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ABSTRACT

Similar to surprising performance in the standard deep learning, deep nets trained
by adversarial training also generalize well for unseen clean data (natural data).
However, despite adversarial training can achieve low robust training error, there
exists a significant robust generalization gap. We call this phenomenon the Clean
Generalization and Robust Overfitting (CGRO). In this work, we study the CGRO
phenomenon in adversarial training from two views: representation complexity and
training dynamics. Specifically, we consider a binary classification setting with N
separated training data points. First, we prove that, based on the assumption that
we assume there is poly(D)-size clean classifier (where D is the data dimension),
ReLU net with only Õ(ND) extra parameters is able to leverages robust mem-
orization to achieve the CGRO, while robust classifier still requires exponential
representation complexity in worst case. Next, we focus on a structured-data case
to analyze training dynamics, where we train a two-layer convolutional network
with Õ(ND) width against adversarial perturbation. We then show that a three-
stage phase transition occurs during learning process and the network provably
converges to robust memorization regime, which thereby results in the CGRO.
Besides, we also empirically verify our theoretical analysis by experiments in
real-image recognition datasets.

1 INTRODUCTION

Nowadays, deep neural networks have achieved excellent performance in a variety of disciplines,
especially including in computer vision (Krizhevsky et al., 2012; Dosovitskiy et al., 2020; Kirillov
et al., 2023) and natural language process (Devlin et al., 2018; Brown et al., 2020; Ouyang et al.,
2022). However, it is well-known that small but adversarial perturbations to the natural data can
make well-trained classifiers confused (Biggio et al., 2013; Szegedy et al., 2013; Goodfellow et al.,
2014), which potentially gives rise to reliability and security problems in real-world applications and
promotes designing adversarial robust learning algorithms.

In practice, adversarial training methods (Goodfellow et al., 2014; Madry et al., 2017; Shafahi et al.,
2019; Zhang et al., 2019; Pang et al., 2022) are widely used to improve the robustness of models by
regarding perturbed data as training data. However, while these robust learning algorithms are able
to achieve high robust training accuracy (Gao et al., 2019), it still leads to a non-negligible robust
generalization gap (Raghunathan et al., 2019), which is also called robust overfitting (Rice et al.,
2020; Yu et al., 2022).

To explain this puzzling phenomenon, a series of works have attempted to provide theoretical
understandings from different perspectives. Despite these aforementioned works seem to provide
a series of convincing evidence from theoretical views in different settings, there still exists a gap
between theory and practice for at least two reasons.

First, although previous works have shown that adversarial robust generalization requires more data
and larger models (Schmidt et al., 2018; Gowal et al., 2021; Li et al., 2022; Bubeck & Sellke, 2023), it
is unclear that what mechanism, during adversarial training process, directly causes robust overfitting.
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A line of work about uniform algorithmic stability (Xing et al., 2021; Xiao et al., 2022), under
Lipschitzian smoothness assumptions, also suggest that robust generalization gap increases when
training iteration is large. In other words, we know there is no robust generalization gap for a trivial
model that only guesses labels totally randomly (e.g. deep neural networks at random initialization),
which implies that we should take learning process into consideration to analyze robust generalization.
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Figure 1: The learning curves of adversarial train-
ing on CIFAR10 with ℓ∞-perturbation radius
δ = 8/255.

Second and most importantly, while some works
(Tsipras et al., 2018; Zhang et al., 2019; Hassani
& Javanmard, 2022) point out that achieving ro-
bustness may hurt clean test accuracy, in most of
the cases, it is observed that drop of robust test
accuracy is much higher than drop of clean test
accuracy in adversarial training (Madry et al.,
2017; Schmidt et al., 2018; Raghunathan et al.,
2019) (see in Figure 1, where clean test accuracy
is more than 80% but robust test accuracy only
attains nearly 50%). Namely, a weak version of
benign overfitting (Zhang et al., 2017), which
means that overparameterized deep neural net-
works can both fit random data powerfully and
generalize well for unseen clean data, remains
after adversarial training.

Therefore, it is natural to ask the following ques-
tion:

What is the underlying mechanism that results in both Clean Generalization and Robust Overfitting
(CGRO) during adversarial training?

In this paper, we provide a theoretical understanding of this question. Precisely, we make the
following contributions:

• In Section 3, we first present some useful notations used in our work, and then provide the
formal definition of the CGRO classifier (Definition 3.4).

• In Section 4, we study the CGRO classifiers via the view of representation complexity.
Based on data assumptions observed in practice, we prove that achieving CGRO classifier
only needs extra linear parameters by leveraging robust memorization (Theorem 4.4), but
robust classifier requires even exponential model capacity in worst case (Theorem 4.7).

• In Section 5, under our theoretical framework of adversarial training, we apply a two-layer
convolutional network to learn the structured data. We propose a three-stage analysis
technique to decouple the complicated training dynamics of adversarial training, which
shows that the network learner provably converges to the CGRO regime (Theorem 5.9).

• In Section 6, we empirically demonstrate our theoretical results in Section 4 and Section 5
by experiments in real-world data and synthetic data, respectively.

2 ADDITIONAL RELATED WORK

Empirical Works on Robust Overfitting. One surprising behavior of deep learning is that over-
parameterized neural networks can generalize well, which is also called benign overfitting that deep
models have not only the powerful memorization but a good performance for unseen data (Zhang
et al., 2017; Belkin et al., 2019). However, in contrast to the standard (non-robust) generalization, for
the robust setting, Rice et al. (2020) empirically investigates robust performance of models based on
adversarial training methods, which are used to improve adversarial robustness (Szegedy et al., 2013;
Madry et al., 2017), and the work Rice et al. (2020) shows that robust overfitting can be observed on
multiple datasets, including CIFAR10 and ImageNet.

Theoretical Works on Robust Overfitting. A list of works (Schmidt et al., 2018; Balaji et al.,
2019; Dan et al., 2020) study the sample complexity for adversarial robustness, and their works
manifest that adversarial robust generalization requires more data than the standard setting, which
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gives an explanation of the robust generalization gap from the perspective of statistical learning
theory. And another line of works (Tsipras et al., 2018; Zhang et al., 2019) propose a principle called
the robustness-accuracy trade-off and have theoretically proven the principle in different setting,
which mainly explains the widely observed drop of robust test accuracy due to the trade-off between
adversarial robustness and clean accuracy. Recently, Li et al. (2022) investigates the robust expressive
ability of neural networks and shows that robust generalization requires exponentially large models.

Feature Learning Theory of Deep Learning. The feature learning theory of neural networks
(Allen-Zhu & Li, 2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi et al., 2022; Chen
et al., 2022; Chidambaram et al., 2023) is proposed to study how features are learned in deep learning
tasks, which provide a theoretical analysis paradigm beyond the neural tangent kernel (NTK) theory
(Jacot et al., 2018; Du et al., 2018; 2019; Allen-Zhu et al., 2019; Arora et al., 2019). In this work,
we make a first step to understand clean generalization and robust overfitting (CGRO) phenomenon
in adversarial training by analyzing feature learning process under our theoretical framework about
structured data.

Memorization in Adversarial Training. Dong et al. (2021); Xu et al. (2021) empirically and theo-
retically explore the memorization effect in adversarial training for promoting a deeper understanding
of model capacity, convergence, generalization, and especially robust overfitting of the adversarially
trained models. However, different from their works, the concept clean generalization and robust
overfitting (CGRO) proposed in our paper focuses on both robust overfitting and high clean test
accuracy, which means that there is surprisingly no clean memorization or clean overfitting.

3 PRELIMINARIES

In this section, we first introduce some useful notations that are used in this paper, and then present
our problem setup.

3.1 NOTATIONS

Throughout this work, we use letters for scalars and bold letters for vectors. We will use [k] to
indicate the index set {1, 2, · · · , k}. The indicator of an event is defined as I{·} = 1 if the event ·
holds and I{·} = 0 otherwise. We use sgn(·) to denote the sign function of the real number ·, and we
use span(v1,v2, · · · ,vn) to denote the linear span of the vectors v1,v2, · · · ,vn ∈ RD.

We use Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors in these notations respectively. Moreover, we
denote An = poly (Bn) if An = O

(
BK

n

)
for some positive constant K, and An = polylog (Bn)

if Bn = poly (log (Bn)). We also say An = o(Bn) if for arbitrary positive constant C3 > 0, there
exists N3 > 0 such that |An| < C3|Bn| for all n > N3. An event is said that it happens with high
probability (or w.h.p. for short) if it happens with probability at least 1− o(1).

We use the notation ∥·∥p , p ∈ [1,+∞] to denote the ℓp norm in the vector space RD. For
two sets A,B ⊂ RD, we can define the ℓp-distance between A and B as distp(A,B) :=

inf {∥X − Y ∥p : X ∈ A,Y ∈ B}. For r > 0, Bp(X, r) :=
{
Z ∈ RD : ∥Z −X∥p ≤ r

}
is de-

fined as the ℓp-ball with radius r centered at X . We use σ(·) to denote the (non-linear) entry-wise
activation function, and ReLU activation function is defined as σ(·) := max(·, 0).

3.2 PROBLEM SETUP

We consider a binary classification setting, where we use X ∈ X ⊂ RD to denote the data input
and the binary label y is in Y = {−1, 1}. Given a data distribution D that is a joint distribution over
the supporting set X × Y , and a function f : X → R as the classifier, we can define the following
measurements to describe the clean (robust) classification performance of the classifier f on data D.
Definition 3.1. (Clean Test Error) The clean test error of the classifier f w.r.t. the data distribution
D is defined as LD(f) := P(X,y)∼D [sgn(f(X) ̸= y].
Definition 3.2. (Robust Test Error) Given a ℓp-robust radius δ ≥ 0, the robust test error of
the classifier f w.r.t. the data distribution D and δ under ℓp norm is defined as Lp,δ

D (f) :=
E(X,y)∼D

[
max∥X′−X∥p≤δ I{sgn(f(X′)) ̸= y}

]
.
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In our work, we mainly focus on the cases when p = 2 and p = ∞, which can be extended
to the general p case as well. In adversarial training, with access to the training dataset S =
{(X1, y1), (X2, y2), . . . , (XN , yN )} randomly sampled from the data distribution D, we aim to
minimize the following robust training error to derive the robust classifier.
Definition 3.3. (Robust Training Error) Given a ℓp-robust radius δ ≥ 0, the robust training er-
ror of the classifier f w.r.t. training dataset S and δ under ℓp norm is defined as Lp,δ

S (f) :=
1
N

∑N
i=1 max∥X′

i−Xi∥p≤δ I{sgn(f(X ′
i)) ̸= y}.

Now, we present the concept CGRO classifier that we mainly study in this paper as follows.
Definition 3.4. (CGRO Classifier) Given a ℓp-robust radius δ ≥ 0, we say a classifier f is CGRO
classifier w.r.t. the data distribution D and training dataset S if it satisfies that LD(f) = o(1),
Lp,δ
S (f) = o(1) but Lp,δ

D (f) = Ω(1).
Remark 3.5. In the above definition of CGRO classifier, the asymptotic notations o(1) and Ω(1) are
both defined with respective to the data dimension D, which means that CGRO classifier has a good
clean test performance but a poor robust generalization at the same time.

4 ANALYZING THE CGRO PHENOMENON FROM THE VIEW OF
REPRESENTATION COMPLEXITY

In this section, we provide a theoretical understanding of the CGRO phenomenon from the view of
representation complexity. First, We present the data assumption as follow.

For the data distribution D and ℓp-robust radius δ > 0, the supporting set of the data input X can be
divided into two sets X+ and X− that correspond to the positive and negative classes respectively, i.e.
X+ := {X ∈ X : (X, y) ∈ D, y = 1} and X− := {X ∈ X : (X, y) ∈ D, y = −1}.
Assumption 4.1. (Bounded) There exists a absolute constant R > 0 such that, with high probability
over the data distribution D, it holds that the data input X ∈ [−R,R]D.

Recall the definition of CGRO classifier (Definition 3.4). W.l.o.g., we can only focus on the case
X ⊂ [−R,R]D.
Assumption 4.2. (Well-Separated) we assume that the separation between the positive and negative
classes is large than twice the robust radius, i.e. distp(X+,X−) > 2δ.

This assumption is necessary to ensure the existence of a robust classifier, and which is indeed
empirically observed in real-world image classification data (Yang et al., 2020).
Assumption 4.3. (Polynomial-Size Clean Classifier Exists) we assume that there exists a clean
classifier fclean : X → R represented as a ReLU network with poly(D) parameters such that
LD(fclean) = o(1) but Lp,δ

D (fclean) = Ω(1).

In Assumption 4.3, the asymptotic notations o(1) and Ω(1) are defined w.r.t. the data dimension D.
It means that the clean classifier with moderate size can perfectly classify the natural data but fails
to classify the adversarially perturbed data, which is consistent with the common practice that well-
trained neural networks are vulnerable to adversarial examples (Szegedy et al., 2013; Raghunathan
et al., 2019).

Now, we present our main result about the upper bound of representation complexity for CGRO
classifier as follow.
Theorem 4.4. (Polynomial Upper Bound for CGRO) Under Assumption 4.1, 4.2 and 4.3, with N -
sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} drawn from the data distribution
D, there exists a CGRO classifier fCGRO : X → R that can be represented as a ReLU network with at
most poly(D) + Õ(ND) parameters.

Proof Sketch. First, we show the existence of the CGRO classifier w.r.t the data distribution D and
training dataset S.
Lemma 4.5. For given the data distribution D satisfying Assumption 4.1, 4.2 and 4.3, and the
randomly sampled training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )}, we consider the
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following function fS : X → R defined as

fS(X) = fclean(X)
(
1− I{X ∈ ∪N

i=1Bp(Xi, δ)}
)︸ ︷︷ ︸

clean classification on unseen test data

+

N∑
i=1

yiI{X ∈ Bp(Xi, δ)}︸ ︷︷ ︸
robust memorization on training data

.

And it holds that the function fS is a CGRO classifier.

Due to Assumption 4.2, it is clear that we have Bp(Xi, δ)∩Bp(Xj , δ) = ∅ for any distinct i, j ∈ [N ].
Thus, fS perfectly clean classifies unseen test data by the first summand (Assumption 4.3) and robustly
memorizes training data by the second summand, which belongs to CGRO classifiers.

Back to the proof of Theorem 4.4, the key idea is to approximate the classifier fS proposed in Lemma
4.5 by ReLU network. Indeed, the function fS can be rewritten as

fS(X) =

N∑
i=1

(yi − fclean(X))I{∥X −Xi∥p ≤ δ}︸ ︷︷ ︸
weighted sum of robust local indicators

+ fclean(X)︸ ︷︷ ︸
poly(D)

.

Therefore, we use ReLU nets to approximate the distance function di(X) := ∥X − Xi∥p in
[−R,R]D efficiently, and we also noticed that the indicator I{·} can be approximated by a soft
indicator represented by two ReLU neurons. Combined with the above results, there exists a ReLU
net fCGRO with poly(D) + Õ(ND) parameters such that ∥fCGRO − fS∥∞ = o(1), which implies
Theorem 4.4. □

Remark 4.6. Theorem 4.4 manifests that ReLU net with only Õ(ND) extra parameters is able to
leverages robust memorization (Lemma 4.5) to achieve the CGRO regime.

However, to achieve robust generalization, higher complexity seems necessary. We generalize the
result in Li et al. (2022) from linear-separable setting to Assumption 4.3.
Theorem 4.7. (Exponential Lower Bound for Robust Classifer) Let FM be the family of function
represented by ReLU networks with at mostM parameters. There exists a numberMD = Ω(exp(D))
and a distribution D satisfying Assumption 4.1, 4.2 and 4.3 such that, for any classifier in the family
FMD

, the robust test error w.r.t. D is at least Ω(1).

Proof Sketch. The main proof idea of Theorem 4.7 is the linear region decomposition of ReLU nets
(Montufar et al., 2014), and then we apply the technique bounding the VC dimension for local region
similar to Li et al. (2022). □

According to Assumption 4.3, Theorem 4.4 and Theorem 4.7, we obtain the following inequalities
about representation complexity of classifiers in different regimes.

Clean Classifier︸ ︷︷ ︸
poly(D)

≲ CGRO Classifier︸ ︷︷ ︸
poly(D)+Õ(ND)

≪ Robust Classifier︸ ︷︷ ︸
Ω(exp(D))

.

Remark 4.8. These inequalities states that while CGRO classifiers have mildly higher representation
complexity than clean classifiers, adversarial robustness requires excessively higher complexity, which
may lead the classifier trained by adversarial training to the CGRO regime. We also empirically
verify this by the experiments of adversarial training regarding different model sizes in Section 6.

5 ANALYZING DYNAMICS OF ADVERSARIAL TRAINING ON STRUCTURED
DATA

In the previous section, we show the efficiency of CGRO classifier via representation complexity.
However, it is unclear how the classifier trained by adversarial training converges to the CGRO
regime. In this section, we will focus on a structured-data setting to study the learning process of
adversarial training. First, we introduce our structured-data setting as follow, and then provide a
fine-grained analysis of adversarial training under our theoretical framework.
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5.1 STRUCTURED DATA SETTING

In this section, we consider the case that data input X ∈ RD has a patch structure as follow, which
is similar to a list of theoretical works about feature learning (Allen-Zhu & Li, 2020b; Chen et al.,
2021; Jelassi & Li, 2022; Jelassi et al., 2022; Kou et al., 2023; Chidambaram et al., 2023).
Definition 5.1. (Patch Data Distribution) We define a data distribution D, in which each instance
consists in an input X ∈ X = RD and a label y ∈ Y = {−1, 1} generated by

1. The label y is uniformly drawn from {−1, 1}.

2. The input X = (X[1], . . . ,X[P ]), where each patch X[j] ∈ Rd and P = D/d is the
number of patches (we assume that D/d is an integer and P = polylog(d)).

3. Meaningful Signal patch: for each instance, there exists one and only one meaningful patch
signal(X) ∈ [P ] satisfies X[signal(X)] = αyw∗, where w∗ ∈ Rd (∥w∗∥2 = 1) is the
unit meaningful signal vector and α > 0 is the norm of signal.

4. Noisy patches: X[j] ∼ N
(
0,
(
Id −w∗w∗⊤)σ2

p

)
, for j ∈ [P ]\{signal(X)}, where σ2

p >
0 denotes the variance of noise .

Remark 5.2. The patch structure that we leverage can be viewed as a simplification of real-world
vision-recognition datasets. Indeed, images are divided into signal patches that are meaningful
for the classification such as the whisker of a cat or the nose of a dog, and noisy patches like the
uninformative background of a photo. And our patch data assumption can also be generalized to the
case that there exist a set of patches that are meaningful, while analyzing the learning process will
be too complicated to un-clarify our main idea that we want to present. Therefore, we focus on the
single meaningful patch case in our work.

To learn our structured data, we use two-layer convolutional neural network (CNN) (LeCun et al.,
1998; Krizhevsky et al., 2012) with non-linear activation as the learner network.
Definition 5.3. (Two-layer Convolutional Network) For a given input data X ∈ RPd, our net-
work learner fW : RPd → R is defined as fW (X) =

∑m
r=1

∑P
j=1 a

+
r σ (⟨w+

r ,X[j]⟩) −∑m
r=1

∑P
j=1 a

−
r σ (⟨w−

r ,X[j]⟩), where W = [{a+r }mr=1, {a−r }mr=1, {w+
r }mr=1, {w−

r }mr=1] are learn-
able parameters, and σ(·) is the ReLUq activation function defined as σ(·) = (max(·, 0))q (q ≥ 2).

ReLUq activation functions are useful to address the non-smoothness of ReLU function at zero, which
are widely applied in literatures of deep learning theory (Kileel et al., 2019; Allen-Zhu & Li, 2020a;b;
Chen et al., 2021; Jelassi & Li, 2022; Jelassi et al., 2022). To simplify our analysis, we fix the second
layer weights as a+r = a−r = 1

2 . We also assume that q is odd and it holds that wr := w+
r = −w−

r

during optimization process. At initialization, we sample wr i.i.d from N (0, σ2
0Id). Our results can

be extended to the case when q is even and w+
r ,−w−

r are differently.

The Role of Non-linearity. Indeed, a series of recent theoretical works (Li et al., 2019; Chen et al.,
2021; Javanmard & Soltanolkotabi, 2022) show that linear model can achieve robust generalization
for adversarial training under certain settings, which but fails to explain the CGRO phenomenon
observed in practice. To mitigate this gap, we improve the expressive power of model by using
non-linear activation that can characterize the data structure and learning process more precisely.

In adversarial training, we aim to minimize the following adversarial training loss, which is a trade-off
between natural risk and robust regularization defined as follow.
Definition 5.4. (Adversarial Training Loss) For a hyperparameter λ > 0 and the ℓp-robust
radius δ > 0, the adversarial training loss of the network fW w.r.t. the training dataset
S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is defined as L̂adv(W ) := 1

N

∑N
i=1 L (W ;Xi, yi) +

λ · maxX̂i∈Ap(Xi,δ)

[
L
(
W ; X̂i, yi

)
− L (W ;Xi, yi)

]
, here we use L(W ;X, y) to denote the

single-point loss with respect to fW on (X, y) and Ap (X, δ) denotes the perturbed range of the
data point X with ℓp-radius δ.
Remark 5.5. Adversarial training loss in Definition 5.4 gives a general form of adversarial training
methods (Goodfellow et al., 2014; Madry et al., 2017; Zhang et al., 2019) for different values of
hyperparameter λ and different types of loss function L(W ;X, y) and perturbed range Ap (·, δ).
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Here, we use the logistic loss defined as L(W ;X, y) := log (1 + exp{−yfW (X)}). And we apply
the perturbed range defined as Ap (X, δ) := Bp (X, δ)∩X+∆ (X), where ∆ (X) ⊂ RPd satisfies
that ∆ (X) [j] = span(w∗), if j = signal(X), ∆ (X) [j] = 0, otherwise. This perturbed range
ensures that adversarial perturbations used to generate adversarial examples are always aligned with
the meaningful signal vector w∗ during adversarial training, which exactly simplifies the analysis.
Definition 5.6. (Adversarial Training Algorithm) We run the standard gradient descent method to
update the network parameters {W (t)}Tt=0 for T iterations w.r.t. the adversarial training loss that can

be rewritten as L̂(t)
adv(W ) = 1

N

∑N
i=1(1−λ)L (W ;Xi, yi)+λL

(
W ;X

adv,(t)
i , yi

)
, where Xadv,(t)

i

denotes the adversarial example generated by i-th training data Xi at t-th iteration. Concretely, the
adversarial examples Xadv,(t)

i and network parameters W (t) are updated alternatively as X
adv,(t)
i = argmax

X̂i∈Ap(Xi,δ)

L
(
W (t); X̂i, yi

)
, i ∈ [N ],

W (t+1) = W (t) − η∇W L̂(t)
adv

(
W (t)

)
,

where η > 0 is the learning rate.

Next, we make the following assumptions about hyperparameters.
Assumption 5.7. (Choice of Hyperparameters) We assume that: α = Θ(dcα), σp =

Θ(d−cp), m = Θ(N) = poly(d), σ0 = polylog(d)√
d

, δ = α
(
1− 1√

d polylog(d)

)
, λ ∈[

1
poly(d) , 1

)
, η =

(
0, 1

poly(d)

]
, where cα, cp ∈ (0, 1) are constants satisfying cα + cp >

1
2 .

Discussion of Hyperparameter Choices. Actually, the choices of these hyperparameters are not
unique. We make concrete choices above for the sake of calculations in our proofs, but only the
relationships between them are important. Namely, since the norm of signal patch is α and the norm
of noise patch w.h.p. is Θ(σp

√
d), our choices ensure that meaningful signal is stronger than noise.

Without this assumption, in other word, if the signal-to-noise ratio is very low, there even exists no
clean generalization, which has been theoretically shown under the similar patch-structured data
setting (Cao et al., 2021; Chen et al., 2021; Frei et al., 2022). The width of network learner is Õ(ND)
to achieve mildly over-parameterization we mentioned in Theorem 4.4. The separation in Assumption
4.2 also holds due to δ < α.

5.2 MAIN RESULTS

First, we introduce the concept called feature learning to characterize what the model learns.
Definition 5.8. (Feature Learning) Specifically, given a certain training data-point (X, y) ∼ D and
the network learner fW , we focus on the following two types of feature learning.

• True Feature Learning. We project the weight W on the meaningful signal vector to
measure the correlation between the model and the true feature as

U :=

m∑
r=1

⟨wr,w
∗⟩q .

• Spurious Feature Learning. We project the weight W on the random noise to measure the
correlation between the model and the spurious feature as

V :=

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr, yX[j]⟩q .

We then calculate the model’s classification correctness on certain clean data point as

yfW (X) = y

m∑
r=1

⟨wr,X[signal(X)]⟩q + y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

= y

m∑
r=1

⟨wr, αyw
∗⟩q︸ ︷︷ ︸

αqU

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

︸ ︷︷ ︸
V

.
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Thus, the model correctly classify the data if and only if αqU + V ≥ 0, which holds in at least two
cases. Indeed, one is that the model learns the true feature and ignores the spurious features, where
U = Ω(1) ≫ |V|. Another is that the model doesn’t learn the true feature but memorizes the spurious
features, where |U| = o(1) and |V| = Ω(1) ≫ 0.

Therefore, this analysis tells us that the model will generalize well for unseen data if the model
learns true feature learning. But the model will overfit training data if the model only memorizes
spurious features since the data-specific random noises are independent for distinct instances, which
means that, with high probability, it holds that V = o(1) for unseen data (X, y). We can analyze the
perturbed data similarly.

Now, we give our main result about feature learning process.
Theorem 5.9. Under Assumption 5.7, we run the adversarial training algorithm in Definition 5.6 to
update the weight of the network learner for T = Ω(poly(d)) iterations. Then, with high probability,
it holds that the network leanrer

1. partially learns the true feature, i.e. U (T ) = Θ(α−q);

2. exactly memorizes the spurious feature, i.e. for each i ∈ [N ],V(T )
i = Θ(1),

where U (t) and V(t)
i is defined for i−th instance (Xi, yi) and t−th iteration as the same in Definition

5.8. Consequently, the clean test error and robust training error are both smaller than o(1), but the
robust test error is at least 1

2 − o(1), which means that fW (T ) is a CGRO classifier.
Remark 5.10. Theorem 5.9 states that, during adversarial training, the neural network partially
learns the true feature of objective classes and exactly memorizes the spurious features depending on
specific training data, which causes that the network learner is able to correctly classify clean data
by partial meaningful signal (clean generalization), but fails to classify the unseen perturbed data
since it leverages only data-wise random noise to memorize training adversarial examples (robust
overfitting). We also conduct numerical simulation experiments to confirm our results in Section 6.

5.3 ANALYSIS OF LEARNING PROCESS

Next, we provide a proof sketch of Theorem 5.9. To obtain a detailed analysis of learning process,
we consider the following objects that can be viewed as weight-wise version of U (t) and V(t)

i . For
each r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), we define that

u(t) := max
r∈[m]

〈
w

(t)
r ,w∗

〉
(Signal Component),

v
(t)
i,j := max

r∈[m]

〈
w

(t)
r , yiXi[j]

〉
(Noise Component).

Theoretically, traditional formulation of adversarial training algorithms involve highly non-convex
and non-concave min-max optimization, under which analyzing global convergence is NP-hard
problem (Murty & Kabadi, 1985). To overcome this hardness barrier, we leverage geometry-inspired
attack as adversarial training method, under which we propose a non-trivial three-stage analysis
technique to decouple the complicated feature learning process as follows.

Phase I: At the beginning, the signal component of lottery tickets winner u(t) increases quadrat-
ically (Lemma 5.11). At this point, the model starts to learn partial true feature.

To project the adversarial training update on the signal vector w∗, we derive the following result.
Lemma 5.11. (Lower Bound of Signal Component Growth) For each r ∈ [m] and any t ≥ 0, the
signal component grows as

u(t+1) ≥ u(t) +Θ(ηαq)
(
u(t)
)q−1

ψ
(
αqU (t)

)
,

where we use ψ(·) to denote the negative sigmoid function ψ(z) = 1
1+ez as well as Lemma 5.12,5.13.

Lemma 5.11 manifests that the signal component increases quadratically at initialization. Therefore,
we know that, after T0 = Θ

(
η−1α−qσ−1

0

)
iterations, the signal component u(T0) attains the order

Ω̃(α−1), which implies the model learns partial true feature at this point.
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(a) (b) (c)

Figure 2: (a)(b): The effect of network capacity on the performance of the network. We trained the
networks of varying capacity on MNIST (a) and CIFAR10 (b); (c): Feature learning process of the
two-layer convolutional network on the structured data.

Phase II: Once the maximum signal component u(t) attains the order Ω̃(α−1), the growth of
signal component nearly stops updating since that the increment of signal component is now
mostly dominated by the noise component (Lemma 5.12).

Due to the property of the negative sigmoid function ϕ(z) = 1
1+ez , the growth of signal component

becomes very slow when ψ’s input attains the order Ω(1). This intuition can be formally represented
as follow.
Lemma 5.12. (Upper Bound of Signal Component Growth) For T0 = Θ

(
η−1α−qσ−1

0

)
and any

t ∈ [T0, T ], the signal component is upper bounded as

u(t) ≤ Õ

(
η(α− δ)q

N

) t−1∑
s=T0

N∑
i=1

ψ
(
(α− δ)qU (s) + V(s)

i

)
+ Õ(α−1).

Lemma 5.12 shows that, after partial true feature learning, the increment of signal component is
mostly dominated by the noise component V(t)

i , which implies that the growth of signal component
will converge when V(t)

i = Ω(1).

Phase III: After that, by the quadratic increment of noise component (Lemma 5.13), the total
noise V(t)

i eventually attains the order Ω(1), which implies the model memorizes the spurious
feature (data-wise noise) in final.
Lemma 5.13. (Lower Bound of Noise Component Growth) For each i ∈ [N ], r ∈ [m] and j ∈
[P ] \ signal(Xi) and any t ≥ 1, the noise component grows as

v
(t)
i,j ≥ v

(0)
i,j +Θ

(
ησ2

pd

N

)
t−1∑
s=0

ψ(V(s)
i )

(
v
(s)
i,j

)q−1

− Õ(Pσ2
pα

−1
√
d).

The practical implication of Lemma 5.13 is two-fold. First, by the quadratic increment of noise com-
ponent, we derive that, after T1 = Θ

(
Nη−1σ−1

0 σ−3
p d−

3
2

)
iterations, the total noise memorization

V(T )
i attains the order Ω(1), which suggests that the model is able to robustly classify adversarial

examples by memorizing the data-wise noise. Second, combined with Lemma 5.12, the signal
component u(t) will maintain the order Θ(α−1), which immediately implies the main conclusion of
Theorem 5.9. And the full detailed proof of Theorem 5.9 can be see in Appendix E.

6 EXPERIMENTS

In this section, we empirically verify our theoretical results in Section 4 and Section 5 by the numerical
experiments in real-world image-recognition datasets and synthetic structured data, respectively.
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Table 1: Performance of models with different sizes

Dataset MNIST CIFAR10
Model Size 1 4 8 12 16 1 2 5 10
Clean Test 11.35 11.35 11.35 95.06 94.85 82.56 84.92 85.83 86.05
Robust Test 11.35 11.35 11.35 77.96 83.43 43.39 43.74 46.25 50.08
Robust Train 11.70 11.70 11.70 99.30 99.50 64.19 79.82 97.37 99.57

6.1 EFFECT OF DIFFERENT MODEL SIZES

Experiment Settings. For the MNIST dataset, we consider a simple convolutional network, LeNet-5,
and study how its performance changes as we increases the size of network (i.e. we expand the
number of convolutional filters and the size of the fully connected layer to the size number multiple
of the initial, where the size numbers are 1, 4, 8, 12, 16). The original convolutional network has
a convolutional layer with 1 filters, followed by another convolutional layer with 2 filters, and a
fully connected hidden layer with 32 units. Convolutional layers are followed by 2× 2 max-pooling
layers. For the CIFAR10 dataset, we apply WideResNet-34 with different widen factors 1, 2, 5, 10.
We use the standared projected gradient descent (PGD) (Madry et al., 2017) to train the network by
adversarial training. We choose the classical ℓ∞-perturbation with radius 0.3 for MNIST and 8/255
for CIFAR10. All models are trained for 100 epoches on MNIST and 200 epoches on CIFAR10 by
using a single NVIDIA RTX 4090 GPU.

Experiment Results. We report our results about the performance of models with different sizes
in Figure 2 (a)(b) and Table 1. It shows that when the model size becomes larger, first the robust
training loss decreases but the robust generalization gap remains large, and then when the model gets
even larger, the robust generalization gap gradually decreases, and we also find that, in the small
size case (see LeNet with the size number 1, 4, 8), adversarial training converges to a trivia solution
that always predicts a fixed class, while it can learn an accurate clean classifier through the standard
training, which corresponds to the theoretical results in Theorem 4.4 and Theorem 4.7.

6.2 SYNTHETIC STRUCTURED DATA

Experiment Settings. Here we generate synthetic data exactly following Definition 5.1 and apply
the two-layer convolutional network in Definition 5.3. We train the network by the adversarial
training algorithm we mentioned in Definition 5.6. We choose the hyperparameters that we need as:
d = 100, P = 2, α = 10, σp = 1, σ0 = 0.01, q = 3, N = 20,m = 10, p = 2, δ = 10, λ = 0.9, η =
0.1, T = 100, which is a feasible one under Assumption 5.7. We characterize the true feature learning
and noise memorization via calculating U (t) and the smallest/largest/average of {V(t)

i }i∈[N ]. We
calculate the robust train and test accuracy of the model by using the standard PGD attack.

Experiment Results. We plot the dynamics of true feature learning and noise memorization in Figure
2 (c). It is clear that a three-stage phase transitions happen during adversarial training , which is
consistent with our theoretical analysis of learning process (Lemma 5.11, 5.12, 5.13), and finally the
model partially learns true feature but exactly memorizes all training data (Theorem 5.9).

7 CONCLUSION

To summarize, we study the puzzling clean generalization and robust overfitting (CGRO) phenomenon
in adversarial training and present theoretical explanations: from the perspective of representation
complexity, we prove that the CGRO classifier is efficient to achieve by leveraging robust memo-
rization regarding the training data, while robust generalization requires excessively large model
capacity in worst case, which may lead adversarial training to the CGRO regime; from the perspective
of training dynamics, we propose a three-stage analysis technique to analyze the feature learning
process of adversarial training under our structured-data framework, and it shows that two-layer
neural network trained by adversarial training provably learns the partial true feature but memorizes
the random noise from training data, which thereby causes the CGRO regime. On the empirical side,
we confirm our theoretical findings above by real-world vision datasets and synthetic data simulation.
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Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013,
Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13, pp. 387–402. Springer,
2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
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(a) MNIST: Grad (b) MNIST: Change (c) CIFAR10: Grad (d) CIFAR10: Change

(e) MNIST: Train (f) MNIST: Test (g) CIFAR10: Train (h) CIFAR10: Test

Figure 3: Experiment results (ℓ∞ perturbation radius ϵ0 = 0.1 on MNIST, = 8/255 on CIFAR10).

A ADDITIONAL EXPERIMENTS REGARDING ROBUST MEMORIZATION

In this section, we demonstrate that adversarial training converges to similarities of the construction
fS of Lemma 4.5 on real image datasets, which results in CGRO. In fact, we need to verify models
trained by adversarial training tend to memorize data by approximating local robust indicators on
training data.

Concretely, for given loss L(·, ·), instance (X, y) and model f , we use two measurements, maximum
gradient norm within the neighborhood of training data,

max
∥ξ∥∞≤δ

∥∇XL(f(X + ξ), y)∥1,

and maximum loss function value change

max
∥ξ∥∞≤δ

[L(f(X + ξ), y)− L(f(X), y)]

.

The former measures the δ−local flatness on (X, y), and the latter measures δ−local adversarial
robustness on (X, y), which both describe the key information of loss landscape over input.

Experiment Settings. In numerical experiments, we mainly focus on two common real-image
datasets, MNIST and CIFAR10. During adversarial training, we use cyclical learning rates and mixed
precision technique (Wong et al., 2020). For the MNIST dataset, we use a LeNet architecture and
train total 20 epochs. For the CIFAR10 dataset, we use a Resnet architecture and train total 15 epochs.

Numerical Results. First, we apply the adversarial training method to train models by a fixed
perturbation radius ϵ0, and then we compute empirical average of maximum gradient norm and
maximum loss change on training data within different perturbation radius ϵ. We can see numerical
results in Figure 3 (a∼d), and it shows that loss landscape has flatness within the training radius, but
is very sharp outside, which practically demonstrates our conjecture on real image datasets.

Learning Process. We also focus on the dynamics of loss landscape over input during the adversarial
learning process. Thus, we compute empirical average of maximum gradient norm within different
perturbation radius ϵ and in different training epochs. The numerical results are plotted in Figure 3
(e∼h). Both on MNIST and CIFAR10, with epochs increasing, it is observed that the training curve
descents within training perturbation radius, which implies models learn the local robust indicators to
robustly memorize training data. However, the test curve of CIFAR10 ascents within training radius
instead, which is consistent with our theoretical analysis in Section 5.

Robust Generalization Bound. Moreover, we prove a robust generalization bound based on global
flatness of loss landscape (see in Appendix B). We show that, while adversarial training achieves local
flatness by robust memorization, the model lacks global flatness, which causes robust overfitting.
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(a) (b)

Figure 4: Left: local and global flatness during adversarial training on CIFAR10; Right: the relation
between robust generalization gap and global flatness on CIFAR10.

B ROBUST GENERALIZATION BOUND BASED ON GLOBAL FLATNESS

In this section, we prove a novel robust generalization bound that mainly depends on global flatness
of loss landscape. We consider ℓp−adversarial robustness with perturbation radius δ and we use
Lclean, Ladv(f) and L̂adv(f) to denote the clean test risk, the adversarial test risk and the adversarial
empirical risk w.r.t. the model f , respectively. We also assume 1

p + 1
q = 1 for the next results.

Theorem B.1. (Robust Generalization Bound) Let D be the underlying distribution with a smooth
density function, and N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is i.i.d.
drawn from D. Then, with high probability, it holds that,

Ladv(f) ≤ L̂adv(f) +N− 1
D+2O

E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
︸ ︷︷ ︸

global flatness

 .

This generalization bound shows that robust generalization gap can be dominated by global flatness
of loss landscape. And we also have the lower bound of robust generalization gap stated as follow.
Proposition B.2. Let D be the underlying distribution with a smooth density function, then we have

Ladv(f)− Lclean(f) = Ω
(
δE(X,y)∼D [∥∇XL(f(X), y)∥q]

)
.

Theorem B.1 and Proposition B.2 manifest that robust generalization gap is very related to global
flatness. However, although adversarial training achieves good local flatness by robust memorization
on training data, the model lacks global flatness, which leads to robust overfitting.

This point is also verified by numerical experiment on CIFAR10 (see results in Figure 4). First, global
flatness grows much faster than local flatness in practice. Second, with global flatness increasing
during training process, it causes an increase of robust generalization gap.
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C PRELIMINARY LEMMAS

First, we present a technique called Tensor Power Method proposed by Allen-Zhu & Li (2020a;b).

Lemma C.1. Let
{
z(t)
}T
t=0

be a positive sequence defined by the following recursions{
z(t+1) ≥ z(t) +m

(
z(t)
)2

z(t+1) ≤ z(t) +M
(
z(t)
)2 ,

where z(0) > 0 is the initialization and m,M > 0. Let v > 0 such that z(0) ≤ v. Then, the time t0
such that zt ≥ v for all t ≥ t0 is:

t0 =
3

mz(0)
+

8M

m

⌈
log (v/z0)

log(2)

⌉
.

Lemma C.2. Let
{
z(t)
}T
t=0

be a positive sequence defined by the following recursion{
z(t) ≥ z(0) +A

∑t−1
s=0

(
z(s)
)2 − C

z(t) ≤ z(0) +A
∑t−1

s=0

(
z(s)
)2

+ C

where A,C > 0 and z(0) > 0 is the initialization. Assume that C ≤ z(0)/2. Let v > 0 such that
z(0) ≤ v. Then, the time t such that z(t) ≥ v is upper bounded as:

t0 = 8

⌈
log (v/z0)

log(2)

⌉
+

21(
z(0)

)
A
.

Lemma C.3. Let T ≥ 0. Let (zt)t>T be a non-negative sequence that satisfies the recursion:

z(t+1) ≤ z(t) −A
(
z(t)
)2

, for A > 0. Then, it is bounded at a time t > T as

z(t) ≤ 1

A(t− T )
.

Then, we provide a probability inequality proved by Jelassi & Li (2022).
Lemma C.4. Let {vr}mr=1 be vectors in Rd such that there exist a unit norm vector x that satisfies∣∣∣∑m

r=1 ⟨vr,x⟩3
∣∣∣ ≥ 1. Then, for ξ1, . . . , ξk ∼ N

(
0, σ2Id

)
i.i.d., we have:

P

∣∣∣∣∣∣
P∑

j=1

m∑
r=1

⟨vr, ξj⟩3
∣∣∣∣∣∣ ≥ Ω̃

(
σ3
) ≥ 1− O(d)

21/d
.

Next, we introduce some concepts about learning theory.
Definition C.5 (growth function). Let F be a class of functions from X ⊂ Rd to {−1,+1}. For any
integer m ≥ 0, we define the growth function of F to be

ΠF (m) = max
xi∈X ,1≤i≤m

|{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| .

In particular, if |{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| = 2m, then (x1, x2, · · · , xm) is said to be
shattered by F .
Definition C.6 (Vapnik-Chervonenkis dimension). Let F be a class of functions from X ⊂ RD

to {−1,+1}. The VC-dimension of F , denoted by VC-dim(F), is defined as the largest integer
m ≥ 0 such that ΠF (m) = 2m. For real-value function class H, we define VC-dim(H) :=
VC-dim(sgn(H)).

The following result gives a nearly-tight upper bound on the VC-dimension of neural networks.
Lemma C.7. (Bartlett et al., 2019) Consider a ReLU network with L layers and W total parameters.
Let F be the set of (real-valued) functions computed by this network. Then we have VC-dim(F ) =
O(WL log(W )).

The growth function is connected to the VC-dimension via the following lemma; see e.g. Anthony
et al. (1999).
Lemma C.8. Suppose that VC-dim(F) = k, then Πm(F) ≤

∑k
i=0

(
m
i

)
. In particular, we have

Πm(F) ≤ (em/k)
k for all m > k + 1.
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D FEATURE LEARNING

In this section, we provide a full introduction to feature learning, which is widely applied in theoretical
works (Allen-Zhu & Li, 2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi et al., 2022;
Chen et al., 2022) explore what and how neural networks learn in different tasks. In this work, we first
leverage feature learning theory to explain CGRO phenomenon in adversarial training. Specifically,
for an arbitrary clean training data-point (X, y) ∼ D and a given model fW , we focus on

• True Feature Learning. We project the weight W on the meaningful signal vector to
measure the correlation between the model and the true feature as

U :=

m∑
r=1

⟨wr,w
∗⟩q .

• Spurious Feature Learning. We project the weight W on the random noise to measure the
correlation between the model and the spurious feature as

V := y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q .

We then calculate the model’s classification correctness on certain clean data point as

yfW (X) = y

m∑
r=1

⟨wr,X[signal(X)]⟩q + y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

= y

m∑
r=1

⟨wr, αyw
∗⟩q︸ ︷︷ ︸

αqU

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the data if and only if αqU + V ≥ 0, which holds in at least two
cases. Indeed, one is that the model learns the true feature and ignores the spurious features, where
U = Ω(1) ≫ |V|. Another is that the model doesn’t learn the true feature but memorizes the spurious
features, where |U| = o(1) and |V| = Ω(1) ≫ 0.

Therefore, this analysis tells us that the model will generalize well for unseen data if the model learns
true feature learning. But the model will overfit training data if the model only memorizes spurious
features since the data-specific random noises are independent for distinct instances, which means
that, with high probability, it holds that V = o(1) for unseen data (X, y).

We also calculate the model’s classification correctness on perturbed data point, where we use attack
proposed in definition 5.6 to generate adversarial example as

Xadv[j] =

{
α(1− γ)yw∗, j = signal(X)
X[j], j ∈ [p] \ signal(X)

We then derive the correctness as

yfW (Xadv) = y

m∑
r=1

〈
wr,X

adv[signal(X)]
〉q

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
wr,X

adv[j]
〉q

= y

m∑
r=1

⟨wr, α(1− γ)yw∗⟩q︸ ︷︷ ︸
αq(1−γ)qU

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩q

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the perturbed data if and only if αq(1 − γ)qU + V ≥ 0, which
implies that We can analyze the perturbed data similarly.
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E PROOF FOR SECTION 5

In this section, we present the full proof for Section 5. To simplify our proof, we only focus on the
case when q = 3, and it can be easily extended to the general case when q ≥ 2. And we need the
re-defined notation as the following.

For r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), we define u(t)r and v(t)i,j,r as

Signal Component. u(t)r :=
〈
w

(t)
r ,w∗

〉
, thus U (t) =

∑
r∈[m]

(
u
(t)
r

)3
.

Noise Component. v(t)i,j,r := yi

〈
w

(t)
r ,Xi[j]

〉
, thus V(t)

i =
∑

r∈[m]

∑
j∈[P ]\signal(Xi)

(
v
(t)
i,j,r

)3
.

First, we give detailed proofs of Lemma 5.11, Lemma 5.12 and Lemma 5.13. Then, we prove
Theorem 5.9 base on the above lemmas.

We prove our main results using an induction. More specifically, we make the following assumptions
for each iteration t < T .

Hypothesis E.1. Throughout the learning process using the adversarial training update for t < T ,
we maintain that:

• (Uniform Bound for Signal Component) For each r ∈ [m], we assume u(t)r ≤ Õ(α−1).

• (Uniform Bound for Noise Component) For each r ∈ [m], i ∈ [N ] and j ∈ [P ]\ signal(Xi),
we assume |v(t)i,j,r| ≤ Õ(1).

In what follows, we assume these induction hypotheses for t < T to prove our main results. We then
prove these hypotheses for iteration t = T in Lemma E.11.

Now, we first give proof details about Lemma 5.11.

Theorem E.2. (Restatement of Lemma 5.11) For each r ∈ [m] and any t ≥ 0, the signal component
grows as

u(t+1)
r ≥ u(t)r +Θ(ηα3)

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we use ψ(·) to denote the negative sigmoid function ψ(z) = 1
1+ez as well as Lemma 5.12,5.13.

Proof. First, we calculate the gradient of adversarial loss with respect to wr(r ∈ [m]) as

∇wr
L̂adv(W

(t)) = − 3

N

N∑
i=1

P∑
j=1

 (1− λ)yi

〈
w

(t)
r ,Xi[j]

〉2
1 + exp (yifW (t) (Xi))

Xi[j] +
λyi

〈
w

(t)
r ,Xadv

i [j]
〉2

1 + exp
(
yifW (t)

(
Xadv

i

))Xadv
i [j]


= − 3

N

((
u(t)r

)2( N∑
i=1

(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
w∗

+

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2 (
(1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j]

 .
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Then, we project the gradient descent algorithm equation W (t+1) = W (t) − η∇W L̂adv
(
W (t)

)
on

the signal vector w∗. We derive the following result due to Xi[j] ⊥ w∗ for j ∈ [P ] \ signal(Xi).

u(t+1)
r = u(t)r +

3η

N

(
u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv

i ))
)

≥ u(t)r +
3ηα3(1− λ)

N

(
u(t)r

)2 N∑
i=1

ψ(yifW (t)(Xi))

≥ u(t)r +Θ(ηα3)
(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we derive last inequality by using ψ(yifW (t)(Xi)) = Θ(1)ψ

(
α3
∑

k∈[m]

(
u
(t)
k

)3)
, which

is obtained due to Hypothesis E.1.

Consequently, we have the following result that shows the order of maximum signal component.

Lemma E.3. During adversarial training, with high probability, it holds that, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all t ∈ [T0, T ], we have maxr∈[m] u

(t)
r ≥ Ω̃(α−1).

Proof. From the proof of Theorem E.2, we know that

u(t+1)
r − u(t)r =

3η

N

(
u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv

i ))
)
.

By applying Hypothesis E.1, we can simplify the above equation to the following inequalities. u
(t+1)
r ≤ u

(t)
r +A

(
u
(t)
r

)2
u
(t+1)
r ≥ u

(t)
r +B

(
u
(t)
r

)2
where A and B are respectively defined as:

A := Θ̃(η)
(
(1− λ)α3 + λα3(1− γ)3

)
B := Θ̃(η)(1− λ)α3.

At initialization, since we choose the weights w
(0)
r ∼ N

(
0, σ2

0Id
)
, we know the initial signal

components u(0)r are i.i.d. zero-mean Gaussian random variables, which implies that the probability
that at least one of the u(0)r is non-negative is 1−

(
1
2

)m
= 1− o(1).

Thus, with high probability, there exists an initial signal component u(0)r′ ≥ 0. By using Tensor Power
Method (Lemma C.1) and setting v = Θ̃(α−1), we have the threshold iteration T0 as

T0 =
Θ̃(1)

ηα3σ0
+

Θ̃(1)
(
(1− λ)α3 + λβ3

)
(1− λ)α3


− log

(
Θ̃ (σ0α)

)
log(2)

 .

Next, we prove Lemma 5.12 to give an upper bound of signal components’ growth.
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Theorem E.4. (Restatement of Lemma 5.12) For T0 = Θ
(

1
ηα3σ0

)
and any t ∈ [T0, T ], the signal

component is upper bounded as

max
r∈[m]

u(t)r ≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Proof. First, we analyze the upper bound of derivative generated by clean data. By following the
proof of Theorem E.2, we know that, for each r ∈ [m],

max
r∈[m]

u(t+1)
r ≥ max

r∈[m]
u(t)r +

3ηα3(1− λ)

N

(
max
r∈[m]

u(t)r

)2 N∑
i=1

ψ(yifW (t)(Xi))

≥ max
r∈[m]

u(t)r + Ω̃(ηα)
1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)),

where we obtain the first inequality by the definition of maxr∈[m] u
(t)
r ,maxr∈[m] u

(t+1)
r , and we use

maxr∈[m] u
(t)
r ≥ Ω̃(α−1) derived by Lemma E.3 in the last inequality. Thus, we then have

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) ≤ Õ(η−1α−1)

(
max
r∈[m]

u(t+1)
r − max

r∈[m]
u(t)r

)
.

Now, we focus on maxr∈[m] u
(t+1)
r −maxr∈[m] u

(t)
r . By the non-decreasing property of u(t)r , we

have

max
r∈[m]

u(t+1)
r − max

r∈[m]
u(t)r ≤

∑
r∈[m]

(
u(t+1)
r − u(t)r

)

≤ (1− λ)Θ(ηα)ψ

α3
∑
r∈[m]

(
u(t)r

)3 ∑
r∈[m]

(
αu(t)r

)2
+ λΘ

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ (1− λ)Õ(ηα2)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+ λΘ

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )),

where we use ϕ(·) to denote the logistics function defined as ϕ(z) = log(1 + exp(−z)) and we
derive the last inequality by Hypothesis E.1. Then, we know

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) ≤ (1− λ)Õ(α)ϕ

α3
∑
r∈[m]

(
u(t)r

)3
+ λΘ

(
α2(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )).
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Then, we derive the following result by Hypothesis E.1 and the above inequality.

max
r∈[m]

u(t+1)
r ≤ max

r∈[m]
u(t)r +

3η

N

(
max
r∈[m]

u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi))

+ λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
≤ max

r∈[m]
u(t)r + Θ̃(ηα)

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) + Θ̃

(
ηα(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r + (1− λ)Õ(ηα2)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+ Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r +
(1− λ)Õ(ηα2)

1 + exp

(
α3
∑

r∈[m]

(
u
(t)
r

)3) + Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r +
(1− λ)Õ(ηα2)

1 + exp
(
Ω̃(1)

) + Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )).

By summing up iteration s = T0, . . . , t− 1, we have the following result as

max
r∈[m]

u(t)r ≤ max
r∈[m]

u(T0)
r +

t−1∑
s=T0

(1− λ)Õ(ηα2)

1 + exp
(
Ω̃(1)

) +

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Therefore, we derive the conclusion of Theorem E.4.

Next, we prove the following theorem about the update of noise components.

Lemma E.5. For each r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), any iterationt0, t such that
t0 < t ≤ T , with high probability, it holds that∣∣∣∣∣v(t)i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

+ Õ(Pσ2α−1
√
d),

where we use the notation ψ̃(s)
i to denote (1− λ)ψ(yifW (s)(Xi)) + λψ(yifW (s)(Xadv

i )).

Proof. To obtain Lemma E.5, we prove the following stronger result by induction w.r.t. iteration t.∣∣∣∣v(t)i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

) t−t0−1∑
q=0

(P−1
√
d)−q

+ Õ

(
ληα3(1− γ)3

N

) t−t0−1∑
q=0

t−q∑
s=t0

N∑
i=1

(P−1
√
d)−qψ(yifW (s)(Xadv

i ))

(1)
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First, we project the training update on noise patch Xi[j] to verify the above inequality when
t = t0 + 1 as∣∣∣∣v(t0+1)

i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

)
ψ̃
(t0)
i

(
v
(s)
i,j,r

)2∣∣∣∣ ≤ Θ

(
ησ2d

N

) N∑
a=1

∑
b̸=signal(Xa)

ψ̃(t0)
a

(
v
(t0)
a,b,r

)2
≤ Θ(ηPσ2

√
d)

1− λ

N

N∑
i=1

ψ(yifW (t0)(Xi))

+ Θ(ηPσ2
√
d)
λ

N

N∑
i=1

ψ(yifW (t0)(Xadv
i ))

≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

)
,

where we apply 1−λ
N

∑N
i=1 ψ(yifW (t0)(Xi)) ≤ Õ(η−1α−1)

(
maxr∈[m] u

(t0+1)
r −maxr∈[m] u

(t0)
r

)
≤

Õ(η−1α−2) and
∑N

i=1 ψ(yifW (t0)(Xadv
i )) ≤ Õ(1) to derive the last inequality.

Next, we assume that the stronger result holds for iteration t, and then we prove the result for iteration
t+ 1 as follow.∣∣∣v(t+1)

i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Θ

(
ησ2d

N

) t−1∑
s=t0

N∑
a=1

∑
b̸=signal(Xa)

ψ̃(s)
a

(
v
(s)
a,b,r

)2
+Θ(ηPσ2

√
d)

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) + Θ(ηPσ2
√
d)
λ

N

N∑
i=1

ψ(yifW (t)(Xadv
i )).

Then, we bound the first term in the right of the above inequality by our induction hypothesis for t,
and we can derive∣∣∣v(t+1)

i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

) t−t0−1∑
q=0

(P−1
√
d)−q

+ Õ

(
ληα3(1− γ)3

N

) t−t0−1∑
q=0

t−q∑
s=t0

N∑
i=1

(P−1
√
d)−qψ(yifW (s)(Xadv

i ))

+ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

)
+Θ(ηPσ2

√
d)
λ

N

N∑
i=1

ψ(yifW (t)(Xadv
i )).

By summing up the terms, we proved the stronger result for t+ 1.

Finally, we simplify the form of stronger result by using
∑∞

q=0(P
−1

√
d)−q = (1 − P/

√
d)−1 =

Θ(1), which implies the conclusion of Lemma E.5.

Now, we prove Lemma 5.13 based on Lemma E.5 as follow.

Theorem E.6. (Restatement of Lemma 5.13) For each i ∈ [N ], r ∈ [m] and j ∈ [P ] \ signal(Xi)
and any t ≥ 1, the signal component grows as

v
(t)
i,j,r ≥ v

(0)
i,j,r +Θ

(
ησ2d

N

) t−1∑
s=0

ψ(V(s)
i )

(
v
(s)
i,j,r

)2
− Õ(Pσ2α−1

√
d).

Proof. By applying the one-side inequality of Lemma E.5, we have

v
(t)
i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
≥ −Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

− Õ(Pσ2α−1
√
d).
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Thus, we obtain Theorem E.6 by using Õ
(

ληα3(1−γ)3

N

)∑t−1
s=t0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤

Õ(ληTα3(1− γ)3) ≤ Õ(Pσ2α−1
√
d) and ψ̃(s)

i = Θ(1)ψ(V(s)
i ) derived by Hypothesis E.1.

Consequently, we derive the upper bound of total noise components as follow.
Lemma E.7. During adversarial training, with high probability, it holds that, after T1 =

Θ

(
N

ησ0σ3d
3
2

)
iterations, for all t ∈ [T1, T ] and each i ∈ [N ], we have V(t)

i ≥ Õ(1).

Proof. By applying Lemma E.5 as the same in the proof of Theorem E.6, we know that∣∣∣∣∣v(t)i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d),

which implies that, for any iteration t ≤ T , we have v
(t)
i,j,r ≥ v

(0)
i,j,r +A

∑t−1
s=0

(
v
(s)
i,j,r

)2
− C

v
(t)
i,j,r ≤ v

(0)
i,j,r +A

∑t−1
s=0

(
v
(s)
i,j,r

)2
+ C

,

where A,C > 0 are constants defined as

A =
Θ̃
(
ησ2d

)
N

, C = Õ(Pσ2α−1
√
d).

At initialization, since we choose the weights w(0)
r ∼ N

(
0, σ2

0Id
)

and Xi[j] ∼ N
(
0, σ2Id

)
, we

know the initial noise components v(0)i,j,r are i.i.d. zero-mean Gaussian random variables, which

implies that, with high probability, there exists at least one index r′ such that v(0)i,j,r ≥ Ω̃(Pσ2α−1
√
d).

By using Tensor Power Method (Lemma C.2) and setting v = Θ̃(1), we have the threshold iteration
T1 as

T1 =
21N

Θ̃ (ησ2d) v
(0)
i,j,r

+
8N

Θ̃ (ησ2d)
(
v
(0)
i,j,r

)

log

(
Õ(1)

v
(0)
i,j,r

)
log(2)

 .
Therefore, we get T1 = Θ

(
N

ησ0σ3d
3
2

)
, and we use V(t)

i =
∑

r∈[m]

∑
j∈∈[P ]\signal(Xi)

(
v
(t)
i,j,r

)3
to

derive V(t)
i ≥ Ω̃(1).

Indeed, our aimed loss function L̂adv (W ) is non-convex due to the non-linearity of our CNN model
fW . To analyze the convergence of gradient algorithm, we need to prove the following condition that
is used to show non-convexly global convergence (Karimi et al., 2016; Li et al., 2019).
Lemma E.8. (Lojasiewicz Inequality for Non-convex Optimization) During adversarial training,

with high probability, it holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, for all t ∈ [T1, T ], we have∥∥∥∇W L̂adv

(
W (t)

)∥∥∥
2
≥ Ω̃(1)L̂adv

(
W (t)

)
.

Proof. To prove Lojasiewicz Inequality, we first recall the gradient w.r.t. wr as

∇wr
L̂adv(W

(t)) = − 3

N

((
u(t)r

)2( N∑
i=1

(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
w∗

+

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2 (
(1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j]

 .
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Then, we project the gradient on the signal direction and total noise, respectively.

For the signal component, we have∥∥∥∇wr
L̂adv(W

(t))
∥∥∥2
2
≥
〈
∇wr

L̂adv(W
(t)),w∗

〉2
≥ Ω̃(1)

(1− λ)α3
(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)32

.

For the total noise component, we have

∥∥∥∇wr
L̂adv(W

(t))
∥∥∥2
2
≥

〈
∇wr

L̂adv(W
(t)),

∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]∥∥∥∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]
∥∥∥
2

〉2

=

〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
((1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉2

=

〈− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))Xi[j] ,

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

+

〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉2

.

For the first term, with high probability, it holds that〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

≥ − Õ(σ)(1− λ)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi)),

where we use that
〈
Xi[j],

∑N
a=1

∑
b ̸=signal(Xa) Xa[b]

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

〉
is a sub-Gaussian random variable of pa-

rameter σ, which implies w.h.p.
∣∣∣∣〈Xi[j],

∑N
a=1

∑
b ̸=signal(Xa) Xa[b]

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

〉∣∣∣∣ ≤ Õ(σ).

For the second term, with high probability, it holds that〈
3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))Xi[j],

∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

=
Θ(1)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))
∥Xi[j]∥22∥∥∥∑N

a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

=
Θ(σ

√
d)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i )),

where we use w.h.p. ⟨Xi[j],Xi′ [j
′]⟩

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

≤
Θ
(

1√
d

)
∥Xi[j]∥2

2

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

for (i, j) ̸= (i′, j′).
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Now, combine the above bounds, we derive

m∑
r=1

∥∥∥∇wr L̂adv(W
(t))
∥∥∥2
2
≥

m∑
r=1

〈
∇wr L̂adv(W

(t)),w∗
〉2

+

m∑
r=1

〈
∇wr L̂adv(W

(t)),

∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]∥∥∥∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]
∥∥∥
2

〉2

≥ Ω

(
1

m

)(1− λ)α3
m∑
r=1

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3
+

Θ(σ
√
d)

N

m∑
r=1

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))

− Õ(σ)(1− λ)

N

m∑
r=1

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))

2

≥ Ω̃(1)

(1− λ)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+
λ

N

N∑
i=1

ϕ
(
V(t)
i

)2

≥ Ω̃(1)
(
L̂adv

(
W (t)

))2
.

Consequently, we derive the following sub-linear convergence result by applying Lojasiewicz In-
equality.

Lemma E.9. (Sub-linear Convergence for Adversarial Training) During adversarial training, with

high probability, it holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, the adversarial training loss

sub-linearly converges to zero as

L̂adv

(
W (t)

)
≤ Õ(1)

η(t− T1 + 1)
.

Proof. Due to the smoothness of loss function L̂adv (W ) and learning rate η = Õ(1), we have

L̂adv

(
W (t+1)

)
≤ L̂adv

(
W (t)

)
− η

2

∥∥∥∇W L̂adv

(
W (t)

)∥∥∥
2

≤ L̂adv

(
W (t)

)
− Ω̃(η)

(
L̂adv

(
W (t)

))2
,

where we use Lojasiewicz Inequality in the last inequality. Then, by applying Tensor Power Method
(Lemma C.3), we obtain the sub-linear convergence rate.

Now, we present the following result to bound the derivative generated by training-adversarial
examples.

Lemma E.10. During adversarial training, with high probability, it holds that, after T1 =

Θ

(
N

ησ0σ3d
3
2

)
iterations, we have λ

N

∑t
s=0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(η−1σ−1
0 ).
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Proof. First, we bound the total derivative during iteration s = T1, . . . , t. By applying the conclusion
of Lemma E.5, we have

λ

N

t∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) ≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
λα3(1− γ)3

Nσ2d

) t−1∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) + Õ

(
P

ηα
√
d

)
.

Due to Õ
(

α3(1−γ)3

σ2d

)
≪ 1, we know

λ

N

t∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) ≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ϕ
(
V(s)
i

)
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

t−1∑
s=T1

L̂adv

(
W (t)

)
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

t−1∑
s=T1

Õ(1)

η(t− T1 + 1)
+ Õ

(
P

ηα
√
d

)
≤ Õ(η−1).

Thus, we obtain λ
N

∑t
s=0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(σ−1
0 ) + Õ(η−1) ≤ Õ(η−1σ−1

0 ).

Consequently, we have the following lemma that verifies Hypothesis E.1 for t = T .
Lemma E.11. During adversarial training, with high probability, it holds that, for any t ≤ T , we
have maxr∈[m] u

(t)
r ≤ Õ(α−1) and |v(t)i,j,r| ≤ Õ(1) for each r ∈ [m], i ∈ [N ], j ∈ [P ] \ signal(Xi).

Proof. Combined with Theorem E.4 and Lemma E.10, we can derive maxr∈[m] u
(T )
r ≤ Õ(α−1).

By applying Lemma E.5, we have

|v(T )
i,j,r| ≤ |v(0)i,j,r|+Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i )) + Õ(Pσ2α−1

√
d)

≤ Õ(1) + Õ(σ2d) + Õ(α3(1− γ)3σ−1
0 ) + Õ(Pσ2α−1

√
d) ≤ Õ(1).

Therefore, our Hypothesis E.1 holds for iteration t = T .

Finally, we prove our main result as follow.
Theorem E.12. (Restatement of Theorem 5.9) Under Assumption 5.7, we run the adversarial training
algorithm to update the weight of the simplified CNN model for T = Ω(poly(d)) iterations. Then,
with high probability, it holds that the CNN model

1. partially learns the true feature, i.e. U (T ) = Θ(α−3);

2. exactly memorizes the spurious feature, i.e. for each i ∈ [N ],V(T )
i = Θ(1),

where U (t) and V(t)
i is defined for i−th instance (Xi, yi) and t−th iteration as the same in (1)(1).

Consequently, the clean test error and robust training error are both smaller than o(1), but the robust
test error is at least 1

2 − o(1).
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Proof. First, by applying Lemma E.3, Lemma E.7 and Lemma E.11, we know for any i ∈ [N ]

U (T ) =
∑
r∈[m]

(
u(T )
r

)3
= Θ(α−3)

V(T )
i =

∑
r∈[m]

∑
j ̸=signal(Xi)

(
v
(T )
i,j,r

)3
= Θ(1).

Then, since adversarial loss sub-linearly converges to zero i.e. L̂adv
(
W (T )

)
≤ Õ(1)

η(T−T1+1) ≤

Õ
(

1
poly(d)

)
= o(1), the robust training error is also at most o(1).

To analyze test errors, we decompose w
(T )
r into w

(T )
r = µ

(T )
r w∗ + β

(T )
r for each r ∈ [m], where

β
(T )
r ∈ (span(w∗))

⊥. Due to V(T )
i = Θ(1), we know ∥β(T )

r ∥2 = Θ(1).

For the clean test error, we have

P(X,y)∼D [yfW (T )(X) < 0] = P(X,y)∼D

α3
m∑
r=1

(
u(T )
r

)3
+ y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
w(T )

r ,X[j]
〉3

< 0


≤ P(X,y)∼D

 m∑
r=1

∑
j∈[P ]\signal(X)

〈
β(T )
r ,X[j]

〉3
≥ Ω̃(1)


≤ exp

(
− Ω̃(1)

σ6
∑m

r=1 ∥β
(T )
r ∥62

)
≤ O

(
1

poly(d)

)
= o(1),

where we use the fact that
∑m

r=1

∑
j∈[P ]\signal(X)

〈
β
(T )
r ,X[j]

〉3
is a sub-Gaussian random variable

with parameter σ3

√
(P − 1)

∑m
r=1 ∥β

(T )
r ∥62.

For the robust test error, we use A(·) to denote attack in Definition 5.6, and then we derive

P(X,y)∼D

[
min

∥ξ∥2≤δ
yfW (T )(X + ξ) < 0

]
≥ P(X,y)∼D [yfW (T )(A(X)) < 0]

= P(X,y)∼D

α3
m∑
r=1

(
u(T )
r

)3
(1− γ)3 + y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
w(T )

r ,X[j]
〉3

< 0


≥ 1

2
P(X,y)∼D

∣∣∣∣∣∣
m∑
r=1

∑
j∈[P ]\signal(X)

〈
β(T )
r ,X[j]

〉3∣∣∣∣∣∣ ≥ Ω̃
(
(1− γ)3

) ≥ 1

2

(
1− Õ(d)

2d

)
=

1

2
− o(1),

where we use Lemma C.4 in the last inequality.
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F PROOF FOR SECTION 4

We prove Theorem 4.4 by using ReLU network to approximate fS proposed in Section 1.
Theorem F.1. (Restatement of Theorem 4.4) Under Assumption 4.1, 4.2 and 4.3, with N−sample
training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} drawn from the data distribution D,
there exists a CGRO classifier that can be represented as a ReLU network with poly(D) + Õ(ND)
parameters, which means that, under the distribution D and dataset S, the network achieves zero
clean test and robust training errors but its robust test error is at least Ω(1).

Proof. First, we give the following useful results about function approximation by ReLU nets.

Lemma F.2. (Yarotsky, 2017) The function f(x) = x2 on the segment [0, 1] can be approximated
with any error ϵ > 0 by a ReLU network having the depth and the number of weights and computation
units O(log(1/ϵ)).

Lemma F.3. (Yarotsky, 2017) Let ϵ > 0, 0 < a < b and B ≥ 1 be given. There exists a function
×̃ : [0, B]2 → [0, B2] computed by a ReLU network with O

(
log2

(
ϵ−1B

))
parameters such that

sup
x,y∈[0,B]

∣∣×̃(x, y)− xy
∣∣ ≤ ϵ,

and ×̃(x, y) = 0 if xy = 0.

Since for ∀X0 ∈ [0, 1]D, the ℓ2−distance function ∥X − X0∥2 =
∑D

i=1 |X(i) − X
(i)
0 |2, by

using Lemma F.2, there exists a function ϕ1 computed by a ReLU network with O
(
D log

(
ϵ−1
1 D

))
parameters such that supX∈[0,1]D

∣∣ϕ1(X)− ∥X −X0∥2
∣∣ ≤ ϵ1.

Return to our main proof back, indeed, functions computed by ReLU networks are piecewise linear
but the indicator functions are not continuous, so we need to relax the indicator such that Îsoft(x) = 1

for x ≤ δ + ϵ0, Îsoft(x) = 0 for x ≥ R − δϵ0 and Îsoft is linear in (δ + ϵ0, R − δϵ0) by using only
two ReLU neurons, where ϵ0 is sufficient small for approximation.

Now, we notice that the constructed function fS can be re-written as

fS(X) = fclean(X)
(
1− I{X ∈ ∪N

i=1B2(Xi, δ)}
)
+

N∑
i=1

yiI{X ∈ B2(Xi, δ)}

= fclean(X) +

N∑
i=1

(yi − fclean(X))I{∥X −Xi∥22 ≤ δ2}.

Combined with Lemma F.2, Lemma F.3 and the relaxed indicator, we know that there exists a ReLU
net h with at most poly(D)+Õ(ND) parameters such that |h−fS | = o(1) for all inputX ∈ [0, 1]D.
Thus, it is easy to check that h belongs to CGRO classifiers.

Next, we prove Theorem 4.7 by using the VC-dimension theory.
Theorem F.4. (Restatement of Theorem 4.7) Let FM be the family of function represented by ReLU
networks with at most M parameters. There exists a number MD = Ω(exp(D)) and a distribution
D satisfying Assumption 4.1, 4.2 and 4.3 such that, for any classifier in the family FMD

, under the
distribution D, the robust test error is at least Ω(1).

Proof. Now, we notice that ReLU networks are piece-wise linear functions. Montufar et al. (2014)
study the number of local linear regions, which provides the following result.

Proposition F.5. The maximal number of linear regions of the functions computed by any ReLU
network with a total of n hidden units is bounded from above by 2n.

Thus, for a given clean classifier fclean represented by a ReLU net with poly(D) parameters, we know
there exists at least a local region V such that decision boundary of fclean is linear hyperplane in V .
And we assume that the hyperplane is X(D) = 1

2 .
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Then, let V ′ be the projection of V on the decision boundary of fclean, and P be an 2δ-packing of V ′.
Since the packing number P(V ′, ∥ · ∥, 2δ) ≥ C(V ′, ∥ · ∥2, 2δ) = exp(Ω(D)), where C(Θ, ∥ · ∥, δ) is
the δ-covering number of a set Θ. For any ϵ0 ∈ (0, 1), we can consider the construction

Sϕ =

{(
x,

1

2
+ ϵ0 · ϕ(x)

)
: x ∈ P

}
,

where ϕ : P → {−1,+1} is an arbitrary mapping. It’s easy to see that all points in Sϕ with first
D − 1 components satisfying ∥x∥2 ≤

√
1− ϵ20 are in V ′, so that by choosing ϵ0 sufficiently small,

we can guarantee that |Sϕ ∩ V | = exp(Ω(D)). For convenience we just replace Sϕ with Sϕ ∩ V
from now on.

Let Aϕ = Sϕ ∩
{
X ∈ V : x(D) > 1

2

}
, Bϕ = Sϕ − Aϕ. It’s easy to see that for arbitrary ϕ, the

construction is linear-separable and satisfies 2δ-separability.

Assume that for any choices of ϕ, the induced sets Aϕ and Bϕ can always be robustly classified with
(O(δ), 1− µ)-accuracy by a ReLU network with at most M parameters. Then, we can construct an
enveloping network Fθ with M − 1 hidden layers, M neurons per layer and at most M3 parameters
such that any network with size ≤M can be embedded into this envelope network. As a result, Fθ is
capable of (O(δ), 1− µ)-robustly classify any sets Aϕ, Bϕ induced by arbitrary choices of ϕ. We
use Rϕ to denote the subset of Sϕ = Aϕ ∪ Bϕ satisfying |Rϕ| = (1− µ) |Sϕ| = exp(Ω(D)) such
that Rϕ can be O(δ)-robustly classified.

Next, we estimate the lower and upper bounds for the cardinal number of the vector set

R := {(f(x))x∈P |f ∈ FMD
}.

Let n denote |P|, then we have

R = {(f(x1), f(x2), ...f(xn))|f ∈ FMD
},

where P = {x1,x2, ...,xn}.

On one hand, we know that for any u ∈ {−1, 1}n, there exists a v ∈ R such that dH(u, v) ≤ αn,
where dH(·, ·) denotes the Hamming distance, then we have

|R| ≥ N ({−1, 1}n, dH , µn) ≥
2n∑µn

i=0

(
n
i

) .
On the other hand, by applying Lemma C.8, we have

2n∑µn
i=1

(
n
i

) ≤ |R| ≤ ΠFMD
(n) ≤

l∑
j=0

(
n

j

)
.

where l is the VC-dimension of FMD
. In fact, we can derive l = Ω(n) when µ is a small constant.

Assume that l < n− 1 , then we have
∑l

j=0

(
n
j

)
≤ (en/l)l and

∑µn
i=1

(
n
i

)
≤ (e/µ)µn, so

2n

(e/µ)
µn ≤ |R| ≤ (en/l)l.

We define a function h(x) as h(x) = (e/x)x, then we derive

2 ≤
(
e

µ

)µ(
e

l/n

)l/n

= h(µ)h(l/n).

When µ is sufficient small, l/n ≥ C(µ) that is a constant only depending on µ, which implies l =
Ω(n). Finally, by using Lemma C.7 and n = |P| = exp(Ω(D)), we know MD = exp(Ω(D)).
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G PROOF FOR SECTION B

Theorem G.1. (Restatement of Theorem B.1) Let D be the underlying distribution with a smooth
density function, and N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is i.i.d.
drawn from D. Then, with high probability, it holds that,

Ladv(f) ≤ L̂adv(f) +N− 1
D+2O

E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
︸ ︷︷ ︸

global flatness

 .

Proof. Indeed, we notice the following loss decomposition,

Ladv(f)− L̂adv(f) =
(
Lclean(f)− L̂adv(f)

)
+ (Ladv(f)− Lclean(f)) .

To bound the first term, by applying λi to denote kernel density estimation (KDE) proposed in Petzka
et al. (2020), then we derive

Lclean(f)− L̂adv(f) = E(X,y)∼D[L(f(X), y)]− 1

N

N∑
i=1

max
∥ξ∥p≤δ

L(f(Xi + ξ, yi))

≤ E(X,y)∼D[L(f(X), y)]− 1

N

N∑
i=1

Eξ∼λi
[L(f(Xi + ξ), yi)]

=

∫
X

pD(X)L(f(X), y)dX −
∫
X

pS(X)L(f(X), y)dX

≤
∣∣∣∣∫

X

(pD(X)− ES [pS(X)])L(f(X), y(X))dX

∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∫
X

(ES [pS(X)]− pS(X))L(f(X), y(X))dX

∣∣∣∣︸ ︷︷ ︸
(II)

,

where pD(X) is the density function of the distribution D, and pS(X) is the KDE of point X .

With the smoothness of density function of D and Silverman (2018), we know that (I) = O(δ2).

For (II), by using Chebychef inequality and Silverman (2018), with probability 1−∆, we have

(II) = O(∆− 1
2N− 1

2 δ−
D
2 +N−2).

On the other hand, by Taylor expansion, we know

Ladv(f)− Lclean(f) ≤ O(δ)E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
.

Combined with the bounds for (I) and (II), we can derive Theorem B.1.
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