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Abstract
Conversational grounding, vital for building001
dependable dialog systems, involves ensuring002
a mutual understanding of shared information.003
Despite its importance, there has been limited004
research on this aspect of conversation in recent005
years, especially after the advent of Large Lan-006
guage Models (LLMs). Previous studies, like007
those by Benotti and Blackburn (Benotti and008
Blackburn, 2021), highlighted the shortcom-009
ings of pre-trained language models in conver-010
sational grounding but lacked a standardized011
benchmark for comparison. This gap in re-012
search becomes more significant considering re-013
cent advances in language models, which have014
led to new emergent capabilities. In this paper,015
we aim to evaluate the performance of Large016
Language Models (LLMs) in various aspects of017
conversational grounding, analyze why some018
models perform better than others, and propose019
ways to enhance the capabilities of the models020
that lag behind. We demonstrate a direct corre-021
lation between the size of the pre-training data022
and conversational grounding abilities, mean-023
ing that they have independently acquired a024
specific form of pragmatic capabilities from025
larger pre-training datasets.026

1 Introduction027

The concept of "common ground" in linguistics,028

introduced by Clark and Brennan (Clark and Bren-029

nan, 1991), refers to the collective body of knowl-030

edge and assumptions that conversation partici-031

pants build together. This shared understanding032

is not solely formed through words; it also incor-033

porates other modalities, as highlighted by Nakano034

et al. (Nakano et al., 2003), such as gestures, nods,035

and eye contact. These non-verbal cues are crucial036

in creating and maintaining the common ground037

in face-to-face dialogues. Conversational Ground-038

ing is this process of building common ground,039

and involves continuous negotiation, and resolu-040

tion of uncertainty. These uncertainties may be041

addressed by providing additional context - for ex-042

ample, specifying the object "the small gate next 043

to the bakery" or through the listener seeking clari- 044

fication, like asking, "You mean the white gate?". 045

Since these agreements are not always explicitly 046

expressed, participants must be adept at recogniz- 047

ing cues of (mis-)understanding from their inter- 048

locutors. Conversational Grounding is complex 049

because of the dynamic nature of spontaneous dia- 050

logues, which demand more than just grammatical 051

correctness, but also pragmatics - how language is 052

used. 053

An effective grounding mechanism is vital to 054

dialogue systems in order to reduce ambiguity both 055

when the system is the speaker, by adding more 056

information if it senses confusion from the listener, 057

and as listener, asking for clarifications when nec- 058

essary. Benotti and Blackburn (Benotti and Black- 059

burn, 2021) have previously shown that state-of-the- 060

art Language Models pre-trained on large amounts 061

of conversational data like BlenderBot 1 (Roller 062

et al., 2020) frequently fall short in ensuring that 063

information has been adequately grounded. While 064

they identified these deficiencies, their work didn’t 065

provide a comprehensive framework for evaluating 066

different models on their grounding capabilities. In 067

addition, their findings were based on limited in- 068

teractions with smaller models such as BlenderBot 069

1, trained on smaller datasets compared to more 070

recent and advanced LLMs like Llama (Touvron 071

et al., 2023) and GPT4 (OpenAI, 2023). 072

While Conversational Grounding can be a mul- 073

timodal phenomenon, in this paper, we start by 074

evaluating the performance of state-of-the-art Lan- 075

guage Models on textual inputs, since current dia- 076

log systems convert speech to text before sending it 077

as input to Language Models for NLU, NLG, and 078

in some cases dialog management itself. The out- 079

puts are later converted into speech using separate 080

modules. Because of their growing significance 081

in the field of dialogue systems, we aim here to 082

assess and enhance pre-trained LLMs’ capabilities 083
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in the various kinds of conversational grounding.084

This will lay the groundwork for more advanced085

modular spoken dialog systems with multimodal086

input and output in the future.087

To this end, we have devised a series of tests088

to evaluate LLMs. We evaluate how they handle089

grounding both as speaker and listener. When the090

models act as a listener, we test if they can ground091

information that was repaired or cancelled by the092

speaker, and we test if they can ask questions in093

case of important uncertainties. When the models094

act as speaker, we test if they can recognize and095

provide correct information to reduce ambiguity.096

Our approach involves analyzing the model per-097

plexity of two hand-crafted responses for a given098

context: one being contextually appropriate and099

the other deceptively fitting but contextually in-100

correct. By comparing the perplexities of these101

responses, we gauge the model’s proficiency in spe-102

cific grounding scenarios. Our findings indicate a103

correlation between model performance and its size104

in terms of parameters. Consequently, we subse-105

quently conduct novel tests to explore the reasons106

behind the under-performance of smaller models,107

focusing specifically on their embedding vectors.108

The insights gained from these investigations are109

then utilized to explore methods for enhancing the110

performance of these smaller models in conversa-111

tional grounding tasks.112

2 Related Work113

In the field of linguistics, (Clark and Brennan,114

1991) explored the inherent uncertainty present in115

dialogue, which interlocutors negotiate and resolve,116

to the extent necessary for that stage of the dialogue.117

Clark identified four distinct states of uncertainty:118

1) B didn’t notice that A uttered any utterance u.119

2) B noticed that A uttered some u. 3) B correctly120

heard u. 4) B understood what A meant by u.121

The field of conversational systems has seen122

various efforts aimed at addressing the challenges123

of grounding, particularly in the context of rule-124

based modular dialog systems. The pioneering125

work originated with (Traum and Allen, 1994),126

which introduced the concept of Grounding Acts127

(GAs). It serves as a framework for breaking down128

the grounding process into its fundamental units.129

Within this framework, they define 7 categories130

of GAs: Initiate, Continue, Acknowledge, Repair,131

Request-Repair, Request-Acknowledge, and Can-132

cel. The framework also introduced the concept of133

’Grounding Unit’, a group of utterances providing134

a piece of information starting with an ’Initiate’ 135

and then adding to the common ground with an 136

’Acknowledgment’. Other GAs help in negotiat- 137

ing this information before adding to the common 138

ground. While this concept offers a solid founda- 139

tion for understanding and modeling conversational 140

grounding, its application has been limited in the 141

context of contemporary Large Language Models 142

(LLMs). 143
Subsequent approaches, such as Centering The- 144

ory (Grosz et al., 1983; Barbara Grosz and Wein- 145

stein, 1986) and Domain Reference theory (Denis, 146

2010), introduced techniques for representing and 147

managing grounded information. Their applicabil- 148

ity, however, was largely limited to closed domains, 149

primarily owing to their reliance on rule-based ap- 150

proaches. 151

(Fried et al., 2021) has focused on reference- 152

centric multimodal models by leveraging the suc- 153

cess of recent artificial neural networks. However, 154

it is designed for the specific multimodal refer- 155

ence task in the Onecommon dataset (Udagawa and 156

Aizawa, 2019) using an end-to-end neural-network 157

based model. 158

Recent research on generative agents has high- 159

lighted the potential of Large Language Models 160

(LLM) in interactive settings. Park et al.’s study 161

(Park et al., 2023) involved the creation of multi- 162

ple agents, each assigned an initial identity. These 163

agents were equipped with a memory module and 164

relied on LLMs to assess the significance of vari- 165

ous memories. The study demonstrated their ability 166

to plan relevant events and execute them through 167

human-like interactions. However, it’s important 168

to note that this research was conducted in a vir- 169

tual environment with artificial agents, which does 170

not fully replicate the scenario of human-human 171

or human-agent spontaneous conversations. While 172

this work sheds light on the potential capabilities 173

of LLMs, and contrary to the results of previous 174

work like (Benotti and Blackburn, 2021), further 175

investigation is warranted in assessing their effec- 176

tiveness in handling various grounding phenomena 177

in natural conversations. 178

3 Dataset 179

Several datasets have been curated to support re- 180

search on conversational grounding. Talk The Walk 181

(de Vries et al., 2018) created a virtual 2D grid en- 182

vironment, while the HCRC Maptask (Thompson 183

et al., 1993) had participants discuss directions us- 184

ing a map that, in fact, differed between the two 185
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participants, forcing them to negotiate what they186

were referring to at any given moment. These con-187

versations helped in the development of early theo-188

ries and models for grounding. After assessing the189

existing datasets, we opted to employ the Meetup190

dataset (Ilinykh et al., 2019) to generate our test191

cases. This choice was made due to the fact that the192

nature of the task requires participants to negotiate193

instances of referring expressions.194

The Meetup dataset introduced a scenario195

wherein two participants are placed on a 2D grid,196

with each vertex representing a room. The objec-197

tive is for the two participants to converge in the198

same room, despite only being able to see their199

own rooms. Navigational actions (east, west, north,200

or south) move participants to new rooms, unveil-201

ing the image of the newly entered room to them.202

Achieving the goal necessitates the articulation of203

room descriptions, formulation and communica-204

tion of a converging strategy, retention of room205

descriptions shared by the counterpart, and mental206

modeling of the other participant’s room configura-207

tions. Although the dataset is text-based, it serves208

as a great resource for exploring and developing209

grounding models. Unlike many tasks that attribute210

a leading role to one participant, in this task, both211

participants can assume initiator or responder roles212

interchangeably. These features made the dataset213

ideal for our purposes. The dataset contains 430214

dialogs containing 5131 utterances.215

4 Models216

In order to examine LLMs of varying sizes we217

decided to test T5-Large (Raffel et al., 2020),218

Godel-Large (Peng et al., 2022), Llama(7 & 13219

Billion)(Touvron et al., 2023), GPT 3.5(OpenAI,220

2022) and GPT 4 (OpenAI, 2023). T5 is an221

encoder-decoder-based transformer model, while222

Godel, developed by Microsoft, builds upon T5223

with additional fine-tuning for conversational ap-224

plications; both models possess 770 million param-225

eters. Llama and the GPT models, in contrast, are226

decoder-based transformer models. For T5, Godel,227

Llama(7B, 13B), access to the models allowed for228

additional fine-tuning using Causal Language Mod-229

eling(predicting subsequent tokens based on prior230

sequences) on the entire Meetup dataset. This en-231

abled testing of both the original (vanilla) and fine-232

tuned versions of these models. The fine-tuned233

models were not exposed to the answers of the234

modified dialog test cases beforehand, ensuring an235

unbiased evaluation of their performance. See the236

Instructions : Here is a conversation between two par-
ticipants ........ to both participants.
Following is the dialog history along with image de-

scriptions:
<Image A> The image showcases an oven ............. is
located near the table.
[00:00:25] A: I’m in a kitchen
[00:00:43] B: In a dining room with 4 brown toys
[00:00:48] A: let me go north
<Image A> There are 4 chairs and a dining table .............
with a photo hanging on the wall.
[00:00:54] A: I see a dining room, but not your one

Figure 1: Example of input context provided to the mod-
els with the instructions, image descriptions and dialog
history. See appendix for more complete instructions
and image descriptions.

appendix for the finetuning training setup. 237

5 Testing 238

Perplexity Testing : We conduct an assessment of 239

the model perplexity of candidates for the response 240

to a given context. Perplexity(PPL) is a measure of 241

how well a language model predicts a sample. It 242

quantifies the model’s uncertainty in predicting a 243

sequence of words as given by the equation - 244

PPL(W ) = e
− 1

N

∑N

i=1
loge P (wi|w1,...,wi−1) (1) 245

246
Here, W represents the sequence of words 247

w1, . . . , wN , N is the length of the word sequence, 248

and P (wi|w1, . . . , wi−1) is the probability of each 249

word. A lower perplexity indicates a higher chance 250

of the model accurately generating the sequence. 251

We evaluate the models’ ability to ground the 252

conversations in two contexts - When they act as 253

a listener and when as a speaker. To assess the 254

LLM’s grounding ability as a listener to consider 255

modifications from the speaker, we test it on situa- 256

tions containing the GAs - Repair and Cancel. We 257

also test if it can detect ambiguities in the speaker’s 258

utterances and respond accordingly. While act- 259

ing as a speaker, we test them on another type of 260

GA - Request Repair, where they have to provide 261

further relevant information when requested by the 262

listener, in order to help in grounding. We also look 263

at Request-Repairs that are of the Yes-No question 264

type where the models tend to make contextual mis- 265

takes. Finally, we examined instances of complex 266

anaphoric references made by the listener while 267

asking for clarification. These references have to 268

be disambiguated before responding to the requests 269

for clarification. 270

To evaluate each phenomenon, we first annotate 271

the various grounding phenomena in the Meetup 272

Corpus. Then we pick 20 instances of each phe- 273
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nomenon and introduce slight modifications to cre-274

ate test cases. We pick only 20 instances because275

some scenarios, such as cancel, occur only 20 times,276

and we want equal numbers of instances for each277

phenomenon. As described below, the results nev-278

ertheless show a clear trend in the performance279

of different models. After identifying test cases,280

we create a correct and incorrect response for the281

context and analyze the model perplexity for those282

examples, as illustrated in Figure 2. Ideally, the283

perplexity of the correct response should be lower284

than the incorrect response.285

Here we provide a detailed discussion of the test286

case creation process for each category -287

1. Reference Ambiguity refers to instances288

where the referring expression is ambiguous.289

We test if the model is able to ask for clarifica-290

tions in such cases of uncertainty, as seen in291

Figure 2. Examples of remaining categories292

can be found in section A.1 of appendix293

2. Repair is the correction of previously uttered294

material or the addition of omitted material295

that will change the listener’s interpretation296

of the speaker’s intention. We check if the297

model can correctly take the repair from the298

speaker into account. The correct response ac-299

counts for the repaired information from the300

speaker while the wrong response contains301

the older information. The model’s ability to302

correctly take into account the repaired infor-303

mation shows its grounding abilities.304

3. Cancellation refers to the speaker retracting305

previously grounded information. We check306

if the model can make the corrections to the307

grounded information. The correct response308

has the amended information while the wrong309

response doesn’t.310

4. Request Repair: We test if the model act-311

ing as speaker can use the dialog context to312

disambiguate or clarify when the listener re-313

quests a repair. The correct response provides314

a contextually correct repair, while the wrong315

response doesn’t.316

5. Request Repair (Yes/No): For cases where317

the listener asks for an acknowledgment of318

what they have found, yes/no questions are319

used. Hence, we check if the model acting320

as the speaker can provide the correct repair321

instead of a generic yes/no answer.322

6. Anaphora : We test if the model can link323

the anaphoric reference to the correct referent324

Table 1: Human Evaluation of Perplexity test cases

Options % of times it
was chosen

Correct Option 90.65
Wrong Option 1.55
Both options are valid 6.25
None of the options are valid 1.55

<Initial instructions + Image description>
[00:00:43] B: I am now in a dining room
[00:00:49] A: I see a library
[00:00:52] A: I’ll move
[00:00:58] B: ok
[00:01:09] B: with silver latch to it
[correct] A: sorry what has a silver latch?
[wrong] A: Yes I am searching for them

Figure 2: Example of test case for Reference Ambiguity

when the listener asks for clarifications. The 325

correct response mentions the correct referent, 326

unlike the wrong response. 327

Each input in our evaluation encompassed prior 328

information, including instructions about the par- 329

ticipants’ situation, game rules, dialog history, and 330

descriptions of images that the participants were 331

viewing during the experiment, as can be seen in 332

Figure 1. The image descriptions were initially au- 333

tomatically generated using the Llava model (Liu 334

et al., 2023) and subsequently refined manually to 335

ensure the inclusion of all pertinent information. 336

These image descriptions were then interspersed in 337

utterances whenever room changes occurred. 338

We also tested the model proposed by (Roque 339

and Traum, 2008) by finetuning a T5-based model 340

to classify the grounding acts. We used the classi- 341

fied GAs of each utterance to calculate the degree 342

of grounding(DoG). We later appended the GA and 343

DoG information into the context and tested the T5 344

models to check if the traditional approaches could 345

help the smaller models. We refer to this model as 346

T5(DoG & GA). 347

Prompt Testing : Since it was not possible to 348

calculate perplexity for the GPT3.5 and GPT4 mod- 349

els at the time of the study, we examined whether 350

these models could select between the two response 351

options as prompt as an alternative evaluation ap- 352

proach. In order to have a direct comparison with 353

the smaller models, we also tested Llama-7B and 354

Llama-13B using prompts. We do not test smaller 355

Godel and T5 models as they would need further 356

instruction tuning to answer questions correctly 357

using just the prompts. 358

To evaluate the accuracy of our test cases, a 359

human evaluation was also conducted via Ama- 360

zon Mechanical Turk. 20% of our test cases were 361
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Table 2: Ratio of test cases where correct utterance had lower perplexity

Model Repair Cancel Req-Repair(Y/N) Req-Repair Anaphora Ref. Amb.
T5 0.45 0.55 0.65 0.50 0.45 0.35
Godel 0.40 0.65 0.45 0.50 0.35 0.40
T5 - Finetuned 0.45 0.50 0.40 0.45 0.30 0.45
Godel - Finetuned 0.35 0.50 0.45 0.45 0.40 0.45
Llama-7B 0.55 0.55 0.55 0.45 0.65 0.80
Llama-7B Finetuned 0.50 0.55 0.55 0.45 0.70 0.80
Llama-13B 0.75 0.75 0.70 0.80 0.75 0.80
Llama-13B Finetuned 0.65 0.75 0.65 0.70 0.70 0.70
T5(DoG & GA) 0.45 0.50 0.60 0.55 0.45 0.30

Table 3: Mean value of perplexity for correct utterances of each model

Model Repair Cancel Req-Repair(Y/N) Request-Repair Anaphora Ref. Amb.
T5 3.02e+15 3.46e+15 3.30e+15 2.81e+15 8.49e+14 2.00e+10
Godel 4233.29 4221.50 44379.42 44488.40 21724.60 25769.90
T5 - Finetuned 1.19 1.21 1.19 1.19 2.41 2.04
Godel - Finetuned 1.06 1.09 1.06 1.07 1.55 1.24
Llama-7B 7.12 7.10 7.75 8.00 6.93 7.70
Llama-7B Finetuned 2.91 2.91 2.89 2.92 4.72 4.63
Llama-13B 14.04 24.3 22.18 19.94 8.03 15.19
Llama-13B Finetuned 20.42 21.24 38.84 31.76 11.43 34.02
T5(DoG & GA) 2.06e+14 4.72e+15 3.56e+14 4.2e+14 5.06e+13 1.8e+11

Table 4: Ratio of test cases where correct utterance was chosen from prompt

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
Llama-7B 0.50 0.55 0.55 0.55 0.75 0.80
Llama-13B 0.75 0.75 0.75 0.85 0.80 0.80
GPT 3.5 0.80 0.55 0.55 0.85 0.80 0.70
GPT 4 0.85 0.95 1.00 0.95 0.95 0.85

randomly selected and workers were asked to se-362

lect the best option from the correct and wrong363

responses. They could alternatively say that both364

options were valid or neither of them were valid.365

Table 1 shows that humans preferred the correct366

response in more than 90% of the cases. Given367

that each test case was independently assessed by368

five different individuals, their almost unanimous369

approval affirms the validity of the test cases.370

6 Results371

Table 2 shows that smaller models like T5, Godel,372

and Llama-7B struggled to achieve lower perplex-373

ity for correct utterances compared to incorrect374

ones, indicating their limited proficiency in con-375

versational grounding. However, Llama-13B per-376

formed significantly better across all the categories.377

Llama-7B performed on par with Llama-13B in378

anaphoric reference and reference ambiguities sug-379

gesting that smaller models trained on relatively380

smaller data can detect the presence of ambiguities381

and also link the references to their referents. How-382

ever, concepts like repair, cancel and request-repair383

are only understood by slightly larger models like384

Llama-13B showing that the ability to modify the385

grounded information is an emerging property of386

larger models trained on more data.387

We also examine the mean perplexity of the cor-388

Figure 3: Pictorial representation of ideal scenario
where D1 should be similar in distance to D2 as D3
and D4 should be far away

rect responses for each model in Table 3 as lower 389

mean perplexity shows that the model not only pri- 390

oritizes the correct response but also has a higher 391

probability of generating it as a response to the con- 392

text. The perplexity values for plain T5 reached as 393

high as 10^15 showing their inability to generate 394

the correct utterances. In contrast, finetuned mod- 395

els demonstrated significantly improved perplexity, 396

close to 1, suggesting that finetuning aids in recog- 397

nising the pattern within dialogues in the dataset. 398

However, across all the categories, the smaller fine- 399

tuned T5 and Godel models were equally likely 400

to generate the correct and wrong utterances as 401

the ratio hovered around 0.5 in Table 2. Optimal 402

model performance would have a ratio close to 403

1(generates correct over wrong) and a lower mean 404

perplexity for correct response indicating that the 405

model will actually respond with correct utterances, 406

but none of the smaller models achieved this. Thus, 407

while finetuning smaller and medium-sized models 408
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increased the likelihood of generating utterances409

similar to those in the dataset(like the correct and410

wrong responses), it did not necessarily improve411

the model’s understanding of dialog pragmatics412

leading to a lack of preference for correct responses.413

We also see a slight dip in the performance of414

the fine-tuned Llama-13B model further showing415

that Causal Language Modeling over datasets does416

not help distinguish between correct and wrong417

responses. We also see no improvement in the418

performance of T5 with the additional informa-419

tion of GAs and DoGs providing stronger evidence420

that such pragmatic behaviors emerge from models421

trained on a larger quantity of data as compared to422

building better structures on top of smaller models.423

We keep further detailed investigation of building424

such structures on top of LLMs for the future.425

Table 4 shows the performance of models when426

provided the options to choose between the cor-427

rect and incorrect response. Llama-7B shows weak428

performance on all categories while GPT 4 per-429

forms the best across all the categories sometimes430

even getting all the responses correct. Also, while431

comparing Tables 4 and 2, Llama-7B and Llama-432

13B perform slightly better when the correct and433

wrong options are provided through prompt and434

they are asked to chose as compared to their ability435

to produce such responses indicated by the per-436

plexity. However, the models show similar trends437

on both the perplexity and prompt testing i.e. the438

smaller models perform better on categories like439

Anaphoric References and Reference Ambiguities440

as compared to Repair, Request-Repair and Can-441

cel. Similarly, Larger models tend to perform442

better on these test cases as compared to smaller443

models with Llama-13B being an exception over444

GPT 3.5. One possible reason for the better per-445

formance of LLama-13B could be the amount of446

tokens on which it has been trained and the quality447

of data used for the pre-training which is in line448

with latest findings (Gunasekar et al., 2023) where449

smaller models outperform larger models if trained450

on larger and better quality tokens.451

The outcomes of this experiment highlight the452

potential of directly employing larger models for453

establishing conversational grounding in dialogue454

systems. However, the utilization of these large455

models may not be optimal for every dialogue sys-456

tem, given their increased latency, higher memory457

constraints and higher cost per inference. Con-458

sequently, this prompted an investigation into the459

reasons behind the less effective performance of460

D1 with repair
User A: It is overlooking the garden, with yellow seat
User B: yellow seat?
User A: sorry yellow table
User A: Do you want me to find you or you to find me?
User B: I’ll look for you

D2 (paraphrased from D1 without Repair)
User A: It is overlooking the garden, with yellow table
User A: Do you want me to find you or you to find me?
User B: I’ll look for you

D3 (paraphrased from D2)
User A: With a garden view, there is a yellow table
User A: Do you want me to search for you or for you
to search for me?
User B: I will search for you.

D4 (with wrong information)
User A: It is overlooking the garden, with yellow seat
User A: Do you want me to search for you or for you
to search for me?
User B: I will search for you.

Figure 4: Example of test case for a repair instance for
embedding study. The appendix contains examples of
other categories.

smaller and medium-sized models. 461

7 Embedding Study 462

To gain deeper insights, we developed a novel 463

method to analyze how these models process utter- 464

ances at the embedding level. For this purpose, four 465

instances of the same dialogue were generated. 466

1. The First instance (D1) is the original instance 467

of a group of utterances containing the correct 468

response of the PPL test cases of the specific 469

phenomenon. 470

2. Second instance (D2) is a paraphrase of D1 471

without the particular phenomenon that we 472

are testing. This is manually created keeping 473

in mind that the overall meaning of the dialog 474

doesn’t change. A human evaluation shows 475

that humans didn’t find any difference in the 476

meaning of the D1 and D2 as seen in Table 477

9 in the appendix. The evaluation was done 478

similar to our previous evaluation in amazon 479

mechanical turk where we asked them to rank 480

the similarity between D1 and D2 on the likert 481

scale of 1-5. 482

3. Third instance (D3) is a paraphrased instance 483

of D2 where we paraphrase it utterance by 484

utterance using GPT 4(since we are not testing 485

GPT 4 in this test). 486

4. Fourth instance (D4) contains incorrect infor- 487

mation taken from the wrong response of the 488

PPL test cases and added to D2. 489
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Table 5: Score V on the embedding test for each model

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora
T5 0.58 0.06 1.43 0.44 1.64
Godel 0.23 0.52 0.98 0.22 0.90
T5 - Finetuned 0.91 0.43 0.87 0.15 0.76
Godel - Finetuned 0.45 1.33 1.22 0.97 1.12
Llama-7B 0.86 0.89 0.92 0.75 7.45
Llama-7B Finetuned 0.92 0.63 1.23 1.33 8.66
Llama-13B 3.17 1.05 4.32 1.97 13.33
Llama-13B Finetuned 5.33 1.31 5.52 2.77 10.26

Figure 4 illustrates a test case encompassing D1,490

D2, D3, and D4. Owing to the inherent charac-491

teristics of Reference Uncertainty, they were not492

examined at the embedding level in the current in-493

vestigation. For more information on how D2 test494

cases were created from D1 for each phenomenon,495

please look at the Appendix.496

The study focused on the spatial distance be-497

tween the embeddings of different instances of the498

dialogues. Ideally, the first three dialogues (D1,499

D2, D3) would have close proximity in the embed-500

ding space, while D4 should be distinctly separated.501

This was assessed by analyzing the distances be-502

tween the hidden representations of the final en-503

coding layer of each model for each instance. Es-504

sentially, this evaluated whether the dialogue D1505

containing the grounding phenomenon, bore more506

similarity to D3 or D4, in terms of their respective507

distances from D2. If the model exhibits capabili-508

ties of understanding these grounding phenomena,509

the distance between D1 and D2 should be akin to510

that between D2 and D3; otherwise, if it considers511

it to be not similar to D2 and D3 then it would more512

closely resemble the distance between D2 and D4513

i.e. it will treat it more like a random dialog as514

depicted by Figure 3.515

We calculate a score V of the embeddings based516

on the formula in equation 2. Here, v1,v2,v3 and v4517

are the mean final layer embeddings of D1,D2,D3518

and D4. The score calculates the distance (dist)519

between v1,v2 and compares it with the distance520

of v3,v2 and v4,v2. If D1 is considered closer to521

D3 then the dist(v1, v2) should be similar to the522

dist(v3,v2) and much smaller than the dist(v4, v2)523

leading to a larger score. Otherwise, if the D1 is524

considered more like D4 then the numerator will525

be smaller and the denominator will be larger lead-526

ing to a smaller score. Ideally, we would like our527

models to provide higher scores for each category.528

V (v1, v2, v3, v4) =
|dist(v2, v1)− dist(v2, v4)|
|dist(v2, v1)− dist(v2, v3)| (2)529

8 Embedding Study Findings 530

The data presented in Table 5 highlight the fail- 531

ure of the models(especially T5 and Godel) at the 532

encoder level to differentiate between utterances 533

containing grounding phenomena and utterances 534

containing deceptively wrong information by hav- 535

ing a score less than 1. These distinctions, or lack 536

thereof, in the embedding space lead to generation 537

errors, as previously observed in our experiments. 538

The findings from this study highlight four key in- 539

sights: 1) The model performance in differentiating 540

between D1, D2, D3 and D4 was directly propor- 541

tional to the size of the models. 2) The smaller 542

models’ tendency to not equate the original dialog 543

(D1) to the paraphrased dialogs lacking the ground- 544

ing phenomenon (D2 and D3), particularly for phe- 545

nomena such as Repair, Request-Repair, and Can- 546

cel indicating their shortcomings in appropriately 547

modifying information that has been corrected or 548

canceled. In other words, these models lack an 549

ability to distinguish between the information pre- 550

sented across various temporal contexts. 3) The 551

tendency of the models to confuse D2 with D4 due 552

to word similarity in majority of context, indicat- 553

ing a reliance on lexical content over pragmatic 554

understanding. 4) The consistent superior per- 555

formance of the fine-tuned Llama model over its 556

original version, suggests the potential benefits of 557

finetuning methods for enhanced performance. 558

9 Positive and Negative Reward Training 559

Based on the embedding testing analysis, we real- 560

ized that the models need to be able to distinguish 561

at the embedding level between dialogs that sound 562

the same but mean very different. Hence, we de- 563

cided to create additional cases for each categories 564

and finetune the models using Positive and Neg- 565

ative Reward Training (Sutton and Barto, 2018). 566

As seen in Equation 3, this approach involved re- 567

warding the model for correctly identifying suitable 568

responses i.e. reduce the loss of correct response 569

(Loss_Correct), while penalizing it for selecting in- 570

correct utterances in the same context i.e. increase 571
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Table 6: Ratio of correct response having lower perplexity after positive and negative reward training

Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
T5 0.50 0.15 0.65 0.35 0.40 0.65
Godel 0.45 0.15 0.60 0.50 0.40 0.75
T5 - Finetuned 0.60 0.35 0.75 0.45 0.50 0.75
Godel - Finetuned 0.50 0.25 0.65 0.45 0.45 0.80
Llama-7B 0.70 0.75 0.60 0.85 0.70 0.90
Llama-7B Finetuned 0.75 0.75 0.65 0.85 0.75 0.95
Llama-13B 0.85 0.75 0.75 0.85 0.80 0.85
Llama-13B Finetuned 0.80 0.75 0.70 0.85 0.85 0.90

Table 7: Perplexity of correct utterances for models trained with positive and negative reward
Model Repair Cancel Req-Repair(Yes/No) Req-Repair Anaphora Reference Ambiguity
T5 2.56e+05 6.18 20 37 4.76 1.45e+04
Godel 28.90 5.21 13.55 16.82 4.92 38.90
T5 - Finetuned 932.49 847.43 7.74e+04 1.60e+06 7617.88 5.72e+03
Godel - Finetuned 856 8.70 21.94 22.19 7.82 46.20
Llama-7B 11.88 14.63 14.32 16.51 16.26 22.31
Llama-7B Finetuned 8.95 12.93 9.07 10.67 10.43 19.90
Llama-13B 13.28 11.43 8.25 13.15 12.44 16.11
Llama-13B Finetuned 9.73 14.51 14.85 15.76 12.23 11.20

the loss of the wrong response (Loss_Wrong). Both572

the correct and wrong Losses are obtained using573

cross-entropy loss with the entire context as input574

and the correct and wrong responses as outputs.575

Here W1 and W2 are hyper-parameters empirically576

set as W1=4 and W2=0.5.577

Loss = W1 ∗ Loss_Correct−W2 ∗ Loss_Wrong (3)578

Recognizing GPT 4’s superior performance in579

our evaluations, and the need for more diverse cat-580

egory instances in our dataset, we utilized GPT 4581

to generate 100 additional training data by feed-582

ing it examples from every category. However,583

it was noted that GPT 4 had limitations in creat-584

ing complex cases, necessitating manual modifica-585

tions to improve their quality. Tables 6 and 7 show586

the improvement in the performance of Llama-7B,587

Llama-13B and their fine-tuned version after the588

positive-Negative reward training over their previ-589

ous performance in Tables 2 and 3. However, the590

smaller models T5 and Godel were not able to im-591

prove their performance indicating a role of model592

size and pre-training on extensive data that leads593

to their ability to learn newer concepts. This indi-594

cates that a complex concept like grounding is dif-595

ficult to achieve with smaller models like T5-Large596

even after fine-tuning. Conversely, a model akin597

to Llama’s size can be trained for better grounding598

performance, though it may not match the profi-599

ciency of a larger model like GPT-4 leading to600

a trade-off between better performance and total601

computations performed.602

10 Conclusion and Future Work603

In this study, we developed a benchmark aimed604

at assessing the effectiveness of LLMs in natu-605

ral conversations, with a focus on conversational 606

grounding, and utilizing perplexity scores as a mea- 607

sure. Our observations revealed a direct correla- 608

tion between model size and performance, high- 609

lighting the possibility of emergent properties in 610

LLMs leading to the addressing of conversational 611

grounding in dialogs, unlike the previous findings 612

of (Benotti and Blackburn, 2021). We also see that 613

models trained on larger amounts of high-quality 614

data might perform better than larger models. Ad- 615

ditionally, we introduced a method to investigate 616

the limited performance of smaller models by ex- 617

amining the embeddings from four altered versions 618

of the same dialogue which indicated the emphasis 619

on lexical content by smaller models over prag- 620

matics. Building on these insights, we generated 621

new training data to employ positive-negative re- 622

ward techniques resulting in improved performance 623

of medium-sized models. While they still do not 624

match the performance of larger models, the find- 625

ings indicate that, with specific training, medium- 626

sized models could potentially replace larger mod- 627

els in real-time systems where there is a need to 628

balance performance and computation(causing la- 629

tency). Our observations indicated that, while, fine- 630

tuning with Causal Language Modeling did not 631

improve the performance, using positive-negative 632

rewards significantly enhanced the pragmatic ca- 633

pabilities of the model. Future work will further 634

investigate techniques like DPO (Rafailov et al., 635

2023) and RLHF (Ouyang et al., 2022) for this pur- 636

pose. It will also focus on integrating multimodal 637

inputs and outputs in language models, recognizing 638

their vital role in grounding. 639
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11 Limitations640

Our tests were derived from real-time conversa-641

tional data, which is essential for collecting con-642

versational grounding instances. However, some643

categories, such as "Cancel" appear less frequently,644

resulting in a smaller number of test cases. Hence,645

we chose 20 test data points as that was the max-646

imum number of occurrences of "Cancel" in the647

dataset. We also did not want to have different648

numbers of instances for different categories as it649

would have led to more difficulty in measuring the650

performance of models across various categories.651

However, we conducted the same experiment on652

some additional test data for Anaphora and found653

similar trends to our previous experiments. The654

results of these additional test cases can be found655

in the appendix in section A.6.656
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A Appendix777

A.1 Perplexity test examples778

Here we provide the remaining examples of the779

perplexity test. Figure 5 provides an example of the780

Request-Repair(Yes/No). As seen in the example,781

we check if the model provides a generic yes as an782

answer or does it check the image and figure out783

that it has a pink wall. We specifically check for784

yes/no type request repairs because the models tend785

to do a lot of mistakes in such cases. It is worth786

noting that in our test cases, the correct answer787

could contain a yes as well. Figure 9 shows a test788

case for Request-Repair where the requests are not789

of the yes/no type.790

Figure 6 provides an example of a test case for791

Anaphora testing. Here we check if the model B792

where asked to clarify for the word ’here’ is able to793

provide the correct referent. In some of the other794

test cases for anaphora, the model has to act as795

Request Repair(Yes/No) Perplexity Test-
case Example

<Initial instructions>
<Image A> The picture depicts a calm patio
with an ocean view, featuring two chairs fac-
ing the water and having pink walls. One
chair is on the left and the other is positioned
in the center. There is a cup on the table
between them, adding warmth. A wooden
railing surrounds the space for safety. Every-
thing evokes a feeling of peace and relaxation,
making it a perfect spot to spend time outside.
[00:00:57] A: I’ve found one. Let me know
when you do.
[00:01:04] B: I am on a balcony facing an
ocean
[00:01:14] A: This was thin wood railing.
Two wooden folding chairs?
[00:01:19] A: You can see windows off to the
left.
[00:01:26] B: yes, coffee mug on the floor?
[00:01:35] A: Yes. I think we’re both in the
same bedroom with a barbie theme.
[00:01:42] B: Is it the one with yellow walls?
[correct] A: No it has pink walls
[wrong] A: yes it has yellow walls

Figure 5: Example of test case for a Request-
Repair(Yes/No) instance for testing the perplexity

Anaphora Perplexity Testcase Example

<Initial instructions + Image descriptions>
[00:00:18] A: I am in the attick
[00:00:20] A: it is west
[00:00:42] B: I’m in the bedroom
[00:01:22] B: I see a couch here
[00:01:15] A: Sorry where do you see the
couch?
[correct] B: in the bedroom
[wrong] B: in the attick

Figure 6: Example of test case for an Anaphora instance
for testing the perplexity
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Repair Perplexity Testcase Example

<Initial instructions + image descriptions of
rooms being visited + previous utterances spo-
ken>
User A: go north
User B: You want me to go north?
User A: sorry. I meant to go south to come
inside
[correct] User B: Okay, let me go to the south
[wrong] User B: Okay, let me go to the north

Figure 7: Example of test case for a repair instance for
testing the perplexity

the listener and use the reference correctly in it’s796

response.797

Figure 7 shows an example of the repair test798

cases where we check the ability of the model to799

modify the information and ground them. Figure 8800

shows an example of the cancel test case where the801

model has to deal with cases where the information802

provided by the interlocutor was canceled.803

A.2 Encoding Test Cases804

We created the D2 test cases from D1 for each805

phenomenon in the following way -806

1. Repair: Here, we took the original dialog D1807

containing the Repair and replaced the origi-808

nal information with the repaired information.809

Figure 4 provides an example where we re-810

place the initial utterance containing ’yellow811

seat’ with ’yellow table’ directly. As a result,812

the information present in D1 and D2 remains813

the same while D4 contains ’yellow seat’.814

2. Cancel: We remove the information that was815

canceled in the first place thus having the same816

meaning as D1.817

3. Request-Repair: We remove the clarification818

asked by the listener and add the correct PPL819

response as repair directly in the speaker’s820

utterance thus keeping the overall informa-821

tion intact. We do the same for Request-822

Repair(Yes/No).823

4. Anaphora: D2 is the dialog with the correct824

response in PPL testcase where the reference825

is correctly replaced with the object being826

referred while D4 has the wrong response.827

While D1 contains the original reference.828

Cancel Perplexity Testcase Example

<Initial instructions+image descriptions>
[00:00:38] A: I’m in one with diamond
shelves in center
[00:00:41] A: lots of bottles
[00:00:44] A: wood racks
[00:00:54] B: I’m currently in a room with a
pool table
[00:01:08] A: yellow light on ceiling
[00:01:27] B: I’m in a room with lots of bot-
tles
[00:01:45] A: Ohh, it’s not yellow
[correct] B: then what is the color of those
ceilings?
[wrong] B: aah okay looking for yellow bot-
tles then

Figure 8: Example of test case for a cancel instance for
testing the perplexity

Request Repair Perplexity Testcase Exam-
ple

<Initial instructions>
Below is the dialog history:
<Image B> The image is of a cluttered, tiny
bedroom with two single beds pushed to-
gether, one covered in a checkered blanket.
A matte black chair occupies the center and
a laptop rests on one bed, a cellphone and a
cup. There is a brown table containing books
on top of it. The untidy room needs cleaning.
[00:00:42] B: im in the bedroom
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: two single beds. One covered
with blanket.
[00:01:31] A: wooden walls?
[00:01:33] B: nope. There is a table contain-
ing books.
[00:01:40] A: what is the color?
[correct] B: It is brown in color.
[wrong] B: it is matte black in color.

Figure 9: Example of test case for a Request Repair
instance for testing the perplexity
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Cancel Encoding Testcase Example

D1 with cancel
[00:00:30] B: Okay, I got a bedroom almost
all the way north
[00:00:31] A: one in a wooden cabin room,
small bed
[00:00:36] B: Alright, I’ll come find you
[00:00:41] A: I’m north
[00:00:53] A: no forget about it.

D2
[00:00:30] B: Okay, I got a bedroom almost
all the way north
[00:00:31] A: one in a wooden cabin room,
small bed
[00:00:36] B: Alright, I’ll come find you

Figure 10: Example of test case for a Cancel instance
for understanding the hidden representations for each
model

Here we look at the examples of the remaining829

categories for the encoder testing. Figure 10 shows830

an example of Cancel where A says something but831

then cancels it. D2 in this case doesn’t contain832

any information about going north. Hence, we833

want to check if the model is able to consider both834

information same or not.835

Figure 11 is the same example as Figure 9 where836

the correct response becomes part of D2 while837

wrong response becomes part of D4.838

A.3 Training Setup839

We used a single A100 gpu to train the models.840

LoRA with a rank of 8 and alpha value of 16 was841

used for the finetuning. Deepspeed zero optimizer842

was used for better memory management. All the843

models were trained with 3 epochs. We used the844

AdamW optimizer with a learning rate of 2e-5 and845

a cosine learning rate scheduler. The weight decay846

of the models was set at 0.01 and a batch size of 4847

was used. The initial finetuning was done with a 80-848

20 ratio of train and validation test while the entire849

artificial test set generated for positive-negative850

reward training was used for the training purpose.851

A.4 Complete example of instructions852

Figure 12 provides the complete instruction that853

was provided to the models. It also shows the ex-854

ample of an image description that was obtained855

Request Repair Encoding Testcase Exam-
ple

D1 with Request Repair
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right
[00:01:40] A: what is the color of the table?
[00:01:46] B: It is brown in color.

D2
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: brown table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right

D3
[00:00:42] B: im in the dining room
[00:00:52] A: okay describe it and I’ll find
you
[00:01:07] B: matte black table with 6 chairs
[00:01:31] A: wooden walls?
[00:01:33] B: support bars on the right

Figure 11: Example of test case for a Request Repair
instance for understanding the hidden representations
for each model

12



Table 8: Result of perplexity test on additional 15
anaphora test cases.

Model Anaphora
T5 0.46
Godel 0.40
T5 - Finetuned 0.33
Godel - Finetuned 0.40
Llama-7B 0.46
Llama-7B Finetuned 0.53
Llama-13B 0.73
Llama-13B Finetuned 0.60

from the Llava model and later modified manually.856

A.5 Comparing Responses857

Figures 13, 14, 15 show the response generation858

by the models when they are not provided with859

any options. As can be seen, GPT 4 responses are860

able to detect ambiguities and provide responses861

accordingly while a Llama 7B model does not ask862

for clarifications or provide the accurate responses.863

As seen in Figure 15, Llama 7B suddenly changes864

the topic to Barbie dolls and accessories. However,865

GPT 4 responses are a bit longer than what a spo-866

ken utterance should be ideally. But, it has been867

observed in our internal testings that with slight868

fine-tuning, the models can reduce down the length869

of their utterances significantly.870

A.6 Additional test with Anaphora871

Table 8 shows the result of perplexity test on addi-872

tional test cases for anaphora. As can be seen, the873

results satisfy our previous findings. This further874

strengthens our findings and it’s general implica-875

tions.876

A.7 Human Evaluation877

Table 9 shows the human evaluation for the sim-878

ilarity between D1 and D2. As can be seen, ma-879

jority of the evaluators considered both to mean880

the same while only 4.5% considered them to be881

significantly different. None of them considered882

them to be opposite of each other.883

Table 9: Human Evaluation of D1 - D2 similarity

Likert Scale % of times it
was chosen

5 (Means the same) 78.25
4 (Meaning is slightly different) 17.25
3 (Meaning is significantly different) 4.50
2 (Mean slightly opposite to each other) 0.00
1 (Mean completely opposite) 0.00

Instructions : Here is a conversation between
two Participants A and B who are in a vir-
tual space that has lots of different rooms that
are depicted with images. Each room has a
type (such as kitchen, bathroom, bedroom,
etc.). The participants are initially located
in different rooms. The goal of the game is
for the two participants to locate themselves
in the same room. In order to achieve this
goal, the participants communicate with one
another by text and describe the room they
find themselves in. On the basis of those de-
scriptions, they move to different rooms and
describe their new room to the other partic-
ipant. The game ends when the two partici-
pants find themselves in the same room. We
translated the images that the participants saw
into text. That description of the room is pro-
vided below as soon as a participant enters a
given room. The current room description of
User A starts with a token <Image A> and the
current room description of User B starts with
a token <Image B>. Every utterance from A
or B is preceded with a timestamp closed un-
der brackets. Some text is provided by GM,
a non-participant in the game who provides
essential information regarding the game to
both participants.
Following is the dialog history along with

image descriptions :
<Image A> The image showcases a large,
modern kitchen with dark wood cabinets and
sleek black countertops. The kitchen is well-
equipped with a stove top oven positioned
under a ventilation fan, a microwave situated
above the oven, and a refrigerator placed on
the right side of the room. There are several
items placed on the countertops, including
a bowl, a few apples, and an orange. The
kitchen also features a dining table with chairs
placed around it. A potted plant adds a touch
of greenery to the room, located near the din-
ing table.
[00:00:19] B: i am currently outside
.........

Figure 12: Example of complete input context provided
to the models including the instructions, image descrip-
tions, and some dialog history
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Response Generation for Reference Ambi-
guity

Instructions : ..... <Initial Instructions>.......
You are participant A who can see the

following image -
<Image A> The image showcases a large,
modern dinning room with dark wood
cabinets and sleek black countertops. The
room contains a white dining table with black
chairs placed around it. A potted plant adds a
touch of greenery to the room, located near
the dining table. The walls are pink and there
are 2 windows with white curtains on them.
Here is the dialog history -
[00:43] B: I am now in a dining room with 4
brown toys
[00:49] A: I see a dining room, but definitely
not in one
[00:52] A: I’ll move
[01:03] B: well 6 toys sorry
[01:58] A: Im moving to find you
[02:03] B: ok
[03:01] B: with a silver bottom to it
Please provide the next utterance keeping in
mind that it’s a spoken conversation. Make
sure to ask for clarifications in case there is
any ambiguity and also provide additional
information in case there was a clarification
question from user B -

GPT Response :
A: Just to clarify, when you mention ’a silver
bottom’, are you referring to something
specific in the dining room, like the table or
another piece of furniture? On my side, I’m
in a dining room with dark wood cabinets
and sleek black countertops. There’s a white
dining table with black chairs, and the walls
are pink. Does any of this sound like your
room?

Llama 7B Response :
A: I’m now in a room with light brown
wooden flooring and large glass doors leading
to a balcony. There’s a couch and a coffee
table with magazines scattered around it.

Figure 13: Example of response generation by GPT 4
and Llama 7B when not provided with next response
options for reference ambiguity.

Response Generation for Request Re-
pair(Yes/No)

Instructions : ..... <Initial Instructions>.......
You are participant A who can see the follow-

ing image - <Image A> The picture depicts
a calm patio with an ocean view, featuring
two chairs facing the water and having pink
walls. One chair is on the left and the other
is positioned in the center. There is a cup on
the table between them, adding warmth. A
wooden railing surrounds the space for safety.
Every thing evokes a feeling of peace and re-
laxation, making it a perfect spot to spend
time outside.
Here is the dialog history -
[00:57] A: I’ve found one. Let me know
when you do.
[01:04] B: I am on a balcony facing an ocean
[01:14] A: This was thin wood railing. Two
wooden folding chairs?
[01:19] A: You can see windows off to the
left.
[01:26] B: yes, coffee mug on the floor?
[01:35] A: Yes. I think we’re both in the
same bedroom with a barbie theme.
[01:42] B: Is it the one with yellow walls?

Please provide the next utterance keeping in
mind that it’s a spoken conversation. Make
sure to ask for clarifications in case there is
any ambiguity and also provide additional in-
formation in case there is a clarification ques-
tion from user B -
[01: 50] A :

GPT Response :
A: No, the walls are not yellow; they are pink.
And it’s not a bedroom; it’s more like a patio
or balcony space.

Llama 7B Response :
Yes, it is the bedroom with yellow walls.
The chairs have pink cushions on them, and
there’s a pink quilt on the bed. Is there any
distinctive decoration or color scheme you
can identify in your room to help confirm it’s
the same one?

Figure 14: Example of response generation by GPT 4
and Llama 7B when not provided with next response
options for Request-Repair(Yes/No).
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Response Generation for Repairs

Instructions : ..... <Initial Instructions>.......
You are participant B who can see the follow-

ing image - <Image B> The image showcases
a parking area with three parked cars next to
a building. The building is red in colour and
has a glass door at it’s entrance. There is a
green car on the left, a blue sedan in the mid-
dle and a pink car on the right. There is an
empty parking slot between the blue and the
pink cars.
Here is the dialog history -
[00:21] B: It seems like I am in a parking lot.
[00:27] A: What do you see?
[00:32] B: Umm three cars parked next to the
building. One green car, one blue and a pink.
[00:36] A: Okay. Go north
[00:40] B: You want me to go north?
[00:45] A: Sorry, I meant go south to come
inside.

Please provide the next utterance keeping in
mind that it’s a spoken conversation. Make
sure to ask for clarifications in case there is
any ambiguity and also provide additional in-
formation in case there is a clarification ques-
tion from user A.
[01: 50] B :

GPT Response :
B: Alright, heading south to come inside.
Just to clarify, what room are you in right
now?

Llama 7B Response :
I see. There are many directions I can go
from this parking lot based on what I see here.
I’ll let you know if there’s anything new to
describe. That’s great! Are there any Barbie
dolls or accessories around?

Figure 15: Example of response generation by GPT 4
and Llama 7B when not provided with next response
options for Repairs.
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