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ABSTRACT

Image segmentation lays the foundation for many high-stakes vision applications
such as autonomous driving and medical image analysis. It is, therefore, of great
importance to not only improve the accuracy of segmentation models on well-
established benchmarks, but also enhance their robustness in the real world so as
to avoid sparse but fatal failures. In this paper, instead of chasing state-of-the-art
performance on existing benchmarks, we turn our attention to a new challenging
problem: how to efficiently expose failures of “top-performing” segmentation
models in the real world and how to leverage such counterexamples to rectify the
models. To achieve this with minimal human labelling effort, we first automatically
sample a small set of images that are likely to falsify the target model from a large
corpus of web images via the maximum discrepancy competition principle. We then
propose a weakly labelling strategy to further reduce the number of false positives,
before time-consuming pixel-level labelling by humans. Finally, we fine-tune the
model to harness the identified failures, and repeat the whole process, resulting in
an efficient and progressive framework for troubleshooting segmentation models.
We demonstrate the feasibility of our framework using the semantic segmentation
task in PASCAL VOC, and find that the fine-tuned model exhibits significantly
improved generalization when applied to real-world images with greater content
diversity. All experimental codes will be publicly released upon acceptance.

1 INTRODUCTION

Image segmentation (i.e., pixel-level image labelling) has recently risen to explosive popularity,
due in part to its profound impact on many high-stakes vision applications, such as autonomous
driving and medical image analysis. While the performance of segmentation models, as measured by
excessively reused test sets (Everingham et al.l 2010; Lin et al.| 2014), keeps improving (Chen et al.|
2018aj; |Badrinarayanan et al., 2017; | Yu et al., [2018)), two scientific questions have arisen to capture
the community’s curiosity, and motivate the current work:

Q1: Do “top-performing” segmentation models on existing benchmarks generalize to the real
world with much richer variations?

Q2: Can we identify and rectify the trained models’ sparse but fatal mistakes, without incurring
significant workload of human labelling ?

The answer to the first question is conceptually clearer, by taking reference to a series of recent
work on image classification (Recht et al.| 2019} [Hendrycks et al.| [2019). A typical test set for
image classification can only include a maximum of ten thousands of images because human
labelling (or verification of predicted labels) is expensive and time-consuming. Considering the
high dimensionality of image space and the “human-level” performance of existing methods, such
test sets may only spot an extremely small subset of possible mistakes that the model will make,
suggesting their insufficiency to cover hard examples that may be encountered in the real world
(Wang et al.| [2020). The existence of natural adversarial examples (Hendrycks et al., 2019) also
echos such hidden fragility of the classifiers to unseen examples, despite the impressive accuracy on
existing benchmarks.

While the above problem has not been studied in the context of image segmentation, we argue that
it would only be much amplified for two main reasons. First, segmentation benchmarks require
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pixel-level dense annotation. Compared to classification databases, they are much more expensive,
laborious, and error-prone to label'| making existing segmentation datasets even more restricted
in scale. Second, it is much harder for segmentation data to be class-balanced in the pixel level,
making highly skewed class distributions notoriously common for this particular task (Kervadec
et al.,[2019; |Bischke et al.,[2018)). Besides, the “universal” background class (often set to cover the
distracting or uninteresting classes (Everingham et al.,[2010)) adds additional complicacy to image
segmentation (Mostajabi et al.,[2015). Thus, it remains questionable to what extent the impressive
performance on existing benchmarks can be interpreted as (or translated into) real-world robustness.
If “top-performing” segmentation models make sparse yet catastrophic mistakes that have not been
spotted beforehand, they will fall short of the need by high-stakes applications.

The answer to the second question constitutes the main body of our technical work. In order to
identify sparse failures of existing segmentation models, it is necessary to expose them to a much
larger corpus of real-world labelled images (on the order millions or even billions). This is, however,
implausible due to the expensiveness of dense labelling in image segmentation. The core question
essentially boils down to: how to efficiently decide what to label from the massive unlabelled images,
such that a small number of annotated images maximally expose corner-case defects, and can be

leveraged to improve the models.
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model comparison (Wang &

Simoncellil [2008; [Ma et al., 2018} [Wang et al., 2020), we let the target model compete with a set of
state-of-the-art methods with different design methodologies, and sample images by MAximizing the
Discrepancy (MAD) between the methods. To reduce the number of false positives, we propose a
weakly labelling method of filtering M to obtain a smaller refined set S, subject to segmentation by
human subjects. In the second stage, we fine-tune the target model to learn from the counterexamples
in S without forgetting previously seen data. The two stages may be iterated, enabling progressive
troubleshooting of image segmentation models. Experiments on PASCAL VOC (Everingham et al.,
2010) demonstrate the feasibility of the proposed method to address this new challenging problem,
where we successfully discover corner-case errors of a “top-performing” segmentation model (Chen
et al.,[2017), and fix it for improved generalization in the wild.

Competing
model zoo

2 RELATED WORK

MAD competition The proposed method takes inspiration from the MAD competition (Wang &
Simoncelli, 2008; [Wang et al.,[2020)) to efficiently spot model failures. Previous works focused on
performance evaluation. We take one step further to also fix the model errors detected in the MAD
competition. To the best of our knowledge, our work is the first to extend the MAD idea to image
segmentation, where labeling efficiency is more desired since pixel-wise human annotation for image
segmentation is much more time-consuming than image quality assessment (Wang & Simoncelli,
2008) and image classification (Wang et al.| 2020) tasks previously explored.

! According to Everingham et al. (Everingham et al., [2010) and our practice, it can easily take ten times as
long to segment an object than to draw a bounding box around it.
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Differential testing Our method is also loosely related to the cross-disciplinary field of soft-
ware/system testing, especially the differential testing technique (McKeeman, |1998)). By providing
the same tests to multiple software implementations, differential testing aims to find bug-exposing test
samples that lead to different results. Programmers can then dig into these test cases for potential bug
fixing. While debugging software is very different from troubleshooting machine learning algorithms,
a handful of recent work explored this idea to find pitfalls of deep learning-based autonomous driving
systems (Pei et al,2017; Tian et al.| 2018}, /Zhang et al.,[2018). Aiming to be fully automated without
human intervention, these methods have to make strong assumptions such as the ground truth labels
can be determined by majority VoteE] or are unchanged under some synthetic image transformationf]
(e.g., brightness and contrast change, or style transfer). Therefore, it is unclear how to generalize the
results obtained in such noisy and often unrealistic settings, to the real world with both great content
fidelity and diversity.

Adversarial examples Introduced by Dalvi et al. (Dalvi et al.,|2004) and reignited by Szegedy
et al. (Szegedy et al.| 2013)), most adversarial attacks add small synthetic perturbations to inputs of
computational models that cause them to make incorrect decisions. In image classification, Hendrycks
et al. (Hendrycks et al.,2019) identified a set of natural images that behave like synthetic adversarial
examples, which possess inherent transferability to falsify different image classifiers with the same
type of errors. The selected counterexamples by the proposed framework might be treated as a new
type of natural adversarial examples, that force the two models to make distinct predictions, therefore
capable of fooling at least one model.

Similar as natural counterexamples focused in this work, synthetic adversarial examples pose se-
curity risks of deploying machine learning algorithms in real-world applications. A large body of
research (Madry et al.l[2018};Zhang et al.,2019) delves deep into adversarial training, trying to defend
against adversarial perturbations at the expensive cost of sacrificing the generalization on original
test sets without perturbations (Tsipras et al.,[2019; Zhang et al., [2019; Schmidt et al., [2018). This
seems to suggest a trade-off between generalization to real-world benign examples and robustness to
adversarial attacks.

Semantic segmentation with deep learning Fully convolutional network (Long et al.,2015) was
among the first deep architectures adopted for high-quality segmentation. Skip connection (Ron{
neberger et al} 2015), recurrent module (Zheng et al.| [2015)), max index pooling (Noh et al., 2015}
Badrinarayanan et al.l 2017), dilated convolution (Chen et al., 2014} [Yu & Koltun, 2016} |(Chen
et al.}2018a)), and multi-scale training (Chen et al.l 2016;2018al) are typical strategies to boost the
segmentation performance. Conditional random fields (Ladicky et al.,2010) used to dominate image
segmentation before the advent of deep learning were also combined with convolutional networks to
model spatial relationships (Zheng et al., 2015). We refer interested readers to (Minaee et al., [ 2020)
for a comprehensive survey of this field.

3 PROPOSED METHOD

Suppose we have a target segmentation model f; : RPX% s {1,...  c}"*® where h and w are
the height and width of the input image, and ¢ denotes the number of categories. Our goal is to
efficiently identify and fix the failure cases of f; encountered in the real world, while minimizing
human labelling effort in this process. We start by constructing a large image database D, whose
collection may be guided by the keywords that represent the c categories. Rather than conducting
large-scale subjective testing to obtain the ground truth segmentation map for each x € D, we choose
to create a small subset of images M C D, which are strong candidates for revealing corner-case
behaviors of f;. To further reduce false positive examples in M, we describe a method to gather
a weak label for each x € M as an overall indicator of segmentation quality. Based on the labels,
an even smaller set S C M can be obtained for dense annotation by humans. Last, we fine-tune f;

2As per (Hendrycks et al.l 2019), machine learning algorithms with similar design philosophies tend to make
common mistakes.

3In many areas of computer vision, methods trained on synthetic data cannot generalize to realistic data,
and specialized techniques such as domain adaptation (Zhang et al., 2017 [Zhao et al.||2019) have to be used to
bridge the performance gap.
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on the combination of S and previously trained data, in an attempt to learn from the found failures
without forgetting (Li & Hoiem), 2017).

3.1 FAILURE IDENTIFICATION

Constructing M Inspired by model falsification methodologies from computational vision (Wang
& Simoncelli,[2008)) and software engineering (McKeeman, |1998), we construct the set M = {z; ?221
by sampling the most “controversial” images from the large-scale unlabelled database D = {x;};"*,,
where no < ny. Specifically, given the target model f;, we let it compete with a group of state-of-
the-art segmentation models {g;}.; by maximizing the discrepancy (Wang et al., [2020) between f;

and g; on D:

29 = argmax d(fi(z),g;(x)), j=1,...,m, ()

z€D
where d(-) is a distance metric to gauge the dissimilarity between two segmentation maps (e.g.,
negative pixel accuracy, or mean region intersection over union (mIoU)). &:() represents the most
controversial image according to f; and g;, and therefore is the most informative in distinguishing
between them. If the competing model g; performs at a high level, and differs from the target model

fr in design, #(9) is likely to be a failure of f;.

To avoid identifying different instan-
tiations of the same underlying root
cause (Pe1 et al.l 2017) and to en-
courage content diversity of the candi-
date images, we describe a “content-
aware” method for constructing M.
We first partition D into c overlapped
subgroups {D; 1 }%_, based on f;’s
predicted maps, where « € D, if
at least one pixel in f;(x) belongs to
the k-th category. After that, we add
a content constraint by restricting the
size of predicted pixels in the k-th cat-
egory, i.e., S 1[f,(z) == k]/(h x bad bad good good excellent
w), within the range of [p, qx|. This
allows excluding images of exceed-
ingly large (or small) object sizes,

Figure 2: Purpose of weakly labelling. First row: Candi-
date images from M. Counterexamples selected into S are
which may be of less practical rele- highlighted with red rectangles, and the rest are false posi-
vance. Moreover, instead of focusing tives. Second and third rows: Predictions by the target and
on the most controversial example de- competing models, respectively. See[Figure 4] for the color

fined in Eq. (I), we look at top-ns legend.
images in D; j, with ng largest distances computed by

. ns
{;%E]’k)}?il = argmax Zd(ft(mi),gj(xi)), ji=1....mk=1,... c (2)
{2:}2 €Dk =1

We then repeat this procedure, but with the roles of f; and g; reversed. That is, we partition D into c
subgroups {D; 1 }{_, according to g;, and solve the maximization problem over D, . Finally, we
gather all candidate images to arrive at the set M = {xl}:ﬁl where ny < 2mensg < ny

Constructing S Although images in the candidate set M have great potentials of being counterex-
amples of f;, some false positives may be included (see[Figure 2), especially when g is inferior to f;.
In addition, no data screening is involved in the construction of D, increasing chances of including
images that are out-of-domain (e.g., falling out of the c categories and/or containing inappropriate
content). In view of these, we reduce false positives in M via a weakly labelling strategy. For each
x € M, we ask human subjects to give a discrete score on an absolute category rating (ACR) scale to

CLINNT3

indicate the segmentation quality of f;(z). The labels on the scale are “bad”, “poor”, “fair”, “good”,

*We have ny < 2mens because the same images may be optimal in different problems specified in Eq. .
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and “excellent” (see[Figure 8). We then rank all images in M by the mean opinion scores, and choose
top-n4 images with the smallest scores to form the counterexample set S = {z;};4,. Finally, we
seek pixel-level segmentation results from human annotators for each image in S (see[Figure 9).

3.2 MODEL RECTIFICATION Algorithm 1: The proposed framework for ef-
ficiently troubleshooting segmentation models

The labelled images in S give us a great op-

portunity to improve f; by learning from these Input: An unlabelled image set D, a target

failures. In order to be resistant to catastrophic model f, t( ®) and the dataset S on
forgetting (McCloskey & Cohen, [1989), the which it is pre-trained, a group of
fine-tuning can also include labelled data pre- competing models {g; }}n=1’ the
viously used to train f;. We may iterate maximum number 7 of fine-tuning
through the whole procedure of failure identi- rounds, hyper-parameters 3, 14

fication and model rectification several rounds,  Qutput: Improved ft(r)

leading to a progressive two-stage framework 1 S + ()

for efficiently troubleshooting segmentation 2 for j < 1 to m do

models with human-in-the-loop. 3 Compute segmentation predictions

{gj(z),z € D}
end

fori < Otor —1do
MUEFD <
Compute segmentation predictions

When the iterative setting is enabled, the size
of S is growing: S = (J;_, S@, where S®
is the counterexample set created in the ¢-th
fine-tuning round. Denoting the initial tar-

I T N

get m.()de} by ft(o), we ﬁne-tunef ft(i_l) on the {f(z)( |z € D)
combination of S accumulated in the previous f t \X),T
i — 1 rounds and S(*) used for pre-training. * or j < 1tomdo

We summarize the proposed framework in Al- ° Compl(lit)e the distances
gorithm|T] {d(f;"(2),g(x)),z € D}
10 Divide D into ¢ subgroups according
(@)
4 EXPERIMENTS o f;. :
11 Filter images by the content constraint
12 Select top-ng images by solving

In this section, we use the semantic segmenta-

tion task defined in PASCAL VOC (Evering+ Eq. to form M;

ham et al.,[2010) as a specific application to '3 MEFD MDY M7

demonstrate the feasibility of our method. Itis 14 Reverse the roles of ft(l) and g;, and

worth noting that the proposed framework can repeat Steps 10 to 13

be applied to other segmentation tasks, such 1s end

as those required in autonomous driving (Ess| ;¢ Source weak human scores for M G+1D)

et al.| [2009; |Cordts et al.|[2016) and medical ,, Select top-n4 images with the lowest

image analysis (Ronneberger et al., 2015). quality scores and collect pixel-level
labels from humans to form S(+1)

4.1 EXPERIMENTAL SETUPS 5 | S+ SUSiHY;

Fine-tune ft(i) on the combination of S

Segmentation models In our experiments,
and S(©

we choose the target model f; to be the
state-of-the-art DeepLabV3Plus (Chen et al.}
2018b)) with DRN (Yu et al., 2017) as the
backbone (termed DeepLabV3P-DRN). We include five competing models: DeepLabV3Plus with
ResNet101 (He et al., [ 2016) (termed DeepLabV3P-RN101), DeepLabV3 (Chen et al.| 2017) with
ResNet101 (termed DeepLabV3-RN101), DEN (Yu et al.l 2018)), Light-Weight RefineNet (Nekrasov:
et al., 2018)) with ResNet50 and MobileNetV2 (Sandler et al.,[2018) (termed LRefineNet-RN50 and
LRefineNet-MNV2, respectively). Publicly available pre-trained weights on PASCAL VOC 2012
(Everingham et al.,|2010) are used for all models. Following (Chen et al.,[2017; [2018b)), images are
cropped and resized to 513 x 513 before inference.

20 end

Constructing D We first briefly introduce the semantic segmentation database in PASCAL
VOC (Everingham et al., 2010). It contains 1,464 images for training (denoted by S (0)) and
1,149 for validation (denoted by 7(9) with 20 scene categories (e.g., aeroplane, bicycle and person).
We use the 20 class labels and combinations of them as keywords to crawl images from the Internet.
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Figure 3: Visual comparison of images in (a) S and (b) PASCAL VOC validation set (denoted by
TO).

Table 1: Segmentation results in terms of mIoU on both 7(%) and the unbiased test sets {7 ()} 1}

Fine-tuning Round 0 1 2

Test Set 7(0) 70 T T 7 T)

DFN 0.8037 | 0.1349 | 0.8037 | 0.1054 | 0.8037 | 0.1365
DeepLabV3-RN101 | 0.7795 | 0.1589 | 0.7795 | 0.1255 | 0.7795 | 0.1791
DeepLabV3P-RN101 | 0.7843 | 0.2555 | 0.7843 | 0.1978 | 0.7843 | 0.1483

LRefineNet-RN50 0.7710 | 0.1740 | 0.7710 | 0.1431 | 0.7710 | 0.2014
LRefineNet-MNV2 | 0.7125 | 0.1325 | 0.7125 | 0.1194 | 0.7125 | 0.1678

Competing
Models

Target Model | DeepLabV3P-DRN | 0.7887 | 0.1759 | 0.7827 | 0.2436 | 0.7828 | 0.4233

No other constraints are imposed during data collection. As a result, the database D includes a total
of more than 40, 000 images, which is much larger than PASCAL VOC training and validation sets.

Constructing M We empirically set the two parameters p; and ¢ in the content constraint to
the first and the third quartiles of the k-th category sizes of the training images in PASCAL VOC,
respectively. To strike a good balance between the human effort of weakly labelling and the content
diversity of M, we choose n3 = 25 in Eq. (Z). Due to the existence of duplicated images, the actual
sizes of { M@} range from 1, 500 to 2, 000 for different rounds.

Constructing S We collect weak labels for images in M from three volunteer graduate students,
who have adequate knowledge of computer vision, and are told the detailed purpose of the study.
Each subject is asked to give an integer score between one and five for each image to represent one
of the five categories, with a higher value indicating better segmentation quality. All out-of-domain
images are given a score of positive infinity, meaning that any subject is granted to eliminate an image
without agreement from the other two. The mean opinion scores averaged across all subjects are used
to rank images in M. The hyper-parameter n4 in Algorithm[I]is set to 100. Representative examples
in S are shown in [Figure 3|and |[Figure 6{along with images in 7(?). It is clear that images in S are
visually much harder.

We invite the same three students to provide ground truth segmentation results for images in S, follow-
ing the annotation guidance in PASCAL VOC, with the help of the online annotation tool Labelboxﬂ
Our annotation process includes two stages with the goal of obtaining consistent segmentation maps.
In the first stage, each subject is assigned one-third of the images to provide pixel-level labels. In
the second stage, we carry out cross validation to improve the annotation consistency. Each student
takes turn to check the segmentation maps completed by others, marking the positions and types of
possible annotation errors. During cross checking, the subjects can discuss with each other to reach
an agreement on a small part of ambiguous annotation.

Iterative model correction We perform a total of » = 2 fine-tuning rounds. As suggested in (Chen
2017), fine-tuning for each round is carried out by stochastic gradient descent with momentum

>https://labelbox.com/
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Figure 4: Left panel: Representative images in the test set 7 () before fine-tuning the target model
ft(o). From the corresponding predicted segmentation maps, we find that the competing models {g; }
successfully identify the failures of ft(o). Right panel: Representative images in the test set 7(2) after

the first round of fine-tuning, where we see that ft(l) achieves noticeable performance improvements
by learning from its failures in S(1).

0.9 and weight decay 5 x 10~%. We grid search the initial learning rate from {1,5,10} x 1075, and
choose the one with the highest mIoU on 7(°), The learning rate decay is guided by the polynomial
policy. We set the mini-batch size and the maximum epoch number to 2 and 80, respectively.

Model evaluation How to reliably probe the generalization of computer vision models when
deployed in the real world is by itself a challenging problem being actively investigated
et al., [2019; /Arnab et al.| 2018 Recht et al., 2019). Observing progress on 7(©) is not a wise choice

because this set may only contain few catastrophic failures of the target model ft(i). It may also be

unfair to employ the counterexample set S(“+1) to evaluate the relative progress of ft(i) against the
set of competing models { gj} 1 due to the inclusion of the weakly labelling and filtering procedure.
Inspired by the maximum dlscrepancy competition methodology for image class1ﬁcat10n (Wang et al.|
2020), here we construct a new unbiased test set 71 ¢ M@+ to compare ft with {g; }72, by
adding the following constraints. First, similar as the construction of S, all out-of-domain i 1mages
are filtered out. Second, to encourage class diversity, we retain a maximum of four images that
contain the same main foreground object (i.e., 7 1) has at most four “car” images). Th1rd to keep
evaluation fair for the competing models, images used to fine-tune the target model ft are not
included in 7+ In our experiments, the size of 7(“+1) is set to 30.

4.2 MAIN RESULTS

Quantitative results We use a standard evaluation metric - mloU to quantify the semantic segmen-
tation performance. All results are listed in Table[T] where we find that, before the first round of
fine-tuning, all models achieve competitive results on 7 (), implying close-to-saturation performance
on PASCAL VOC. However, when tested on 71, the performance of all models drops significantly,
indicating that many images in 7(!) are able to falsify both the target model ft(o) and the associated
competing model g;. This also provides direct evidence that hard corner cases of existing segmen-
tation models could be exposed. It is also proof-of-concept that the selection procedure is working
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as intended. Moreover, the top-1 model on 7(?) does not necessarily perform the best on 7 (1),

conforming to the results in (Wang et al., [2020).

After the first round of fine-tuning, t(l) achieves noticeable improvements on T whereas all

competing models experience different degrees of performance drops. This suggests that the target
model begins to introspect and learn from its counterexamples in S(!). After the second round of
fine-tuning, the mloU of ft(2) on 73 is boosted by around 18%, surpassing all competing models
by a larger margin than the previous round. This shows that our method successfully learns from
and combines the best aspects of the competing models to fix its own defects, with approximately
the same performance on 7 (9. In our experiments, we only perform two rounds of fine-tuning due
to limited computation and human resources, while we expect further performance gains under the
proposed framework if tuned for more rounds.

Qualitative results We show representative test images before and after the first round of fine-
tuning in[Figure 4] Before fine-tuning, the competing models can effectively find defects of the target
model with incorrect semantics and/or boundaries. After fine-tuning, the target model does a clearly

better job on the corner-case samples. We also visually compare ft(o) and ft(l) on 73, where we
observe the improved robustness to unseen corner-case images. Another interesting finding is that
our method can fix a general class of model mistakes by learning from a small set of valuable failures.
shows such an example, where the target model only sees 10 “car” images in S(!), and is
able to generalize to images with similar unusual viewpoints.

|

Figure 5: Representative “car” images from M (). First row: Test images. Second row: Predictions

by ft(o). Third row: Predictions by ft(l) that is only exposed to a small set of “car” images in S).
The generalization of the target model on “car” images with unusual viewpoints is largely improved

after the first round of fine-tuning. (All images shown in this figure are not in training set of ft(l) )

3. 5 7

7,

5 CONCLUSION

We have formulated a new computer vision problem that aims to efficiently expose the failures of
top-performing segmentation models and learn from such failures for improved generalization in the
real world. We proposed an efficient human-in-the-loop framework for troubleshooting segmentation
models, and demonstrated its promise under realistic settings. We hope this work sheds light on
a new line of research that requires both machine vision and human interaction. In the future, we
plan to explore the idea of leveraging natural failures for improving model robustness in broader
vision problems, such as video understanding (Tran et al.}, 2015)), computer-aided diagnosis
2015)), and computational neuroscience (Golan et al.,[2019). Moreover, while the current work
remains to focus on improving the model’s standard generalization (with an emphasis on natural
corner-case samples), our future study will investigate how this could be jointly optimized with
adversarial robustness.
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A COMPARISON WITH ENTROPY-BASED METHOD

Entropy has been used as an uncertainty metric to select hard samples (Joshi et al.| [2009). The
selected hard samples can be further used as training data to improve target model performance. In
this section, we compare our method with the entropy-based method in 2009) to show
the advantage of our method than traditional entropy-based methods. Since our goal is to improve
model performance on open-world images instead of fixed benchmark datasets, we need to tell which
method can achieve models with better performance on open-world images, which can be efficiently

done by the MAD competition in (Wang et al., [2020).

For both methods, we conduct fine-tuning for one round and all Table 2: MAD competition re-
experimental settings (including target model structure, human la- ¢ 11ts on two models achieved
belling budget, etc.) are kept identical. The only difference comes by our method and entropy-
from the sampling strategy: our method samples according to Al- 2o method respectively.

gorithm [I] while entropy-based method selects images with largest

entropy. We then conduct MAD competition [Wang et al| (2020) Method | mloU
on the two models obtained from each method to compare their Entropy-based | 19.65
performance on open-world images. Numerical results are shown Ours 26.53

in Table 2] As we can see, the model achieved by our method is
winning the MAD competition with a noticeable mloU advantage, showing that the model achieved by
our method has better performance on open-world images than the model fine-tuned by entropy-based
method.

B MORE VISUALIZATION RESULTS

Figure 6: Visual comparison of images in (a) S and (b) PASCAL VOC validation set (denoted by
TO).

C ABLATION STUDY

In order to show the testing results hold as we increase the size of T (denoted as k), we first evaluate
the performance of the six models with different number of testing images, and conduct a global
ranking among the six models. We use top-k ranking to denote the global ranking evaluated with k
testing images. Then we calculate the SRCC values between the top-40 ranking (as reference) and
other top-k rankings with & € {20,21,--- ,39}. As shown in Figure the ranking results remain
stable when k& > 25. And our active finetuned target model always achieves the best performance on
A among the six models, for any k& between 20 and 40.

D SUBJECTIVE TESTING GUIs

Graphical user interfaces (GUIs) for our weakly and pixel-wise labelling experiments are shown in
Figure[§]and Figure [9] respectively. For weakly labelling experiments, we build our own GUI: an
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Figure 7: The SRCC values between the top-40 ranking and other top-k rankings.

image is rendered alongside the prediction made by the target model; a scale-and-slider applet is
utilized to collect the absolute category rating score of that image as described in Section [3.1] For
pixel-wise segmentation labelling experiments, we use LabelBox segmentation templateﬁ to build our
GUL

Shttps://labelbox.com/product/image-segmentation
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Figure 8: GUI for our weakly labelling experiments.
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Figure 9: LabelBox GUI for our pixel-level segmentation labelling experiments.
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