→
Y t+1

(−→
A t

)
|←−H t

}
. Here,

the previous input covariates
←−
X t, previous outcomes

←−
Y t, and previous treatments

←−
A t−1 are defined

by using equations (1)-(2) as follows:

←−
X t = [xt−P+1, . . . , xt] (4)
←−
Y t = [yt−P+1, . . . , yt] (5)
←−
A t−1 = [at−P , . . . , at−1]. (6)

Furthermore, three standard assumptions are supposed to hold for identifying the treatment effect as
follows:

Assumption 1: Consistency. The potential outcome under the realized treatment sequence āt is the
same as the factual outcome, i.e., Yt+1 (āt) = Yt+1.

Assumption 2: Positivity. Let H̄t = {X̄t, Āt−1, Ȳt,V}. If P (H̄t = h̄t) > 0, then P (At = at|H̄t =
h̄t) > 0 for all Āt, where h̄t is some realization of H̄t. It means that the probability of any treatment
is non-zero for all the history space over time.

Assumption 3: Unconfoundedness. Given the observed history H̄t, the current treatment At is
independent of the potential outcome. Formally, Yt+1 (at) ⊥⊥ At|H̄t,∀at. It means that there are no
unobserved confounders. That is, all confounders affecting both treatments and outcomes are given
in the observed dataset.

4 CAUSAL TREND/SEASONALITY BASED CAUSAL STRUCTURE

4.1 PROPOSED CAUSAL STRUCTURE

We introduce a new trend/seasonality decomposition based causal structure for the counterfactual
outcome estimation in the time series setting, as shown in Figure 1. As discussed in Introduction,
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extracting decomposed representations such as confounders and adjustment variables can lead to
the accurate treatment effect estimation with low variance (Kuang et al., 2017). Based on this idea,
while the trend representations are assumed to work as confounders affecting both outcomes and
treatments, the seasonality representations are assumed to work as adjustment variables influenc-
ing the outcomes only, as depicted in Figure 1. This assumption is reasonable since the treatment
variables are more closely related with the trend representations rather than the small scale of the
seasonality representations. For example, when we decide to promote some items in the sales fore-
casting, we usually consider their demand trend rather than the small scale of seasonality.

As illustrated in Figure 1, the trend representation Tt and seasonality representation St are extracted
through the backbone decomposition models.

Tt, St = Φ
(←−

X t,
←−
A t−1,

←−
Y t; θr

)
(7)

After that, the trend/seasonality representations are concatenated with the static and treatment vari-
ables to estimate both treatments and potential outcomes using fully-connected linear layers Gy for
the outcome prediction and Ga for the treatment classifier as follows:

−→
Y t+1 = Gy(Tt,St,

−→
A t,V; θy) (8)

−→
A t = Ga(Tt,V; θa). (9)

In the following, we discuss the characteristics of the proposed causal structure in comparisons with
the trend/seasonality decomposition based time series forecasting algorithms.

• The trend/seasonality representations are learned differently between the time series fore-
casting algorithms and proposed causal structure. The trend/seasonality representations
for time series forecasting algorithms are supposed to be predictive to the future outcomes
only (see prediction of Figure 1). On the other hand, in the counterfactual outcome pre-
diction, the trend/seasonality representations for the proposed causal structure should be
predictive to both future outcomes and treatments (see counterfactual outcome prediction
of Figure 1). Therefore, we call those representations as causal trend/seasonality represen-
tations here. The performance difference between the time series forecasting algorithms
and proposed causal structure will be described in the ablation study of the experiments.

• It is well known that the trend/seasonality representations are effective in the long time
series forecasting task. In the proposed causal structure, the causal trend/seasonality rep-
resentations are trained in the direction of minimizing the selection bias as well; therefore,
the causal representations are expected to be effective in the long sequence counterfactual
outcome prediction, which will be shown in the experimental results.

4.2 LOSS

To improve the performance of the counterfactual outcome prediction, the proposed causal structure
should be trained in the direction of minimizing the selection bias. To this end, the widely used
loss functions in the decomposition methods are naturally extended to the time series case here.
Specifically, the total loss function consists of factual loss, imbalance loss, and cross entropy loss.
Each loss function will be explained in more detail.

Factual loss. After predicting the potential outcomes as in equation (8), the estimated potential
outcomes should be close to the true outcomes. For that purpose, a simple mean squared error
(MSE) function was used for the factual loss LF as

LF =
∥∥∥−→Y t+1 −Gy

(
Tt,St,

−→
A t,V; θy

)∥∥∥2 . (10)

Note that while the simple MSE function was employed here, its weighted version (Hassanpour &
Greiner, 2020) can be utilized instead.
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Imbalance loss. As described in Figure 1, the selection bias of the proposed causal structure inher-
ently is introduced by the causal trend representations. In this case, the selection bias is minimized
by making the causal seasonality representations be independent of the treatments. To achieve the
goal, the following discrepancy function should be minimized:

disc
(
{St}at:=ai , {St}at:=aj

)
, ai ̸= aj . (11)

For multiple treatments scenario, we use the following for the imbalance loss LI :

LI =
∑

ai ̸=aj

disc
(
{St}at:=ai , {St}at:=aj

)
(12)

In equations (11)-(12), the simple maximum mean discrepancy (MMD) function is used to compute
the dissimilarity between two conditional distributions. Other discrepancy functions are also accept-
able, e.g., Wasserstein distance. By minimizing the imbalance loss, the learned causal seasonality
representations have no information about the treatments, and all the necessary confounding factors
are expected to be embedded in the causal trend representations. Therefore, the selection bias of the
proposed causal structure is effectively reduced by minimizing the imbalance loss.

Cross Entropy loss. As discussed above, we assume that the causal trend representations have
enough information to choose the treatments by minimizing the imbalance loss. Therefore, we can
predict the next treatments by minimizing the cross entropy loss as follows:

LC = −
∑
i,t

log
−→
A i,t (Ga (Tt,V; θa)i) . (13)

Finally, the total loss function of the proposed causal structure is given as follows:

L = LF + λ1LI + λ2LC . (14)

The proposed causal structure is trained using equation (14) in an end-to-end fashion.

5 EXPERIMENTAL RESULTS

As discussed before, the counterfactual outcomes are not known for the real-world data. Therefore,
the counterfactual prediction performance of the proposed causal structure should be assessed on
the synthetic and semi-synthetic dataset. For that purpose, the proposed causal structure will be
tested on i) the synthetic dataset based on tumor growth model and ii) the semi-synthetic dataset
created by the widely used real MIMIC-III dataset in the counterfactual inference under the time
series setting. Finally, we will also evaluate the factual prediction performance on the real MIMIC-
III dataset. Note that for the synthetic and semi-synthetic dataset, while only observational data is
given in the train and validation sets, all possible counterfactual outcomes can be generated with
the respect to all possible treatments for each time-stamp to test the proposed causal structure. For
a fair comparison, we performed the experiments under identical environments as in Melnychuk
et al. (2022); therefore, detailed implementations of the data generation processes are referred to
Melnychuk et al. (2022). For all experiments, λ1 = λ2 = 1 was used in the loss function, and the
past time stamp P = 15 and the future time stamp F = 15 were set to test the proposed causal
structure under the long sequence scenario. All performance was evaluated by averaging the results
over three runs with different random seeds.

5.1 MODEL OF TUMOR GROWTH

For the synthetic data experiments, we used the tumor growth model. More specifically, the volume
of tumour Vt at time stamp t was modelled as follows:

Vt+1 =

(
1 + ρ log

(
K

Vt

)
− βcCt −

(
αγdt + βγd

2
t t
)
+ et

)
Vt, (15)
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where Ct and dt are denoted by chemotherapy concentration and radiotherapy dose, respectively,
et ∼ N(0, 0.012) is a noise term. Other variables (i.e., ρ,K, βc, αγ , βγ) are simulation parameters.
In this model, the time-varying confounding factor is modelled by assigning chemotherapy and
radiotherapy terms as Bernoulli random variables with probabilities P c

t and P r
t as follows:

P c
t = σ

(
γc

Dmax

(
D̃t − δc

))
(16)

P r
t = σ

(
γr

Dmax

(
D̃t − δr

))
, (17)

where D̃t is the averaged diameter of the tumor over last 15 days, Dmax = 13cm, σ(·) is the sigmoid
function, and δc = δr = Dmax/2. When γc and γr are higher, the amount of the time-varying
confounding is higher and vice versa. In the tumor growth model, the outcome is the volume of
tumor Vt, and four treatments were given: (i) no treatment, (ii) radiotherapy, (iii) chemotherapy, (iv)
both radiotherapy and chemotherapy. We generated 10,000 patient trajectories for training set, 1,000
for validation set, and 1,000 for test set. The maximum length of the generated sequences is limited
to 60 time steps.

5.2 MIMIC BASED SEMI-SYNTHETIC AND REAL DATASET

We also tested the proposed causal structure on the semi-synthetic MIMIC-III dataset (Johnson
et al., 2016). We used 25 vital signs as time-varying covariates and 3 static covariates (i.e., gender,
ethnicity, and age). In addition, diastolic blood pressure variable was used as the outcome variable,
and vasopressors and mechanical ventilation were considered as the treatments. We generated the
counterfactual outcomes under endogeneous and exogeneous setting as in Schulam & Saria (2017).

5.3 BASELINE MODELS

To evaluate the performance of the proposed causal structure, the following state-of-the-art models
were used: Counterfactual Recurrent Network (CRN) (Bica et al., 2020) and Causal Transformer
(CT) (Melnychuk et al., 2022). In the proposed causal structure, the recent trend/seasonality de-
composition based time series forecasting models can be used to extract the causal trend/seasonality
representations. For that purpose, three recent decomposition models such as FEDformer (Zhou
et al., 2022), DLinear (Zeng et al., 2023), and MICN (Wang et al., 2023), were employed for the
proposed causal structure. According to each decomposition model, we named three models as
Causal FEDformer, Causal DLinear, Causal MICN, respectively.

5.4 PERFORMANCE COMPARISON

The performance was evaluated in terms of root mean squared error (RMSE) for all datasets.

Performance on synthetic dataset. In Figure 2, the performance of the synthetic dataset was
given along the time stamps for various time-varying confounders γ = γc = γr, and its time-
averaged results were also listed in Table 1. To test the proposed causal structure under more realistic
setting, a random trajectory setting in CT (Melnychuk et al., 2022) was considered here, where the
random trajectory setting is to assign the treatments in a randomized way. As illustrated in Table
1, the proposed causal structure generally achieved better performance than the baseline models on
average. Especially for Causal DLinear and Causal MICN, the performance gain over the baselines
is higher for the longer time stamp τ and larger γ as shown in (d) of Figure 2.

Performance on semi-synthetic and real dataset. In Table 2, the performance of the semi-
synthetic and real dataset was given. For the semi-synthetic dataset, the proposed causal structure
based algorithms showed better results on average when compared with the baselines. Furthermore,
similar to the synthetic results, the proposed causal structure obtained a larger performance gain in
case of longer time steps τ . For the real dataset, while the three proposed causal structure based
models have a similar result, they achieved a better performance than the baselines.
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Figure 2: The performance of the counterfactual outcome prediction on the synthetic dataset.

Table 1: The time-averaged performance of the counterfactual outcome prediction on the synthetic
dataset.

γ = 0 γ = 1 γ = 2 γ = 3

CRN 0.052 0.113 0.200 1.059
CT 0.077 0.153 0.183 0.670
Causal DLinear 0.028 0.083 0.179 0.611
Causal FEDformer 0.052 0.128 0.239 0.642
Causal MICN 0.029 0.082 0.169 0.674
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Table 2: The performance of the semi-synthetic and real dataset.

CRN CT Causal
DLinear

Causal
FEDformer

Causal
MICN

semi real semi real semi real semi real semi real
τ = 1 0.566 9.210 0.597 9.068 0.500 6.084 0.414 5.926 0.597 5.422
τ = 2 0.718 9.819 0.730 9.607 0.623 8.792 0.564 8.836 0.714 8.867
τ = 3 0.718 10.110 0.813 9.948 0.725 9.301 0.647 9.296 0.778 9.359
τ = 4 0.908 10.355 0.867 9.682 0.790 10.223 0.699 9.649 0.831 9.722
τ = 5 0.974 10.554 0.904 10.456 0.832 9.950 0.756 9.921 0.876 10.003
τ = 6 1.033 10.817 0.930 10.671 0.869 10.183 0.798 10.150 0.891 10.300
τ = 7 1.085 11.064 0.947 10.857 0.888 10.347 0.827 10.334 0.917 10.485
τ = 8 1.087 11.311 0.958 10.957 0.909 10.528 0.823 10.514 0.909 10.657
τ = 9 1.088 11.553 0.968 11.103 0.930 10.706 0.816 10.685 0.906 10.818
τ = 10 1.084 11.753 0.976 11.215 0.941 10.823 0.826 10.822 0.905 10.957
τ = 11 1.081 11.970 0.982 11.283 0.959 10.938 0.825 10.939 0.914 11.079
τ = 12 1.074 12.145 0.986 11.435 0.972 11.072 0.818 11.066 0.911 11.215
τ = 13 1.070 12.314 0.988 11.562 0.989 11.197 0.820 11.195 0.905 11.346
τ = 14 1.065 12.436 0.991 11.672 0.997 11.284 0.824 11.255 0.904 11.421
τ = 15 1.062 12.559 0.993 11.845 1.005 11.417 0.815 11.391 0.898 11.650
Average 0.974 11.198 0.909 10.790 0.862 10.153 0.751 10.132 0.857 10.220

Table 3: Ablation study for the proposed causal structure. Note that for λ1 = λ2 = 0, the proposed
causal structure was trained using the factual loss only.

γ = 0 γ = 1 γ = 2 γ = 3

Causal DLinear (λ1 = λ2 = 0) 0.025 0.086 0.179 0.686
Causal DLinear 0.028 0.083 0.179 0.611

5.5 ABLATION STUDY

We performed an ablation study of the proposed causal structure to confirm its effectiveness. For
that purpose, we set λ1 = λ2 = 0 in the loss function to train the proposed causal structure using
the factual loss only, which implies that the learned trend/seasonality representations are predictive
to the outcomes only as in the prediction task. By doing so, the effect of minimizing the selection
bias will be investigated. In Table 3, the time-averaged results were listed for Causal DLinear
(λ1 = λ2 = 0) and Causal DLinear trained with the total loss function. Note that the performance
of Table 3 was evaluated on the synthetic dataset. From the results, we can see that both results were
similar in case of low time-varying confounding (i.e., γ = 0–2), and Causal DLinear showed the
better results than Causal DLinear with λ1 = λ2 = 0 when the time-varying confounding is large
(i.e., γ = 3). It means that the imbalance loss effectively minimizes the selection bias and finally
the performance of the counterfactual outcome prediction is improved.

6 CONCLUSION AND FUTURE WORKS

In this paper, a new trend/seasonality decomposition based causal structure was proposed for the
time series counterfactual outcome prediction. From the various experiments, we showed that the
causal trend/seasonality representations can effectively reduce the selection bias in the long time
sequence and high time-varying confounding settings. We believe that our proposed perspective can
provide new insight and direction on the time series counterfactual outcome prediction. We think
that it will be a good research topic to investigate novel decomposed representations for the time
series counterfactual prediction.
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