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Abstract

In many Reinforcement Learning (RL) applications, offline data is readily available
before an algorithm is deployed. Often, however, data-collection policies have
had access to information that is not recorded in the dataset, requiring the RL
agent to take unobserved confounders into account. We focus on the setting where
the confounders are i.i.d. and, without additional assumptions on the strength of
the confounding, we derive tight bounds for the causal effects of the actions on
the observations and reward. In particular, we show that these bounds are tight
when we leverage multiple datasets collected from diverse behavioral policies.
We incorporate these bounds into Posterior Sampling for Reinforcement Learning
(PSRL) and demonstrate their efficacy experimentally.

1 Introduction

A barrier to the adoption of reinforcement learning (RL) in the real world is that many methods
learn from scratch. To overcome this, a possible solution is methods that can use (‘offline’) data,
which is collected by the currently deployed control strategies, to ‘warm start’ the RL algorithm.
Unfortunately, in many real-world applications, such as medicine and recommendation systems, the
data-collection policies (called behavioral policies)—certainly when it is executed by humans—have
access to information that is not recorded in the dataset. Such unobserved (or ‘latent’) confounders
introduce spurious correlations [Ortega et al., 2021], which can mislead a naive learner and can
potentially lead to performance that is arbitrarily worse than the performance that the data-collection
policies realized. Although a simple approach to avoid being misled is to simply ignore the past data,
this means learning from scratch which is just not feasible in many realistic applications.

To overcome this problem, work on offline RL has considered latent confounding [Bruns-Smith,
2021, Namkoong et al., 2020, Bennett et al., 2021]. However, the offline RL setting does not
consider that further learning (in the ‘online’ phase) is possible. This further learning is considered
in the so-called hybrid (i.e., offline-online) setting [Gasse et al., 2023, Wang et al., 2021, Zhang
and Bareinboim, 2019] that we focus on. The key difficulty here is to incorporate the prior data
without being misled, and come up with a good exploration strategy that then quickly hones in on the
optimal policy. Specifically, we focus on Posterior Sampling for Reinforcement Learning (PSRL)
[Osband et al., 2013], which has many desirable properties including near-optimal and worst-case
regret bounds [Osband and Van Roy, 2017], and how it can be warm-started with offline data in
presence of latent confounding.

Using PSRL in settings with latent confounded offline data has been explored in the context of
Multi-Armed Bandits [Zhang and Bareinboim, 2017], but extending this to the sequential setting
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is non-trivial and the focus of the current paper. We provide a definition of POMDPs with i.i.d.
unobserved confounders to model the sequential problem without needing to resort to structural
causal models, and use it to propose Causally-Truncated-PSRL (CT-PSRL), which can warm start
from offline data. To do this, we derive causal bounds that are expressed in terms of observational
quantities that can be estimated from the offline data, thus proposing a non-trivial extensions of the
bounds employed by Zhang and Bareinboim [2017] in the bandit setting. Motivated by real-world
applications, we show that the overlap of the causal bounds from different behavioral policies is tight
when they uniformly cover the action space. Finally, we demonstrate experimentally that this uniform
coverage improve the sample efficiency of CT-PSRL thus making a step towards lowering the barrier
of deploying RL algorithms in real-world settings.

2 Background

2.1 Interventions and confounding

We start with a multi-armed bandit (MAB) problem depicted by the causal graph in Figure 1, where
A is the action, R the reward that depends on the action A. Suppose an agent desires to evaluate its
policy π. There are two settings to do so:

Interventions: The agent evaluates π by directly interacting with the environment and taking actions
sampled from its own policy π and evaluate the probability of R = r, which can be denoted using
Pearl’s do notation [Pearl, 1995] as P (R = r|do(π)) =

∑
a P (R = r|A = a)π(A = a). This

distribution is called the interventional distribution and this corresponds to the On-policy setting.

Observations: Without having access to the environment, the agent can alternatively observe
another policy πβ taking actions in the environment, and leverage these observations to estimate the
interventional distribution. This corresponds to the Off-policy setting. In this case, the distribution
of the observed rewards is P (R = r|πβ) =

∑
a P (R = r|A = a)πβ(A = a). The agent can then

adapt this distribution for example using Importance Sampling for this purpose.

Latent confounding: In the Off-policy setting, latent confounding corresponds to the case where
the policy πβ leverages some unobserved information U , i.e. the latent confounder, as illus-
trated in Figure 2. In this case, the observational distribution of the reward is P (R|πβ) =∑

u

∑
a p(U = u)πβ(A = a|U)P (R|A,U). Since U is unobserved, the agent cannot cor-

rect for the bias introduced by the term πβ(A|U) to estimate the interventional distribution
P (R|do(π)) =

∑
u

∑
a P (R|A,U)π(A = a)P (U) that is induced by the causal graph in Figure 3.1

2.2 Posterior Sampling for Reinforcement Learning

We consider a finite-horizon Markov Decision Process (MDP) [Puterman, 1994] defined as follows:

Definition 1. A finite-horizon MDP is a tuple (S,A, P, r,H, ρ), where S , A and are the state space
and the action space respectively. P : S ×A → ∆(A) and r : S ×A → R are the state transition
and reward function respectively, and H and ρ is the horizon and the initial state distribution.

1A clear and concise example of the pitfalls of latent confounding can be found in the work by Ortega et al.
[2021].
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Figure 4: POMDP with i.i.d confounders: Dashed arrows represent dependencies in the offline data.
Rewards (in blue) and next observations (in red) are confounded at each timestep t by the unobserved
i.i.d. confounder Ut.

An MDP can be formulated as a Causal Bayesian Network or a Structural Causal Model [Buesing
et al., 2019], since it allows us to evaluate the causal effect, in terms of the next states and the
rewards of actions given the current state. To emphasize this, we will write that the transition function
P : S ×A → ∆(S) specifies the interventional distribution Pr(s′|s, do(a)).

The value of any arbitrary policy π : S → ∆(A) in an MDPM = (S,A, P, r,H, ρ) is defined
as the scalar V π

M = E
[∑H−1

t=0 Rt

]
, where at each timestep t, Rt = r(St, At), At ∼ π(.|St),

St+1 ∼ P (.|St, At), and S0 ∼ ρ(.). The goal is minimize the cumulative regret R(π,M), where
R(M, π) = V π⋆

M − V π
M with π⋆ = argmaxπ V

π
M being the optimal policy.

Given an MDPM sampled from a prior distribution f , PSRL [Osband et al., 2013] adopt a Bayesian
approach for exploration by incorporating uncertainty to minimize the Bayesian regret BR(H,π) =
EM∼f

[
R(M, π)

]
. The PSRL policy πPS is a sequence of episodic policies πPS = {πk}k=0,..,E−1

constructed as follows. At the beginning of each episode 0 ≤ k ≤ E − 1, the PSRL policy has a
prior fk on the true parameters of the MDP with f0 = f . The agent samples an MDP Mk from fk
and derives the optimal policy πk with respect to Mk using a dynamic programming algorithm such
as Value Iteration [Bellman, 1957]. The policy πk interacts with the environment during the episode k
and collects data Dk+1 used to update the posterior fk+1. With τ being the length of an episode,
Osband et al. [2013] prove that the Bayesian regret of πPS satisfy the following upper-bound:

BR(H,πPS) = O(τ |S|
√
|A|H log(|S||A|H)). (1)

3 Problem formulation

We formulate our problem as a POMDP and show that the marginal problem is an MDP.

Definition 2. (POMDP with i.i.d unobserved confounders) A POMDP with i.i.d. unobserved
confounders is POMDP ⟨S,A, P,O,Ω, r,H, ρ⟩ where the state is factored as S = O × U , where
O is the space of observations and U is the space of unobserved confounders. The transition
model is factored as P = Pu × Po and initial state distribution as ρ = Pu × ρo where ρo is the
initial observation distribution. The observation model Ω is simply the projection of the state on
the observation space O. Hence, the state at time t, St = (Ut, Ot) is generated by sampling the
observation Ot from Po(.|Ot−1, Ut−1, do(At−1)), and sampling the unobserved confounder Ut from
Pu(.), with O0 ∼ ρo. Furthermore we assume that the observation and action spaces are discrete
and finite O = {o1, .., oN}, N = |O| and A = {a1, .., aK}, K = |A| and the reward is bounded:
r : S ×A → [rmin, rmax] for some rmin < rmax.

Figure 4 illustrates our setting, which corresponds to the setting of Zhang and Bareinboim [2019],
with the difference that their work is stated in terms of the Structural Causal Model formulation
[Pearl, 2000].
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We assume that a stationary behavioral policy πβ : S → ∆(A) conditioning on both Ot and Ut while
interacting withM, to collect a dataset D = {he

H}Me=1, consisting of M episodes of length H , where
each episode he

H = {(oet , aet , ret )}t=0,..,H−1. That is the episodes consist of tuples of observations
actions and rewards, without the unobserved confounders.

One is required generally in POMDPs to condition on the full history of observations or have
access to the transition and observation models [Kaelbling et al., 1998, Spaan, 2012] to achieve
optimal behavior. However, we show in the following proposition that under this specific structure of
POMDPs, the marginalized problem is reduced to an MDP:

Proposition 3. (Reduction to an MDP) Let rm be the marginal reward function, i.e.:

∀o, a ∈ O ×A : rm(o, a) = Eu[R|o, do(a)] =
∑
u∈Su

r(u, o, a)Pu(u),

and Pm the marginal transition model, i.e.:

∀o, a, o′ ∈ O ×A×O : Pm(o′|o, do(a)) =
∑
u∈Su

P (o′|u, o, a)Pu(u),

The marginalized problemMm = ⟨O,A, Pm, rm, H, ρo⟩ is a Markov Decision Process.

Proof. From Figure 4, it is clear that Ot+1 is d-separated from Ot−1, At−1, ..., O0 given do(At) and
Ot

We denote by Π : {π : O → A} the set of memoryless deterministic policies. Our goal is to
find a policy which maximizes the cumulative return π⋆ = argmaxπ∈Π EMm [V π(o)]. Because the
observation and the action spaces are finite, the policy π⋆ is guaranteed to be optimal as proven by
Puterman [1994, Proposition 4.4.3].

4 Incorporating the causal natural bounds in PSRL

In this section, we introduce the natural bounds on causal effect and provide insights on their
informativeness. These bounds induce a partial identification set on both the reward function and
transition model ofMm, and are used to derive CT-PSRL.

4.1 The natural bounds on causal effects

First, we introduce the natural bounds for the reward and transition model in the following Theorem:

Theorem 4. The transition model and reward function of the marginal MDPMm satisfy the following
causal bounds for all o, o′ ∈ O and a ∈ A:

Pr(o′|o, a)πβm(a|o)︸ ︷︷ ︸
αp(o,a,o′)

≤ Pm(o′|o,do(a)) ≤ 1− (1− Pr(o′|o, a))πβm(a|o)︸ ︷︷ ︸
βp(o,a,o′)

, and, (2)

E(R|o, a))πβm(a|o) + rmin(1− πβm(a|o))︸ ︷︷ ︸
αr(o,a)

≤ rm(o, a)

≤ E(R|o, a)πβm(a|o) + rmax (1− πβm(a|o))︸ ︷︷ ︸
βr(o,a)

,
(3)

where πβm is the marginal behavioral policy, πβm(a|o) =
∑

u πβ(a|o, u)Pu(u). We denote fur-
thermore the width of these bounds by δp(o

′, a, o) = βp(o
′, a, o) − αp(o

′, a, o) and δr(o, a) =
βr(o, a)− αr(o, a).

The proof is provided in the supplement and relies on the natural bounds of the tradition of Manski
[1990] to the POMDP setting [Robins, 1989, Balke and Pearl, 1997, Manski and Nagin, 1998, Manski
and Pepper, 2013], as is also applied to contextual bandits by Zhang and Bareinboim [2017]. We
note that no such bounds exist when the action space is uncountable.

4



Corollary 5. For binary rewards, the bounds (3) simplify to the same form as in Eq. 2:

P (R = 1|o, a)πβm(a|o) ≤ rm(o, a) ≤ 1− (1− P (R = 1|o, a))πβm(a|o).

The causal bounds in Theorem 4 involve only observational quantities, hence the behavioral policy πβ .
Most importantly, they can be estimated from the offline dataD using their empirical distributions that
are guaranteed to be asymptotically consistent, hence converging to their true value when |D| → ∞.

4.2 On the informativeness of the natural bounds on causal effect

In this section we discuss the informativeness of the bounds in terms of the tightness of their widths.
First, we observe the following:
Proposition 6. (Tightness of the natural bounds) The width of the causal bounds satisfy the following
for all o′, a, o:

δp(o
′, a, o) =

δr(o, a)

rmax − rmin
= 1− πβm(a|o)

and we have
∑

a δp(o
′, a, o) =

∑
a

δr(o,a)
rmax−rmin

= K − 1.

We refer the reader to Appendix A.2 for the proof. We deduce from Proposition 6 that the width of
the causal bounds is independent of the dynamics ofMm and only depends on the concentration of
the marginal behavioral policy πβm. In addition, the sum of the widths is a constant, independent of
the behavioral policy, and scales linearly with size of the action space K, which intuitively means that
the bounds cannot be tight for all actions. However, we establish in the following propositions that
we can construct tighter causal bounds in the case of multiple behavioral policies, which is motivated
by real-world problems:
Proposition 7. (Natural bounds with multiple behavioral policies) Assume we are provided with
L datasets collected by L behavioral policies {πj}j=1,..,L with reward and transition bounds
{(αj

r(o, a), β
j
r(o, a))}j=1,..,L and {(αj

p(o, a, o
′), βj

p(o, a, o
′))}j=1,..,L for every o, o′ ∈ O and

a ∈ A. Let αr(o, a) = maxj α
j
r(o, a), αp(o, a, o

′) = maxj α
j
r(o, a, o

′), βr(o, a) = minj α
j
r(o, a),

and βp(o, a, o
′) = minj β

j
r(o, a, o

′). ThenMm satisfy the following inequalities:

αp(o, a, o
′) ≤ Pm(o′|o,do(a)) ≤ βp(o, a, o

′)

αr(o, a) ≤ rm(o, a) ≤ βr(o, a),

for all o, o′ ∈ O and a ∈ A. Furthermore, we denote their widths by δp(o
′, a, o) = βp(o

′, a, o) −
αp(o

′, a, o) and δr(o, a) = βr(o, a)− αr(o, a).

The proof is available in Appendix A.3. In the Multi-Armed Bandits problem, we show in the
following proposition that when the behavioral policies satisfy certain conditions, the causal bounds
derived from Proposition 7 are tight:
Proposition 8. Consider a Multi-Armed Bandits problem, with 2 actions {a0, a1} and two con-
founders U = {u0, u1}, with p(u0) = p(u1) = 1

2 and no observations. With binary rewards
R|A = aj , U = ui ∼ Bern(µi,j), µ0,0 = µ1,1 = 1

2 + δ and µ0,1 = µ1,0 = 1
2 − δ, for some

0 < δ < 1
2 .

Then, for all 0 < ϵ < 1, there exist behavioral policies π0 and π1 with reward bounds (α0
r(a), β

0
r (a))

and (α1
r(a), β

1
r (a)) respectively, such that

∑
a δr(a) ≤ 2ϵ.

A proof is provided in Appendix A.4. Proposition 8 is a sufficient condition to get tight bounds in
case we are provided with a set of offline data collected by different behavioral policies. The idea
of the proof relies on the concentration of behavioral policies around disjoint sets of actions while
keeping a uniform coverage of the actions. In this case, the overlap of the causal bounds with respect
to each behavioral policy guarantees tightness for all actions. This comes evidently at the cost of a
larger behavioral policy regret due to the uniform coverage, and a number of behavioral policies that
scale with the size of the action space. We provide a visualization for this observation in one of our
experimental domains in Figure 5.
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Figure 5: Uniform vs. near-optimal coverage in Switching Riverswim: Yellow stars depict the true
parameters Pm(.|o1, do(a0)) and Pm(.|o1, do(a1)). Admissible sets 0 and 1 are induced by two
near-optimal πβ , while admissible set 2 is induced by a suboptimal πβ . The intersections of 0 and 2,
and 1 and 2 are the tightest around the true parameters thanks to the uniform coverage.

4.3 The Causally-Truncated PSRL algorithm (CT-PSRL)

In this section, we explain how the causal bounds are used to improve sample efficiency of PSRL in
the online phase. We define the set of admissible transition models induced by the causal lower and
upper bounds αp(o, a, o

′) and βp(o, a, o
′) in Equation (2):

P(αp, βp) = {P : O ×A → ∆(O) : ∀o, a, o′ : αp(o, a, o
′) ≤ P (o′|o, a) ≤ βp(o, a, o

′)}.

Furthermore, we define the set of admissible reward functions induced by the causal lower and upper
bounds αr(o, a) and βr(o, a) in Equation (3):

R(αr, βr) = {r : O ×A → [rmin, rmax] : ∀o, a : αr(o, a) ≤ r(o, a) ≤ βr(o, a)}.

Together, the set of admissible transition models and set of admissible reward functions define a
partial identification set of the true MDPMm. We incorporate these bounds into PSRL by simply
constraining the support of the posteriors fr

k and fP
k in step 4 to match the admissible sets. With

this simple modification we derive the CT-PSRL in Algorithm 1, where in step 1 and step 2, the
function TRUNCATEDISTRIBUTION truncates the densities of the transition and reward priors. More
formally, the function TRUNCATEDISTRIBUTION takes as input some distribution with density f
defined on some measurable space X and lower and upper bounds α and β and outputs a distribution
with density f̃ such that ∀x ∈ X :

f̃(x) =
1∫

X (α,β)
f(x′)dx′ f(x) · 1{x ∈ X (α, β)},

where 1{.} is the indicator function and X (α, β) = {x ∈ X : α ≤ x ≤ β}.
When the causal bounds are uninformative, the support of the priors are not truncated and the regret
upper-bound of CT-PSRL matches the PSRL regret upper-bound in Equation (1):
Corollary 9 (Regret upper bound of CT-PSRL with uninformative causal bounds). Let πCT-PS be
the policy derived from Algorithm 1. If αp(o, a, o

′) = αr(o, a) = 0 and βp(o, a, o
′) = βr(o, a) = 1

for all o, o′ ∈ O and a ∈ A, then:

BR(H,πCT-PS) = O(τ |O|
√
|A|H log(|O||A|H)).

5 Experiments

In this section, we show how CT-PSRL experimentally improves sample efficiency in two relevant
benchmark domains. We compare CT-PSRL to U-PSRL which is a PSRL agent with untruncated
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Algorithm 1: Causally-Truncated PSRL (CT-PSRL)
Data: Reward bounds (αr, βr) and transition bounds (αp, βp), untruncated prior distribution of

true MDP parameters: f0 = fr
0 × fP

0

1 f̃P
0 ← TRUNCATEDISTRIBUTION(fP

0 , αp, βp)

2 f̃r
0 ← TRUNCATEDISTRIBUTION(fr

0 , αr, βr)
3 for episode k = 0, .., E − 1 do
4 Sample Mk = (rk, Pk) ∼ f̃r

k (.)× f̃P
k (.)

5 Compute πk = argmaxπ∈Π EMk
[V π(o)]

6 D ← {}
7 for timestep t = 1, ...,H do
8 Sample and play at ∼ πk(.|ot)
9 Observe rt and ot

10 D ← D ∪ {(ot, at, rt, ot+1)}
11 end
12 f̃P

k+1 ← UPDATEPOSTERIORS(f̃P
k ,D)

13 f̃r
k+1 ← UPDATEPOSTERIORS(f̃r

k ,D)
14 end

o1 o2 oN

ϵ
1− ϵ1− ϵ

ϵ
1

oN−1

ϵ

111

o1 o2 oN

ϵ
1− ϵ1− ϵ

ϵ
1

oN−1

ϵ

111

Transitions when u = ¬switch

Transitions when u = switch

(a) Switching RiverSwim

o0o1 o2

U

1 1

ϵp + U 1− ϵp − U

1− ϵp + U ϵp − U

(b) C-WinModel (c) C-GridWorld

Figure 6: Environments illustrations: Switching Riverswim (Fig. 6a): Two possible environment
configurations depending on the values of the confounder. Agent starts from the left and needs to
reach right. C-WinModel (Fig. 6b): The agent needs to reach o0 through o1, continuous and dashed
arrows represent transitions under actions a0 and a1. C-GridWorld Fig. 6c: The agent needs to reach
the diagonally opposed corner starting from the upper-left corner.

uniform priorsẆe model the posteriors as Dirichlet distributions for both the transition and the reward
since the rewards take finite values in all domains and we implement the truncation using rejection
sampling. Furthermore, we create three variants of CT-PSRL: CT-PSRL-1, CT-PSRL-2-NO and
CT-PSRL-3-UC where the number suffix indicate the number of datasets collected by different
behavioral policies used to compute the bounds, and the type of coverage provided by the behavioral
policies: “NO” stands for near-optimal and “UC” or uniform-coverage. The details of the behavioral
policies for each domain as well as a detailed domain description are provided in Appendix B.

Switching RiverSwim: We construct a variant of the standard RiverSwim environment [Strehl and
Littman, 2008] with switching directions as depicted in Figure 6a. The environment consists of N
observations, two confounders, and two actions. The agent starts at the far left node and has to reach
far left node. Depending on the value of the confounder, the effect of actions is switched.

C-WinModel: C-ModelWin [Bennett et al., 2021] depicted in Figure 6b is a confounded variant of
the standard ModelWin introduced by Thomas and Brunskill [2016]. The environment consists of 3
observations, 2 actions and 2 confounders.

C-GridWorld: C-GridWorld [Bennett et al., 2021] is a 2-dimensional grid where the goal is to reach
the top-right corner starting from the bottom-left. Similar to C-WinModel, there are 2 confounders
and the observations consist of the position of the agent and the actions correspond to the 4 directions
of movement.
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Figure 7: Cumulative regrets in Switching RiverSwim (Fig. 6a), C-WinModel (Fig. 6b) and, C-
Gridworld (Fig. 6c) of CT-PSRL leveraging one offline data CT-PSRL-1, CT-PSRL with two
datasets with uniform coverage CT-PSRL-2-UC, CT-PSRL with two datasets with near-optimal
coverage CT-PSRL-2-NO, and PSRL with untruncated uniform priors U-PSRL.

We run experiments across 5 random seeds in all environments and we visualize the cumulative
regrets in Figure 7. We observe that CT-PSRL-1 outperforms U-PSRL. The advantage of CT-PSRL
lays in the first few episodes when the tails of the posterior are long and the truncation provides
a significant regret reduction. Clearly, the benefits of such truncation depend on the tightness of
the causal bounds, which in turn depend on the behavioral policy. We additionally observe that
incorporating additional bounds collected by a secondary behavioral policy improves considerably
the performance. Finally, in both environments, CT-PSRL-2-UC outperforms CT-PSRL-2-NO,
thanks to the tight bounds guaranteed by the uniform coverage. In the Switching RiverSwim domain,
the bounds are tight enough to recover the optimal policy before the exploration phase.

6 Related work

Treating latent confounding has been addressed in various works in both the Causal Inference and
RL literature, both in the pure offline [Bruns-Smith, 2021, Namkoong et al., 2020, Bennett et al.,
2021] and hybrid (i.e., offline-online) setting [Zhang and Bareinboim, 2017, Gasse et al., 2023,
Wang et al., 2021, Zhang and Bareinboim, 2019]. Furthermore, various structural assumptions have
been considered: one-step confounding [Namkoong et al., 2020], i.i.d. confounders [Bruns-Smith,
2021, Zhang and Bareinboim, 2019, Bennett et al., 2021], and persistent confounding [Pace et al.,
2023, Tennenholtz et al., 2022]. In general, the goal is to mainly tackle two problems: deriving
worst-case bounds in off-policy evaluation [Namkoong et al., 2020, Bruns-Smith, 2021] and off-policy
improvement [Pace et al., 2023, Gasse et al., 2023, Wang et al., 2021, Zhang and Bareinboim, 2019].

In the hybrid setting, one is required to incorporate the prior data into an exploration strategy.
Exploration approaches can be grouped into two main categories, namely methods that rely on the
Optimism in the Face of Uncertainty (OFU) framework, and the Posterior Sampling framework.
Posterior Sampling for Reinforcement Learning (PSRL) [Osband et al., 2013] has been shown
to hold many advantages over traditional approaches based on optimism [Osband and Van Roy,
2017]. Particularly, to avoid the computational untractability of efficient optimization on ellipsoidal
confidence sets [Russo and Van Roy, 2014, Dani et al., 2008], the existing OFU approaches involve
computing rectangular confidence sets that provide rather loose bounds on the true confidence sets
[Osband and Van Roy, 2017]. In contrast, PSRL focuses on solving one problem instance.

Closest to our setting are works by Zhang and Bareinboim [2017, 2019] and by Gasse et al. [2023].
In the bandits case, Zhang and Bareinboim [2017] leverage causal bounds on the rewards to derive
a variant of Thompson Sampling [Thompson, 1933] and kl-UCB [Garivier and Cappé, 2011] by
truncating the posteriors and upper-confidence bounds. In the sequential setting, Zhang and Barein-
boim [2019] derive an Upper Confidence Bound algorithm, based on similar causal bounds on the
cumulative return and transition model. Our setting is equivalent to the one considered by Zhang and
Bareinboim [2019], but their formulation is stated as an SCM. However, our causal bounds are not
directly comparable to their bounds since they rely on the full history of observations rather than the
action-observation pairs. Our work can be seen as an extension of the B-TS algorithm [Zhang and
Bareinboim, 2017] to the sequential case.

8



Gasse et al. [2023] focus on the general POMDP case. In order to leverage offline data, they model
the hybrid setting as an augmented POMDP by modelling the data regime in the causal graph. To
construct a belief over the POMDP parameters, they treat the problem as a Maximum Likelihood
Estimation [Mandl, 1974], and leverage history dependent causal bounds to truncate the belief.
These bounds coincide with ours in the i.i.d confounders case. However, the Maximum Likelihood
Estimation (MLE) is well-known not to be suited for exploration problems since it requires a strict
identifiability assumption [Mandl, 1974]. When this assumption is violated, Borkar and Varaiya
[1979] show that only closed-loop identification is guaranteed, and the MLE policy is not necessarily
optimal under the true POMDP parameters.

7 Conclusions

Taking advantage of existing data is an important open question in reinforcement learning. In certain
real-world settings, however, the decision maker (i.e., policy) that collected the data can base its
decisions on additional information that has not been recorded. It is a well-known issue in offline
RL that ignoring these so-called unobserved confounders can lead to poor performance. The core
contribution of our work is that by leveraging offline data from multiple behavioral policies we can
tightly bound the causal effect of interventions. We then showed that these bounds are even more
informative when the behavioral policies uniformly cover the action space. We propose Causally-
Truncated PSRL, an extension of the PSRL algorithm that exploits these bounds by truncating the
posterior distributions. We demonstrate how CT-PSRL improves sample efficiency in three relevant
domains, focusing on the effect of having datasets generated by different behavioral policies.

As future work, we would like to extend the theoretical result on the tightness of the bounds to the
sequential case with an arbitrary number of behavioral policies. A limitation of our algorithm is that
it relies on exact causal bounds which only hold when the offline data is sufficiently large. We would
like to adapt our algorithm to incorporate inaccurate estimates of the causal bounds from an arbitrary
number of offline data samples. Furthermore, we would like to provide theoretical guarantees of
CT-PSRL in the form of tight regret-upper bounds and sample complexity bounds that depend on
the width of the natural bounds. Finally, we would like to explore broader settings than the i.i.d.
confounders case, which is a very promising direction for designing causal RL agents.

Acknowledgments

This research was performed as part of the Mercury Machine Learning Lab, a collaboration between
Booking.com, the University of Amsterdam and Delft University of Technology.

9



References
A. Balke and J. Pearl. Bounds on Treatment effects from studies with imperfect compliance. Journal

of the American Statistical Association, 92(439):1171–1176, 1997.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

A. Bennett, N. Kallus, L. Li, and A. Mousavi. Off-policy evaluation in infinite-horizon reinforcement
learning with latent confounders. In A. Banerjee and K. Fukumizu, editors, Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pages 1999–2007. PMLR, 13–15 Apr 2021. URL https://
proceedings.mlr.press/v130/bennett21a.html.

S. Bongers, P. Forré, J. Peters, and J. M. Mooij. Foundations of structural causal models with cycles
and latent variables. The Annals of Statistics, 49(5), 2021.

V. Borkar and P. Varaiya. Adaptive control of Markov chains, I: Finite parameter set. IEEE
Transactions on Automatic Control, 24(6):953–957, 1979. doi: 10.1109/TAC.1979.1102191.

D. A. Bruns-Smith. Model-free and model-based policy evaluation when causality is uncertain. In
International Conference on Machine Learning, pages 1116–1126. PMLR, 2021.

L. Buesing, T. Weber, Y. Zwols, N. Heess, S. Racaniere, A. Guez, and J.-B. Lespiau. Woulda,
coulda, shoulda: Counterfactually-guided policy search. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=BJG0voC9YQ.

M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalistic gridworld environment for Openai gym.
https://github.com/maximecb/gym-minigrid, 2018.

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback. In
Conference on Learning Theory, volume 2, page 3, 2008.

P. Forré and J. M. Mooij. A Mathematical Introduction to Causality. 2023.

A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochastic bandits and beyond. In
Proceedings of the 24th annual conference on learning theory, pages 359–376. JMLR Workshop
and Conference Proceedings, 2011.

M. Gasse, D. Grasset, G. Gaudron, and P.-Y. Oudeyer. Using confounded data in latent model-based
reinforcement learning. Transactions on Machine Learning Research, 2023.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

P. Mandl. Estimation and control in markov chains. Advances in Applied Probability, 6(1):40–60,
1974.

C. F. Manski. Nonparametric bounds on treatment effects. The American Economic Review, 80(2):
319–323, 1990.

C. F. Manski and D. S. Nagin. Bounding Disagreements about Treatment Effects: A Case Study of
Sentencing and Recidivism. Sociological Methodology, 28:99–137, 1998.

C. F. Manski and J. V. Pepper. Deterrence and the death penalty: Partial identification analysis using
repeated cross sections. Journal of Quantitative Criminology, 29:123–141, 2013.

H. Namkoong, R. Keramati, S. Yadlowsky, and E. Brunskill. Off-policy policy evaluation for
sequential decisions under unobserved confounding. Advances in Neural Information Processing
Systems, 33:18819–18831, 2020.

P. A. Ortega, M. Kunesch, G. Delétang, T. Genewein, J. Grau-Moya, J. Veness, J. Buchli, J. Degrave,
B. Piot, J. Perolat, T. Everitt, C. Tallec, E. Parisotto, T. Erez, Y. Chen, S. Reed, M. Hutter,
N. de Freitas, and S. Legg. Shaking the foundations: delusions in sequence models for interaction
and control. arXiv preprint arXiv:2110.10819, 2021.

10

https://proceedings.mlr.press/v130/bennett21a.html
https://proceedings.mlr.press/v130/bennett21a.html
https://openreview.net/forum?id=BJG0voC9YQ
https://github.com/maximecb/gym-minigrid


I. Osband and B. Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 2701–2710. PMLR, 8 2017.

I. Osband, D. Russo, and B. Van Roy. (More) efficient reinforcement learning via posterior sampling.
Advances in Neural Information Processing Systems, 26, 2013.

A. Pace, H. Yèche, B. Schölkopf, G. Ratsch, and G. Tennenholtz. Delphic offline reinforcement learn-
ing under nonidentifiable hidden confounding. In Sixteenth European Workshop on Reinforcement
Learning, 2023.

J. Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

J. Pearl. Models, reasoning and inference. Cambridge, UK: Cambridge University Press, 19(2):3,
2000.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2.

J. M. Robins. The analysis of randomized and non-randomized aids treatment trials using a new
approach to causal inference in longitudinal studies. Health service research methodology: a focus
on AIDS, pages 113–159, 1989.

D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243, 2014.

M. T. J. Spaan. Partially observable markov decision processes. In M. Wiering and M. van Otterlo,
editors, Reinforcement Learning: State-of-the-Art, pages 387–414. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-27645-3.

A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for Markov decision
processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

G. Tennenholtz, A. Hallak, G. Dalal, S. Mannor, G. Chechik, and U. Shalit. On covariate shift
of latent confounders in imitation and reinforcement learning. In International Conference on
Learning Representations, 2022.

P. Thomas and E. Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning. In
International Conference on Machine Learning, pages 2139–2148. PMLR, 2016.

W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

L. Wang, Z. Yang, and Z. Wang. Provably efficient causal reinforcement learning with confounded
observational data. Advances in Neural Information Processing Systems, 34:21164–21175, 2021.

J. Zhang and E. Bareinboim. Transfer learning in multi-armed bandit: a causal approach. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pages 1778–
1780, 2017.

J. Zhang and E. Bareinboim. Near-optimal reinforcement learning in dynamic treatment regimes.
Advances in Neural Information Processing Systems, 32, 2019.

A Proofs

A.1 Proof of Theorem 4

We first prove the following lemma:
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Lemma 10. The causal effect of the action on the transition probabilities and expected reward is
respectively bounded by

P (Ot+1 = o′, At = a|Ot = o) ≤ P (Ot+1 = o′|Ot = o,do(At = a))

≤ 1− P (Ot+1 ̸= o′, At = a|Ot = o)

and
E(Rt|Ot = o,At = a)P (At = a|Ot = o) + rmin · P (At ̸= a|Ot = o)

≤ E(Rt|Ot = o,do(At = a))

≤ E(Rt|Ot = o,At = a)P (At = a|Ot = o) + rmax · P (At ̸= a|Ot = o).

for all o, o′ ∈ O and a ∈ A.

Proof. The logging data is generated following a Markov Decision Process, which is a Bayesian
network, hence a simple SCM [Bongers et al., 2021]. The following is a rewriting of Theorem 7.5.2
and Corollary 7.5.3 of Forré and Mooij [2023], which are in turn an adaptations of Manski and Nagin
[1998] and Manski and Pepper [2013].

In the SCM framework, the potential outcome O
do(At=a)
t+1 is defined as any random variable that

is almost surely equal to the random variable Ot in the SCM under the intervention do(At = a)

(Bongers et al. [2021], Definition 8.6). Using this notation we have P (O
do(At=a)
t+1 = o′|Ot = o) =

P (Ot+1 = o′|Ot = o,do(At = a)). These potential outcomes satisfy the consistency property
O

do(At=At)
t+1 = Ot+1 (Forré and Mooij [2023], Theorem 7.5.1), using which we get

P (Ot+1 = o′, At = a|Ot = o) = P (O
do(At=a)
t+1 = o′, At = a|Ot = o)

≤ P (O
do(At=a)
t+1 = o′|Ot = o)

= P (O
do(At=a)
t+1 = o′, At = a|Ot = o)

+ P (O
do(At=a)
t+1 = o′, At ̸= a|Ot = o′)

≤ P (Ot+1 = o′, At = a|Ot = o) + P (At ̸= a|Ot = o)

= 1− P (Ot+1 ̸= o′, At = a|Ot = o).

The above can also be proven without potential outcomes, using response variables instead [Balke
and Pearl, 1997].

Following Manski and Pepper [2013] we write

E(R
do(At=a)
t |Ot = o) = E(R

do(At=a)
t |Ot = o,At = a)P (At = a|Ot = o)

+ E(R
do(At=a)
t |Ot = o,At ̸= a)P (At ̸= a|Ot = o)

= E(Rt|Ot = o,At = a)P (At = a|Ot = o)

+ E(R
do(At=a)
t |Ot = o,At ̸= a)P (At ̸= a|Ot = o)

and since E(R
do(At=a)
t |Ot = o,At ̸= a) ∈ [rmin, rmax], we get the desired result.

By writing Lemma 10, in terms of the parameters of the marginalized MDPMm and behavioral
policy πβ and the observational quantities and dropping the dependency on time since the transition
model, reward function and behavioral policy are time-homogeneous, we get for all o, o′ ∈ O and
a ∈ A:

P (o′, a|o) ≤ Pm(o′|o,do(A = a)) ≤ 1−
∑

o′′ ̸=o′

P (o′′, a|o) (4)

and
E(R|o, a)πβm(a|o) + rmin · (1− πβm(a|o)) ≤
rm(o, a) ≤ E(R|o, a)πβm(a|o) + rmax · (1− πβm(a|o)).

By noticing that
∑

o′′ ̸=o′ P (o′′, a|o) = πβm(a|o) − P (o′, a|o) and that P (o′, a|o) =

P (o′|o, a)πβm(a|o) and replacing these terms in Equation (4) we conclude the proof.
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A.2 Proof of Proposition 6

Proposition 6. (Tightness of the natural bounds) The width of the causal bounds satisfy the following:

βp(o
′, a, o)− αp(o

′, a, o) = 1− πβm(a|o)
βr(o, a)− αr(o, a) = (rmax − rmin)(1− πβm(a|o))

Furthermore: ∑
a

βp(o
′, a, o)− αp(o

′, a, o) = K − 1∑
a

βr(o, a)− αr(o, a) = (rmax − rmin)(K − 1)

for all o′, a, o.

Proof. The proof is straightforward, let us first recall the definition of the causal bounds for the
transition model: αp(o

′, a, o) = P (o′, a|o) and βp(o
′, a, o) = 1− (πβm(a|o)− P (o′, a|o)).

Then we have that, for all o, o′ ∈ O, a ∈ A:

βp(o
′, a, o)− αr(o

′, a, o) = 1− (πβ(a|o)− P (o′, a|o))− P (o′, a|o)
= 1− πβm(a|o)

Therefore, by summing over actions:

∑
a∈A

βp(o
′, a, o)− αr(o

′, a, o) =
∑
a∈A

1− πβm(a|o) = K − 1

Similarly, for the reward, αr(o, a) = E(R|o, a)πβm(a|o) + rmin(1 − πβm(a|o)) and βr(o, a) =
E(R|o, a)πβm(a|o) + rmax(1− πβm(a|o′)), we have that, for all o ∈ O, a ∈ A:

βr(o, a)− αr(o, a) = E(R|o, a)πβm(a|o) + rmax(1− πβm(a|o′))−
E(R|o, a)πβm(a|o)− rmin(1− πβm(a|o))

= rmax(1− πβm(a|o′))− rmin(1− πβm(a|o))
= (rmax − rmin)(1− πβm(a|o′))

and by summing over actions:

∑
a∈A

βr(o, a)− αr(o, a) =
∑
a∈A

1− πβm(a|o) = (rmax − rmin)(K − 1).

A.3 Proof of Proposition 7

Proof. The proof is straightforward. From theorem 4, the transition and reward satisfy for o, o′ ∈ O,
a ∈ A, and for all j = 1, .., L:

αj
p(o, a, o

′) ≤ Pm(o′|o,do(a)) ≤ βj
p(o, a, o

′),

αj
r(o, a) ≤ rm(o, a) ≤ βj

r(o, a),

Hence the lower and upper transition bounds hold for maxj α
j
p(o, a, o

′) and minj β
j
p(o, a, o

′), and
the lower and upper reward bounds hold for maxj α

j
r(o, a) and minj β

j
r(o, a)) respectively.
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A.4 Proof of Proposition 8

Proposition 8. Consider a Multi-Armed Bandits problem, with 2 actions {a0, a1} and two con-
founders U = {u0, u1}, with p(u0) = p(u1) = 1

2 and no observations. With binary rewards
R|A = aj , U = ui ∼ Bern(µi,j). µ0,0 = µ1,1 = 1

2 + δ and µ0,1 = µ1,0 = 1
2 − δ, for some

0 < δ < 1
2 .

Then, for all 0 < ϵ < 1, there exist behavioral policies π0 and π1 with reward bounds (α0
r(a), β

0
r (a))

and (α1
r(a), β

1
r (a)) respectively, such that∑

a

δr(a) ≤ 2ϵ.

Proof. Consider two behavioral policies π0 and π1 such that:

πj(ai|u0) =

{
1− ϵ

2 if i = j
ϵ
2 if i ̸= j

and, πj(ai|u1) =

{
1− 3ϵ

2 if i = j
3ϵ
2 if i ̸= j

For ease of notation, we denote by πj(ai) the marginal behavioral policies πj(ai) = p(u0)πj(ai|u0)+
p(u1)πj(ai|u1) such that:

πj(ai) =

{
1− ϵ if i = j
ϵ if i ̸= j

and,

P (R = 1|ai;πj) = P (R = 1, u0|ai;πj) + P (R = 1, u1|ai;πj)

= P (R = 1|ai, u0;πj)
πj(ai|u0)p(u0)

πj(ai)
+ P (R = 1|ai, u1;πj)

πj(ai|u1)p(u1)

πj(ai)

since p(u0) = p(u1) =
1
2 , we have:

P (R = 1|ai;πj) =
µ0,iπj(ai|u0) + µ1,iπj(ai|u1)

2πj(ai)

For short we let µ̃j
i = P (R = 1|A = ai;πj) We evaluate now µ̃j

i for all (i, j) pairs. We have:

µ̃0
0 =

( 12 + δ)(1− ϵ
2 ) + ( 12 − δ)(1− 3ϵ

2 )

2(1− ϵ)
=

1

2
+

δϵ

2(1− ϵ)

µ̃0
1 =

( 12 − δ) ϵ2 + ( 12 + δ) 3ϵ2
2ϵ

=
1 + δ

2

µ̃1
0 =

( 12 + δ) ϵ2 + ( 12 − δ) 3ϵ2
2ϵ

=
1− δ

2

µ̃1
1 =

( 12 − δ)(1− ϵ
2 ) + ( 12 + δ)(1− 3ϵ

2 )

2(1− ϵ)
=

1

2
− δϵ

2(1− ϵ)

From Corollary 5, we have:

αj
r(ai) = πj(ai)µ̃

j
i

and,

βj
r(ai) = 1− (1− πj(ai))µ̃

j
i

Now we evaluate the causal bounds for each policy-action pair and their maximums and minimums.
For the lower causal bound of action a0:
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{
α0
r(a0) =

1−(1−δ)ϵ
2

α1
r(a0) =

(1−δ)ϵ
2

Hence, αr(a0) = max
j

αj
r(a0) =

{
(1−δ)ϵ

2 if ϵ ≥ 1
2(1−δ)

1−(1−δ)ϵ
2 otherwise

For the lower causal bound of action a1:{
α0
r(a1) =

(1+δ)ϵ
2

α1
r(a1) =

1−(1+δ)ϵ
2

Hence, αr(a1) = max
j

αj
r(a1) =

{
(1+δ)ϵ

2 if ϵ ≥ 1
2(1+δ)

1−(1+δ)ϵ
2 otherwise

For the upper causal bound of action a0:{
β0
r (a0) =

1+(1+δ)ϵ
2

β1
r (a0) =

2−(1+δ)ϵ
2

Hence, βr(a0) = min
j

βj
r(a0) =

{
2−(1+δ)ϵ

2 if ϵ ≥ 1
2(1+δ)

1+(1+δ)ϵ
2 otherwise

For the upper causal bound of action a1:{
β0
r (a1) =

2−(1−δ)ϵ
2

β1
r (a1) =

1+(1−δ)ϵ
2

Hence, βr(a1) = min
j

βj
r(a1) =

{
2−(1−δ)ϵ

2 if ϵ ≥ 1
2(1−δ)

1+(1−δ)ϵ
2 otherwise

Therefore, we distinguish three cases depending on the value of ϵ as a function of the gap ∆ = 2δ:

Case 1: ϵ < 1
2(1+∆

2 )
:

In this case, we have:


αr(a0) =

1−(1−δ)ϵ
2

βr(a0) =
1+(1+δ)ϵ

2

αr(a1) =
1−(1+δ)ϵ

2

βr(a1) =
1+(1−δ)ϵ

2

Hence,

δr(a0) + δr(a1) = βr(a0)− αr(a0) + βr(a1)− αr(a1) = 2ϵ

Case 2: 1
2(1+∆

2 )
≤ ϵ < 1

2(1−∆
2 )

:

In this case, we have:


αr(a0) =

1−(1−δ)ϵ
2

βr(a0) =
2−(1+δ)ϵ

2

αr(a1) =
(1+δ)ϵ

2

βr(a1) =
1+(1−δ)ϵ

2

Hence,

δr(a0) + δr(a1) = 1− 2δϵ = 1−∆ϵ

Since 1
2(1+∆

2 )
≤ ϵ, we have:

δr(a0) + δr(a1) ≤ 2ϵ

.
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Case 3: ϵ ≥ 1
2(1+∆

2 )
:


αr(a0) =

(1−δ)ϵ
2

βr(a0) =
2−(1+δ)ϵ

2

αr(a1) =
(1+δ)ϵ

2

βr(a1) =
2−(1−δ)ϵ

2

δr(a0) + δr(a1) = 2(1− ϵ)

Since ϵ ≥ 1
2(1+∆

2 )
≥ 1

2 , we have:

δr(a0) + δr(a1) ≤ 2ϵ

In summary ∀0 ≤ ϵ ≤ 1:

δr(a0) + δr(a1) = βr(a0)− αr(a0) + βr(a1)− αr(a1) ≤ 2ϵ

Which concludes the proof.

B Environments details

B.1 Switching RiverSwim

B.1.1 Environment description

The Switching RiverSwim (Figure 6a) is a chain similar to RiverSwim introduced by Strehl and
Littman [2008]. The environment consists of N observations { o1, o1,.., oN}, two confounders
{ switch, ¬switch}, two actions {left, right}. The agent starts at o1 and has to reach oN . At each
timestep the confounder is sampled at random independently from the observation and action. When
the confounder is “¬switch” the agent transitions to the left with probability 1− ϵ and to the right
with probability ϵ when taking action “left” and transitions to the right with probability 1 when taking
action “right” However, when the confounder is “switch”, the actions are switched and the agent
transitions to the right with probability one if it takes action “left” and it transitions to the left with
probability 1− ϵ and to the right with probability ϵ when taking action “right”. Whenever a transition
to the right occurs, the agent receives a small positive reward r ∈ (0, 1), otherwise it receives a
reward of 0. Finally, once oN is reached, the episode is terminated and the agent receives a reward of
1.

B.1.2 The behavioral policies

The behavioral policy observes the confounders value u, and at each timestep picks with probability
1− ϵπ a = u and a = ¬u with probability ϵπ. For CT-PSRL-1, we use ϵ0π = 0.1. For CT-PSRL-
2-UC, we use additional a behavioral policy with parameter ϵ1π = 0.9 and for CT-PSRL-2-NO,
the additional behavioral policy has parameter ϵ2π = 0.2. For our simulation, we choose r = 0.02,
N = 3, H = 5. For each behavioral policy, we collect a dataset of 50 000 transitions to compute the
causal bounds.

B.2 C-ModelWin

B.2.1 Environment description

C-ModelWin [Bennett et al., 2021] depicted in Figure 6b is a confounded variant of the standard
ModelWin introduced by Thomas and Brunskill [2016]. The environment consists of 3 observations,
2 actions and 2 confounders taking two values, 0.1 or 0.2 with probabilities 0.3 and 0.7 respectively.
The agent starts in state o0. When taking action a0 at o0 at time t, the agent transitions to o1 with
probability ϵp + Ut and to o2 with probability 1 − ϵp − Ut. Otherwise, if it takes action a1, it
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transitions to o1 with probability 1− ϵp + Ut and to o2 with probability ϵp − Ut and in both cases
receives a reward of 0. While in o1 or o2, the agent transitions to o0 with probability 1 independently
from the action taken, and receives a reward of r + 20Ut if it transitions from o1 and a reward of
−r − 20Ut if it transitions from o2.

B.2.2 The behavioral policies

The behavioral policy for takes action a0 and a1 with probabilities 1−ϵπ−Ut and ϵπ+Ut respectively,
independently from the observation for some parameter ϵπ. For CT-PSRL-1 we choose ϵ0π = 0.1
and for CT-PSRL-2-UC and CT-PSRL-2-NO consider two additional behavioral policies with
parameters ϵ1π = 0.7 and ϵ2π = 0.2 respectively. Finally, we choose ϵp = 0.7 and r = 10 similar
to Bennett et al. [2021]. Similar to the Switching Riverswim environment, each offline dataset is
composed of 50 000 transitions.

B.3 C-Gridworld

B.3.1 Environment description

C-GridWorld (Figure 6c) [Bennett et al., 2021] is a 2-dimensional grid where the goal is to reach the
bottom-right corner starting from the top-left. The observations consist of the position of the agent
and four actions: either move up a0, right a1, down a2, or left a3. The transitions are deterministic,
i.e. the agent moves in the direction of the action taken. Similar to C-WinModel, at each timestep t
the confounder Ut can take two possible values 0.1 or 0.2 with probabilities 0.3 and 0.7 respectively.
The rewards are either 100 + 100Ut if the agent reaches the goal. Otherwise, the reward is 1 + 20Ut

when taking action down, 1 + 30Ut for right, −1− 30Ut for up, and −1− 40Ut for left. We choose
an episode length H = 10 and we run experiments for K = 20 episodes and we base our adaptation
on the GridWorld implementation of Chevalier-Boisvert et al. [2018].

B.3.2 The behavioral policies

The behavioral policy chooses actions hierarchically, where it chooses to move either down-right
with probability 1− ϵπ−Ut or top-left with probability ϵπ +Ut. When choosing to move top-left, the
behavioral policy moves up with probability 0.5ϵπ + Ut and right with probability 1− 0.5ϵπ − Ut.
If the behavioral policy chooses to move down-right, the action is chosen depending on the position
of the agent with respect to the diagonal defined by the top-left and bottom-right corners. If the agent
is above the diagonal, it moves down with probability 1− ϵπ −Ut and right with probability ϵπ +Ut.
Conversely, if the agent is below the diagonal, it moves down with probability ϵπ +Ut and right with
probability 1− ϵπ − Ut. Finally when the agent is in the diagonal, the probability of moving down
and right are 0.5ϵπ + 0.5Ut and 1− 0.5ϵπ − 0.5Ut respectively. We choose a grid size of 5× 5, and
three behavioral policies with parameters ϵπ ∈ {0.3, 0.4, 0.7}, and each behavioral policy is used to
collect a dataset of 100 000 transitions.
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